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Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 15442 “Approaches
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Inductive programming research addresses the problem of learning (mostly declarative)
programs from incomplete specifications, such as input/output examples, observed traces,
or constraints. Beginning in the 1960s, this area of research was initiated in artificial
intelligence (AI) exploring the complex intellectual cognitive processes involved in producing
program code which satisfies some specification. Furthermore, applications of AI for software
engineering are investigated resulting in methodologies and techniques for automating parts
of the program development process. Inductive programming can be seen as a very special
subdomain of machine learning where the hypothesis space consists of classes of computer
programs.

Nowadays, researchers working on inductive programming are distributed over different
communities, especially inductive logic programming, evolutionary programming, grammar
inference, functional programming, and programming languages and verification. Further-
more, similar approaches are of interest in programming by demonstration applications for
end-user programming as well as in cognitive models of inductive learning.
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The recent release of FlashFill as a plug-in inductive programming tool for Microsoft
Excel is an impressive demonstration that inductive programming research has matured in
such a way that commercial applications become feasible. Similarly, the field has attracted
widespread interest in computer science as a whole, as illustrated by the recent review article
published by the Communications of the ACM [1].

In the seminar, we brought together researchers from different areas of computer science
– especially from machine learning, AI, declarative programming, and software engineering
– and researchers from cognitive psychology interested in inductive learning as well as in
teaching and learning computer programming. Furthermore, participants from industry
presented current as well as visionary applications for inductive programming.

We addressed many aspects which partially were identified as relevant topics during the
previous Dagstuhl Deminar 13502 (http://www.dagstuhl.de/13502). In particular, we had
the following sessions for presentations:

Session: General techniques, languages and systems for inductive logic and inductive
functional programming.
Session: End-user programming, programming by example and applications
Session: Program synthesis and transformation
Cognitive Aspects of Induction

In addition, we had several systems demos and tutorials (some of them ‘hands-on’):
System demo on Metagol.
Hands-on-Tutorial: The MagicHaskeller Library and Server System
Tutorial: FlashMeta SDK for creating programming-by-example tools
Tutorial: Sketch synthesis infrastructure

The seminar also included a DemoFest, where several systems were demonstrated in small
groups in a relaxed atmosphere.

The first and second days the following topics were identified and further discussed in
working groups during the rest of the seminar:

Benchmarks, Evaluation, and Applications
General-Purpose IP Infrastructures and Applicability and Evaluation Criteria for IP
Approaches in the Context of AI
Probabilities in IP

Concluding remarks and future plans

In the final panel discussion the results of the seminar were summarised as well as future
plans.

Regarding the seminar, there were several suggestions that topics should be more mixed,
instead of grouping them too much into “silo” sessions. About the format of the seminar,
there was a general agreement that the change from half a week to one week had been
beneficial, and that the DemoFest had been a real success. Indeed, the possibility of having
several independent demos earlier in the week and more demo sessions (or DemoFests) was a
possible suggestion for subsequent meetings.

The following topics were elaborated about future actions:
Make the community and the area more visible through tutorials and workshops at major
conferences, or summer schools.

http://www.dagstuhl.de/13502
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Integrate tools, demos, videos, tutorials and other kinds of material at www.inductive-
programming.org/resources.html
Focus on benchmarks and a common representation language for problems, and use the
inductive-programming website to publish the benchmarks. Organise competitions (or
hackathons building apps that use the underlying IP engines).
Revitalise the mailing list (at the moment of writing this report the list is fully operative
again, see http://www.inductive-programming.org/)
Attract people from other areas (e.g., cognitive robotics).
Change the frequency of the meetings to a 1-year cadence, with perhaps Dagstuhl every
other year and a competition or summer school in between.

Overall, the main conclusion can be summarised as the realisation of a very significant
progress in techniques and its exploitation in new applications, so it is now time to strengthen
the visibility of the IP research and its community, for which this Dagstuhl seminar has
served as a lever.

References
1 S. Gulwani, J. Hernández-Orallo, E. Kitzelmann, S.H. Muggleton, U. Schmid, and B. Zorn.

Inductive programming meets the real world. Communications of the ACM, 58, 11, 2015.
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3 Overview of Talks on: Inductive Logic and Inductive Functional
Programming

3.1 Meta-Interpretive Learning: achievements and challenges
Stephen H. Muggleton (Imperial College London, GB)
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Joint work of Muggleton, Stephen; Cropper, Andrew; Lin, Dianhuan; Tamaddoni-Nezhad, Alireza; Tenenbaum,
Joshua; Dechter. Eyal; Ellis, Kevin; Dai, Wang-Zhou

Main reference S.H. Muggleton, D. Lin, A. Tamaddoni-Nezhad, “Meta-interpretive learning of higher-order dyadic
datalog: predicate invention revisited,” Machine Learning, 100(1):49–73, 2015; pre-print available
from author’s webpage.

URL http://dx.doi.org/10.1007/s10994-014-5471-y
URL http://www.doc.ic.ac.uk/~shm/Papers/metagolD_MLJ.pdf

Meta-Interpretive Learning (MIL) is a recent Inductive Logic Programming technique aimed
at supporting learning of recursive definitions. A powerful and novel aspect of MIL is that
when learning a predicate definition it automatically introduces sub-definitions, allowing
decomposition into a hierarchy of reuseable parts. MIL is based on an adapted version of
a Prolog meta-interpreter. Normally such a meta-interpreter derives a proof by repeatedly
fetching first-order Prolog clauses whose heads unify with a given goal. By contrast, a
meta-interpretive learner additionally fetches higher-order meta-rules whose heads unify
with the goal, and saves the resulting meta-substitutions to form a program. This talk will
overview theoretical and implementational advances in this new area including the ability to
learn Turing computabale functions within a constrained subset of logic programs, the use of
probabilistic representations within Bayesian meta-interpretive and techniques for minimising
the number of meta-rules employed. The talk will also summarise applications of MIL
including the learning of regular and context-free grammars, learning from visual representions
with repeated patterns, learning string transformations for spreadsheet applications, learning
and optimising recursive robot strategies and learning tactics for proving correctness of
programs. The talk will conclude by pointing to the many challenges which remain to be
addressed within this new area.

References
1 A. Cropper and S.H. Muggleton. Learning efficient logical robot strategies involving com-

posable objects. In Proceedings of the 24th International Joint Conference Artificial Intel-
ligence (IJCAI 2015), pp. 3423–3429, 2015.

2 W.-Z. Dai, S.H. Muggleton, and Z.-H. Zhou. Logical vision: Meta-interpretive learning
for simple geometrical concepts. In Short Paper Proceedings of the 25th International
Conference on Inductive Logic Programming. National Institute of Informatics, Tokyo,
2015.

3 S.H. Muggleton, D. Lin, and A. Tamaddoni-Nezhad. Meta-interpretive learning of higher-
order dyadic datalog: Predicate invention revisited. Machine Learning, 100(1):49–73, 2015.

4 D. Lin, E. Dechter, K. Ellis, J. B. Tenenbaum, and S.H. Muggleton. Bias reformulation for
one-shot function induction. In ECAI, 2014.
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3.2 Towards Probabilistic Logic Program Synthesis
Luc De Raedt (KU Leuven, BE)
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Probabilistic logic programs combine the power of a programming language with a possible
world semantics; they are typically based on Sato’s distribution semantics [5] and they
have been studied for over twenty years now. They have recently been extended towards
defining continuous distributions and dynamics, which enables their use in robotics and
perception [1]. The talk shall briefly introduce these formalisms and then present some
progress on synthesising such probabilistic programs from examples, both in the discrete and
the continuous case. For the discrete case, I shall report on our results in applying ProbFOIL
[5] to the problem of machine reading in CMU’s Never Ending Language Learning system.
ProbFOIL is an extension of the traditional rule-learning system FOIL for use with the
distribution semantics. For the continuous case, I shall present our ongoing work in learning
affordances in robotics, where the goal is to learn the conditions under which actions can be
applied on particular objects [2, 3].

References
1 B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt. The magic of

logical inference in probabilistic programming. Theory and Practice of Logic Programming,
2011(11), pp. 663–680.

2 D. Nitti, T. De Laet, L. De Raedt, A particle filter for hybrid relational domains. in
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2013,
pp. 2764–2771.

3 B. Moldovan, P. Moreno, M. van Otterlo, J. Santos-Victor, L. De Raedt, Learning re-
lational affordance models for robots in multi-object manipulation tasks. In Proc. IEEE
International Conference on Robotics and Automation, ICRA 2012, pp. 4373–4378.

4 L. De Raedt, A. Dries, I. Thon, G. Van den Broeck, M. Verbeke, Inducing Probabilistic
Relational Rules from Probabilistic Examples. In Proc. International Joint Conference on
AI, IJCAI 2015, in press.

5 T. Sato, A Statistical Learning Method for Logic Programs with Distribution Semantics.
In Proc. 12th International Conference on Logic Programming, ICLP 1995, pp. 715–729

3.3 Learning Complex Sequential Patterns with Progol
Michael Siebers (Universität Bamberg, DE)

License Creative Commons BY 3.0 Unported license
© Michael Siebers

Joint work of Schmid, Ute; Siebers, Michael

The analysis of facial expressions is a new application domain for ILP. Facial expressions may
be described by symbols, called action units, which represent movements in the face. Then,
a facial expression is a sequence of action units possibly occurring in parallel. I will present
first results on learning a generalized representation of facial expressions of pain using Progol.
Additionally, I will provide ideas for additional background knowledge to improve results.
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3.4 RuleML as a Declarative Language for Inputs, Outputs, and
Background Knowledge in Inductive Programming

Harold Boley (University of New Brunswick at Fredericton, CA)

License Creative Commons BY 3.0 Unported license
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RuleML is a system of families of languages for Web rules connecting related efforts such as:
SWRL, SWSL, and RIF (W3C); SBVR, PRR, API4KP, and OntoIOp (OMG); Common
Logic (ISO); and LegalRuleML (OASIS).

Inductive Programming can use RuleML to represent inputs, outputs, and background
knowledge, since:

it combines relational/logical and equational/functional representations, e.g. Prolog-like
relations and functions defined as oriented (conditional) equations;
its canonical XML format allows modular (Relax NG-schema) validation of (chal-
lenge/benchmark/. . . -)library entries, each w.r.t. the most precise language;
RuleML/XML also allows (XSLT) transformation, e.g. to favorite presentation syntaxes
of library users and to other XML-based standards;
its engines permit the execution/querying of induced programs/rulebases;
its canonical syntax, validation methods, interoperation techniques, as well as, e.g., opera-
tional and model-theoretic semantics can support the evaluation of Inductive Programming
systems.

4 Overview of Talks on: End-user Programming, Programming by
Example and Applications

4.1 Applications to Data Wrangling
Sumit Gulwani (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
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Main reference S. Gulwani, “Programming by Examples (and its applications in Data Wrangling),” In Verification
and Synthesis of Correct and Secure Systems 2016, Marktoberdorf Lecture Notes, IOS Press, to
appear; pre-print available from author’s webpage.

URL http://research.microsoft.com/en-us/um/people/sumitg/pubs/pbe16.pdf

99% of computer end users do not know programming and struggle with repetitive tasks.
Inductive synthesis can revolutionize this landscape by enabling end users to automate
repetitive tasks using examples. In order to realize this potential, we need to apply inductive
synthesis to the right set of application domains. Data wrangling turns out to be a killer
application area for inductive synthesis.

Data is the new oil. Evolution of digital revolution, social media, cloud computing, IoT
has led to production of massive amounts of digital data. This data is the new currency of the
digital world since it can help drive business decisions, advertising, recommendation systems,
etc. Data wrangling refers to the tedious process of transforming data from its raw format
to a more structured form that is amenable for drawing insights. It is estimated that data
scientists spend 80% of their time wrangling with data. Inductive synthesis can enable easier
and faster data wrangling. We have developed inductive synthesis tools for assisting with
various data wrangling activities including string/number/date transformations (FlashFill),
extraction of structured data from semi-structured log files or webpages (FlashExtract),

http://creativecommons.org/licenses/by/3.0/
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and formatting or table layout transformations (FlashRelate). FlashFill has been released
as an Excel 2013 feature, while FlashExtract has been released as the ConvertFrom-string
Powershell cmdlet and the custom field extraction capability in Azure OMS.

Practical deployment of inductive synthesis tools require addressing an important challenge
associated with inductive synthesis systems, namely resolving ambiguity in the example
based specification. We address this challenge using two key ideas: (i) machine learning
based ranking techniques to predict an intended program from within the set of programs
that are consistent with the examples provided by the user, (ii) user interaction models
(including program navigation and active-learning based conversational clarification) that
communicate actionable information to the user to help resolve ambiguity in the example
based specification.

4.2 Generic vs. domain specific approaches to IP – How good does
Igor perform on FlashFill problems?

Ute Schmid (Universität Bamberg, DE)

License Creative Commons BY 3.0 Unported license
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Joint work of Kitzelmann, E.; Hofmann, M.; Hofmann, J., Schmid, U.
Main reference U. Schmid, E. Kitzelmann, “Inductive rule learning on the knowledge level,” Cognitive Systems

Research, 12(3–4):237–248, 2011.
URL http://dx.doi.org/10.1016/j.cogsys.2010.12.002

Approaches to inductive programming (IP) learn (declarative) (recursive) programs from a
small number of (positive) input/output examples. These approaches are generic, that is, if
the given problem can be solved by operations produced by a program, the program can be
induced (within some restricted time and space and if the program can be expressed by the
underlying language restriction given by an implicit or explicit program scheme). On the
other hand, applications of IP in the domain of enduser programming are typically based
on a domain specific language which allows to extract suitable examples from observing
interactions of users with the given software. If IP is generic, it should be able to be applied
’from the shelf’ to different domains and consequently also to the domains investigated in
enduser programming.

In my talk I demonstrated how the inductive functional programming system Igor performs
on programming problems, planning problems, number series problems, XSLT peroblems,
and string transformation problems. The last domain is where the Excell plug-in Flashfill
performs in a very impressive way. Looking at the problem specifications given to Igor, we
can see that for some domains these are quite simple and natural, for other domains (such as
string transformations in Excell) they are quite clumsy. Futhermore, to present the examples
in a form suitable for inductive generalization, the selection of examples as well as their
representation is crucial. So I claim that extracting suitable representations from raw data
such as observations of user interactions or images is the bottleneck of IP.

References
1 Flener, P., & Schmid, U. (2010). Inductive programming. In C. Sammut & G. Webb (Eds.),

Encyclopedia of machine learning, pp. 537–544. Springer.
2 Hofmann, J., Kitzelmann, E., & Schmid, U. (2014). Applying inductive program synthesis

to induction of number series a case study with igor2. KI 2014: Advances in Artificial
Intelligence, pp. 25–36. Springer.
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and evaluation of inductive programming systems. Proceedings of the Second Conference on
Artificial General Intelligence (AGI-09, Arlington, Virginia, March 6-9 2009), pp. 55–60.
Amsterdam: Atlantis Press.

4 Kitzelmann, E., & Schmid, U. (2006). Inductive synthesis of functional programs: An ex-
planation based generalization approach. Journal of Machine Learning Research, 7, pp. 429–
454.
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4.3 Resolving Ambiguity in Programming By Example
Rishabh Singh (Microsoft Research – Redmond, US)

License Creative Commons BY 3.0 Unported license
© Rishabh Singh

Since Programming By Examples is inherently ambiguous, there are typically a large number
of programs that conform to the given set of examples especially if the hypothesis space is
large. In this talk, we present two way to tackle this ambiguity problem. The first approach
uses machine learning techniques to learn a ranking function form training data to efficiently
rank the set of learnt programs and select the top ranked program. We have implemented this
technique in the FlashFill PBE system, which reduces the average number of examples needed
to learn the desired program from 4.17 to 1.48 on 175 benchmarks. The second approach
adds probabilistic semantics to the underlying DSL for learning robust transformations on
semantic data type strings to handle ambiguity.

4.4 Cooperative Programming: Integrating Software Synthesis with
the Live Paradigm

Ruzica Piskac (Yale University, US)

License Creative Commons BY 3.0 Unported license
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Live programming is an emerging paradigm that is promising a vast change in the techniques
used to develop modern software. A live programming environment allows a programmer to
immediately see the effects of changes to a program on its outputs and effectively eliminates
the edit-run-debug cycle that dominates programming workflows today.

We propose an approach that seeks to develop new synthesis techniques that make use
of the real-time feedback loop provided by a live programming environment. We propose
a system that will allow a user to track a set of examples and synthesize subroutines to fit
that set. When combined with fault localization techniques, programmers will be able to
quickly find incorrect sections of code and initiate repairs that leverage information gleaned
from the provided examples.
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4.5 Deductive Techniques for Synthesis from Inductive Specifications
Sumit Gulwani (Microsoft Corporation – Redmond, US)

License Creative Commons BY 3.0 Unported license
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appear; pre-print available from author’s webpage.
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We propose two key ideas for designing efficient algorithms for inductive synthesis problems.
(i) restrict the search space to an appropriate domain-specific language that provides the right
set of abstractions that enable readability and balanced expressivity (i.e., expressive enough
to capture a wide range of tasks, but restricted enough to allow efficient search). (ii) design
a domain-specific search algorithm using the divide-and-conquer paradigm that reduces the
problem of synthesizing an expression of a given kind that satisfies a given specification into
sub-problems that refer to sub-expressions or sub-specifications.

The problem reduction logics can be refactored into domain-independent parts and
operator-specific parts. We leverage this observation to develop a general framework that
allows construction of efficient inductive synthesizers from a mere description of the domain-
specific language and inverse properties of operators that are used in the underlying DSL.

4.6 Supervision by observation using inductive programming
José Hernández-Orallo (Technical University of Valencia, ES)
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Joint work of Monserrat, Carlos; Hernández-Orallo, José

Despite the fact that many professional or personal tasks we do every day are still very
repetitive, the technologies to automate them are still incipient. A less idealistic, but still
challenging short and mid-term goal is a scenario where the tasks are still performed by
humans but supervised by machines. In other words, we aim at automatically *supervising*
these tasks, an area of potentially high impact.

For instance, the training of new skills and the human errors during their execution
entail a high cost that could be reduced by automated supervision systems indicating when,
where and how a protocol error takes place, in a comprehensible way for the user or the
professional. These systems should assimilate the procedures from expert knowledge and the
observation of a few correct examples for the procedure without the need of being coded by
a programmer.

I present the embryo project “SuPERVaSION”, which aims at exploring the pervasive use
of inductive programming to address this problem domain. The potentiality of the project is
planned to be demonstrated by their application to automatic skill supervision in minimally
invasive surgery.

Acknowledgements. This work has been partially supported by the EU (FEDER) and
the Spanish MINECO under grant TIN 2013-45732-C4-1-P and Generalitat Valenciana
PROMETEOII/2015/013.
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4.7 Software is not fragile
William B. Langdon (University College London, GB)
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The talk, as requested, concentrated upon insights gained, in my case from working on genetic
programming. These are summarised on slide 3 of my talk: work on industrial strength
languages, focus search, evolve patches (change to C program source), evolve source code v.
machine code, ensure many patches/mutants compile, software resilient to mutation, choose
receptive domain, separate fitness from validation, evolution exploits fitness, present results
on a slide, e.g. source code, . . .

I then concentrated upon recent work which counters the “folk wisdom” with results from
experiments from a number of real programs which show software is robust to many (albeit
not all) random changes. I also included recent results that show more than a 70x speed up
on a real program when customised to the task in hand with the use of genetic improvement
using mutations of the C++ source code.

During the seminar I was also asked about the in silco spread of bacterial genes in the
Human reference genome, genetic programming, human competetive GI and learning context
free language benchmarks (benchmarks are available as tar file from http://www.cs.ucl.ac.
uk/staff/W.Langdon/ftp/gp-code/grammar_test_ilp.tar.gz)

Trying all simple changes (first order mutations) to executed C, C++ and CUDA source
code shows software engineering artefacts are more robust than is often assumed. Of those
that compile, up to 89percent run without error. Indeed a few mutants are improvements.
Program fitness landscapes are smoother. Analysis of these programs, a parallel nVidia
GPGPU kernel, all CUDA samples and the GNU C library shows many lines of code and
integer values are repeated and may follow Zipf’s law.

We show genetic improvement of programs (GIP) can scale by evolving increased per-
formance in a widely-used and highly complex 50 000 line system. GISMOE found code that
is 70 times faster (on average) and yet is at least as good functionally. Indeed it even gives a
small semantic gain.
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5 Overview of Talks on: Program synthesis and transformation

5.1 Synthesis of service specifications: Applying evolutionary
algorithms to On-the-fly computing

Lorijn van Rooijen (Universität Paderborn, DE)
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The aim of our research project on On-the-fly (OTF) Computing is to develop concepts and
techniques for automatic on-the-fly composition of individualized IT services out of base
services that are available on world-wide markets. One part of this project deals with the
problem of obtaining, in a user-friendly way, requirements specifications for the services
that users would want to acquire. To facilitate the user, our objective is to automatically
synthesize such requirements specifications from sample specifications that are provided by the
user. These sample specifications may be incomplete and imprecise and might even contain
contradictions. We plan to employ evolutionary algorithms to synthesize comprehensive
requirements specifications that do justice to the sample specifications by extending them in
a natural way.
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5.2 Inductive Program Synthesis for Bidirectional Transformations
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Bidirectional transformations are a mechanism for preserving the consistency of (at least) two
related data structures. A classical incarnation is the view-update problem, which has received
considerable attention from programming language research. Specifically, bidirectionalization
techniques attempt to automatically produce a well-behaving backwards transformation from
a given forwards transformation. Well-behavedness is expressed by certain roundtripping
laws. We explore the use of inductive program synthesis for bidirectionalization. The main
idea is to use the roundtripping laws, and possibly additional constraints derived from
supposed programmer intentions, as a source of input/output examples for the backwards
transformation. We report on recent experiments using the Igor-II system.

5.3 D3: Data-Driven Disjunctive Abstraction
Hila Peleg (Technion – Haifa, IL)
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We address the problem of computing an abstraction for a set of examples, which is pre-
cise enough to separate them from a set of counterexamples. The challenge is to find an
over-approximation of the positive examples that does not represent any negative example.
Conjunctive abstractions (e.g., convex numerical domains) and limited disjunctive abstrac-
tions, are often insufficient, as even the best such abstraction might include negative examples.
One way to improve precision is to consider a general disjunctive abstraction. We present D3,
a new algorithm for learning general disjunctive abstractions. Our algorithm is inspired by
widely used machine-learning algorithms for obtaining a classifier from positive and negative
examples. In contrast to these algorithms which cannot generalize from disjunctions, D3
obtains a disjunctive abstraction that minimizes the number of disjunctions. The result
generalizes the positive examples as much as possible without representing any of the negative
examples. We demonstrate the value of our algorithm by applying it to the problem of
data-driven differential analysis, computing the abstract semantic difference between two
programs. Our evaluation shows that D3 can be used to effectively learn precise differences
between programs even when the difference requires a disjunctive representation.
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5.4 Program transformation using examples
Gustavo Soares (Universidade Federal – Campina Grande, BR)
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During software evolution, developers may have to apply similar but not identical changes to
different locations in the program. Manually performing these changes is time-consuming and
error-prone. We then propose an inductive programming technique for automating repetitive
changes using examples. First, the developer provides examples of locations to be changed.
The technique learns a program that finds similar code fragments throughout the developers’
code. The developer then applies the transformation to one or more locations. Based on
the examples of the desired transformation, the technique learns a program that applies the
transformation and transforms all locations identified in step 1. We identified 68 scenarios
where developers performed systematic changes and our approach was able to automate
these tasks.

6 Overview of Talks on: Cognitive Aspects of Induction

6.1 Learning new Domains Without the Help of Engineers
Claes Strannegård (Chalmers University of Technology – Göteborg, SE)
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It has been postulated that the goal of artificial general intelligence is to create general
intelligence at the human level and beyond [4]. To get anywhere near that goal one needs to
construct versatile agents that can adapt to a wide range of environments without any human
intervention. In natural nervous systems, reinforcement learning is a powerful mechanism
that enables organisms to adapt to different environments and survive there [3]. In artificial
systems, reinforcement learning has been used as the basis of relatively versatile agents, e.g.
for robotic locomotion across different anatomies and for gaming across different arcade
games [1].

In this talk I will discuss how more versatile systems might be constructed, e.g. systems
that can both learn to move like a snake and do simple mathematics. I will sketch a system
whose main parts are (i) a long-term memory in the form of a Markov Decision Process
based on transparent networks that develops dynamically [2], (ii) a learner consisting of rules
for evolving the long-term memory by adding and removing memory structures, and (iii) a
decision-maker for planning and acting.
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6.2 Knowledge acquisition with forgetting: an incremental and
developmental view

Fernando Martínez-Plumed (Technical University of Valencia, ES)
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The development of a knowledge discovery system that is meant to be incremental and
cumulative is not an easy task: the use of background knowledge and the consolidation of new
knowledge is one of the conspicuous problems in the understanding and creation of cognitive
systems, and the management of more lifelong knowledge discovery systems. Knowledge
acquisition, as the process of abstracting knowledge from facts and other knowledge, cannot
be understood as a naive accumulation of what is being learnt. Identifying the balance
between remembering and forgetting is the key to abstraction in the human brain (creation
of memories and knowledge) [1] and, therefore, this could be also applied when developing
knowledge acquisition AI systems.

In this talk I present the work in [4], an incremental, lifelong view of knowledge acquisition
which tries to improve task after task by determining what to keep, what to consolidate and
what to forget, overcoming The Stability-Plasticity dilemma [2]. This framework is designed
to combine any rule-based inductive engine (which learns new rules) with a deductive engine
(which derives a coverage graph for all rules) and integrates them into a lifelong learner
through the use of a hierarchical knowledge assessment structure (coverage graphs) and by
introducing several MML-based [3] metrics. The metrics are not only used to forget some of
the worst rules, but also to set a consolidation process to promote those selected rules to the
knowledge base, which is also mirrored by a demotion system.

Acknowledgements. This work has been partially supported by the EU (FEDER) and
the Spanish MINECO under grant TIN 2013-45732-C4-1-P and Generalitat Valenciana
PROMETEOII/2015/013.
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6.3 A Visual Language for Solving Bongard Problems
Frank Jäkel (Universität Osnabrück, DE)
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More than 50 years ago [1] introduced a set of 100 vision problems, now known as Bongard
problems, as a test-bed for visual pattern recognition. Although these problems are well
known in the cognitive science and AI communities only moderate progress has been made
towards solving a substantial subset of them. The approach we present here extracts standard
visual features as a basic visual vocabulary. We introduce a formal language that allows
representing complex visual concepts and relations using this vocabulary. Finally, using
Bayesian inference on the space of concepts formulated in this visual language, we compare
the concepts with high posterior probability to the solutions formulated by Bongard himself
when designing his problems. We find good agreement for a sizeable fraction of the problems.
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6.4 The Artificial Jack of All Trades: The Importance of Generality in
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We advocate the position that research efforts working towards solving human-level AI
necessarily have to rely on general mechanisms and (models of) cognitive capacities, with
domain-specific systems or task-dependent approaches only being of minor help towards
the final goal. We revisit psychological research on intelligence and the application of
psychometric methods in AI, before discussing IGOR2 (implementing program learning) and
HDTP (implementing generalisation-based analogy-making) under the light of the previous
considerations as examples of systems respectively implementing a general mechanism or
modeling a general capacity. In closing, we summarise our considerations, point out three
characteristics we consider suitable candidates for serving as generally recommendable
properties of HLAI systems, and motivate why AI as a field could greatly profit from closer
interaction with Inductive Programming (and vice versa).
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7 System Demonstrations

7.1 Hands-on Tutorial for Hacking MagicHaskeller
Susumu Katayama (University of Miyazaki, JP)
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This presentation was a hands-on tutorial of MagicHaskeller, that is a powerful inductive
functional programming system for Haskell focusing on practical use. Although the present-
ation material was prepared for the users who are interested in using its API, the actual
presentation focused on its web interface and was mainly for those who were not familiar
with it.

8 Working groups

8.1 Benchmarks, Evaluation, and Applications
Umair Zafrulla Ahmed (Indian Institute of Technology – Kanpur, IN), Harold Boley (Univer-
sity of New Brunswick at Fredericton, CA), José Hernández-Orallo (Technical University of
Valencia, ES), Petra Hofstedt (TU Cottbus, DE), Frank Jäkel (Universität Osnabrück, DE),
William B. Langdon (University College London, GB), Fernando Martinez-Plumed (Technical
University of Valencia, ES), Martin Möhrmann (Universität Osnabrück, DE), Hila Peleg
(Technion – Haifa, IL), Maria José Ramirez Quintana (Technical University of Valencia,
ES), Gustavo Soares (Universidade Federal – Campina Grande, BR), Armando Solar-Lezama
(MIT – Cambridge, US), Lorijn van Rooijen (Universität Paderborn, DE), Janis Voigtländer
(Universität Bonn, DE), and Benjamin Zorn (Microsoft Research – Redmond, US)
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The goal of this working group is to increase the visibility and impact of research in the areas
of inductive programming as applied to important practical problems. We want to facilitate a
broad effort to coordinate and increase communication among researchers, identify important
research directions, and show the utility of IP in practice across important application
domains. To achieve this goal, we identify two important sub-goals: creating a repository of
problem description and links to open-source systems (which has been already initiated at
http://inductive-programming.org/ ) and to host competitions focused on specific tasks and
domains to highlight the significant progress being made on practical applications of IP.

Application areas: In our discussions we identified that there are many emerging areas
where practical applications of IP are both significant and commercially valuable. These
include general tests of intelligence, data manipulation, education, programming (code
transformations, test generation, etc.), grammar discovery, and visual reasoning. Our hope
is that we can add problem sets in all of these areas in the coming year that will significantly
broaden the set of problems that are already present in our repository.
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Common representations: One of the challenges of defining a set of shared problem in-
stances is the challenge of defining the problems in such a way that that they can be
used across systems. Ideally, we would have a way to encode the problem (capturing the
input/output pairs, etc.). We also have to encode characteristics of the resulting artifact
(e.g., it might be a program in a domain specific language). Finally, encoded in the solution
and also the search used in finding the solution is the embedded background knowledge that
allows the solution to closely match that a person might construct in solving the problem. It
is especially difficult to tease out this background knowledge in some systems because it can
be encoded in a domain-specific language or even as a set of constraints that exist in the
solver system that is used.

Competitions: One of the key areas we wanted to increase activity in during the coming
years is competitions that highlight important application areas for IP and allow the systems
that are emerging to demonstrate how effective they are. Armando shared some of his
experiences running the SyGuS synthesis competition for 2 consecutive years. He pointed out
a number of lessons that include: avoid narrowing the community, allow multiple winners
and different categories, have in mind for the first competition a list of participants that will
definitely enter, think carefully about the problems ahead of time.

We considered specific opportunities for connecting a competition to a particular meeting
and KDD2016 was discussed but the deadline is too soon. We decided that focusing the
first competition on data wrangling would limit the scope to an important area and allow a
number of different approaches to be used (string manipulation is common to a number of
the existing systems). The plan would be to change the topic of the competition each year to
diversify the applications explored. ICDM 2016 in Barcelona is a possible alternative venue
we are considering. http://www.cs.uvm.edu/~icdm/

Evaluation: Another important dimension of benchmarks and evaluation is what metrics are
applied to determine if the solution is “good”. In many cases, the “naturalness” of a solution
to a human is an important requirement. We explored increasing the use of crowdsourcing
as a way to evaluate aspects of a solution that are more difficult to measure using objective
techniques. One starting point for this is to create a catalog of the existing metrics that
different researchers are using and understand if those metrics are domain specific or general.

Community: One of the important challenges in building collections of benchmarks, main-
taining repositories and keeping them fresh, and organizing competitions is that none of these
activities directly leads to new results or publications. As a result, a community is needed
that gets benefit from shared infrastructure and sees synergy in the related efforts. One
possible goal in this area might be to publish a paper that captures a set of benchmarks in a
way that makes it much easier for subsequent research to build on that result. For example,
the Dicapo benchmarks for Java are highly used and cited in the Java research community.
One of the things we plan to do going forward is maintaining regular interactions among
the attendees of the seminar interested in this topic via regular Skype meetings. We also
discussed other forms of social media and how to share and communicate important results
in this research area.
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8.2 General-Purpose IP Infrastructures and Applicability and
Evaluation Criteria for IP Approaches in the Context of AI

Ute Schmid (Universität Bamberg, DE), Tarek R. Besold (Free University of Bozen-Bolzano,
IT), Andrew Cropper (Imperial College London, GB), Sumit Gulwani (Microsoft Corporation –
Redmond, US), Petra Hofstedt (TU Cottbus, DE), Susumu Katayama (University of Miyazaki,
JP), William B. Langdon (University College London, GB), and Stephen H. Muggleton
(Imperial College London, GB)
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The topic of inductive programming (IP) was discussed in the context of the general goals
and quality criteria of “classical” artificial intelligence (AI) research (i.e., research aiming
at developing human-level AI systems). The initial proposition was that general purpose
approaches to IP – such as inductive logic programming (ILP) and inductive functional
programming (IFP) – are more compatible with the goals of AI research than specialized,
domain-specific approaches. However, the general scientific goal of AI research to formalize
human-level intelligence by means of general algorithms is in practice complemented by the
application oriented engineering goal to provide efficient and reliable algorithmic solutions for
problems of interest for industry and end-users. Nevertheless, taking into account insights
about human cognition is also of relevance for application-oriented AI in order to provide for
adequate and comprehensible human-computer interaction and human-understandable and
-interpretable processing approaches.

Generality of mechanisms (for reasoning, induction, problem solving, etc.) is hypothesized
as hallmark of human cognition. That is, it is assumed that the same processing principles
guide, for example, solving geometric induction problems such as Raven progressive matrices,
induction of number series, induction of replacement patterns for string transformations, or
induction of a general routine to solve Tower of Hanoi or sorting of lists. While ILP and
IFP are such general mechanism, the domain specific approach of the Excel plug-in Flashfill
for string transformations demonstrates the enormous power of specialized approaches
within their restricted domains. An engineering approach to reach both the performance of
specialized systems as well as the coverage of a broader set of domains could be to provide a
generator mechanism which allows to construct domain-specific solutions.

Within AI research machine learning is the area of research most closely related to
IP: In IP as well as in standard ML, the main goal is to provide algorithms for inductive
generalization over incomplete information. In standard ML, training examples are typically
presented in the form of feature vectors, learning algorithms are robust to noise, and in order
to ensure suitable generalization and avoid overfitting it is not desirable that the learned
hypothesis covers all training examples. In contrast, in IP, training examples are presented
in the form of input/output relations and in addition background knowledge can be provided.
Furthermore, since the learned hypothesis is a (declarative) program, it is necessary that all
input/output examples are treated correctly. While most of standard ML approaches are
blackbox learners, IP approaches are whitebox learners. That is, the generated hypothesis
is a symbolic and structured representation which is comprehensible by humans. The big
difference between a standard ML approach such as deep learning neural networks and IP is,
that IP addresses deep comprehension! In consequence, we propose that comprehensibility
might be a suitable performance criterium for the output of ML/IP approaches.

A promising line of research in IP might be to make systems which generate output which
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is (even more) compatible with human-to-human communication. That is, the output of an
IP system should have high comprehensibility. Comprehensibility implies natural interaction,
safety and trust. As a first step in this direction, we need to characterize what defines the
comprehensibility of system output (such as names, concepts, action sequences, programs,
texts, theories, designs, pictures, emotional responses and so on). Consequently, a new IP
system could be designed to use comprehensibility as inductive bias. To determine the
comprehensibility of a learned program, the characteristics of comprehensibility could be
learned in form of a mapping from characteristics of the candidate hypotheses to the degree
or probability of understanding. Understanding could be empirically measured as probability
that the subject can provide the correct classification (or action) for arbitrary input based
on the provided program. A first step could be attempting to machine learn definitions of
comprehensibility from labelled examples provided by humans. This could be done in the
form of setting comprehension tests, similar in spirit to those set for texts in schools, in
which the human subjects were asked to classify the implied consequences of various machine
generated hypotheses. The expected accuracy of such tests would then be taken as a proxy
measure for the degree of comprehensibility of individual hypotheses with respect to the
given group of humans tested.

One characteristic of making a program more comprehensible than another one could be
the use of predicate (or function) invention as used by ILP systems such as Golem, Progol or
Metagol and by the IFP system Igor. Invented predicates/functions introduce a new level of
abstraction and allow to structure a program by using higher-level concepts in the program
body which are defined separately. A simple example is a Prolog definition of the concept
grandfather/2 with and without predicate invention:

; without predicate invention
p(X,Y) ← father(X,Z), father(Z,Y)
p(X,Y) ← father(X,Z), mother(Z,Y)
p(X,Y) ← mother(X,Z), mother(Z,Y)
p(X,Y) ← mother(X,Z), father(Z,Y)

;with predicate invention
p(X,Y) ← p1(X,Z), p1(Z,Y)
p1(X,Y)← father(X,Y)
p1(X,Y)← mother(X,Y)

As outcome of the discussion group, it was planned to design and conduct an empirical study
about comprehensibility of Prolog programs with versus without invented predicates.
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Our discussion group focused on the role of probabilistic analysis in Inductive programming.
We identified three main ways in which probabilities can be used: 1) Modelling priors of
the programs in the hypothesis space to specify a program P1 is more likely than another
program P2, 2) Using probabilistic programs for inductive reasoning so that a program can
generate a distribution of outputs for modeling noise, and finally 3) a unified setting where
both noise and prior can be modeled together using a joint distribution. We then identified
some applications in inductive programming that can be enabled using such probabilistic
analysis. One of the key new applications was synthesizing programs in settings where there
is some inherent ambiguity in inputs and outputs, e.g. human-generated data, weather/GPS
and sensor data. The probabilistic analysis can also increase the robustness of previous
deterministic inductive programming approaches by using better priors for the hypothesis
space and handling noisy data, e.g. a robust FlashFill learning algorithm. Finally, another
interesting application was in formalizing the heuristics used in synthesis approaches.

We then contrasted probabilistic analysis in Inductive Programming with Machine
Learning and Probabilistic Programming. As compared to Machine Learning, the probabilistic
IP approaches can handle both hard and soft constraints, can learn human-understandable
programs instead of complex high-dimensional models, and provide more control over the
hypothesis space. Probabilistic Programming, on the other hand, can be used to formulate
our problem, but they are not yet scalable enough to handle real-world IP problems. There is
also a strong bias towards sampling based methods in Probabilistic Programming and lesser
emphasis on combinatorial approaches that are more common in IP. Finally, we discussed
some ways in which to perform a good evaluation of Probabilistic IP systems. The common
measures of number of examples needed to learn a program and the scalability of the learning
algorithm are similar to the traditional IP systems, but are harder to evaluate in our setting.
Another interesting measure to evaluate in probabilistic IP systems is to verify how faithfully
the learning algorithm is conforming to the probability distributions. Finally, we discussed
some potential ways to evaluate the prior models for the hypothesis space and input-output
distributions.
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