Autoreducibility of NP-Complete Sets*

John M. Hitchcock1 and Hadi Shafei2

1 Department of Computer Science, University of Wyoming, USA
2 Department of Computer Science, University of Wyoming, USA

Abstract

We study the polynomial-time autoreducibility of NP-complete sets and obtain separations under strong hypotheses for NP. Assuming there is a \(p \)-generic set in NP, we show the following:

- For every \(k \geq 2 \), there is a \(k \)-T-complete set for NP that is \(k \)-T autoreducible, but is not \(k \)-tt autoreducible or \((k - 1) \)-T autoreducible.

- For every \(k \geq 3 \), there is a \(k \)-tt-complete set for NP that is \(k \)-tt autoreducible, but is not \((k - 1) \)-tt autoreducible or \((k - 2) \)-T autoreducible.

- There is a tt-complete set for NP that is tt-autoreducible, but is not btt-autoreducible.

Under the stronger assumption that there is a \(p \)-generic set in NP \(\cap \) coNP, we show:

- For every \(k \geq 2 \), there is a \(k \)-tt-complete set for NP that is \(k \)-tt autoreducible, but is not \((k - 1) \)-T autoreducible.

Our proofs are based on constructions from separating NP-completeness notions. For example, the construction of a 2-T-complete set for NP that is not 2-tt-complete also separates 2-T-autoreducibility from 2-tt-autoreducibility.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases computational complexity, NP-completeness, autoreducibility, genericity

Digital Object Identifier 10.4230/LIPIcs.STACS.2016.42

1 Introduction

Autoreducibility measures the redundancy of a set. For a reducibility \(\mathcal{R} \), a set \(A \) is \(\mathcal{R} \)-autoreducible if there is a \(\mathcal{R} \)-reduction from \(A \) to \(A \) where the instance is never queried \([15]\). Understanding the autoreducibility of complete sets is important because of applications to separating complexity classes \([5]\). We study the polynomial-time autoreducibility \([1]\) of NP-complete sets.

Natural problems are paddable and easily shown to be m-autoreducible. In fact, Glaßer et al. \([8]\) showed that all nontrivial m-complete sets for NP and many other complexity classes are m-autoreducible. Beigel and Feigenbaum \([4]\) showed that T-complete sets for NP and the levels of the polynomial-time hierarchy are T-autoreducible. We focus on intermediate reducibilities between many-one and Turing.

Previous work has studied separations of these autoreducibility notions for larger complexity classes. Buhrman et al. \([5]\) showed there is a 3-tt-complete set for EXP that is not btt-autoreducible. For NEXP, Nguyen and Selman \([13]\) showed there is a 2-T-complete set that is not 2-tt-autoreducible and a tt-complete set that is not btt-autoreducible. We investigate whether similar separations hold for NP.

Since all NP sets are 1-tt-autoreducible if \(P = NP \), it is necessary to use a hypothesis at least as strong as \(P \neq NP \) to separate autoreducibility notions. We work with the \textit{Genericity}
Hypothesis} that there is a p-generic set in NP [3, 2]. This is stronger than \(P \neq NP \), but weaker than the Measure Hypothesis [12, 10] that there is a p-random set in NP. Under the Genericity Hypothesis, we separate many autoreducibility notions for NP-complete sets. Our main results are summarized in Table 1.

Previous work has used the measure and genericity hypotheses to separate completeness notions for NP. Consider the set

\[C = G \cup (G \cap \text{SAT}) \cup (G \cup \text{SAT}), \]

where \(G \in \text{NP} \) and \(\cup \) is disjoint union. Then \(C \) is 2-T-complete for NP, and if \(G \) is p-generic, \(C \) is not 2-tt-complete [12, 2]. There is a straightforward 3-T (also 5-tt) autoreduction of \(C \) based on padding SAT.\(^1\) However, since \(C \) is 2-T-honest-complete, we indirectly obtain a 2-T (also 3-tt) autoreduction by first reducing through SAT (Lemma 2.1). In Theorem 3.1 we show \(C \) is not 2tt-autoreducible.

It turns out this idea works in general. We show that many sets which separate completeness notions also separate autoreducibility notions. Ambos-Spies and Bentzien [2] also separated both \(k \)-T-completeness and \((k + 1) \)-tt-completeness from both \(k \)-tt-completeness and \((k - 1) \)-T-completeness for every \(k \geq 3 \) under the Genericity Hypothesis. We show that the same sets also separate \(k \)-T-autoreducibility and \((k + 1) \)-tt-autoreducibility from \(k \)-tt-autoreducibility and \((k - 1) \)-T-autoreducibility (Theorems 3.4 and 3.5). We also obtain that there is a tt-complete set for NP that is tt-autoreducible and not btt-autoreducible (Theorem 3.6), again using a construction of Ambos-Spies and Bentzien.

In the aforementioned results, there is a gap – we only separate \(k \)-tt-autoreducibility from \((k - 2)\)-T-autoreducibility (for \(k \geq 3 \)), where we can hope for a separation from \((k - 1)\)-T-autoreducibility. The separation of \(k \)-tt from \((k - 1)\)-T is also open for completeness under the Genericity Hypothesis (or the Measure Hypothesis). To address this gap, we use a stronger hypothesis on the class \(\text{NP} \cap \text{coNP} \). Pavan and Selman [14] showed that if \(\text{NP} \cap \text{coNP} \) contains a DTIME\((2^n) \)-bi-immune set, then 2-tt-completeness is different from 1-tt-completeness for NP. We show that if \(\text{NP} \cap \text{coNP} \) contains a p-generic set, then \(k \)-tt-completeness is different from \((k - 1)\)-T-completeness for all \(k \geq 3 \) (Theorem 4.2). We then show these constructions also separate autoreducibility: if there is a p-generic set in \(\text{NP} \cap \text{coNP} \), then for every \(k \geq 2 \), there is a \(k \)-tt-complete set for NP that is \(k \)-tt autoreducible, but is not \((k - 1)\)-T autoreducible (Theorems 4.1 and 4.3).

This paper is organized as follows. Preliminaries are in Section 2. The results using the Genericity Hypothesis are presented in Section 3. We use the stronger hypothesis on \(\text{NP} \cap \text{coNP} \) in Section 4. Section 5 concludes with some open problems.

2 Preliminaries

We use the standard enumeration of binary strings, i.e \(s_0 = \lambda, s_1 = 0, s_2 = 1, s_3 = 00, \ldots \) as an order on binary strings. All languages in this paper are subsets of \(\{0, 1\}^* \) identified with their characteristic sequences. In other words, every language \(A \in \{0, 1\}^* \) is identified with \(\chi_A = A[s_0]A[s_1]A[s_2], \ldots \). If \(X \) is a set, equivalently a binary sequence, and \(x \in \{0, 1\}^* \) then

\(^1\) Given an instance \(x \) of \(C \), pad \(x \) to an instance \(y \) such that \(\text{SAT}[x] = \text{SAT}[y] \). We query \(G[y] \) and then query either \(G \cap \text{SAT}[y] \) if \(G[y] = 1 \) or \(G \cup \text{SAT}[y] \) if \(G[y] = 0 \) to learn \(\text{SAT}[y] \). Finally, if our instance is \(G[x] \) the answer is obtained by querying \(G \cap \text{SAT}[x] \) if \(\text{SAT}[y] = 1 \) or by querying \(G \cup \text{SAT}[x] \) if \(\text{SAT}[y] = 0 \). If our instance is \(G \cup \text{SAT}[x] \) or \(G \cap \text{SAT}[x] \), we query \(G[x] \) and combine that answer with \(\text{SAT}[y] \).
Table 1 If C contains a p-generic set, then there is a S-complete set in NP that is S-autoreducible but not R-autoreducible.

<table>
<thead>
<tr>
<th>C</th>
<th>S</th>
<th>R</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NP</td>
<td>k-T</td>
<td>k-tt</td>
<td>Theorem 3.1 (k = 2), Theorem 3.4 (k ≥ 3)</td>
</tr>
<tr>
<td>NP</td>
<td>k-T</td>
<td>(k - 1)-T</td>
<td>Theorem 3.1 (k = 2), Theorem 3.5 (k ≥ 3)</td>
</tr>
<tr>
<td>NP</td>
<td>k-tt</td>
<td>(k - 1)-tt</td>
<td>Corollary 3.2 (k = 3), Theorem 3.4 (k ≥ 4)</td>
</tr>
<tr>
<td>NP</td>
<td>k-tt</td>
<td>(k - 2)-T</td>
<td>Corollary 3.3 (k = 3), Theorem 3.5 (k ≥ 4)</td>
</tr>
<tr>
<td>NP ∩ coNP</td>
<td>k-tt</td>
<td>(k - 1)-T</td>
<td>Theorem 4.1 (k = 2), Theorem 4.3 (k ≥ 3)</td>
</tr>
</tbody>
</table>

X ↾ x is the initial segment of X for all strings before x, i.e. the subset of X that contains every y ∈ X that y < x.

All reductions in this paper are polynomial-time reductions, therefore we may not emphasize this every time we define a reduction. We use standard notions of reducibilities [11].

Given A, B, and R ∈ {m, T, tt, k-T, k-tt, btt}, A is polynomial-time R-honest reducible to B (A ≤p R,B) if A ≤p R and there exist a constant c such that for every input x, every query q asked from B has the property |x|^1/c < |q|. In particular, a reduction R is called length-increasing if on every input the queries asked from the oracle are all longer than the input.

For any reduction R ∈ {m, T, tt, k-T, k-tt, btt} a language A is R-autoreducible if A ≤p R via a reduction where on every instance x, x is not queried.

The following lemma states that any honest-complete set for NP is also autoreducible under the same type of reduction. This follows because NP has a paddable, length-increasing complete set.

Lemma 2.1. Let R ∈ {m, T, tt, k-T, k-tt, btt, ...} be a reducibility. Then every R-honest-complete set for NP is R-autoreducible.

Proof. Let A ∈ NP be R-honest-complete. Then there is an R-honest reduction M from SAT to A. There exists m ≥ 1 such that every query q output by M on an instance x satisfies |q| ≥ |x|^{1/m}.

Since SAT is NP-complete via length-increasing many-one reductions, A ≤p m SAT via a length-increasing reduction g. Since SAT is paddable, there is a polynomial-time function h such that for any y, SAT[h(y)] = SAT[y] and |h(y)| > |y|^m.

To obtain our R-autoreduction of A, we combine g, h, and M. On instance x of A, compute the instance h(g(x)) of SAT and use M to reduce h(g(x)) to A. Since |h(g(x))| > |g(x)|^m > |x|^m, every query q of M has |q| > |h(g(x))|^{1/m} > |x|. Therefore all queries are different than x and this is an autoreduction.

Most of the results in this paper are based on a non-smallness hypothesis for NP called the Genericity Hypothesis that NP contains a p-generic set [3, 2]. In order to define genericity first we need to define what a simple extension function is. For any k, a simple n^k-extension function is a partial function from \{0, 1\}^* to \{0, 1\} that is computable in O(n^k). Given a set A and an extension function f we say that f is dense along A if f is defined on infinitely many initial segments of A. A set A meets a simple extension function f at x if f(A ↾ x) is defined and equal to A[x]. We say A meets f if A meets f at some x. A set G is called p-generic if it meets every simple n^k-extension function for any k ≥ 1 [2]. A partial function
Autoreducibility of NP-Complete Sets

A function \(f : \{0, 1\}^* \rightarrow (\{0, 1\} \times \{0, 1\})^* \) is called a \(k \)-bounded extension function if whenever \(f(X \upharpoonright x) \) is defined, \(f(X \upharpoonright x) = (y_0, i_0) \ldots (y_m, i_m) \) for some \(m < k \), and \(x \leq y_0 < y_1 < \ldots < y_m \), where \(y_i \)'s are strings and \(i_j \)'s are either 0 or 1. A set \(A \) meets \(f \) at \(x \) if \(f(A \upharpoonright x) \) is defined, and \(A \) agrees with \(f \) on all \(y_j \)'s, i.e., if \(f(A \upharpoonright x) = (y_0, i_0) \ldots (y_m, i_m) \) then \(A[y_j] = i_j \) for all \(j \leq m \) \cite{2}.

We will use the following routine extension of a lemma in \cite{2}.

Lemma 2.2. Let \(l, c \geq 1 \) and let \(f \) be an \(l \)-bounded partial extension function defined on initial segments \(\alpha = X \upharpoonright 0^n \) of length \(2^n \) \((n \geq 1)\). Whenever \(f(\alpha) \) is defined we have

\[
f(\alpha) = (y_{\alpha,1}, i_{\alpha,1}), \ldots, (y_{\alpha,l\alpha}, i_{\alpha,l\alpha}),
\]

where \(l_\alpha \leq l \), \(pos(\alpha) = (y_{\alpha,1}, \ldots, y_{\alpha,l_\alpha}) \) is computable in \(2^{cn} \) steps and \(i_{\alpha,j} \) is computable in \(2^{l(y_{\alpha,j})} \) steps. Then for every \(p \)-generic set \(G \), if \(f \) is dense along \(G \) then \(G \) meets \(f \).

3 Autoreducibility Under the Genericity Hypothesis

We begin by showing the Genericity Hypothesis implies there is a \(2 \)-T-complete set that separates \(2 \)-T-autoreducibility from \(2 \)-tt-autoreducibility. The proof utilizes the construction of \cite{12, 2} that of a set that separates \(2 \)-T-completeness from \(2 \)-tt-completeness.

Theorem 3.1. If NP contains a \(p \)-generic language, then there exists a \(2 \)-T-complete set in NP that is \(2 \)-T-autoreducible, but not \(2 \)-tt-autoreducible.

Proof. Let \(G \in \text{NP} \) be \(p \)-generic and define \(C = G \cup (G \cap \text{SAT}) \cup (\overline{G} \cup \text{SAT}) \), where \(\cup \) stands for disjoint union \cite{12, 2}. Disjoint union can be implemented by adding a unique prefix to each set and taking their union. To be more clear, let \(C = 0G \cup 10(G \cap \text{SAT}) \cup 11(\overline{G} \cup \text{SAT}) \).

It follows from closure properties of \(\text{NP} \) that \(C \in \text{NP} \).

To see that \(C \) is \(2 \)-T-complete, consider an oracle Turing machine \(M \) that on input \(x \) first queries \(0x \) from \(C \). If the answer is positive, i.e. \(x \in G \), \(M \) queries 10x from \(C \), and outputs the result. Otherwise, \(M \) queries 11x from \(C \), and outputs the answer. This Turing machine always makes two queries from \(C \), runs in polynomial time, and \(M^C(x) = \text{SAT}[x] \). This completes the proof that \(C \) is also \(2 \)-T-completeness. Since all queries from \(\text{SAT} \) to \(C \) are length-increasing, it follows from Lemma 2.1 that \(C \) is \(2 \)-T-autoreducible.

The more involved part of the proof is to show that \(C \) is not \(2 \)-tt-autoreducible. To get a contradiction assume that \(C \) is \(2 \)-tt-autoreducible. This means there exist polynomial-time computable functions \(h, g_1, \) and \(g_2 \) such that for every \(x \in \{0, 1\}^* \),

\[
C[x] = h(x, C[g_1(x)], C[g_2(x)])
\]

and moreover \(g_i(x) \neq x \) for \(i = 1, 2 \). Note that W.L.O.G. we can assume that \(g_1(x) < g_2(x) \).

For \(x = 0z, 10z, \) or \(11z \) define the value of \(x \) to be \(z \), and let \(x = 0z \) for some string \(z \). We have:

\[
C[x] = G[z] = h(x, C[g_1(x)], C[g_2(x)])
\]

To get a contradiction, we consider different cases depending on whether some of the queries have the same value as \(x \) or not, and the Boolean function \(h(x, \ldots) \). For some of these cases we show they can happen only for finitely many \(z \)'s, and for the rest we show that \(\text{SAT}[z] \) can be decided in polynomial time. As a result \(\text{SAT} \) is decidable in polynomial time a.e., which contradicts the assumption that \(\text{NP} \) contains a \(p \)-generic language.

The complete proof will appear in the full version of the paper.
\textbf{Corollary 3.2.} If NP contains a p-generic language, then there exists a 3-tt-complete set for NP that is 3-tt-autoreducible, but not 2-tt-autoreducible.

\textbf{Proof.} This follows immediately from Theorem 3.1 and the fact that every 2-T reduction is a 3-tt reduction. \hfill \blacksquare

\textbf{Corollary 3.3.} If NP contains a p-generic language, then there exists a 3-tt-complete set for NP that is 3-tt-autoreducible, but not 1-T-autoreducible.

Our next theorem separates \((k + 1)\)-tt-autoreducibility from \(k\)-tt-autoreducibility and \(k\)-T-autoreducibility from \(k\)-tt-autoreducibility under the Genericity Hypothesis. The proof uses the construction of Ambos-Spies and Bentzien [2] that separates the corresponding completeness notions.

\textbf{Theorem 3.4.} If NP contains a p-generic language, then for every \(k \geq 3\) there exists a set that is

- \((k + 1)\)-tt-complete for NP and \((k + 1)\)-tt-autoreducible,
- \(k\)-T-complete for NP and \(k\)-T-autoreducible, and
- not \(k\)-tt-autoreducible.

\textbf{Proof.} Let \(G \in \text{NP}\) be a p-generic language, and \(z_1, ..., z_{k+1}\) be the first \(k + 1\) strings of length \(k\). For \(m = 1, ..., k - 1\) define
\[
\hat{G}_m = \{x \mid xz_m \in G\}
\]
\[
\hat{G} = \bigcup_{m=1}^{k-1} \hat{G}_m \tag{1}
\]
\[
A = \bigcup_{m=1}^{k-1} \{xz_m \mid x \in \hat{G}_m \} \cup \{xz_k \mid x \in \hat{G} \cap \text{SAT} \} \cup \{xz_{k+1} \mid x \in \hat{G} \cup \text{SAT} \} \tag{2}
\]

Here are some properties of the sets defined above:

- For every \(x, x \in \hat{G} \Leftrightarrow \exists 1 \leq i \leq k - 1. xz_i \in G\).
- \(A\) contains strings in \(G\) that end with \(z_1, ..., z_{k-1}\), i.e. \(A(z_i) = G(z_i)\) for every \(x\) and \(1 \leq i \leq k - 1\).
- \(xz_k \in A\) if and only if \(x \in \text{SAT} \land (\exists 1 \leq i \leq k - 1. xz_i \in G)\).
- \(xz_{k+1} \in A\) if and only if \(x \in \text{SAT} \lor (\exists 1 \leq i \leq k - 1. xz_i \in G)\).
- \(xz_{j} \notin A\) for \(j > k + 1\).

It is easy to show that \(\text{SAT} \leq_{(k+1)-tt} \hat{A}\). On input \(x\), make queries \(xz_1, ..., xz_{k+1}\) from \(A\). If at least one of the answers to the first \(k - 1\) queries is positive, then \(\text{SAT}[x] = A[xz_k]\). Otherwise \(\text{SAT}[x] = A[xz_{k+1}]\). As a result, \(A\) is \((k + 1)\)-tt-complete for NP. If the queries are allowed to be dependent, we can choose between \(xz_k\) and \(xz_{k+1}\) based on the answers to the first \((k - 1)\) queries. Therefore \(A\) is also \(k\)-T-complete for NP. Since all these queries are honest, in fact length-increasing, it follows from Lemma 2.1 that \(A\) is both \((k + 1)\)-tt-autoreducible and \(k\)-T-autoreducible.

To get a contradiction, assume \(A\) is \(k\)-tt-autoreducible via \(h, g_1, ..., g_k\). In other words, assume that for every \(x\):
\[
A[x] = h(x, A[g_1(x)], ..., A[g_k(x)]) \tag{4}
\]
and \(\forall 1 \leq i \leq k. g_i(x) \neq x\). In particular, we are interested in the case where \(x = 0^n z_1 = 0^{n+k}\), and we have:
\[
A[0^n+k] = h(0^{n+k}, A[g_1(0^{n+k})], ..., A[g_k(0^{n+k})]) \tag{5}
\]
and all \(g_i(0^{n+k})\)'s are different from \(0^{n+k}\) itself.
In the following we will define a bounded extension function \(f \) that satisfies the condition in Lemma 2.2 such that if \(G \) meets \(f \) at 0\(^{n+k} \) then (5) will fail. We use the p-genericity of \(G \) to show that \(G \) has to meet \(f \) at 0\(^{n+k} \) for some \(n \) which completes the proof. In other words, we define a bounded extension function \(f \) such that given \(n \) and \(X \upharpoonright 0^n \), \(f(X \upharpoonright 0^n) = (y_0, i_0) \ldots (y_m, i_m) \) and if

\[
G \upharpoonright 0^n = X \upharpoonright 0^n \quad \text{and} \quad \forall 0 \leq j \leq m. \ G(y_j) = i_j
\]

then

\[
A(0^{n+k}) \neq b((0^{n+k}, A[g_1(0^{n+k})], \ldots, A[g_k(0^{n+k})])
\]

Moreover, \(m \) is bounded by some constant that does not depend on \(n \) and \(X \upharpoonright 0^n \). Note that we want \(f \) to satisfy the conditions in Lemma 2.2, so \(y_j \)'s and \(i_j \)'s must be computable in \(O(2^n) \) and \(O(2^{|y_i|}) \) steps respectively. After defining such \(f \), by Lemma 2.2 \(G \) must meet \(f \) at 0\(^{n+k} \) for some \(n \). This means (6) must hold. As a result, (7) must happen for some \(n \), which is a contradiction.

\(f \) can force values of \(G[y_i] \)'s for a constant number of \(y_i \)'s. Because of the dependency between \(G \) and \(A \) we can force values for \(A[w] \), where \(w \) is a query, by using \(f \) to force values in \(G \). This is done based on the strings that have been queried, and their indices as follows.

- If \(w = v_{z_i} \) for some \(1 \leq i \leq k - 1 \) then \(A[w] = G[w] \). Therefore we can force \(A[w] \) to 0 or 1 by forcing the same value for \(G[w] \).
- If \(w = v_{z_k} \) then \(A[w] = SAT[v] \land (\lor_{i=1}^{k-1} G[v_{z_i}]) \), so by forcing all \(G[v_{z_i}] \)'s to 0 we can make \(A[w] = 0 \).
- If \(w = v_{z_{k+1}} \) then \(A[w] = SAT[v] \lor (\lor_{i=1}^{k-1} G[v_{z_i}]) \). In this case by forcing one of the \(G[v_{z_i}] \)'s to 1 we can make \(A[w] = 1 \).

We will use these facts to force the value of \(A \) on queries on input \(0^{n+k} \) on the left hand side of (5), and then force a value for \(A[0^{n+k}] \) such that (5) fails. The first problem that we encounter is the case where we have both \(v_{z_k} \) and \(v_{z_{k+1}} \) among our queries. If this happens for some \(v \) then the strategy described above does not work. To force \(A[v_{z_k}] \) and \(A[v_{z_{k+1}}] \) to 0 and 1 respectively, we need to compute SAT\([v]\). If SAT\([v]\) = 0 then \(A[v_{z_k}] = 0 \), and \(A[v_{z_{k+1}}] \) can be forced to 1 by forcing \(G[v_{z_i}] = 1 \) for some \(1 \leq i \leq k - 1 \). On the other hand, if SAT\([v]\) \(\neq 0 \) then \(A[v_{z_k}] = 1 \), and forcing \(A[v_{z_{k+1}}] = 0 \) makes \(A[v_{z_k}] = 0 \). This process depends on the value of SAT\([v]\), and \(v \) can be much longer that \(0^{n+k} \). Because of the time bounds in Lemma 2.2 the value forced for \(A[0^{n+k}] \) cannot depend on SAT\([v]\). But note that we have \(k \) queries, and two of them are \(v_{z_k} \) and \(v_{z_{k+1}} \). Therefore at least one of the strings \(v_{z_1}, \ldots, v_{z_{k-1}} \) is not among the queries. We use this string as \(v_{z_1} \), and make \(G[v_{z_1}] = 1 \) when SAT\([v]\) = 0.

Now we define an auxiliary function \(\alpha \) from the set of queries, called QUERY, to 0 or 1. The idea is that \(\alpha \) computes the value of \(A \) on queries without computing \(G[v] \), given that \(G \) meets the extension function. \(\alpha \) is defined in two parts based on the length of the queries. For queries \(w = v_{z_p} \) that are shorter than \(0^{n+k} \), i.e. \(|w| < n + k \), we define:

\[
\alpha(w) = \begin{cases} X[w] & \text{if } 1 \leq p \leq k - 1 \\ 1 & \text{if } p = k \land v \in \text{SAT} \land \exists 1 \leq l \leq k - 1. \ v_{z_l} \in X \\ 1 & \text{if } p = k + 1 \land (v \in \text{SAT} \lor \exists 1 \leq l \leq k - 1. \ v_{z_l} \in X) \\ 0 & \text{otherwise} \end{cases}
\]
This means that if $X \upharpoonright 0^{n+k} = G \upharpoonright 0^{n+k}$ then $\alpha(w) = A(w)$ for every query $w = vz_p$ with $|w| < n + k$.

On the other hand, for queries $w = vz_p$ that $|w| \geq n + k$, α is defined as:

$$
\alpha(w) = \begin{cases}
1 & \text{if } v = 0^n \land p = 2 \\
\text{SAT}[v] & \text{if } v = 0^n \land p = k \\
1 & \text{if } v = 0^n \land p = k + 1 \\
1 & \text{if } v \neq 0^n \land p = k + 1 \\
1 & \text{if } v \neq 0^n \land p = k - 1 \land \forall l \in \{1, \ldots, k - 1, k + 1\}. vz_l \in \text{QUERY} \\
0 & \text{otherwise}
\end{cases}
$$

For this part of α, our definition of the extension function, which is provided below, guarantees that $\alpha(w) = A[w]$ if (6) holds. Note that the first case in the definition above implies that k must be greater than or equal to 3, and that is the reason this proof does not work for separating 3-tt-autoreducibility from 2-tt-autoreducibility.

Now we are ready to define the extension function f. For any string v which is the value for some query, i.e. $3! \leq p \leq k + 1.vz_p \in \text{QUERY}$, we define pairs of strings and 0 or 1’s. These pairs will be part of our extension function. Fix some value v, and let r be the smallest index that $vz_r \notin \text{QUERY}$, or $k - 1$ if such index does not exist, i.e.

$$
r = \min\{s \geq 1 | vz_s \notin \text{QUERY} \lor s = k - 1\}
$$

We will have one of the following cases:

1. If $v = 0^n$ then pairs $(vz_2, 1), (vz_3, 0), \ldots, (vz_{k-1}, 0)$ must be added to f.
2. If $v \neq 0^n$ and $vz_{k+1} \notin \text{QUERY}$ then add pairs $(vz_1, 0), (vz_{k}, 0)$ to f.
3. If $v \neq 0^n$, $vz_{k+1} \in \text{QUERY}$ and $vz_k \notin \text{QUERY}$ add pairs (vz_i, j) for $1 \leq i \leq k - 1$ where $j = 0$ for all i’s except $i = r$ where $j = 1$.
4. If $v \neq 0^n$, $vz_{k+1} \in \text{QUERY}$ and $vz_k \in \text{QUERY}$ add pairs (vz_i, j) for $1 \leq i \leq k - 1$ where $j = 0$ for all i’s except $i = r$ where $j = 1 - \text{SAT}[v]$.

This process must be repeated for every v that is the value of some query. Finally, we add $(0^{n+k}, 1 - h(0^{n+k}, \alpha_g(0^{n+k})), \ldots, \alpha_g(0^{n+k}))$ to f in order to refute the autoreduction. It is worth mentioning that in the fourth case above, since both vz_k and vz_{k+1} are among queries, at least one of the strings vz_1, \ldots, vz_{k-1} is not queried. Therefore by definition of r, $vz_r \notin \text{QUERY}$.

This is important, as we describe in more detail later, because we forced $G[vz_r] = 1 - \text{SAT}[v]$, and if $vz_r \in \text{QUERY}$ then $\alpha(vz_r) = G[vz_r] = 1 - \text{SAT}[v]$. But α must be computable in $O(2^n)$ steps, which is not possible if v is much longer than 0^{n+k}.

Now that the extension function is defined completely, we need to show that it has the desired properties. First, we will show that if G meets f at 0^{n+k}, i.e. (6) holds, then α and A agree on every query w with $|w| \geq n + k$, i.e. $\alpha(w) = A[w]$.

Let $w = vz_p$, and $|w| \geq n + k$.

- If $v = 0^n$ and $p = 2$ then $\alpha(w) = 1$ and $A[w] = G[w] = 1$.
- If $v = 0^n$ and $p = k$ then $\alpha(w) = \text{SAT}[v]$ and $A[w] = \text{SAT}[v] \land (\forall_{i=1}^{k-1} G[vz_i])$. Since $G[vz_2] = 1$ is forced, $A[w] = \text{SAT}[v]$.
- If $v = 0^n$ and $p = k + 1$ then $\alpha(w) = 1$ and $A[w] = \text{SAT}[v] \lor (\forall_{i=1}^{k-1} G[vz_i]) = 1$ since $G[vz_2] = 1$.
- If $v = 0^n$ and $p \neq 2, k, k + 1$ then $\alpha(w) = A[w] = 0$.
- If $v \neq 0^n$ and $p < k - 1$ then $\alpha(w) = 0$. Since $p < k - 1$, and $vz_p \in \text{QUERY}$, by definition of r, $r \neq p$. Therefore $G[vz_p]$ is forced to 0 by f. As a result, $A[w] = A[vz_p] = G[vz_p] = 0 = \alpha(w)$.
If \(v \neq 0^n \), \(p = k - 1 \), and \(v_{21}, ..., v_{2k-1}, v_{2k+1} \in \text{QUERY} \) then \(\alpha(w) = 1 \). In this case \(r = k - 1 \), so it follows from definition of \(f \) that \(G[v_{2k-1}] = 1 \). As a result, \(A[w] = A[v_{2k-1}] = G[v_{2k-1}] = 1 = \alpha(w) \).

If \(v \neq 0^n \), \(p = k - 1 \), and at least one of the strings \(v_{21}, ..., v_{2k-1}, v_{2k+1} \) is not queried then we consider two cases. If \(v_{2k+1} \notin \text{QUERY} \) then \(f \) forces \(G[v_{2k-1}] \) to \(0 \). On the other hand, if \(v_{2k+1} \in \text{QUERY} \), then at least one of \(v_{21}, ..., v_{2k-1} \) is not a query. Therefore by definition of \(r, r \neq k - 1 \). This implies that \(G[v_{2k-1}] = 0 \) by \(f \).

If \(v \neq 0^n \), \(p = k \) then \(\alpha(w) = 0 \). Consider two cases. If \(v_{2k+1} \notin \text{QUERY} \) then \(G[v_{2k}] = 0 \) for every \(1 \leq i \leq k - 1 \). Therefore \(A[w] = \text{SAT}[v] \land (\bigvee_{i=1}^{k-1} G[v_{2i}]) = 0 \). Otherwise, when \(v_{2k+1} \in \text{QUERY} \), since we know that \(v_{2k} \) also belongs to \(\text{QUERY} \), \(f \) forces \(G[v_{2k}] = 1 - \text{SAT}[v] \), and \(G[v_{2k}] = 0 \) for every other \(1 \leq i \leq k - 1 \). Therefore \(A[w] = \text{SAT}[v] \land (\bigvee_{i=1}^{k-1} G[v_{2i}]) = \text{SAT}[v] \land (1 - \text{SAT}[v]) = 0 \).

If \(v \neq 0^n \), \(p = k + 1 \) then \(\alpha(w) = 1 \). If \(v_{2k} \notin \text{QUERY} \) then \(G[v_{2k}] = 1 \) by \(f \). Therefore \(A[w] = \text{SAT}[v] \lor (\bigvee_{i=1}^{k-1} G[v_{2i}]) = 1 \). On the other hand, if \(v_{2k} \in \text{QUERY} \) then \(f \) forces \(G[v_{2k}] = 1 - \text{SAT}[v] \). As a result, \(A[w] = \text{SAT}[v] \lor (\bigvee_{i=1}^{k-1} G[v_{2i}]) = 1 \).

This shows that in any case, \(\alpha(w) = A[w] \) for \(w \in \text{QUERY} \), given that (6) holds, i.e \(G \) meets \(f \). By combining this with (5) we have

\[
A(0^{n+k}) = h(0^{n+k}), A(g_1(0^{n+k})), ..., A(g_k(0^{n+k}))
\]

\[
= h(0^{n+k}, \alpha(g_1(0^{n+k})), ..., \alpha(g_k(0^{n+k})))
\]

On the other hand, we forced \(A[0^{n+k}] = 1 - h(0^{n+k}, \alpha(g_1(0^{n+k})), ..., \alpha(g_k(0^{n+k}))) \) which gives us the desired contradiction.

The last part of our proof is to show that \(f \) satisfies the conditions in Lemma 2.2. For every value \(v \) which is the value of some query we added \(k - 1 \) pairs to \(f \), and there are \(k \) queries, which means at most \(k \) different values. Therefore, the number of pairs in \(f \) is bounded by \(k^2 \), i.e. \(f \) is a bounded extension function.

If \(f(X \upharpoonright 0^{n+k}) = (y_0, j_0), ..., (y_m, j_m) \) then \(y_i \)'s are computable in polynomial ime in \(n \), and \(j_i \)'s are computable in \(O(2^n) \) because the most time consuming situation is when we need to compute \(\text{SAT}[v] \) which is doable in \(O(2^n) \). For the condition forced to the left hand side of (5), i.e \(G'(0^{n+k}) = 1 - h(0^{n+k}, \alpha(g_1(0^{n+k})), ..., \alpha(g_k(0^{n+k}))) \), note that \(\alpha(w) \) can be computed in at most \(O(2^n) \) steps for \(w \in \text{QUERY} \), and \(h \) is computable in polynomial ime.

Next we separate \((k + 1)-tt\)-autoreducibility and \(k\)-T-autoreducibility from \((k - 1)\)-T-autoreducibility. The proof uses the same construction from the previous theorem, which Ambos-Spies and Bentzen [2] showed separates these completeness notions.

\begin{itemize}
\item \textbf{Theorem 3.5.} If \(\text{NP} \) contains a \(p\)-generic language, then for every \(k \geq 3 \) there exists a set that is
\item \((k + 1)\)-tt-complete for \(\text{NP} \) and \((k + 1)\)-tt-autoreducible,
\item \(k\)-T-complete for \(\text{NP} \) and \(k\)-T-autoreducible, and
\item not \((k - 1)\)-T-autoreducible.
\end{itemize}

The proof of Theorem 3.5 will appear in the full version of the paper.

We now separate unbounded truth-table autoreducibility from bounded truth-table autoreducibility under the Genericity Hypothesis. This is based on the technique of Ambos-Spies and Bentzen [2] separating the corresponding completeness notions.

\begin{itemize}
\item \textbf{Theorem 3.6.} If \(\text{NP} \) has a \(p\)-generic language, then there exists a \(tt\)-complete set for \(\text{NP} \) that is \(tt\)-autoreducible, but not btt-autoreducible.
\end{itemize}

The proof of Theorem 3.6 will appear in the full version of the paper.
4 Stronger Separations Under a Stronger Hypothesis

Our results so far only separate \(k \)-tt-autoreducibility from \((k - 2)\)-T-autoreducibility for \(k \geq 3 \) under the genericity hypothesis. In this section we show that a stronger hypothesis separates \(k \)-tt-autoreducibility from \((k - 1)\)-T-autoreducibility, for all \(k \geq 2 \). We note that separating \(k \) nonadaptive queries from \(k - 1 \) adaptive queries is an optimal separation of bounded query reducibilities.

First we consider 2-tt-autoreducibility versus 1-tt-autoreducibility (equivalently, 1-T-autoreducibility). Pavan and Selman [14] showed that if \(\text{NP} \cap \text{coNP} \) contains a \(\text{DTIME}(2^{n^c}) \)-bi-immune set, then 2-tt-completeness is different from 1-tt-completeness for \(\text{NP} \). We show under the stronger hypothesis that \(\text{NP} \cap \text{coNP} \) contains a p-generic set, we can separate the autoreducibility notions.

\begin{claim}
If \(\text{NP} \cap \text{coNP} \) has a p-generic language, then there exists a 2-tt-complete set for \(\text{NP} \) that is 2-tt-autoreducible, but neither 1-tt-complete nor 1-tt-autoreducible.
\end{claim}

\begin{proof}
Assume \(G \in \text{NP} \cap \text{coNP} \) is p-generic, and let \(A = (G \cap \text{SAT}) \cup (\overline{G} \cap \text{SAT}) \), where \(\overline{G} \) is \(G \)'s complement, and \(\cup \) stands for disjoint union. We implement disjoint union as \(A = [(G \cap \text{SAT}) \cup (\overline{G} \cap \text{SAT})] \). It follows from closure properties of \(\text{NP} \) and the fact that \(G \in \text{NP} \cap \text{coNP} \) that \(A \in \text{NP} \). It follows from definition of \(A \) that for every \(x \), \(x \in \text{SAT} \leftrightarrow (x_0 \in A \lor x_1 \in A) \). This means \(\text{SAT} \leq^P_{\text{tt}} A \). Therefore \(A \) is 2-tt-complete for \(\text{NP} \). Since both queries in the above reduction are honest, in fact length increasing, it follows from Lemma 2.1 that \(A \) is 2-tt-autoreducible. To get a contradiction assume that \(A \) is 1-tt-autoreducible via polynomial-time computable functions \(h \) and \(g \). In other words,

\begin{align}
\forall x. A(x) = h(x, A[g(x)])
\end{align}

and \(g(x) \neq x \). Let \(x = y_0 \) for some string \(y \), then (9) turns into

\begin{align}
\forall y. G \cap \text{SAT}[y] = h(y_0, A[g(y_0)])
\end{align}

and \(g(y_0) \neq y_0 \). We define a bounded extension function \(f \) whenever \(\text{SAT}[y] = 1 \) as follows.

- Consider the case where \(g(y_0) = z_0 \) or \(z_1 > y \). If \(g(y_0) = z_0 \) then \(f \) forces \(G[z] = 0 \), and if \(g(y_0) = z_1 \) then \(f \) forces \(G[z] = 1 \). \(f \) also forces \(G[y] = 1 - h(y_0, 0) \). Since \(g \) and \(h \) are computable in polynomial time, so is \(f \).

- On the other hand, if \(g(y_0) = z_0 \) or \(z_1 \) and \(z < y \) then define \(f \) such that it forces \(G[y] = 1 - h(y_0, A[g(y_0)]) \). Then \(f \) polynomial-time computable in this case as well because \(A \) may be computed on \(g(y_0) \) by looking up \(G[z] \) from the partial characteristic sequence and deciding \(\text{SAT}[z] \) in \(2^{O(|z|)} \) time.

- If \(g(y_0) = y_1 \) and \(h(y_0, .) = c \) is a constant function, then define \(f \) such that it forces \(G[y] = 1 - c \). If \(g(y_0) \neq y_1 \land \text{SAT}[y] = 1 \) for infinitely many \(y \), it follows from the p-genericity of \(G \) that \(G \) has to meet \(f \), but this refutes the autoreduction. Similarly, \(g(y_0) = y_1 \land h(y_0, .) = \text{const} \land \text{SAT}[y] = 1 \) cannot happen for infinitely many \(y \)'s. As a result, \(g(y_0) = y_1 \lor \text{SAT}[y] = 0 \) and \(h(y_0, .) \) is not constant for all but finitely many \(y \)'s. If \(g(y_0) = y_1 \) then \(h \) says either \(G \cap \text{SAT}[y] = \overline{G} \land \text{SAT}[y] \) or \(G \cap \text{SAT}[y] = \neg(\overline{G} \land \text{SAT}[y]) \). It is easy to see this implies \(\text{SAT}[y] \) has to be 0 or 1, respectively. Based on the facts above, we define Algorithm 1 that decides \(\text{SAT} \) in polynomial time. This contradicts the assumption that \(\text{NP} \cap \text{coNP} \) has a p-generic language.

It is proved in [8] that every nontrival 1-tt-complete set for \(\text{NP} \) is 1-tt-autoreducible, so it follows that \(A \) is not 1-tt-complete.

\begin{itemize}
\item \end{itemize}
Algorithm 1. A polynomial-time algorithm for SAT

We will show the same hypothesis on $\text{NP} \cap \text{coNP}$ separates k-tt-autoreducibility from $(k - 1)$-T-autoreducibility for all $k \geq 3$. First, we show the corresponding separation of completeness notions.

▶ Theorem 4.2. If $\text{NP} \cap \text{coNP}$ contains a p-generic set, then for every $k \geq 3$ there exists a k-tt-complete set for NP that is not $(k - 1)$-T-complete.

The proof of Theorem 4.2 will appear in the full version of the paper.

Now we show the same sets separate k-tt-autoreducibility from $(k - 1)$-T-autoreducibility.

▶ Theorem 4.3. If $\text{NP} \cap \text{coNP}$ contains a p-generic set, then for every $k \geq 3$ there exists a k-tt-complete set for NP that is k-tt-autoreducible, but is not $(k - 1)$-T-autoreducible.

Proof. Assume $G \in \text{NP} \cap \text{coNP}$ is p-generic, and let $G_m = \{x \mid xz_m \in G\}$ for $1 \leq m \leq k$ where $z_1, ..., z_k$ are the first k strings of length k as before. Define

$$A = \bigcup_{m=1}^{k-1} \{xz_m \mid x \in G_m \cap \text{SAT}\} \cup \{xz_k \mid x \in \bigcap_{m=1}^{k-1} \overline{G_m} \cap \text{SAT}\}$$ (11)

We showed that $\text{SAT} \preceq^{k}_{k-1}\text{tt} A$ via length-increasing queries, therefore by Lemma 2.1 A is k-tt-autoreducible. For a contradiction, assume that A is $(k - 1)$-T-autoreducible. This means there exists an oracle Turing machine M such that

$$\forall x. A[x] = M^A(x)$$ (12)

M runs in polynomial time, and on every input x makes at most $k - 1$ queries, none of which is x. Given n and $X \upharpoonright 0^n$, we define a function α as follows.

If $w = vz_p$ and $|w| < n + k$ then

$$\alpha(w) = \begin{cases} X[w] \land \text{SAT}[v] & \text{if } 1 \leq p \leq k - 1 \\ \bigwedge_{l=1}^{k-1} (1 - X[vz_l]) \land \text{SAT}[v] & \text{if } p = k \\ 0 & \text{otherwise} \end{cases}$$

It is easy to see that if $X \upharpoonright 0^n = G \upharpoonright 0^n$ then $\alpha(w) = A[w]$.

If $w = vz_p$ and $|w| \geq n + k$, α is defined as:

$$\alpha(w) = \begin{cases} 1 & \text{if } v = 0^n \land 2 \leq p \leq k - 1 \\ 0 & \text{if } v = 0^n \land p = k \\ 0 & \text{otherwise} \end{cases}$$
Note that α is not defined on 0^n+k, but that is fine because we are using α to compute $A[w]$ for w’s that are queried when the input is 0^n+k, therefore 0^n+k will not be queried. Later we will define the extension function f in a way that if G meets f at 0^n then $\alpha(w) = A[w]$ for all queries.

Before defining f, we run M on input 0^n+k with α as the oracle instead of A, and define QUERY to be the set of all queries made in this computation. We know that M makes at most $k-1$ queries, therefore |QUERY| ≤ $k-1$. This implies that for every $v \neq 0^n$ which is the value of some element of QUERY one of the following cases must happen:

1. $vz_k \notin$ QUERY
2. $vz_k \in$ QUERY and $\exists l \leq k - 1. vz_l \notin$ QUERY

Given n and $X \uplus 0^n$, $f(X \uplus 0^n)$ is defined as follows if SAT[0^n] = 1.

For every v which is the value of some element of QUERY,

1. If $v = 0^n$, then add $(vz_2,1),...,(vz_{k-1},1)$ to f. In other words, f forces $G[0^n.z_i] = 1$ for $2 \leq i \leq k-1$.
2. If $v \neq 0^n$ and $vz_k \notin$ QUERY, then add $(vz_1,0),...,(vz_{k-1},0)$ to f.
3. If $v \neq 0^n$ and $vz_k \in$ QUERY, then there must be some $1 \leq l \leq k-1$ such that $vz_l \notin$ QUERY. In this case f forces $G[vz_l] = 0$ for every $1 \leq i \leq k-1$ except when $i = l$ for which we force $G[vz_l] = 1$.

To complete the diagonalization we add one more pair to f which is $(0^n+k, 1-M^\alpha(0^n))$. It is straightforward, and similar to what has been done in the previous theorem, to show that if G meets f at 0^n for some n then α and A agree on every element of QUERY. Therefore $M^\alpha(0^n) = M^\beta(0^n)$, which results in a contradiction. It only remains to show that G meets f at 0^n for some n. This depends on the details of the encoding used for SAT. If SAT[0^n] = 1 for infinitely many n’s, then f satisfies the conditions in Lemma 2.2. Therefore G has to meet f at 0^n for some n. On the other hand, if SAT[0^n] = 0 for almost all n, then we redefine A as:

$$A = \left(\bigcup_{m=1}^{k-1} \{xz_m \mid x \in G_m \cup \text{SAT} \} \right) \cup \{xz_k \mid x \in \left[\bigcup_{m=1}^{k-1} \overline{G_m} \right] \cup \text{SAT} \}$$

(13)

It can be proved, in a similar way and by using the assumption that SAT[0^n] = 0 for almost all n, that A is k-\text{tt}-complete, k-\text{tt}-autoreducible, but not (k - 1)-T-autoreducible.

5 Conclusion

We conclude with a few open questions.

For some k, is there a k-\text{tt}-complete set for NP that is not btt-autoreducible? We know this is true for EXP [5], so it may be possible to show under a strong hypothesis on NP. We note that by Lemma 2.1 any construction of a k-\text{tt}-complete set that is not k-\text{tt}-autoreducible must not be honest k-\text{tt}-complete. In fact, the set must be complete under reductions that are neither honest nor dishonest. On the other hand, for any $k \geq 3$, proving that all k-\text{tt}-complete sets for NP are btt-autoreducible would separate NP \neq EXP.

Are the 2-\text{tt}-complete sets for NP 2-\text{tt}-autoreducible? The answer to this question is yes for EXP [7], so in this case a negative answer for NP would imply NP \neq EXP. We believe that it may be possible to show the 2-\text{tt}-complete sets are nonuniformly 2-\text{tt}-autoreducible under the Measure Hypothesis – first show they are nonuniformly 2-\text{tt}-honest complete as an extension of [9, 6].

Nguyen and Selman [13] showed there is T-complete set for NEXP that is not tt-autoreducible. Can we do this for NP as well? Note that Hitchcock and Pavan [9] showed there is a T-complete set for NP that is not tt-complete.
Acknowledgment. We thank A. Pavan for extremely helpful discussions.

References