External Memory Three-Sided Range Reporting and Top-k Queries with Sublogarithmic Updates

Gerth Stølting Brodal

MADALGO, Department of Computer Science, Aarhus University, Denmark
gerth@cs.au.dk

Abstract
An external memory data structure is presented for maintaining a dynamic set of \(N \) two-dimensional points under the insertion and deletion of points, and supporting unsorted 3-sided range reporting queries and top-k queries, where top-k queries report the \(k \) points with highest \(y \)-value within a given \(x \)-range. For any constant \(0 < \varepsilon \leq \frac{1}{2} \), a data structure is constructed that supports updates in amortized \(O\left(\frac{1}{\varepsilon B} \log B N \right) \) I/Os and queries in amortized \(O\left(\frac{1}{\varepsilon \log B N + K/B \right) \) I/Os, where \(B \) is the external memory block size, and \(K \) is the size of the output to the query (for top-k queries \(K \) is the minimum of \(k \) and the number of points in the query interval). The data structure uses linear space. The update bound is a significant factor \(B^{1-\varepsilon} \) improvement over the previous best update bounds for these two query problems, while staying within the same query and space bounds.

1998 ACM Subject Classification E.1 Data Structures

Keywords and phrases External memory, priority search tree, 3-sided range reporting, top-k queries

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.23

1 Introduction
In this paper we consider the problem of maintaining a dynamic set of \(N \) two-dimensional points from \(\mathbb{R}^2 \) in external memory, where the set of points can be updated by the insertion and deletion of points, and where two types of queries are supported: unsorted 3-sided range reporting queries and top-k queries. More precisely, we consider how to support the following four operations in external memory (see Figure 1):

- **Insert**(*p*): Inserts a new point \(p \in \mathbb{R}^2 \) into the set \(S \) of points. If \(p \) was already in \(S \), the old copy of \(p \) is replaced by the new copy of \(p \) (this case is relevant if points are allowed to carry additional information).
- **Delete**(*p*): Deletes a point \(p \in \mathbb{R}^2 \) from the current set \(S \) of points. The set remains unchanged if \(p \) is not in the set.
- **Report**(*x*₁, *x*₂, *y*): Reports all points contained in \(S \cap [x_1, x_2] \times [y, \infty] \).
- **Top**(*x*₁, *x*₂, *k*): Reports \(k \) points contained in \(S \cap [x_1, x_2] \times [-\infty, \infty] \) with highest \(y \)-value.

1.1 Previous Work
McCreight introduced the priority search tree [14] (for internal memory). The classic result is that priority search trees support updates in \(O(\log N) \) time and 3-sided range reporting
queries in $O(\log N + K)$ time, where K is the number of points reported. Priority search trees are essentially just balanced heap-ordered binary trees where the root stores the point with minimum y-value and the remaining points are distributed among the left and right children so that all points in the left subtree have smaller x-value than points in the right subtree. Frederickson \cite{10} presented an algorithm selecting the k smallest elements from a binary heap in time $O(k)$, which can be applied quite directly to a priority search tree to support top-k queries in $O(\log N + K)$ time.

Icking et al. \cite{12} initiated the study of adapting priority search trees to external memory. Their structure uses linear space, i.e. $O(N/B)$ blocks, and supports 3-sided range reporting queries using $O(\log_2 N + K/B)$ IOs, where B is the external memory block size. Other early linear space solutions were given in \cite{6} and \cite{13} supporting queries with $O(\log_B N + K)$ and $O(\log_B N + K/B + \log_2 B)$ IOs, respectively. Ramaswamy and Subramanian in \cite{18} presented a data structure with optimal query time but using suboptimal space, and in \cite{20} they presented a data structure achieving optimal space but suboptimal queries (see Table 1). The best previous dynamic bounds are obtained by the external memory priority search tree by Arge et al. \cite{4}, which supports queries using $O(\log_B N + K/B)$ IOs and updates using $O(\log_B N)$ IOs, using linear space. The space and query bounds of \cite{4} are optimal. External memory top-k queries were studied in [1, 19, 21]. Tao in [21] presented a data structure achieving bounds matching those of the external memory priority search tree of Arge et al. \cite{4}, updates being amortized. See Table 1 for an overview of previous results.

We improve the update bounds of both \cite{4} and \cite{21} by a factor $\varepsilon B^{1-\varepsilon}$ by adopting ideas of the buffer trees of Arge \cite{3} to the external memory priority search tree \cite{4}.

1D Dictionaries

The classic B-tree of Bayer and McCreight \cite{5} is the external memory counterpart of binary search trees for storing a set of one-dimensional points. A B-tree supports updates and membership/predecessor searches in $O(\log_B N)$ IOs and 1D range reporting queries in $O(\log_B N + K/B)$ IOs, where K is the output size. The query bounds for B-trees are optimal for comparison based external memory data structures, but the update bounds are not.

Arge \cite{3} introduced the buffer tree as a variant of B-trees supporting batched sequences of interleaved updates and queries, where a sequence of N operations can be performed using $O\left(\frac{N}{B} \log_{M/B} \frac{N}{B}\right)$ IOs, where M is the internal memory size. The buffer tree can e.g. be used as an external memory priority queue and segment tree, and has applications to external memory graph problems and computational geometry problems. By adapting Arge’s technique of buffering updates (insertions and deletions) to a B-tree of degree B^ε, where
The results of this paper are in the external memory model of Aggarwal and Vitter [2] with associated real weights where queries report the top-3-sided and 2-sided top-1.

Table 1 Previous external-memory 3-sided range reporting and top-k data structures. All query bounds are optimal except [20]. Amortized bounds are marked "†".

<table>
<thead>
<tr>
<th>Query</th>
<th>Reference</th>
<th>Update</th>
<th>Query</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-sided</td>
<td>[18]</td>
<td>$O(\log N \cdot \log B)^1$</td>
<td>$O(\log_B N + K/B)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[20]</td>
<td>$O(\log_B N + (\log_B N)^2/B)^1$</td>
<td>$O((\log_B N + K/B) + IL^*(B))$</td>
<td></td>
</tr>
<tr>
<td>New</td>
<td></td>
<td>$O(\frac{1}{\varepsilon B} \log_B N)^1$</td>
<td>$O(\frac{1}{\varepsilon B} \log_B N + K/B)^1$</td>
<td></td>
</tr>
<tr>
<td>Top-k</td>
<td>[19]</td>
<td>$O(\log_B^2 N)^1$</td>
<td>$O(\log_B N + K/B)$</td>
<td>$O(\text{Sort}(N))$</td>
</tr>
<tr>
<td></td>
<td>[21]</td>
<td>$O(\log_B N)^1$</td>
<td>$O(\log_B N + K/B)$</td>
<td></td>
</tr>
<tr>
<td>New</td>
<td></td>
<td>$O(\frac{1}{\varepsilon B} \log_B N)^1$</td>
<td>$O(\frac{1}{\varepsilon B} \log_B N + K/B)^1$</td>
<td>$O(\text{Sort}(N))$</td>
</tr>
</tbody>
</table>

0 < ε < 1 is a constant, and where each node stores a buffer of $O(B)$ buffered updates, one can achieve updates using amortized $O(\frac{1}{\varepsilon B} \log_B N)$ IOs and member queries in $O(\frac{1}{\varepsilon B} \log_B N)$ IOs.

Brodal and Fagerberg [8] studied the trade-offs between the IO bounds for comparison based updates and membership queries in external memory. They proved the optimality of B-trees with buffers when the amortized update cost is in the range $1/\log^4 N$ to $\log_B B_{\frac{1}{\varepsilon}}$.

Verbin and Zhang [23] and Iacono and Patrascu [11] consider trade-offs between updates and membership queries when hashing is allowed, i.e. elements are not indivisible. In [11] it is proved that updates can be supported in $O(\frac{1}{\varepsilon B} N)$ IOs and queries in $O(\log N)$ IOs, for $\lambda \geq \max\{\log \log N, \log_{M/B}(N/B)\}$. Compared to the comparison based bounds, this essentially removes a factor $\log_B N$ from the update bounds.

Related Top-k Queries

In the RAM model Brodal et al. [9] presented a linear space static data structure provided for the case where x-values were 1, 2, ..., N, i.e. input is an array of y-values. The data structure supports sorted top-k queries in $O(k)$ time, i.e. reports the top K in decreasing y-order one point at a time.

Afshani et al. [1] studied the problem in external memory and proved a trade-off between space and query time for sorted top k queries, and proved that data structures with query time $\log^{O(1)} N + O(cK/B)$ requires space $\Omega \left(\frac{N}{B} \log \left(\frac{N}{B} \log_{M/B} \frac{N}{B} \right) \right)$ blocks. It follows that for linear space top-k data structures it is crucial that we focus on unsorted range queries.

Rahul et al. [16] and Rahul and Tao [17] consider the static top-k problem for 2D points with associated real weights where queries report the top-k points with respect to weight contained in an axis-parallel rectangle. Rahul and Tao [17] achieve query time $O(\log_{B} N + K/B)$ using space $O(\frac{N}{B} \log \frac{N}{B} \log_{B} N)$, and $O(N/B)$ for supporting 4-sided, 3-sided and 2-sided top-k queries respectively.

1.2 Model of Computation

The results of this paper are in the external memory model of Aggarwal and Vitter [2] consisting of a two-level memory hierarchy with an unbounded external memory and an internal memory of size M. An IO transfers $B \leq M/2$ consecutive records between internal and external memory. Computation can only be performed on records in internal memory.
The basic results in the model are that the scanning and sorting an array require $\Theta(\text{Scan}(N))$ and $\Theta(\text{Sort}(N))$ I/Os, where $\text{Scan}(N) = \frac{N}{B}$ and $\text{Sort}(N) = \frac{N}{B} \log_M \frac{M}{B}$ respectively [2].

In this paper we assume that the only operation on points is the comparison of coordinates. For the sake of simplicity in the following we assume that all points have distinct x- and y-values. If this is not the case, we can extend the x-ordering to the lexicographical order \prec_x where $(x_1, y_1) \prec_x (x_2, y_2)$ if and only if $x_1 < x_2$, or $x_1 = x_2$ and $y_1 < y_2$, and similarly for the comparison of y-values.

1.3 Our Results

This paper provides the first external memory data structure for 3-sided range reporting queries and top-k queries with amortized sublogarithmic updates.

Theorem 1. For any constant ε, $0 < \varepsilon \leq \frac{1}{2}$, there exists an external memory data structure supporting the insertion and deletion of points in amortized $O\left(\frac{1}{\varepsilon} \frac{1}{B} \log_B N\right)$ I/Os and 3-sided range reporting queries and top-k queries in amortized $O\left(\frac{1}{2} \log_B N + K/B\right)$ I/Os, where N is the current number of points and K is the size of the query output. Given an x-sorted set of N points, the structure can be constructed with amortized $O\left(\frac{N}{B}\right)$ I/Os. The space usage of the data structure is $O\left(\frac{N}{B}\right)$ blocks.

To achieve the results in Theorem 1 we combine the external memory priority search tree of Arge et al. [4] with the idea of buffered updates from the buffer tree of Arge [3]. Buffered insertions and deletions move downwards in the priority search tree in batches whereas points with large y-values move upwards in the tree in batches. We reuse the dynamic substructure of [4] for storing $O(B^2)$ points at each node of the priority search tree, except that we reduce its capacity to $B^{1+\varepsilon}$ to achieve amortized $o(1)$ I/Os per update. The major technical novelty in this paper lays in the top-k query (Section 7) that makes essential use of Frederickson’s binary heap selection algorithm [10] to select an approximate y-value, that allows us to reduce top-k queries to 3-sided range reporting queries combined with standard selection [7].

One might wonder if the bounds of Theorem 1 are the best possible. Both 3-sided range reporting queries and top-k queries can be used to implement a dynamic 1D dictionary with membership queries by storing a value $x \in \mathbb{R}$ as the 2D point $(x, x) \in \mathbb{R}^2$. A dictionary membership query for x can then be answered by the 3-sided query $[x_1, x_2] \times [-\infty, \infty]$ or a top-1 query for $[x, x]$. If our queries had been worst-case instead of amortized, it would follow from [8] that our data structure achieves an optimal trade-off between the worst-case query time and amortized update time for the range where the update cost is between $1/\log^3 N$ to $\log_B \frac{N}{B}$.

Unfortunately, our query bounds are amortized and the argument does not apply. Our query bounds are inherently amortized and it remains an open problem if the bounds in Theorem 1 can be obtained in the worst case. Throughout the paper we assume the amortized analysis framework of Tarjan [22] is applied in the analysis.

Outline of Paper

In Section 2 we describe our data structure for point sets of size $O(B^{1+\varepsilon})$. In Section 3 we define our general data structure. In Section 4 we describe how support updates, in Section 5 the application of global rebuilding, and in Sections 6 and Section 7 how to support 3-sided range reporting and top-k queries, respectively.
In this section we describe a data structure for storing a set of $O(B^{1+\varepsilon})$ points, for a constant $0 \leq \varepsilon \leq \frac{1}{2}$, that supports 3-sided range reporting queries using $O(1 + K/B)$ IOs and the batched insertion and deletion of $s \leq B$ points using amortized $O(1 + s/B^{1-\varepsilon})$ IOs. The structure is very much identical to the external memory priority search structure of Arge et al. [4, Section 3.1] for handling $O(B^2)$ points. The essential difference is that we reduce the capacity of the data structure to obtain amortized $o(1)$ IOs per update, and that we augment the data structure with a sampling operation required by our top-k queries. A sampling intuitively selects the y-value of approximately every Bth point with respect to y-value within a query range $[x_1, x_2] \times [-\infty, \infty]$ and takes $O(1)$ IOs.

In the following we describe how to support the below operations within the bounds stated in Theorem 2.

- **Insert**(p_1, \ldots, p_s) inserts the points p_1, \ldots, p_s into the structure, where $1 \leq s \leq B$.
- **Delete**(p_1, \ldots, p_s) deletes the points p_1, \ldots, p_s from the structure, where $1 \leq s \leq B$.
- **Report**(x_1, x_2, y) reports all points within the query range $[x_1, x_2] \times [y, \infty]$.
- **Sample**(x_1, x_2) returns a decreasing sequence of $O(B^\varepsilon)$ y-values $y_1 \geq y_2 \geq \cdots$ such that for each y_i, there are between iB and $iB + \alpha B$ points in the range $[x_1, x_2] \times [y_i, \infty]$, for some constant $\alpha \geq 1$. Note that this implies that in the range $[x_1, x_2] \times [y_i+1, y_i]$ there are between 0 and $(1+\alpha)B$ points.

Theorem 2. There exists a data structure for storing $O(B^{1+\varepsilon})$ points, $0 \leq \varepsilon \leq \frac{1}{2}$, where the insertion and deletion of s points requires amortized $O(1 + s/B^{1-\varepsilon})$ IOs. Report queries use $O(1 + K/B)$ IOs, where K is the number of points returned, and Sample queries use $O(1)$ IOs. Given an x-sorted set of N points, the structure can be constructed with $O(N/B)$ IOs. The space usage is linear.

Data Structure

Our data structure \mathcal{C} consists of four parts. A static data structure \mathcal{L} storing $O(B^{1+\varepsilon})$ points; two buffers \mathcal{I} and \mathcal{D} of delayed insertions and deletions, respectively, each containing at most B points; and a set $\mathcal{S} \subseteq \mathcal{L}$ of $O(B)$ sampled points. A point can appear at most once in \mathcal{I} and \mathcal{D}, and at most in one of them. Initially all points are stored in \mathcal{L}, and \mathcal{I} and \mathcal{D} are empty.

Let L be the points in the \mathcal{L} structure and let $\ell = \lfloor |L|/B \rfloor$. The data structure \mathcal{L} consists of $2\ell - 1$ blocks. The points in L are first partitioned left-to-right with respect to x-value into blocks b_1, \ldots, b_t each of size B, except possibly for the rightmost block b_t just having size $\leq B$. Next we make a vertical sweep over the points in increasing y-order. Whenever the sweepline reaches a point in a block where the block together with an adjacent block contains exactly B points on or above the sweepline, we replace the two blocks by one block only containing these B points. Since each such block contains exactly the points on or above the sweepline for a subrange $b_{i,j}$ of the initial blocks, we denote such a block $b_{i,j}$. The two previous blocks are stored in \mathcal{L} but are no longer part of the vertical sweep. Since each fusion of adjacent blocks causes the sweepline to intersect one block less, it follows that at most $\ell - 1$ such blocks can be created. Figure 2 illustrates the constructed blocks, where each constructed block is illustrated by a horizontal line segment, and the points contained in the block are exactly all the points on or above the corresponding line segment. Finally, we have a “catalog” storing a reference to each of the $2\ell - 1$ blocks of \mathcal{L}. For a block $b_{i,j}$ we store the minimum and maximum x-values of the points within the block. For blocks $b_{i,j}$
we store the interval \([i, j]\) and the minimum \(y\)-value of a point in the block, i.e. the \(y\)-value where the sweep caused block \(b_{i,j}\) to be created.

The set \(S \subseteq L\) contains from each block \(b_1, \ldots, b_\ell\) the points with the \([i : B^\varepsilon]\)-th highest \(y\)-value for all \(1 \leq i \leq B^1 - \varepsilon\). Since \(\ell = O(B^\varepsilon)\), the total number of points in \(S\) is \(O(B^\varepsilon \cdot B^{1-\varepsilon}) = O(B)\). The sets \(S, I, D\) and the catalog are stored in \(O(1)\) blocks.

Updates

Whenever points are inserted or deleted we store the delayed updates in \(I\) or \(D\), respectively. Before adding a point \(p\) to \(I\) or \(D\) we remove any existing occurrence of \(p\) in \(I\) and \(D\), since the new update overrides all previous updates of \(p\). Whenever \(I\) or \(D\) overflows, i.e. its size exceeds \(B\), we apply the updates to the set of points in \(L\), and rebuild \(L\) for the updated point set. To rebuild \(L\), we extract the points \(L\) in \(L\) in increasing \(x\)-order from the blocks \(b_1, \ldots, b_\ell\) in \(O(\ell)\) IOs, and apply the \(O(B)\) updates in \(I\) or \(D\) during the scan of the points to achieve the updated point set \(L'\). We split \(L'\) into new blocks \(b_1, \ldots, b_\ell\) and perform the vertical sweep by holding in internal memory a priority queue storing for each adjacent pair of blocks the \(y\)-value where the blocks potentially should be fusioned. This allows the construction of each of the remaining blocks \(b_{i,j}\) of \(L\) in \(O(1)\) IOs per block. The reconstruction takes worst-case \(O(\ell')\) IOs. Since \(|L| = O(B^1 + \varepsilon)\) and the reconstruction of \(L\) whenever a buffer overflow occurs requires \(O(|L|/B) = O(B^\varepsilon)\) IOs, the amortized cost of reconstructing \(L\) is \(O(1/B^{1-\varepsilon})\) IOs per buffered update.

3-sided Reporting Queries

For a 3-sided range reporting query \(Q = [x_1, x_2] \times [y, \infty]\), the \(t\) line segments immediately below the bottom segment of the query range \(Q\) correspond exactly to the blocks intersected by the sweep when it was at \(y\), and the blocks contain a superset of the points contained in \(Q\). In Figure 2 the grey area shows a 3-sided range reporting query \(Q = [x_1, x_2] \times [y, \infty]\), where the relevant blocks are \(b_{3,4}, b_5\) and \(b_{6,7}\). By construction we know that at the sweepline two
consecutive blocks contain at least B points on or above the sweepline. Since the leftmost and rightmost of these blocks do not necessarily contain any points from Q, it follows that the output to the range query Q is at least $K \geq B[(t-2)/2]$. The relevant blocks can be found directly from the catalog using $O(1)$ IOs and the query is performed by scanning these t blocks, and reporting the points contained in Q. The total number of IOs becomes $O(1+t) = O(1+K/B)$.

Sampling Queries

To perform a sampling query for the range $[x_1, x_2]$ we only consider L, i.e. we ignore the $O(B)$ buffered updates. We first identify the two blocks b_i and b_j spanning x_1 and x_2, respectively, by finding the predecessor of x_1 (successor of x_2) among the minimum (maximum) x-values stored in the catalog. The sampled points in S for the blocks b_{i+1}, \ldots, b_{j-1} are extracted in decreasing y-order, and the $\lceil (s+1) \cdot B^{1-\epsilon} \rceil$-th y-values are returned from this list for $s = 1, 2, \ldots$. Let $y_1 \geq y_2 \geq \cdots$ denote these returned y-values.

We now bound the number of points in C contained in the range $Q_s = [x_1, x_2] \times [y_s, \infty]$. By construction there are $\lfloor (n_iB^s) \rfloor$ and less than $\lceil (n_i+1)B^s \rceil$ points with y-values $\geq y_s$ in S from points in $b_{i+1} \cup \cdots \cup b_{j-1}$. In each b_i there are at most $\lceil B^s \rceil$ points vertically between each sampled point in S. Assume there are n_i sampled points with y-values $\geq y_s$ in S from points in b_i, i.e. $n_{i+1} + \cdots + n_{j-1} = (s+1) \cdot B^{1-\epsilon}$. The number of points in b_i with y-value $\geq y_s$ is at least $\lceil n_iB^s \rceil$ and less than $\lceil (n_i+1)B^s \rceil$, implying that the total number of points in $Q_s \cap (b_{i+1} \cup \cdots \cup b_{j-1})$ is at least $\sum_{t=i+1}^{j-1} \lceil n_tB^s \rceil \geq B^s \sum_{t=i+1}^{j-1} n_t = B^s[(s+1) \cdot B^{1-\epsilon}] \geq (s+1)B$ and at most $\sum_{t=i+1}^{j-1} (n_t + 1)B^s = (j-i-1)B^s + B^s \sum_{t=i+1}^{j-1} n_t = (j-i-1)B^s + B^s[(s+1) \cdot B^{1-\epsilon}] \leq (j-i)B^s + (s+1)B$. Since the buffered deletions in D at most cancel B points from L it follows that there are at least $(s+1)B - B = sB$ points in the range Q_s.

Since there are most B buffered insertions in I and B points in each of the blocks b_i and b_j, it follows that Q_s contains at most $(j-i)B^s + (s+1)B + 3B = sB + O(B)$ points, since $j-i = O(B^{s})$ and $\epsilon \leq \frac{1}{2}$. It follows that the generated sample has the desired properties.

Since the query is answered by reading only the catalog and S, the query only requires $O(1)$ IOs. Note that the returned y-values might be the y-values of deleted points by buffered deletions in D.

The Data Structure

To achieve our main result, Theorem 1, we combine the external memory priority search tree of Arge et al. [4] with the idea of buffered updates from the buffer tree of Arge [3]. As in [4], we have at each node of the priority search tree an instance of the data structure of Section 2 to handle queries on the children efficiently. The major technical novelty lays in the top-k query (Section 7) that makes essential use of Frederickson’s binary heap selection algorithm [10] and our samplings queries from Section 2.

Structure

The basic structure is a B-tree [5] T over the x-values of points, where the degree of each internal node is in the range $[\Delta/2, \Delta]$, where $\Delta = \lceil B^s \rceil$, except for the root r that is allowed to have degree in the range $[2, \Delta]$. Each node v of T stores three buffers containing $O(B)$ points: a point buffer P_v, an insertion buffer I_v, and a deletion buffer D_v. The intuitive idea is that T together with the P_v sets form an external memory priority search tree, i.e. a point in P_v has larger y-value than all points in P_w for all descendants w of v, and that
the I_v and D_v sets are delayed insertions and deletions on the way down through T that we will handle recursively in batches when buffers overflow. A point $p \in I_v$ ($p \in D_v$) should eventually be inserted in (deleted from) one of the P_v buffers at a descendant w of v. Finally for each internal node v with children c_1, \ldots, c_δ we will have a data structure C_v storing $\bigcup_{i=1}^{\delta} P_{c_i}$, that is an instance of the data structure from Section 2. In a separate block at v we store for each child c_i the minimum y-value of a point in P_{c_i}, or $+\infty$ if P_{c_i} is empty. We assume that all information at the root is kept in internal memory, except for C_r.

Invariants

For a node v, the buffers P_v, I_v and D_v are disjoint and all points have x-values in the x-range spanned by the subtree T_v rooted at v in T. All points in $I_v \cup D_v$ have y-value less than the points in P_v. In particular leaves have empty I_v and D_v buffers. If a point appears in a buffer at a node v and at a descendant w, the update at v is the most recent.

The sets stored at a node v must satisfy one of the below size invariants, guaranteeing that either P_v contains at least $B/2$ points, or all insertion and deletion buffers in T_v are empty and all points in T_v are stored in the point buffer P_v.

1. $B/2 \leq |P_v| \leq B$, $|D_v| \leq B/4$, and $|I_v| \leq B$, or
2. $|P_v| < B/2$, $I_v = D_v = \emptyset$, and $P_w = I_w = D_w = \emptyset$ for all descendants w of v in T.

4 Updates

Consider the insertion or deletion of a point $p = (p_x, p_y)$. First we remove any (outdated) occurrence of p from the root buffers P_r, I_r and D_r. If p_y is smaller than the smallest y-value in P_r then p is inserted into I_r or D_r, respectively. Finally, for an insertion where p_y is larger than or equal to the smallest y-value in P_r then p is inserted into P_r. If P_r overflows, i.e. $|P_r| = B + 1$, we move a point with smallest y-value from P_r to I_r.

During the update above, the I_r and D_r buffers might overflow, which we handle by the five steps described below: (i) handle overflowing deletion buffers, (ii) handle overflowing insertion buffers, (iii) split leaves with overflowing point buffers, (iv) recursively split nodes of degree $\Delta + 1$, and (v) recursively fill underflowing point buffers. For deletions only (i) and (v) are relevant, whereas for insertions (ii)-(v) are relevant.

(i) If a deletion buffer D_v overflows, i.e. $|D_v| > B/4$, then by the pigeonhole principle there must exist a child c where we can push a subset $U \subseteq D_v$ of $\lceil |D_v|/\Delta \rceil$ deletions down to. We first remove all points in U from D_v, I_c, D_c, P_c, and C_c. Any point p in U with y-value larger than or equal to the minimum y-value in P_c is removed from U (since the deletion of p cannot cancel further updates). If v is a leaf, we are done. Otherwise, we add the remaining points in U to D_c, which might overflow and cause a recursive push of buffered deletions. In the worst-case, deletion buffers overflow all the way along a path from the root to a single leaf, each time causing at most $\lceil B/\Delta \rceil$ points to be pushed one level down. Updating a C_v buffer with $O(B/\Delta)$ updates takes amortized $O(1 + (B/\Delta)/B^{1-\varepsilon}) = O(1)$ IOs.

(ii) If an insertion buffer I_v overflows, i.e. $|I_v| > B$, then by the pigeonhole principle there must exist a child c where we can push a subset $U \subseteq I_v$ of $\lceil |I_v|/\Delta \rceil$ insertions down to. We first remove all points in U from I_v, I_c, D_c, P_c, and C_c. Any point p in U with y-value larger than or equal to the minimum y-value in P_c is inserted into P_c and C_c and removed from U (since the insertion cannot cancel further updates). If P_c overflows, i.e. $|P_c| > B$, we repeatedly move the points with smallest y-value from P_c to U until $|P_c| = B$. If c is a leaf all points in U are inserted into P_c (which might overflow), and U is now empty. Otherwise, we add the remaining points in U to I_c, which might overflow and cause
a recursive push of buffered insertions. As for deletions, in the worst-case insertion buffers
overflow all the way along a path from the root to a single leaf, each time causing \(O(B/\Delta) \)
points to be pushed one level down. Updating a \(C_v \) buffer with \(O(B/\Delta) \) updates takes
amortized \(O(1 + (B/\Delta)(B^{-1-\epsilon}) = O(1) \) IOs.

(iii) If the point buffer \(P_v \) at a leaf \(v \) overflows, i.e. \(|P_v| > B \), we split the leaf \(v \)
two nodes \(v' \) and \(v'' \), and distribute evenly the points \(P_v \) among \(P_{v'} \) and \(P_{v''} \) using \(O(1) \)
IOs. Note that the insertion and deletion buffers of all the involved nodes are empty. The
splitting might cause the parent to get degree \(\Delta + 1 \).

(iv) While some node \(v \) has degree \(\Delta + 1 \), split the node into two nodes \(v' \) and \(v'' \) and
distribute \(P_v \), \(I_v \) and \(D_v \) among the buffers at the nodes \(v' \) and \(v'' \) w.r.t. \(x \)-value. Finally
construct \(C_{v'} \) and \(C_{v''} \) from the children point sets \(P_e \). In the worst-case all nodes along a
single leaf-to-root path will have to split, where the splitting of a single node costs \(O(\Delta) \)
IOs, due to reconstructing \(C \) structures.

(v) While some node \(v \) has an underflowing point buffer, i.e. \(|P_v| < B/2 \), we try to move
the \(B/2 \) top points into \(P_v \) from \(v \)’s children. If all subtrees below \(v \) do not store any points,
we remove all points from \(D_v \), and repeatedly move the point with maximum \(y \)-value from
\(I_v \) to \(P_v \) until either \(|P_v| = B \) or \(I_v = \emptyset \). Otherwise, we scan the children’s point buffers
\(P_v, \ldots, P_e \) using \(O(\Delta) \) IOs to identify the \(B/2 \) points with largest \(y \)-value, where we only
read the children with nonempty point buffers (information about empty point buffers at the
children is stored at \(v \), since we store the minimum \(y \)-value in each of the children’s point
buffer). These points \(X \) are then deleted from the children’s \(P_e \) lists using \(O(\Delta) \) IOs and
from \(C_v \) using \(O(B^+ + \Delta) = O(\Delta) \) IOs. All points in \(X \cap D_v \) are removed from \(X \) and \(D_v \) (since
they cannot cancel further updates below \(v \)). For all points \(p \in X \cap I_v \), the occurrence of
\(p \) in \(X \) is removed and the more recent occurrence in \(I_v \) is moved to \(X \). While the highest
point in \(I_v \) has higher \(y \)-value than the lowest point in \(X \), we swap these two values to satisfy
the ordering among buffer points. Finally all remaining points in \(X \) are inserted into \(P_v \)
using \(O(1) \) IOs and into \(C_v \) using \(O(B^+ + \Delta) = O(\Delta) \) IOs, where \(u \) is the parent of \(v \). The total

cost for pulling these up to \(B/2 \) points one level up in \(T \) is \(O(\Delta) \) IOs. It is crucial that we
do the pulling up of points bottom-up, such that we always fill the lowest node in the tree,
which will guarantee that children always have non-underflowing point buffers if possible.
After having pulled points from the children, we need to check if any of the children’s point
buffers underflows and should be refilled.

Analysis

The tree \(T \) is rebalanced during updates by the splitting of leaves and internal nodes. We do
not try to fusion nodes to handle deletions. Instead we apply global rebuilding whenever a
linear number of updates have been performed (see Section 5). A leaf \(v \) will only be split
into two leaves whenever its \(P_v \) buffer overflows, i.e. when \(|P_v| > B \). It follows that the total
number of leaves created during a total of \(N \) insertions can at most be \(O(N/B) \), implying
that at most \(O(\sqrt{N/B}) \) internal nodes can be created by the recursive splitting of nodes. It
follows that \(T \) has height \(O(\log_{\Delta} \sqrt{N/B}) = O(1/\log_B N) \).

For every \(\Theta(B/\Delta) \) update, in (i) and (ii) amortized \(O(1) \) IOs are spend on each the
\(O(\log_{\Delta} \sqrt{N/B}) \) levels of \(T \), i.e. amortized \(O(\sqrt{N/B} \log_{\Delta} \sqrt{N/B}) = O(\sqrt{N/B} \log_B N) \) IOs per update. For
a sequence of \(N \) updates, in (iii) at most \(O(N/B) \) leaves are created requiring \(O(1) \) IOs each
and in (iv) at most \(O(\sqrt{N/B}) \) non-leaf nodes are created. The creation of each non-leaf node
costs amortized \(O(\Delta) \) IOs, i.e. in total \(O(N/B) \) IOs, and amortized \(O(1/B) \) IO per update.

The analysis of (v) is more complicated, since the recursive filling can trigger cascaded
recursive refilings. Every refilling of a node takes \(O(\Delta) \) IOs and moves \(\Theta(B) \) points one level
up in the tree’s point buffers (some of these points can be eliminated from the data structure during this move). Since each point at most can move $O(\log_B \frac{N}{B})$ levels up, the total number of IOs for the refillings during a sequence of N operations is amortized $O\left(\frac{N}{B} \Delta \log_B \frac{N}{B}\right)$ IOs, i.e. amortized $O\left(\frac{N}{B} \log B N\right)$ IOs per point. The preceding argument ignores two cases. The first case is that during the pull up of points some points from P_c and I_v swap roles due to their relative y-values. But this does not change the accounting, since the number of points moved one level up does not change due to this change of rôle. The second case is when all children of a node all together have less than $B/2$ points, i.e. we do not move as many points up as promised. In this case we will move to v all points we find at the children of v, such that these children become empty and cannot be read again before new points have been pushed down to these nodes. We can now do a simple amortization argument: By double charging the IOs we previously have counted for pushing points to a child we can ensure that each node with non-empty point buffer always has saved an IO for being emptied. It follows that the above calculations remain valid.

5 Global Rebuilding

We adopt the technique of global rebuilding [15, Chapter 5] to guarantee that T is balanced. We partition the sequence of updates into epochs. If the data structure stores \bar{N} points at the beginning of an epoch the next epoch starts after $\bar{N}/2$ updates have been performed. This ensures that during the epoch the current size satisfies $\frac{1}{2}\bar{N} \leq N \leq \frac{3}{2}\bar{N}$, and that T has height $O\left(\frac{1}{\epsilon} \log_B \frac{2\bar{N}}{\epsilon}\right) = O\left(\frac{1}{\epsilon} \log_B N\right)$.

At the beginning of an epoch we rebuild the structure from scratch by constructing a new empty structure and reinsert all the non-deleted points from the previous structure. We recursively identify the nodes to visit, as the root, all nodes v containing at least $\frac{3\bar{N}}{2B(\Delta/2)}$ nodes, i.e. stores $O\left(\frac{\bar{N}}{\Delta(3/2)}\right)$ points to be reported and buffered updates to be moved i levels down, the total cost of flushing all buffers is $O\left(\sum_{i=\infty}^{\bar{N}} (i+1) \frac{\bar{N}}{B(\Delta/2)}\right) = O\left(\frac{\bar{N}}{\epsilon B}\right)$ IOs.

The $O(\bar{N})$ reinsertions into the new tree can be done in $O\left(\frac{\bar{N}}{\epsilon B} \log_B \bar{N}\right)$ IOs. The $\bar{N}/2$ updates during an epoch are each charged a constant factor amortized overhead to cover the $O\left(\frac{\bar{N}}{\epsilon B} \log_B N\right)$ IO cost of rebuilding the structure at the end of the epoch.

6 3-sided Range Reporting Queries

Our implementation of 3-sided range reporting queries $Q = [x_1, x_2] \times [y, \infty]$ consists of three steps: Identify the nodes to visit for reporting points, push down buffered insertions and deletions between visited nodes, and finally return the points in the query range Q.

We recursively identify the nodes to visit, as the $O\left(\frac{1}{\epsilon} \log_B N\right)$ nodes on the two root-to-leaf search paths in T for x_1 and x_2, and all nodes v between x_1 and x_2 where all points in P_v are in Q. We can check if we should visit a node w without reading the node, by comparing y with the minimum y-value in P_w that is stored at the parent of w. It follows that all points to be reported by Q are contained in the P_v and I_v buffers of visited nodes v or point buffers at the children of visited nodes, i.e. in C_v. Note that some of the points in the P_v, I_v and C_v sets might have been deleted by buffered updates at visited ancestor nodes.
A simple worst-case solution for answering queries would be to extract for all visited nodes \(v \) all points from \(P_v, I_v, D_v \) and \(C_v \) contained in \(Q \). By sorting the \(O(K + \frac{2}{\delta} \log_B N) \) extracted points (bound follows from the analysis below) and applying the buffered updates we can answer a query in worst-case \(O(\text{Sort}(K + \frac{2}{\delta} \log_B N)) \) IOs. In the following we prove the better bound of amortized \(O(\frac{1}{\delta} \log_B N + K/B) \) IOs by charging part of the work to the updates.

Our approach is to push buffered insertions and deletions down such that for all visited nodes \(v \), no ancestor \(u \) of \(v \) stores any buffered updates in \(D_u \) and \(I_u \) that should go into the subtree of \(v \). We do this by a top-down traversal of the visited nodes. For a visited node \(v \) we identify all the children to visit. For a child \(c \) to visit, let \(U \subseteq D_v \cup I_v \) be all buffered updates belonging to the \(x \)-range of \(c \). We delete all points in \(U \) from \(P_c, C_v, I_v \) and \(D_v \). All updates in \(U \) with \(y \)-value smaller than the minimum \(y \)-value in \(P_c \) are inserted into \(D_v \) or \(I_v \), respectively. All insertions in \(U \) with \(y \)-value larger than or equal to the minimum \(y \)-value in \(P_c \) are merged with \(P_c \). If \(|P_c| > B\) we move the points with lowest \(y \)-values to \(I_v \) until \(|P_c| = B\). We update \(C_v \) to reflect the changes to \(P_c \). During this push down of updates, some update buffers at visited nodes might get size \(> B \). We temporarily allow this, and keep update buffers in sorted \(x \)-order.

The reporting step consists of traversing all visited nodes \(v \) and reporting all points in \((P_v \cup I_v) \cap Q\) together with points in \(C_v \) contained in \(Q \) but not canceled by deletions in \(D_v \), i.e. \((Q \cap C_v) \setminus D_v\). Overflowing insertion and deletion buffers are finally handled as described in the update section, Section 4 (i)–(iv), possibly causing new nodes to be created by splits, where the amortized cost is already accounted for in the update analysis. The final step is to refill the \(P_v \) buffers of visited nodes, which might have underflowed due to the deletions pushed down among the visited nodes. The refilling is done as described in Section 4 (v).

Analysis

Assume \(V + O(\frac{1}{\delta} \log_B N) \) nodes are visited, where \(V \) nodes are not on the search paths for \(x_1 \) and \(x_2 \). Let \(R \) be the set of points in the point buffers of the \(V \) visited nodes before pushing updates down. Then we know \(|R| \geq V/2\). The number of buffered deletions at the visited nodes is at most \((V + O(\frac{1}{\delta} \log_B N))B/4\), i.e. the number of points reported \(K \) is then at least \(VB/2 - (V + O(\frac{1}{\delta} \log_B N))B/4 = VB/4 - O(B \log_B N) \). It follows \(V = O(\frac{1}{\delta} \log_B N + K/B) \). The worst-case IO bound becomes \(O(V + \frac{1}{\delta} \log_B N + K/B) = O(\frac{1}{\delta} \log_B N + K/B) \), except for the cost of pushing the content of update buffers done at visited nodes and handling overflowing update buffers and underflowing point buffers.

Whenever we push \(\Omega(B/\Delta) \) points to a child, the cost is covered by the analysis in Section 4. Only when we push \(O(B/\Delta) \) updates to a visited child, with an amortized cost of \(O(1) \) IOs, we charge this IO cost to the visited child. Overflowing update buffers and refilling \(P_v \) buffers is covered by the cost analyzed in Section 4. It follows that the total amortized cost of a 3-sided range reporting query in amortized \(O(\frac{1}{\delta} \log_B N + K/B) \) IOs.

Top-\(k \) Queries

Our overall approach for answering a top-\(k \) query for the range \([x_1, x_2]\) consists of three steps: First we find an approximate threshold \(y \)-value \(\bar{y} \), such that we can reduce the query to a 3-sided range reporting query. Then we perform a 3-sided range reporting query as described in Section 6 for the range \([x_1, x_2] \times [\bar{y}, \infty] \). Let \(A \) be the output the three sided query. If \(|A| \leq k\) then we return \(A \). Otherwise, we select and return \(k \) points from \(A \) with largest \(y \)-value using the linear time selection algorithm of Blum et al. [7], that in
external memory uses $O(|A|/B)$ IOs. The correctness of this approach follows if $|A| \geq k$ or A contains all points in the query range, and the IO bound follows if $|A| = O(K + B \log_B N)$ and we can find \bar{y} in $O(\log_B N + K/B)$ IOs. It should be noted that our \bar{y} resembles the approximate k-threshold used by Sheng and Tao [19], except that we allow an additional slack of $O(\log_B N)$.

To compute \bar{y} we (on demand) construct a heap-ordered binary tree T of sampled y-values, where each node can be generated using $O(1)$ IOs, and apply Frederickson’s binary heap-selection to T to find the $O(k/B + \log_B N)$ largest y-value in $O(K/B + \log_B N)$ time and $O(K/B + \log_B N)$ IOs. This is the returned value \bar{y}. For each node v of the B-tree T we construct a path P_v of $O(\Delta)$ decreasing y values, consisting of the samples returned by $\text{Sample}(x_1, x_2)$ for C_v and merged with the minimum y values of the point buffers P_v, for each child c within the x-range of the query and where $|P_v| \geq 2B/2$. The root of P_v is the largest y-value, and the remaining nodes form a leftmost path in decreasing y-value order. For each child c of v, the node in P_v storing the minimum y-value in P_v has as right child the root of P_c. Finally let v_1, v_2, \ldots, v_t be all the nodes on the two search paths in T for x_1 and x_2. We make a left path P containing t nodes, each with y-value $+\infty$, and let the root of P_v_i be the right child of the ith node on P. Let T be the resulting binary tree. The \bar{y} value we select is the $\bar{k} = [7t + 12k/B]$-th among the nodes in the binary tree T.

Analysis

We can construct the binary tree T topdown on demand (as needed by Frederickson’s algorithm) using $O(1)$ IOs per node, since each P_v path can be computed using $O(1)$ IOs when Frederickson’s algorithm visits the root of P_v.

To lower bound the number of points in T contained in $Q_{\bar{y}} = [x_1, x_2] \times [\bar{y}, \infty]$, we first observe that among the k y-values in T larger than \bar{y} are the t occurrences of $+\infty$, and either $\geq \frac{1}{2}(\bar{k} - t)$ samplings from C_v sets or $\geq \frac{1}{4}(\bar{k} - t)$ minimum values from P_v sets. Since s samplings from C_v ensures sB elements from C_v have larger values than \bar{y} and the C_v sets are disjoint, the first case ensures that there are $\geq \frac{1}{4}B(\bar{k} - t)$ points from C_v sets in $Q_{\bar{y}}$. For the second case each minimum y-value of a P_v set represents $\geq B/2$ points in P_v contained in $Q_{\bar{y}}$, i.e. in total $\geq \frac{B}{4}(\bar{k} - t) = \frac{1}{4}B(\bar{k} - t)$ points. Some of these elements will not be reported, since they will be canceled by buffered deletions. These buffered deletions can only be stored at the t nodes on the two search paths and in nodes where all $\geq B/2$ points in P_v are in $Q_{\bar{y}}$. It follows at most $\frac{B}{12}(t + \bar{k})$ buffered deletions can be applied to points in the P_v sets, i.e. in total at least $\frac{B}{3}(\bar{k} - t) - \frac{B}{12}(t + \bar{k}) = \frac{B}{12}(\bar{k} - t) = \frac{B}{72}(7t + 12k/B) - \frac{B}{12}t \geq k$ points will be reported by the 3-sided range reporting $Q_{\bar{y}}$.

To upper bound the number of points that can be reported by $Q_{\bar{y}}$, we observe that these points are stored in P_v, C_v and I_v buffers. There are at most k nodes where all $\geq B/2$ points in P_v are reported (remaining points in point buffers are reported using C_v structures), at most $t + \bar{k}$ nodes we need to consider points from the insertion buffers I_v, and from the at most $t + \bar{k}$ child structures C_v we report at most $\bar{k}B + (\alpha + 1)(t + \bar{k})B$ points, for some constant $\alpha \geq 1$, which follows from the interface of the Sample operation from Section 2. In total the 3-sided query reports at most $kB + (t + \bar{k})B + kB + (\alpha + 1)(t + \bar{k})B = O(B(t + \bar{k})) = O(\frac{1}{4}B\log_B N + k)$ points. In the above we ignored the case where we only find $< \bar{k}$ nodes in T, where we just set $\bar{y} = -\infty$ and all points within the x-range will be reported. Note that the IO bounds for finding \bar{y} and the final selection are worst-case, whereas only the 3-sided range reporting query is amortized.
References

