
Towards Better Separation between Deterministic
and Randomized Query Complexity∗

Sagnik Mukhopadhyay and Swagato Sanyal

Tata Institute of Fundamental Research
Mumbai, India
sagnik@tifr.res.in, swagatos@tcs.tifr.res.in

Abstract
We show that there exists a Boolean function F which gives the following separations among
deterministic query complexity (D(F)), randomized zero error query complexity (R0(F)) and
randomized one-sided error query complexity (R1(F)): R1(F) = Õ(

√
D(F)) and R0(F) =

Õ(D(F))3/4. This refutes the conjecture made by Saks and Wigderson that for any Boolean
function f , R0(f) = Ω(D(f))0.753... This also shows widest separation between R1(f) and D(f)
for any Boolean function. The function F was defined by Göös, Pitassi and Watson who studied
it for showing a separation between deterministic decision tree complexity and unambiguous non-
deterministic decision tree complexity. Independently of us, Ambainis et al proved that different
variants of the function F certify optimal (quadratic) separation between D(f) and R0(f), and
polynomial separation between R0(f) and R1(f). Viewed as separation results, our results are
subsumed by those of Ambainis et al. However, while the functions considered in the work of
Ambainis et al are different variants of F , in this work we show that the original function F

itself is sufficient to refute the Saks-Wigderson conjecture and obtain widest possible separation
between the deterministic and one-sided error randomized query complexity.

1998 ACM Subject Classification F.1.1 [Computation by Abstract Devices]: Models of Compu-
tation – Relations between models, F.1.2 [Computation by Abstract Devices]: Modes of Compu-
tation – Probabilistic computation

Keywords and phrases Deterministic Decision Tree, Randomized Decision Tree, Query Com-
plexity, Models of Computation

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2015.206

1 Introduction

In computational complexity theory, one major goal is to prove limitations of existing
computational models which helps us to understand the computational power that each
model exhibits. Among the vast array of computational models that are studied in the
literature, one of the simplest is query model (or decision tree model) where an algorithm
computing a boolean function is given query access to the input. The algorithm queries
different bits of the input, possibly in adaptive fashion, and computes the function on the
input based on the query responses. The algorithm is charged not for the computation but
for the number of bits it queries. It is easy to see that n is a trivial upper bound on the
number of queries that any algorithm makes to evaluate the function where n is the input
size. The objective is to minimize the number of queries made.

∗ S. Mukhopadhyay is supported by a TCS fellowship and S. Sanyal was supported by a DAE fellowship.

© S. Mukhopadhyay and S. Sanyal;
licensed under Creative Commons License CC-BY

35th IARCS Annual Conf. Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2015).
Editors: Prahladh Harsha and G. Ramalingam; pp. 206–220

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.206
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S. Mukhopadhyay and S. Sanyal 207

For a Boolean function f , the deterministic query complexity, D(f), of f is defined to
be the maximum (over inputs) number of queries the best deterministic query algorithm
for f makes. For many well studied boolean functions, such as parity, threshold functions,
the deterministic decision tree complexity is n - such functions are called evasive functions.
As observed by Rivest and Vuillemin [7], most boolean functions are evasive. In this work
we are mainly concerned about the power of the query model when we allow randomness.
We want to ask the following question: how many queries can we save for evaluating f if
we allow the query algorithm to toss coins. A randomized query algorithm can be thought
of as a distribution over deterministic query algorithms. It can also be viewed as a query
algorithm where each node has an additional power of tossing coins . After querying the
variable associated with any internal node of the tree, the algorithm decides which input
bit to query depending on the responses to the queries so far (i.e. the current node in the
tree) and the value of the coin tosses while in that node. It is not hard to see that the
two definitions are equivalent. We look at the following complexity measures that are well
studied. The bounded-error randomized query complexity R(f) of f is defined to be the
number of queries made on the worst input by the best randomized query algorithm for
f that is correct with probability 2/3 on every input. The zero error randomized query
complexity of f , R0(f), is the expected number of queries made on the worst input by the
best randomized algorithm for f that gives correct answer on each input with probability 1.
Finally the one-sided randomized query complexity of f , R1(f), is the number of queries
made on the worst input by the best algorithm that is correct on every input with probability
at least 2/3, and in addition correct on every 0-input with probability 1. The choice of
the constant 2/3 in our definitions is arbitrary, and could be replaced by any constant in
the definition of R1(f), and any constant greater than 1/2 in the definition of R(f), while
changing the number of queries by a constant factor.

Relationships between these query complexity measures have been extensively studied
in the literature. That randomization can save more than a constant factor of queries has
been known for a long time. Snir [10] showed a O(nlog4 3) randomized linear query algorithm
(a more powerful model than what we discussed) for complete binary NAND tree function
for which the deterministic linear query complexity is Ω(n). Later on Saks and Wigderson
[8] gave a Θ(n0.753...) randomized query algorithm for the same function. They also showed
that for uniform rooted ternary majority tree function, the randomized query complexity is
O(n0.893...) and deterministic query complexity is Ω(n) - the authors credited R. Boppana
for this example. All these example showed that randomized query complexity can be
substantially lower than its deterministic counterpart.
In their paper, Saks and Wigderson made the following conjecture.

I Conjecture 1 (Saks and Wigderson [8]). For any boolean function f , R0(f) = Ω(D(f)0.753...).

Saks and Wigderson conjectured that the complete binary NAND tree function exhibits
the widest separation possible between these two measures of complexity. During this work,
the best separation known between deterministic decision tree complexity and zero error,
one-sided error and bounded error randomized query complexities was the one exhibited by
the complete binary NAND tree function. Also, no separation among the different randomized
query complexity measures was known.

For complete binary NAND tree function F , Santha [9] showed that R(F) = (1−2ε)R0(F)
where ε is the error probability. So, for this function, we have R(F) = Θ(D(F)0.753...). It
is easy to see that D(f) ≥ R(f), R0(f), R1(f). Blum and Impagliazzo [3], Tardos [11] and
Hartmanis and Hemachandra [5] independently showed that R0(f) ≥

√
D(f). Nisan [6]

showed that for any Boolean function f , R(f) ≥ 3
√
D(f)/27 and R1(f) ≥

√
D(f). The

FSTTCS 2015

208 Separations Between Query Complexity Measures

biggest gap known so far between D(f) and R(f) for any f is much less than cubic and little
progress has been made in last 20 years to improve the state of the art.

The main results of this work are Theorems 1 and 2. Theorem 1 refutes Conjecture 1 by
Saks and Wigderson.

I Theorem 1. There exists a Boolean function F for which R0(F) = Õ(D(F)3/4).

It is to be noted that this result does not match the lower bound of R0(f) in terms of
D(f). We also show quadratic separation between deterministic and one-sided randomized
query complexity which is achieved by the same function.

I Theorem 2. There exists a Boolean function F for which R1(F) = Õ(
√
D(F)).

This separation matches the lower bound, upto logarithmic factors, on R1(f) in terms of
D(f) for any function f . These results give better separation between the corresponding
complexity measures than what is known during this work.

The function F which yields these separation results was first introduced by Göös et
al [4] for showing a gap between deterministic decision tree complexity and unambiguous
non-deterministic decision tree complexity and resolving the famous clique vs independent
set problem. We will define the function in Section 1.1.

Independently of us, Ambainis et al [2] proved various separation results between different
query complexity measures. Among several other results, the authors prove the existence of
a function f for which R0(f) = Õ(

√
D(f)). In view of the lower bound, this is the widest

separation possible between these two measures. This also refutes the conjecture by Saks and
Wigderson. Moreover, since R0(f) = Ω(R1(f)), this also certifies the same separation as that
of Theorem 2. However, the authors use a variant of the function F which was introduced
by Göös et al [4] to show this separation. In our work, we showed that the original function
F itself is sufficient to refute Saks-Wigderson conjecture and to show the widest possible
separation between D(f) and R1(f) for any boolean function f .

1.1 The Göös-Pitassi-Watson Function
We define the function F now. The domain of F is D = {0, 1}n(1+dlogne). An input M ∈ D
to F is viewed as a matrix of dimension

√
n×
√
n. Each cell Mi,j of M consists of two parts:

1. A bit-entry bi,j ∈ {0, 1}.
2. A pointer-entry pi,j ∈ {0, 1}dlogne. pi,j is either a valid pointer to some other cell of M ,

or is interpreted as ⊥ (null). If pi,j is not a valid pointer to some other cell, we write
“pi,j = ⊥”.

Now, we define what we call a valid pointer chain. Assume that t =
√
n. For an input M

to F , a sequence ((i1, j1), . . . , (it, jt)) of indices in [
√
n]× [

√
n] is called a valid pointer chain

if:
1. bi1,j1 = 1;
2. bi2,j2 = . . . = bit,jt

= 0;
3. ∀k < i1, pk,j1 = ⊥;
4. for ` = 1, . . . , t− 1, pi`,j`

= (i`+1, j`+1) and pit,jt = ⊥;
5. {b1, . . . , bt} = btc;

F evaluates to 1 on M iff the following is true:

1. M contains a unique all 1’s column j1, i.e., there exists j1 ∈ [
√
n] such that ∀i ∈ [

√
n],

bi,j1 = 1.

S. Mukhopadhyay and S. Sanyal 209

2. There exists a valid pointer chain ((i1, j1), . . . , (it, jt)). This means that the column j1
has a cell with non-null pointer entry. (i1, j1) is the cell on column j1 with minimum row
index whose pointer-entry is non-null. Starting from pi1,j1 , if we follow the successive
pointers, the following conditions are satisfied: In each step except the last, the cell
reached by following the pointer-entry of the cell in the previous step, contains a 0 as
bit-entry and a non-null pointer as pointer-entry. In the last step, the cell contains a zero
as bit-entry and a null pointer (⊥) as pointer-entry. Also, this pointer chain covers each
column of M exactly once.

By a simple adversarial strategy, Göös et al. [4] showed that D(F) = Ω̃(n). Our
contribution is to show the following results.

I Lemma 3. For the function F defined above, R0(F) = Õ(n3/4).

I Lemma 4. For the function F defined above, R1(F) = Õ(
√
n).

Clearly, Lemmas 3 and 4 imply Theorems 1 and 2 respectively.

2 Randomized One-sided Error Query Algorithm for F

We show that the randomized one-sided error query complexity of F is Õ(
√
n). We first

provide intuition for our one-sided error query algorithm for F before formally describing it.

Broad idea: Our algorithm errs on one side: on 0-inputs it always outputs 0 and on 1-inputs
it outputs 1 with high probability.
The algorithm attempts to find a 1-certificate. If it fails to find a 1-certificate, it outputs 0.
We show that on every 1-input, with high probability, the algorithm succeeds in finding a
1-certificate. The 1-certificate our algorithm looks for consists of:
1. A column j, all of whose bit-entries are 1’s.
2. All null pointers of column j till its first non-null pointer-entry.
3. The pointer chain of length

√
n that starts from the first non-null pointer entry, and in

the next
√
n− 1 hops, visits all the other columns. The bit entries of all the other cells

of the pointer chain than the one in this column are 0.
To find a 1-certificate, the algorithm tries to find columns with 0-cells on them, and adds
those columns to a set of discarded columns that it maintains. To this end, a first natural
attempt is to repeatedly sample a cell randomly from M , and if its bit-entry is 0, try to
follow the pointer originating from that cell. Following the chain, each time we visit a cell
with bit-entry 0, we can discard the column on which the cell lies. We can expect that, with
high probability, after sampling O(

√
n) cells, we land up on some cell in the middle portion

of the correct pointer chain that is contained in the 1-certificate (we call this the principal
chain). Then if we follow that pointer we spend O(

√
n) queries, and eliminate a constant

fraction of the existing columns.
The problem with this approach is possible existence of other long pointer chains, than

the principal chain. It may be the case that we land up on one such chain, of Ω(
√
n) length,

which passes entirely through the columns that we have already discarded. Thus we end up
spending Ω(

√
n) queries, but can discard only one column (the one we began from).

To bypass this problem, we start by observing that the principal chain passes through
every column, and hence in particular through every undiscarded column. Let N be the
number of undiscarded column at some stage of the algorithm. Note that the length of the
principal chain is

√
n. Therefore if we start to follow it from a randomly chosen cell on it,

FSTTCS 2015

210 Separations Between Query Complexity Measures

Algorithm 1
1: procedure MilestoneTrace(M, C, i, j)
2: Read bi,j ;
3: if bi,j = 1 then return ;
4: end if
5: step:=0;
6: discard:=1;
7: current:=(i, j);
8: seen:={j};
9: while step ≤ 100

√
n · discard|C| do

10: read the pointer-entry of current;
11: step ← step+1;
12: current ← pointer-entry of current;
13: if current is ⊥ then goto step21;
14: end if
15: read bit-entry of current;
16: if current is on a column k in C \ seen and bit-entry of current is 0 then
17: seen ← seen ∪{k};
18: discard ← discard+1;
19: end if
20: end while
21: C ← C \ seen;
22: end procedure

we are expected to see an undiscarded column in roughly another
√
n/N hops. In view of

this, we modify our algorithm as follows: while following a pointer chain, we check if on an
average we are seeing one undiscarded column in every O(

√
n/N) hops. If this check fails,

we abandon following the pointer, sample another random cell from M , and continue. Our
procedure MilestoneTrace does this pointer-traversal. We can prove that conditioned on
the event that we land up on the principal chain, the above traversal algorithm enables us to
eliminate a constant fraction of the existing undiscarded columns with high probability. We
also show that spending O(

√
n/N) queries for each column we eliminate is enough for us to

get the desired query complexity bound.
After getting hold of the unique all 1’s column, the final step is to check if all its bit-entries
are indeed 1’s, and if that can be completed into a full 1-certificate. That can clearly be
done in Õ(

√
n) queries. The VerifyColumn procedure does this.

2.1 The Algorithm
In this section we give the formal description and analysis of our one-sided error query
algorithm for F : Algorithm 3. Algorithm 3 uses two procedures: VerifyColumn (see
Algorithm 2) and MilestoneTrace (see Algorithm 1). As outlined in the previous section,
VerifyColumn, given a column, checks if all its bit-entries are 1 and whether it can
be completed into a 1-certificate. MilestoneTrace procedure implements the pointer
traversal algorithm that we described in the preceding paragraph. We next describe the
MilestoneTrace procedure in a little more detail. We recall from the last section that
the algorithm discards columns in course of its execution. We denote the set of undiscarded
columns by C.

S. Mukhopadhyay and S. Sanyal 211

Algorithm 2
1: procedure VerifyColumn(M,k)
2: Check if all the bit-entries of cells in the k-th column of M are 1; If not, output 0;
3:
4: if All the pointer-entries of cells in the the k-th column of M are ⊥ then
5: Output 0;
6: end if
7: if The pointer chain starting from the first non-null pointer in column k is valid then
8: Output 1;
9: else

10: Output 0;
11: end if
12: end procedure

MilestoneTrace procedure: The functions of the variables used are as follows:

1. step: Contains the number of pointer-entries queried so far. A bit query is always
accompanied by a pointer query, unless the bit is 1 in which case the traversal stops. So
upto logarithmic factor, the value in step gives us the number of bits queried.

2. seen: Set of columns that were undiscarded before the current run of MilestoneTrace,
and that have so far been seen and marked for discarding.

3. discard: size of seen
4. current: Contains the indices of the cell currently being considered.
The condition in the while loop checks if the number of queries spent is not too much larger
than

√
n
|C| at any point in time. The if condition in line 13 checks if the current pointer-entry

is null. If it is null, C is updated, and control returns to Algorithm 3. The condition in
line 13 checks if the pointer chain has reached its end.

To analyse Algorithm 3, we need to prove two statements about MilestoneTrace, which
we now informally state. Assume that the algorithm is run on a 1-input.
1. Conditioned on the event that a cell (i, j) randomly chosen from the columns in C is on

the principal chain, a call to MilestoneTrace(M, C, i, j) serves to eliminate a constant
fraction of surviving columns with high probability.

2. For upper bounding the number of queries, it is enough to ensure that the average number
of queries spent for each eliminated column is not too much larger than

√
n
|C| . Note that

|C| is the number of undiscarded columns during the start of the MilestoneTrace
procedure.

In Section 2.2, we prove that Algorithm 3 makes Õ(
√
n) queries on every input. In Section 2.3

we prove that Algorithm 3 succeeds with probability 1 on 0-inputs and with probability at
least 2/3 on 1-inputs.

2.2 Query complexity of Algorithm 3
In this subsection we analyse the query complexity of Algorithm 3. We bound the total
number of bi,j ’s and pi,j ’s read by the algorithm. Upto logarithmic factors, that is the total
number of bits queried. For the rest of this subsection, one query will mean one query to a
bit-entry or a pointer-entry of some cell.

FSTTCS 2015

212 Separations Between Query Complexity Measures

Algorithm 3
1: C := set of columns in M .
2: for t = 1 to O(

√
n logn) do

3: if |C| < 100 then
4: goto step 10;
5: end if
6: Sample a column j from C uniformly at random;
7: Sample i ∈ [

√
n] uniformly at random;

8: MilestoneTrace(M, C, i, j);
9: end for

10: if |C| > 100 or |C| = 0 then
11: Output 0;
12: else
13: Read all columns in C;
14: if There is a column k with all bit-entries equal to 1 then
15: VerifyColumn(M,k);
16: else
17: Output 0;
18: end if
19: end if

We first analyse the MilestoneTrace procedure. Recall that C denotes the set of undis-
carded columns.

I Lemma 5. Let i, j be such that bi,j = 0. Let Q and D respectively be the number of queries
made and number of columns discarded by a call to MilestoneTrace(M, C, i, j). Then,

Q ≤ D · 200
√
n

|C|
+ 3

Proof. We note that the variable step contains the number of pointer queries made so far,
and the variable discard maintains the number of columns marked so far for discarding.
Every time the while loop is entered, step ≤ 100

√
n · discard|C| . In each iteration of the while

loop, step goes up by 1. So at any point, step ≤ 100
√
n · discard|C| + 1. The lemma follows by

observing that the total number of bit-entries queried is at most one more than total number
of pointer-entries queried. J

We now use Lemma 5 to bound the total number of queries made by Algorithm 3.

I Lemma 6. Algorithm 3 makes Õ(
√
n) queries on each input.

Proof. Whenever bi,j = 1, MilestoneTrace(M, C, i, j) returns after reading bi,j . So the
total number of queries made by all calls to MilestoneTrace(M, C, i, j) on such inputs is
Õ(
√
n).

After leaving the while loop, the total number of queries required to read constantly many
columns in C and to run VerifyColumn is Õ(

√
n).

Since inside the while loop all the queries are made inside the MilestoneTrace procedure,
it is enough to show that the total number of queries made by all calls to MilestoneT-
race(M, C, i, j) on inputs for which bi,j = 0 is Õ(

√
n).

Let t = Õ(
√
n) be the total number of calls to MilestoneTrace on such inputs, made

S. Mukhopadhyay and S. Sanyal 213

in the entire run of Algorithm 3. Let si be the value of |C| when the i-th call to Mile-
stoneTrace is made, and let st+1 be the value of |C| after the execution of the t-th call
to MilestoneTrace completes . Let ∆si and ∆qi respectively be the number of columns
discarded and number of queries made in the i-th call to MilestoneTrace. Since C shrinks
only when bi,j = 0, we have ∆si = si − si+1 for i = 1 . . . t. Since s1 =

√
n, we have that for

i = 2, . . . , t, si =
√
n−

i−1∑
j=1

∆sj .

From Lemma 5 we have ∆qi ≤ ∆si · 200
√
n

si
+ 3 for i = 1, . . . , t. Substituting

√
n−

∑i−1
j=1 ∆sj

for si when i > 1, and adding, we have,

t∑
i=1

∆qi ≤ 200
√
n ·

t∑
i=1

∆si
si

+ 3t

= 200
√
n ·

(
∆s1√
n

+
t∑
i=2

∆si√
n−

∑i−1
j=1 ∆sj

)
+ Õ(

√
n)

≤ 200
√
n ·
((

1√
n

+ 1√
n− 1

+ . . .+ 1√
n−∆s1 + 1

)
+(

1√
n−∆s1

+ 1√
n−∆s1 − 1

+ . . .+ 1√
n−∆s1 −∆s2 + 1

)
+

. . .+
(

1
√
n−

∑t−1
j=1 ∆sj

+ 1
√
n−

∑t−1
j=1 ∆sj − 1

+

. . .+ 1
√
n−

∑t−1
j=1 ∆sj −∆st + 1

))
+ Õ(

√
n)

≤ O(
√
n) ·

√n∑
i=1

1
i

+ Õ(
√
n)

= O(
√
n logn) + Õ(

√
n)

= Õ(
√
n).

Hence proved. J

2.3 Success Probability of Algorithm 3
In this section we prove that Algorithm 3 outputs correct answer with probability 1 on
0-inputs and with probability at least 2/3 on 1-inputs. We start by a proving a probability
statement (Lemma 7) that will help us in the analysis.
Let x1, . . . , x` be non-negative real numbers and

∑`
i=1 xi = N . We say that an index I ∈ [`]

is bad if there exists a non-negative integer 0 ≤ D ≤ N − I such that

I+D∑
i=I

xi > 100(D + 1) · N
`

We say that an index I is good if I is not bad.

FSTTCS 2015

214 Separations Between Query Complexity Measures

I Lemma 7. Let I be chosen uniformly at random from [`]. Then,

P[I is good] > 99
100

Proof. We show existence of a set K = {J1, · · · , Jt} of disjoint sub-intervals of [1, `] with
integer end-points, having the following properties:
1. Every bad index is in some interval Ji ∈ K.
2. ∀1 ≤ i ≤ t,

∑
j∈Ji

xj > 100|Ji| · N` .
It then follows that the number of bad indices is upper bounded by

∑
i∈[t] |Ji| (by property

1). But N ≥
∑
i∈[t]

∑
j∈Ji

xj > 100 · N`
∑
i∈t |Ji| , which gives us that

∑
i∈t |Ji| <

`
100 . In

the above chain of inequalities, the first inequality follows from the disjointness of Ji’s and
the second inequality follows from property 2.

Now we describe a greedy procedure to obtain such a set K of intervals. Let J be the
smallest bad index. Then there exists a D such that

∑
i∈[J,J+D] xi > 100(D + 1) · N` . We

include the interval [J, J + D] in K. Then let J ′ be the smallest bad index greater than
J + D. Then there exists a D′ for which

∑
i∈[J′,J′+D′] xi > 100(D′ + 1) · N` . We include

[J ′, J ′ +D′] in K. We continue in this way till there is no bad index which is not already
contained in some interval in K. It is easy to verify that the intervals in the set K thus
formed are disjoint, and the set K satisfies properties 1 and 2. J

Let us begin by showing that algorithm 3 is correct with probability 1 on 0-inputs of F .

I Lemma 8. If Procedure VerifyColumn outputs 1 on inputs M and k, then M is a
1-input of F .

Proof. VerifyColumn outputs 1 only if the column k has all its bit-entries equal to 1,
and if the pointer chain starting from the first non-null pointer entry is valid (recall the
definition of a valid pointer chain from Section 1.1). From the definition of F , for such inputs
F evaluates to 1. J

I Corollary 9. Let M be a 0-input of of F . Then algorithm 3 outputs 0 with probability 1.

Proof. The corollary follows by observing that if algorithm 3 returns 1, a call to Verify-
Column also returns 1, and hence from Lemma 8 the input is a 1-input of F . J

Let us now turn to 1-inputs of F . Let M be a 1-input of F , that we fix for the rest of
this subsection. Without explicit mention, for the rest of the subsection we assume that
Algorithm 3 is run on M . Since M is a 1-input, by the definition of F , there is a column
C such that all its bit-entries are 1, and the pointer chain starting from the first non-null
pointer-entry of C is valid. Call this pointer chain the principal chain. Let (C = c1, . . . , c√n)
be the order of columns ofM in which the pointer chain crosses them. Let (C = m1, . . . ,m|C|)
be the order of the columns of C in which the pointer chain crosses them. Note that the
column C always belongs to C, as a column is discarded only if the bit-entry of some cell on
it is 0. Define Xi to be the number of cj ’s between mi and mi+1, including mi, if i < |C|,

and the number of cj ’s after mi, including mi, if i = |C|. Clearly
|C|∑
i=1

Xi =
√
n.

I Lemma 10. Let (i, j) be a randomly chosen cell on the restriction of the principal chain
to the columns in C. Let j = m` ∈ {m1, . . . ,m|C|}. Let |C| = N ≥ 100. Then with probability
at least 97

100 over the choice of (i, j), a run of the procedure MilestoneTrace on inputs
M, C, i, j shrinks the size of C to at most 99N

100 .

S. Mukhopadhyay and S. Sanyal 215

Proof. By applying Lemma 7 on the sequence (Xi)|C|i=1 described in the paragraph preceding
this lemma, except with probability at least 1/100 + 1/100 + 1/|C| ≤ 3/100, ` is a good
index, ` < 99N

100 (i.e. the column j has at least N
100 columns of C ahead of it on the principal

chain), and j 6= C. Since j 6= C, the bit-entry of the cell sampled is 0, and hence procedure
MilestoneTrace does not return control in step 3. In the procedure MilestoneTrace,
if current is on the principal chain, the condition in line 13 cannot be satisfied unless current
is the last cell on the chain. Now, if the condition in the while loop is violated while current
is on the principal chain, it implies that j is a bad index. Thus with probability at least
1− 3/100 = 97/100, the procedure does not terminate as long as all the N

100 columns ahead
of j are not seen. Since all columns in C that are seen are discarded, we have the lemma. J

Now, let us bound the number of iterations of the for loop of algorithm 3 required to
shrink |C| by a factor of 1/100.

I Lemma 11. Assume that at a stage of execution of algorithm 3 where the control is in the
beginning of the for loop, |C| = N . Then except with probability 1/25, after 10

√
n iterations

of the for loop, |C| will become at most 99N/100.

Proof. The probability that a cell on the principal chain is sampled in steps 6 and 7 is
1√
n
. So the probability that in none of the 10

√
n executions of steps 6 and 7, a cell on the

principal chain is picked is (1 − 1√
n

)10
√
n ≤ 1

100 . Conditioned on the event that a cell on
the principal chain is sampled, from lemma 10, except with probability 3/100, |C| reduces
by a factor of 1/100 in the following run of MilestoneTrace. Union bounding we have
that except with probability 1/100 + 3/100 = 1/25, after 10

√
n iterations of the for loop,

|C| ≤ 99N/100. J

Let t be the minimum integer such that
√
n ·
(99

100
)t
< 100. Thus t = O(logn). For

i = 1, . . . , t, let the random variable Yi be equal to the index of the first iteration of the for
loop of Algorithm 3 after which |C| ≤

√
n.
(99

100
)i. Let Z1 = Y1 and for i = 2, . . . , t define

Zi = Yi − Yi−1. From Lemma 11, for each i we have E[Zi] ≤ 25 × 10
√
n = O(

√
n). By

linearity of expectation, we have E[
t∑
i=1

Zi] = O(
√
n logn). By Markov’s inequality, with

probability at least 2/3,
t∑
i=1

Zi = O(
√
n logn). Thus, if we choose the constant hidden in

the number of iterations of the for loop of Algorithm 3 large enough, then with probability
at least 2/3, |C| shrinks to less than 100. Then the VerifyColumn procedure reads all the
columns in C and outputs the correct value of F . Thus we have proved the following Lemma.

I Lemma 12. With probability at least 2/3, algorithm 3 outputs 1 on a 1-input.

Lemma 4 follows from Lemma 6, Corollary 9 and Lemma 12.

3 Randomized Zero-error Query Algorithm for F

We first present a randomized query algorithm which satisfies the following conditions: If
the algorithm outputs 0 then the given input is a 0-input (the algorithm actually exhibits
a 0-certificate) and if the given input is a 0-input, then the algorithm outputs 0 with high
probability. This algorithm makes Õ(n3/4) queries in worst case. For the randomized zero-
error algorithm we run Algorithm 3 and this algorithm one after another. If Algorithm 3
outputs 1 then we stop and output 1. Else, if Algorithm 4 says 0, we stop and output

FSTTCS 2015

216 Separations Between Query Complexity Measures

0. Otherwise, we repeat. By the standard argument of ZPP = RP ∩ coRP we get the
randomized zero-error algorithm. Though the query complexity of Algorithm 3 is Õ(

√
n),

we get the zero-error query complexity of F to be Õ(n3/4) because of the query complexity
of Algorithm 4.

Now we define column covering and column span which we will use next.

I Definition 13. For two columns Ci and Cj (Ci(Cj) denotes the i-th (j-th) column) in
input matrix M , we say Cj is covered by Ci if there is a cell (k, i) in Ci and a sequence
(β1, δ1), . . . , (βt, δt) of pairs from [

√
n]× [

√
n] such that:

1. bk,i = 0,
2. δt = j,
3. for all ` ∈ [t], bβ`,δ`

= 0 and
4. pk,i = (β1, δ1) and for ` = 1, . . . , t− 1, p(β`,δ`) = (β`+1, δ`+1).
5. For 1 ≤ k < ` ≤ t, δk 6= δ` and for 1 ≤ k ≤ t, i 6= δk.

I Definition 14. For a column C, we define SpanC to be the subset of columns in M which
consists of C and any column which is covered by C.

We first give an informal description of the algorithm and then we proceed to formally
analyze the algorithm in Section 3.1. As mentioned before this is also a one-sided algorithm,
i.e., it errs on one side but it errs on the different side than that of Algorithm 3. The
0-certificates it attempts to capture are as follows:

1. If each of the columns has a cell with bit-entry 0, then the function evaluates to 0. Those
bit-entries form a 0-certificate. If there are many 0’s in each column, The algorithms may
capture such a certificate in the first phase (sparsification).

2. Two columns C1 and C2 in M such that C1 /∈ SpanC2 and C2 /∈ SpanC1 . Existence of two
such columns makes the existence of a valid pointer chain impossible. This is captured in
the second phase of the algorithm.

3. Lastly, if there is a column all of whose bit-entries are 1, which does not have a valid pointer
chain, then that is also a 0-certificate. The algorithm may capture such a certificate in
the last phase.

The algorithm proceeds as follows: The main goal of the algorithm is to eliminate any
column where it finds a 0 in any of its cells. First the algorithm filters out the columns
with large number of 0’s with high probability by random sampling. The algorithm probes
Õ(n1/4) locations at random in each column and if it finds any 0 in any column, it eliminates
that column. This step is called sparsification. After sparsification, we are guaranteed that
all the columns have small number of 0’s. Now the remaining columns can have either of
the following two characteristics: First, a large number of the columns in existing column
set have large span. This implies that if we choose a column randomly from the existing
columns, the column will span a large number of columns (i.e., a constant fraction of existing
columns) with high probability and we can eliminate all of them. The algorithm does this
exactly in the procedure A of the second phase. The other case can be where most of the
columns have small spans. We can show that if this is the case, then if we pick two random
columns Ci and Cj from the set of existing columns, Ci will not lie in the span of Cj and
vice-versa with high probability, certifying that F is 0. This case is taken care of in the
procedure B of the second phase of the algorithm.

The algorithm runs procedure A and procedure B one after another for logarithmic
number of steps. If at any point of the iteration, the algorithm finds two columns which

S. Mukhopadhyay and S. Sanyal 217

are not in span of each other, the algorithm outputs 0 and terminates. Otherwise, as the
procedure A decreases the number of existing columns by a constant factor in each iteration,
with logarithmic number of iteration, either we completely exhaust the column set, which
is again a 0-certificate, or we are left with a single column. Then the algorithm checks the
remaining column and the validity of the pointer chain if that column is an all 1’s column
and answers accordingly. This captures the third kind of 0-certificate as mentioned before.

In Algorithm 4, we set τ to be the least number such that
√
n · (99

100)τ ≤ 1. Clearly
τ = O(logn). We also set α to an appropriate constant.

3.1 Analysis of Algorithm 4
Let’s first look at the query complexity of the algorithm.

I Lemma 15. The query complexity of Algorithm 4 is Õ(n3/4) in worst case.

Proof. We count the number of bit-entries and pointer-entries of the input matrix the
algorithm probes. Up to logarithmic factor, that is asymptotically same as the number of
bits queried.
The first for loop runs for

√
n iteration and in each iteration samples T cells from a column.

So the number of probes of the first for loop is O(
√
n× T) = Õ(n3/4).

In procedure A, the number of probes needed to scan the column and to trace pointer
from the column is Õ(n3/4). In procedure B, the algorithm has to check the span of two
columns, which takes Õ(n3/4) probes. The number of iterations of the for loop of line 9 is at
most τ = O(logn). Hence the total number of probes made inside the for loop is Õ(n3/4).

Lastly, VerifyColumn takes O(
√
n) probes. So the total number of probes is bounded

by Õ(n3/4). Thus the claim follows. J

The first for loop, i.e., line 3 to 8 is called sparsification. We have the following guarantee
after sparsification.

I Lemma 16. After the sparsification, with probability at least 99/100, every column in C
has at most n1/4 cells with bit-entry 0.

Proof. We will bound the probability that all the T probes in a column outputs 1 conditioned
on the fact that the column has more than n1/4 0’s. A single probe in such a column
outputs 0 with probability at least 1/n1/4. Hence all the probes output 1 with probability
(1− 1/n1/4)T ≤ 1

100
√
n
. By union bound, this happens to some column in M with probability

at most 1/100. J

This implies that except with probability 1/100, the if conditions of lines 20 and 32 are
never satisfied.

I Lemma 17. Either of the following is true in each iteration of the for loop of line 9:
1. for a random column C ∈ C, |SpanC | > |C|/100 with probability at least 1/100.
2. For two randomly picked columns Ci and Cj in C, with probability at least 24/25, Cj /∈

SpanCi
and Ci /∈ SpanCj

.

Proof. Suppose (1) does not hold. For two random columns Ci and Cj , Let Li (Lj) be the
event that |SpanCi

| (|SpanCj
|)| > |C|/100. Let Ei,j (Ej,i) be the event that Cj ∈ SpanCi

(Ci ∈ SpanCj
). Thus we have,

P{Ei,j} = P{Li} · P{Ei,j |Li}+ P{Li} · P{Ei,j |Li}

FSTTCS 2015

218 Separations Between Query Complexity Measures

Algorithm 4
1: C := Set of columns in M ;
2: τ := Least number such that

√
n · (99

100)τ ≤ 1;
3: for each column C in C do
4: Sample T = 10 · n1/4 logn cells uniformly at random;
5: if any bit-entry of any cell is 0 then
6: C ← C \ {C};
7: end if
8: end for
9: for t = 1 to τ do

10: if |C| ≤ 1 then
11: goto step 40
12: end if
13: repeat
14: procedure A
15: Sample a column C from C uniformly at random;
16: Read all entries of all cells of C;
17: if All bit-entries are 1 then
18: VerifyColumn(M,C);
19: end if
20: if Number of 0 bit-entries in C > n1/4 then
21: Output 1 and abort;
22: end if
23: For each cell on C with bit-entry 0, trace pointer and compute SpanC ;
24: C ← C \ SpanC ;
25: end procedure
26: until α log logn times
27: procedure B
28: Pick two columns C1 and C2 uniformly at random from C;
29: if All bit-entries of C1 (C2) are 1 then
30: VerifyColumn(M,C1) (VerifyColumn(M,C2));
31: end if
32: if Number of 0 bit-entries in C1 or C2 > n1/4 then
33: Output 1 and abort;
34: end if
35: if C2 /∈ SpanC1 and C1 /∈ SpanC2 then
36: Output 0 and abort;
37: end if
38: end procedure
39: end for
40: if C = ∅ then
41: Output 0;
42: end if
43: if |C| = 1 then
44: Let C = {C}.
45: VerifyColumn(M,C);
46: end if
47: Output 1.

S. Mukhopadhyay and S. Sanyal 219

≤ P{Li}+ P{Ei,j |Li}

≤ 1
100 + 1

100 = 1
50

Similarly P{Ej,i} ≤ 1
50 . By union bound, (2) is true; J

Now we are ready prove the correctness of the algorithm.

I Lemma 18. Given a 0-input, Algorithm 4 outputs 0 with probability at least 19/20 .

Proof. We first note that after the execution of for loop in line 3, except with probability at
most 1/100 there is no column in C having more than n1/4 cells with bit-entries 0.

If the algorithm finds a column all of whose bit-entries are 1, it gives correct output by a
run of VerifyColumn.

Next, we note that if in any iteration of the for loop (line 9), condition (2) of Claim 17 is
satisfied, then we find a 0-certificate (i.e. a pair of columns, none of which lies in the span of
the other) with probability at least 24/25.

Finally, assume that for each iteration of the for loop, condition (2) is not satisfied. This
implies that for each iteration of the loop, condition (1) is satisfied (From Claim 17). As we
run procedure A α log logn times, with probability at least 1− (99

100)α log logn ≥ 1− 1
100τ

(for appropriate setting of the constant α) we land up on a column whose span is at least
|C|/100 and hence we eliminate 1/100 fraction of columns in C, in one of the iterations of
the inner repeat loop (line 13). By union bound, the probability that there is even one
bad repeat loop where we do not eliminate |C|/100 columns, is at most 1/100. Thus the
probability that after the execution of for loop is over, |C| > 1, is at most 1/100. So, the
total error probability is bounded by 1/100 + max{1/25, 1/100} = 1/20 from which the claim
follows. J

I Lemma 19. Given a 1-input, Algorithm 4 outputs 1 with probability 1.

Proof. The proof of this claim is straight-forward. As mentioned before, Algorithm 4 outputs
0 only if it finds a 0-certificate. As there is no 0-certificate for a 1-input , the algorithm
outputs 1. J

Lemma 3 follows by combining Lemma 4, Lemma 18, Lemma 16 and Lemma 19.
I Remark. It is observed [1] that if we consider a slight variant of the function F , where the
input matrix is a n2/3×n1/3 matrix instead of

√
n×
√
n and modify Algorithm 4 accordingly,

we get a Õ(n2/3) algorithm. It is to be noted that the query complexity of Algorithm 3
(modified accordingly) worsens to Õ(n2/3) for this function. This shows that for a minor
variant of the function F , our algorithm can show a better separation between deterministic
and zero-error randomized query complexity. However, the modified function cannot show
the widest separation between deterministic and bounded error randomized query complexity.

Acknowledgments. We thank Arkadev Chattopadhyay, Prahladh Harsha and Srikanth
Srinivasan for useful discussions.

References
1 Scott Aaronson. A query complexity breakthrough. shtetl-optimized.
2 Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and

Juris Smotrovs. Separations in query complexity based on pointer functions. CoRR,
abs/1506.04719, 2015.

FSTTCS 2015

220 Separations Between Query Complexity Measures

3 Manuel Blum and Russell Impagliazzo. Generic oracles and oracle classes (extended ab-
stract). In 28th Annual Symposium on Foundations of Computer Science, Los Angeles,
California, USA, 27-29 October 1987, pages 118–126, 1987.

4 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. parti-
tion number. Electronic Colloquium on Computational Complexity (ECCC), 22:50, 2015.

5 Juris Hartmanis and Lane A. Hemachandra. One-way functions, robustness, and the non-
isomorphism of np-complete sets. In Proceedings of the Second Annual Conference on
Structure in Complexity Theory, Cornell University, Ithaca, New York, USA, June 16-19,
1987, 1987.

6 Noam Nisan. CREW prams and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.
7 Ronald L. Rivest and Jean Vuillemin. On recognizing graph properties from adjacency

matrices. Theor. Comput. Sci., 3(3):371–384, 1976.
8 Michael E. Saks and Avi Wigderson. Probabilistic boolean decision trees and the complexity

of evaluating game trees. In 27th Annual Symposium on Foundations of Computer Science,
Toronto, Canada, 27-29 October 1986, pages 29–38, 1986.

9 Miklos Santha. On the monte carlo boolean decision tree complexity of read-once formulae.
In Proceedings of the Sixth Annual Structure in Complexity Theory Conference, Chicago,
Illinois, USA, June 30 - July 3, 1991, pages 180–187, 1991.

10 Marc Snir. Lower bounds on probabilistic linear decision trees. Theor. Comput. Sci.,
38:69–82, 1985.

11 Gábor Tardos. Query complexity, or why is it difficult to seperate NP a cap co NPa from
Pa by random oracles a? Combinatorica, 9(4):385–392, 1989.

	Introduction
	The Göös-Pitassi-Watson Function

	Randomized One-sided Error Query Algorithm for F
	The Algorithm
	Query complexity of Algorithm 3
	Success Probability of Algorithm 3

	Randomized Zero-error Query Algorithm for F
	Analysis of Algorithm 4

