
Strong ETH Breaks With Merlin and Arthur:
Short Non-Interactive Proofs of Batch Evaluation
Richard Ryan Williams∗

Computer Science Department, Stanford University, Stanford, USA
rrw@cs.stanford.edu

Abstract
We present an efficient proof system for Multipoint Arithmetic Circuit Evaluation: for
any arithmetic circuit C(x1, . . . , xn) of size s and degree d over a field F, and any inputs
a1, . . . , aK ∈ Fn,

the Prover sends the Verifier the values C(a1), . . . , C(aK) ∈ F and a proof of Õ(K · d) length,
and
the Verifier tosses poly(log(dK|F|/ε)) coins and can check the proof in about Õ(K ·(n+d)+s)
time, with probability of error less than ε.

For small degree d, this “Merlin-Arthur” proof system (a.k.a. MA-proof system) runs in nearly-
linear time, and has many applications. For example, we obtain MA-proof systems that run in
cn time (for various c < 2) for the Permanent, #Circuit-SAT for all sublinear-depth circuits,
counting Hamiltonian cycles, and infeasibility of 0-1 linear programs. In general, the value of
any polynomial in Valiant’s class VNP can be certified faster than “exhaustive summation” over
all possible assignments. These results strongly refute a Merlin-Arthur Strong ETH and Arthur-
Merlin Strong ETH posed by Russell Impagliazzo and others.

We also give a three-round (AMA) proof system for quantified Boolean formulas running
in 22n/3+o(n) time, nearly-linear time MA-proof systems for counting orthogonal vectors in a
collection and finding Closest Pairs in the Hamming metric, and a MA-proof system running in
nk/2+O(1)-time for counting k-cliques in graphs.

We point to some potential future directions for refuting the Nondeterministic Strong ETH.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems – Complexity
of proof procedures, D.2.4 Software/Program Verification

Keywords and phrases counting complexity, exponential-time hypothesis, interactive proofs,
Merlin-Arthur games

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.2

1 Introduction

Suppose you have a circuit of size s that you want to evaluate on k different inputs. In the
worst case, you’d expect and needO(s·k) time to do this yourself. What if you asked a powerful
computer to evaluate the circuit for you? The computer may be extremely fast relative to you,
and send you the k answers almost immediately. But how can you (quickly) check that the
computer used your circuit, and didn’t just make up the answers? Such “delegating/verifiable

∗ Part of this work was done while visiting the Simons Institute for the Theory of Computing, Berkeley,
CA, USA. Supported in part by a David Morgenthaler II Faculty Fellowship, a Sloan Fellowship, and
NSF CCF-1212372. Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

© Richard Ryan Williams;
licensed under Creative Commons License CC-BY

31st Conference on Computational Complexity (CCC 2016).
Editor: Ran Raz; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CCC.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Strong ETH Breaks With Merlin and Arthur

computation” questions naturally arise in the study of interactive proofs, and have recently
seen increased attention in the crypto community (see [24, 21, 18, 6, 20, 48, 34] for a sample
of the different models and goals).

For circuits with a certain natural structure1, we show in this paper how a powerful
computer can very efficiently prove in one shot (with extremely low probability of error) that
its answers are indeed the outputs of your circuit. Omitting low-order terms, the proof is
about Õ(s+ k) bits long, and takes about Õ(s+ k) time to verify – roughly proportional to
the size of the circuit and the k inputs. The proof system is simple and has no nasty hidden
constants, low randomness requirements, and many theoretical applications.

1.1 Our Results
Our evaluation result is best phrased in terms of arithmetic circuits over plus and times
gates, evaluated over a finite field. We consider the problem of evaluating such a circuit on
many inputs in batch:

I Definition 1.1. The Multipoint Circuit Evaluation problem: given an arithmetic
circuit C on n variables over a finite field F, and a list of inputs a1, . . . , aK ∈ Fn, output
(C(a1), . . . , C(aK)) ∈ FK .

An important special case of Multipoint Circuit Evaluation is when the arithmetic
circuit is a sum of products of variables (a ΣΠ circuit). This version is called Multivariate
Multipoint Evaluation by Kedlaya and Umans [36]; they give the best known algorithms
for this case, showing how to solve it in about (dn+K)1+o(1)poly(logm) time over Zm, where
d is the degree of each variable and n is the number of variables. The simplest instance of
multipoint evaluation considers circuits that are a sum of products of one variable; this case
is well-known to have very efficient algorithms (see Section 2). However, for more expressive
circuits (such as ΣΠΣ, sums of products of sums), no significant improvements over the
obvious batch evaluation algorithm have been reported.

Our first result is that multipoint evaluation of general arithmetic circuits of low degree
can be “delegated” very efficiently, in a publicly verifiable and non-interactive way:

I Theorem 1.2. For every finite field F and ε > 0, Multipoint Circuit Evaluation for
K points in Fn on a circuits of n inputs, s gates, and degree d has an probabilistic verifier V
where, for every circuit C,

There is a unique proof of (C(a1), . . . , C(aK)) that is Õ(K · d) bits long2, and
The proof can be verified by V with access to C, Õ(1) bits of randomness, and Õ(K ·
max{d, n}+ s) time, such that (C(a1), . . . , C(aK)) is output incorrectly with probability
at most ε.

The proof system is fairly simple to motivate. We want the proof to be a succinct
representation of the circuit C that is both easy to evaluate on all of the K given inputs, and
also easy to verify with randomness. We will set the proof to be a univariate polynomial Q(x)
defined over a sufficiently large extension field of F, of degree about K · d, that “sketches”
the evaluation of the degree-d arithmetic circuit C over all K assignments. The polynomial
Q satisfies two conflicting conditions:

1 In particular, the proof system works for all arithmetic circuits using addition and multiplication over a
finite field, where the resulting polynomial has low degree. A surprising number of functions can be
efficiently implemented in this way.

2 The Õ omits polylog factors in K, |F|, d, s, and 1/ε.

R. R. Williams 2:3

1. The verifier can use the sketch Q to efficiently produce the truth table of C. In particular,
for some explicitly chosen αi from the extension of F, (Q(α0), Q(α1), . . . , Q(αK)) =
(C(a1), . . . , C(aK)).

2. The verifier can check that Q is a faithful representation of C’s behavior on the list of K
inputs in about K + |C| time, with randomness.

The construction of Q uses a trick originating from the holographic proofs of Babai et al. [9],
in which multivariate expressions are efficiently “expressed” as univariate ones. Both of the
two items utilize fast algorithms for manipulating univariate polynomials. In the parlance
of interactive proofs, Theorem 1.2 gives a Merlin-Arthur proof system for batch evaluation
(Merlin is the prover, Arthur is the verifier, and Merlin communicates first).

Applications to Some Exponential Time Hypotheses

The results of this paper were originally motivated by attempts to refute exponential time
hypotheses of increasing strength. The Exponential Time Hypothesis (ETH) [31] is that
3-SAT requires 2εn time for some ε > 0; ETH has been singularly influential in the area of
exact algorithms for NP-hard problems (see [38] for a survey). A more fine-grained version
of ETH is the Strong Exponential Time Hypothesis (SETH) [29, 15], which further asserts
that k-SAT requires 2n−o(n) time for unbounded k. SETH has also been a powerful driver of
research in the past several years, especially with its connections to the solvability of basic
problems in P (see the recent survey [52]).

Recently, Carmosino et al. [16] proposed the Nondeterministic Strong ETH (NSETH):
refuting unsatisfiable k-CNFs requires nondeterministic 2n−o(n) time for unbounded k. Put
another way, NSETH says there are no proof systems that can refute unsatisfiable k-SAT
instances significantly more efficiently than enumeration of all variable assignments. The
NSETH is quite consistent with known results in proof complexity [42, 11]. Earlier, Carmosino
et al. (private communication) also proposed a Merlin-Arthur and Arthur-Merlin Strong
ETH (MASETH and AMSETH, respectively) which assert that no O(1)-round probabilistic
proof systems can refute unsatisfiable k-CNFs in 2n−Ω(n) time.

Our first application of Theorem 1.2 is a strong refutation of MASETH and AMSETH:

I Theorem 1.3 (MASETH is False). There is a probabilistic verifier V where, for every
Boolean circuit C on n variables of o(n) depth and bounded fan-in,

There is an O?(2n/2)-bit proof that the number of SAT assignments to C is a claimed
value3, and
The proof can checked by V with access to C, using O(n) bits of randomness and O?(2n/2)
time, with probability of error at most 1/poly(n).

That is, one can refute UNSAT circuits of 2o(n) size and o(n) depth significantly faster
than brute force enumeration, using a small amount of randomness in verification. Analogues
of Theorem 1.3 hold for other #P-complete problems: for instance, the Permanent can be
certified in O?(2n/2) time, and the number of Boolean feasible solutions to a linear program
can be certified in O?(23n/4). In fact, if we allow the proof to depend on O(n) coins tossed
prior to sending the proof, one can also solve Quantified Boolean Formulas (QBF) faster:

I Theorem 1.4. QBFs with n variables and m ≤ 2n connectives have a three-round 22n/3 ·
poly(n,m) time interactive proof system using O(n) bits of randomness.

3 The O? notation omits polynomial factors in n.

CCC 2016

2:4 Strong ETH Breaks With Merlin and Arthur

A seminal result in interactive computation is that PSPACE = IP; that is, polynomial
space captures interactive proof systems that use poly(n) time and poly(n) rounds [45].
Theorem 1.4 shows how three rounds of interaction can already significantly reduce the
cost of evaluating PSPACE-complete problems. From these results, we see that either
O(n) bits of randomness can make a substantial difference in the proof lengths of n-bit
propositions, or the Nondeterministic SETH is false. In fact, one can isolate a simple
univariate polynomial identity testing problem that is solvable in Õ(n) randomized time and
Õ(n2) time deterministically, but an n1.999-time nondeterministic algorithm would refute
NSETH; see Section 3.2.

Applications to Some Polynomial-Time Problems

In Appendix A, we apply Theorem 1.2 to a group of problems at the basis of a recent theory
of “hardness within P” [52]. A central problem in this theory is Orthogonal Vectors,
which asks if there is an orthogonal pair among n Boolean vectors in d dimensions [54, 43, 57,
13, 3, 4, 10, 2]. The OV conjecture is that this problem cannot be solved in n2−ε · 2o(d), for
every ε > 0. It is known that SETH implies the OV conjecture [54, 57]. The OV conjecture
can also be refuted in the Merlin-Arthur setting, in the following strong sense:

I Theorem 1.5. Let d ≤ n. There is an MA-proof system such that for every A ⊆ {0, 1}d
with |A| = n, the verifier certifies the number of orthogonal pairs in A, running in Õ(n · d)
time with error probability 1/poly(n).

Because several basic problems in P can be subquadratic-time reduced to Orthogonal
Vectors (see the above references and Appendix A), Theorem 1.5 implies subquadratic-time
MA-proof systems for these problems as well. To give another example, we also obtain a
nearly-linear time proof system for verifying Closest Pairs in the Hamming metric:

I Theorem 1.6. Let d ≤ n. There is an MA-proof system such that for every A ⊆ {0, 1}d
with |A| = n, and every given parameter k ∈ {0, 1, . . . , d}, the verifier certifies for all v ∈ A
the number of points w ∈ A with Hamming distance at most k from v, running in Õ(n · d)
time with error probability 1/poly(n).

The best known randomized algorithm for computing Hamming closest pairs (as of last
year) only runs in o(n2) time when d = o(log2 n/ log logn) [5]. Finally, we also give an
efficient proof system for the k-clique problem:

I Theorem 1.7. For every k, there is a MA-proof system such that for every graph G on n
nodes, the verifier certifies the number of k-cliques in G using Õ(nbk/2c+2) time, with error
probability 1/poly(n).

2 Preliminaries

For a vector v ∈ Dd for some domain D, we let v[i] ∈ D denote the ith component of v. We
assume basic familiarity with Computational Complexity, especially the theory of interactive
proofs and Merlin-Arthur games as initiated by Goldwasser-Micali-Rackoff [25] and Babai [8]
(see Arora and Barak [7], Chapter 8). All of the interactive proofs (also known as “protocols”)
of this paper will use public randomness, visible to the Prover (also known as “Merlin”) and
the Verifier (also known as “Arthur”). Along the way, we will recall some particulars of
known results as needed.

R. R. Williams 2:5

Some Algorithms for Polynomial Computations

We need some classical results in algebraic complexity (see also von zur Gathen and Ger-
hard [53]). Let F be an arbitrary field, and let mult(n) = O(n log2 n) be the time needed to
multiply two degree-n univariate polynomials.

I Theorem 2.1 (Fast Multipoint Evaluation of Univariate Polynomials [19]). Given a polynomial
p(x) ∈ F[X] with deg(p) ≤ n, presented as a vector of coefficients [a0, . . . , adeg(p)], and given
points α1, . . . , αn ∈ F, we can output the vector (p(α1), . . . , p(αn)) ∈ Fn in O(mult(n) · logn)
additions and multiplications in F.

I Theorem 2.2 (Fast Univariate Interpolation [28]). Given a set {(α1, β1), . . . , (αn, βn)} ⊂
F× F with all αi distinct, we can output the coefficients of p(x) ∈ F[X] of degree at most n
satisfying p(αi) = βi for all i, in O(mult(n) · logn) additions and multiplications in F.

2.1 More Related Work
Besides what we have already mentioned, there is a vast body of work on non-interactive
probabilistic protocols and delegating computation which we are ill-equipped to cover in
detail. We confine ourselves to discussing results that seem closest to the present work.4

There has been much work on bounding the communication between the prover and
verifier. For instance, this is not the first time that Merlin and Arthur have led to an
unexpected square-root speedup: Aaronson and Wigderson [1] gave an MA communication
protocol for computing the inner product of two n-length vectors which runs in Õ(

√
n)

time. Their protocol uses a nice bivariate encoding of vectors, although it is somewhat
different from ours (which is univariate). Gur and Rothblum [27] obtain a similar square-root
speedup for checking sums in the “non-interactive property testing” setting. Goldreich and
Hastad [22] and Goldreich, Vadhan, and Wigderson [23] studied interactive proofs which
seek to minimize the number of bits sent from Merlin to Arthur. The “small bits” case is
of course even more restrictive than the “small rounds” case. The latter reference shows
that for any language L that has an interactive proof with b bits of communication, there is
an O(1)-round interactive proof for L that uses only exp(b) communication. The authors
also conjectured an “Arthur-Merlin ETH” that #SAT does not have a 2o(n)-time AM-proof
system with O(1) rounds. What we report in this paper is rather far from disproving this
“AMETH” conjecture, but it is interesting that some non-trivial progress can be made.

Goldwasser, Kalai, and Rothblum [24] study what they call delegating computation,
proving (for example) that for all logspace-uniform NC circuits C, one can prove that
C(x) = 1 on an input x of length n with Õ(n) verification time, O(logn) space, and
poly(logn) communication complexity between the prover and verifier. Despite the amazingly
low running time and space usage, the protocols of this work are highly non-interactive: they
need poly(logn) rounds between the prover and verifier as well.

Relating our work to proof complexity, Grochow and Pitassi [26] introduced a new
algebraic proof system based on axioms satisfied by any Boolean circuit that solves the
polynomial identity testing problem. The proofs in their system can be efficiently verified by
running a polynomial identity test, implying they can be viewed as proof of a Merlin-Arthur
type. An intriguing property of their proof system is that super-polynomial lower bounds for
it would prove lower bounds for the Permanent.

4 We would be happy to hear of results related to ours that we did not cite.

CCC 2016

2:6 Strong ETH Breaks With Merlin and Arthur

The area of verifiable computation (e.g. [40]) is a new subject in cryptography, and is
certainly related to our work. However, in crypto the work appears to be either very specific
to particular functions, or it relies on very heavy machinery like probabilistically checkable
proofs, or it relies on cryptographic hardness assumptions.

In our setting, we want non-interactive proofs for batch computations that are shorter
than the computation time, with the typical “perfect completeness” and “low error soundness”
conditions preserved, and which work unconditionally.

3 Fast Multipoint Circuit Evaluation (With Merlin and Arthur)

In this section, we give the proof system for multipoint arithmetic circuit evaluation:

I Theorem 3.1. For every prime power q and ε > 0, Multipoint Circuit Evaluation
for K points in (Fq)n on an arithmetic circuit C of n inputs, s gates, and degree d has an
MA-proof system where:

Merlin sends a proof of O(K · d · log(Kqd/ε)) bits, and
Arthur tosses at most log(Kqd/ε) coins, outputs (C(a1), . . . , C(aK)) incorrectly with
probability at most ε, and runs in time (K ·max{d, n}+ s · poly(log s)) · poly(log(Kqd/ε)).

We have stated the theorem at this level of generality because we need good bounds
on the parameters to obtain certain consequences. For example, in our proof system for
quantified Boolean formulas (Theorem 1.4), the parameters s, K, q, and d are all various
exponentials in n.

Because instances of Multipoint Circuit Evaluation have length O((K ·n+s log s) ·
log q), the running time of Theorem 3.1 is essentially linear in the input length, up to the
factor of d in Merlin’s proof (in general, d could be much larger than n). So Theorem 3.1 is
extremely powerful for arithmetic circuits of low degree.

Proof. Let q be a prime power and C be an arithmetic circuit over Fq with degree d, s gates,
and n variables. Let a1, . . . , aK ∈ Fnq ; we want to know C(a1), . . . , C(aK) ∈ Fq.

Let ε > 0 be arbitrarily small, and let ` be the smallest integer such that q` > (d ·K)/ε.
Let F be the extension field Fq` . Note we can construct Fq` rather quickly in the following way:
Merlin can send an irreducible polynomial f(x) ∈ Fq[x] of degree `, and irreducibility of f can
be checked by running Kedlaya-Umans’ deterministic irreducibility test in `1+o(1) log2+o(1) q

time ([36], Section 8.2).
Since q` ≤ (q ·K · d)/ε, addition and multiplication in F can be done in (log |F |)1+o(1) ≤

log(Kqd/ε)1+o(1) time. Let S ⊆ F be an arbitrary subset of cardinality K. For all i =
1, . . . ,K, associate each vector ai ∈ (Fq)n with a unique element αi ∈ S, and inversely
associate each α ∈ S with a unique vector aα ∈ (Fq)n. This mapping and its inverse can be
easily constructed by listing the first K elements of F under some canonical ordering.

For all j = 1, . . . , n, we define Ψj : F → F as functions satisfying Ψj(α) = aα[j] for every
α ∈ S. That is, Ψj(α) outputs the jth component of the vector aα ∈ Fnq associated with
α ∈ S. Since each Ψj is defined by K input/output pairs, the Ψj can be instantiated as
polynomials of degree at most K. By efficient polynomial interpolation (Theorem 2.2), the
degree-K polynomials Ψj(x) ∈ F [x] for all j = 1, . . . , n can be constructed in n·K ·poly(logK)
additions and multiplications.

Define the univariate polynomial R(x) := C(Ψ1(x), . . . ,Ψn(x)) over F . By the con-
struction of Ψj , we see that for all i = 1, . . . ,K, R(αi) = C(Ψ1(αi), . . . ,Ψn(αi)) =
C(ai[1], . . . , ai[n]) = C(ai). Furthermore, deg(R) ≤ deg(C) · (maxj Ψj) ≤ d ·K.

Now we describe the protocol.

R. R. Williams 2:7

1. Merlin sends the coefficients of a polynomial Q(x) over F of degree at most d ·K, encoded
in d ·K · log(|F |) bits. Merlin claims that Q(x) = R(x), as defined above.

2. Arthur picks a uniform random r ∈ F (taking at most log(Kqd/ε) bits to describe), and
wishes to check that

Q(r) = R(r) := C(Ψ1(r), . . . ,Ψn(r)),

over F . Evaluating Q(r) takes d · K · (log(Kqd/ε))1+o(1) time, by Horner’s method.
We claim that R(r) can be computed in (K · n + s) · (log |F |)1+o(1) time. First, the
n polynomials Ψj of degree K can be constructed in n ·K · poly(logK) additions and
multiplications (as described above). Given the coefficients of the Ψj polynomials,
computing all values vj := Ψj(r) can be done straightforwardly in O(K · n) additions
and multiplications, by producing the powers r0, r1, . . . , rK and then computing n linear
combinations of these powers. (Note that each resulting value vj takes O(log |F |) ≤
poly(Kqd/ε) bits to represent.) Then Arthur computes C(v1, . . . , vn) in s · poly(log s)
additions and multiplications, by simple circuit evaluation over F . The total running
time is (K · n+ s · poly(log s)) · (log |F |)1+o(1).

3. Arthur rejects the proof if Q(r) 6= C(v1, . . . , vn); otherwise, he uses univariate multipoint
evaluation (Theorem 2.1) to compute (Q(α1), . . . , Q(αK)), in K · d · poly(log(Kd)) ·
(log |F |)1+o(1) time.

On the one hand, if Merlin sends Q(x) := R(x), then Arthur always outputs the tuple

(R(α1), . . . , R(αK)) = (C(a1), . . . , C(an)),

regardless of the r ∈ F chosen. On the other, if Merlin sends a “bad” polynomial Q(x) 6= R(x)
and Arthur fails to pick an r ∈ F such that Q(r) 6= R(r), then Merlin may convince Arthur
of an incorrect K-tuple (Q(α1), . . . , Q(αK)). However, since the degrees of Q and R are both
at most d ·K, this failure of Arthur occurs with probability at most (d ·K)/q` < ε. J

3.1 Evaluating Sums Over Polynomials
The multipoint evaluation protocol of Theorem 3.1 can be applied to perform a one-round
“sum-check” faster than the obvious algorithm:

I Theorem 3.2. Given a prime p, an ε > 0, and an arithmetic circuit C with degree d,
s ≥ n gates, and n variables, the sum∑

(b1,...,bn)∈{0,1}n
C(b1, . . . , bn) mod p

can be computed by a Merlin-Arthur protocol running in 2n/2 · poly(n, s, d, log(p/ε)) time
tossing only n/2 +O(log(pd/ε)) coins, with probability of error ε.

As it applies Theorem 3.1 in a straightforward way, the proof of Theorem 3.2 in fact
works for any finite field. Therefore, every polynomial over a finite field in the class VNP
([49, 51]) has a MA-proof system that beats exhaustive search in a strong sense.

Proof. (of Theorem 3.2) For simplicity, assume n is even. Given an arithmetic circuit C for
which we wish to evaluate its sum over all Boolean inputs, define the n/2-variable circuit

C ′(x1, . . . , xn/2) :=
∑

(b1,...,bn/2)∈{0,1}n/2

C(x1, . . . , xn/2, b1, . . . , bn/2).

CCC 2016

2:8 Strong ETH Breaks With Merlin and Arthur

Note that deg(C ′) = d and size(C ′) ≤ 2n/2 · s. In order to compute the full sum of
C(b1, . . . , bn) over all 2n Boolean points, it suffices to evaluate C ′ on all of its K := 2n/2
Boolean points a1, . . . , aK ∈ {0, 1}n.

Applying the batch evaluation protocol of Theorem 3.1, there is an MA-proof system where
Merlin sends a proof of 2n/2 · d · poly(n, log(pd/ε)) bits, then Arthur tosses n/2 + log(pd/ε)
coins, runs in (2n/2 ·max{n, d}+ 2n/2 · s · poly(log s)) · poly(n, log(pd/ε)) time, and outputs
(C ′(a1), . . . , C(a2n/2)) incorrectly with probability at most ε. The result follows. J

Two important corollaries of Theorem 3.2 are O?(2n/2)-time proof systems for the
Permanent and #SAT problems. The result for Permanent follows immediately from Ryser’s
formula [44], which shows that the permanent of any n× n matrix M can be written in the
form ∑

(a1,...,an)∈{0,1}n
CM (a1, . . . , an),

where CM is a poly(n)-size arithmetic circuit of degree O(n) that can be determined from
M in poly(n) time. We describe the #SAT protocol in detail:

I Theorem 3.3. For any k > 0, #SAT for Boolean formulas with n variables and m

connectives has an MA-proof system using 2n/2 · poly(n,m) time with randomness O(n) and
error probability 1/ exp(n).

Proof. Let F be a Boolean formula over AND, OR, and NOT with n variables and m

connectives. First, any Boolean formula F can be “re-balanced” as in the classical results of
Brent [12] and Spira [47], obtaining in poly(m) time a formula F ′ equivalent to F , where F ′
has depth at most c logm and at most mc connectives for some constant c > 0.

Next, we replace each AND, OR, and NOT gate of F ′ with an equivalent polynomial
of degree 2, by the usual “arithmetization.” More precisely, each OR(x, y) is replaced with
x+y−x ·y, each AND(x, y) is replaced with x ·y, and each NOT (1−x) is replaced with 1−x.
The resulting arithmetic formula P (x1, . . . , xn) computes F ′(b1, . . . , bn) = P (b1, . . . , bn) for
every (b1, . . . , bn) ∈ {0, 1}n. Furthermore, due to the re-balancing step and the fact that
every gate has outdegree 1, we have deg(P) ≤ 2c logm ≤ mO(1) (note the worst case is when
every gate is an AND).

Set p > 2n to be prime; note by Bertrand’s postulate we may assume p < 2n+1. We can
always find such a prime deterministically in 2n/2+o(n) time by an algorithm of Lagarias
and Odlyzko [37]. (Alternatively, the prover could send p to the verifier, along with a
deterministically verifiable poly(n)-length proof of primality [41].) Then F ′ has exactly r
satisfying assignments if and only if∑

(b1,...,bn)∈{0,1}n
P (b1, . . . , bn) = r mod p.

Since deg(P) ≤ mO(1), we can apply Theorem 3.2 directly and obtain the result. J

Another corollary of Theorem 3.2 is that Merlin and Arthur can also count Hamiltonian
cycles in n-node graphs in O?(2n/2) time, by construing the inclusion-exclusion method of
Karp [35] running in O?(2n) time as a sum over 2n Boolean values on an arithmetic circuit of
poly(n) size. In particular, Karp’s algorithm works by counting the n-step walks in a graph,
then subtracting the count of n-step walks that miss at least one node, adding back the
count of n-step walks that miss at least two nodes, etc. Each of these counts is computable
by a single arithmetic circuit C(y1, . . . , yn) of O(n4) size which, on the input y ∈ {0, 1}n,

R. R. Williams 2:9

counts the n-step walks over the subgraph of G defined by the vector y (negating the count
if y has an odd number of zeroes).

Theorem 3.3 shows that Merlin and Arthur can count the number of satisfying assignments
to Boolean formulas of 2δn size in 2n(1/2+O(δ)) time. It also immediately follows from
Theorem 3.3 that we can solve #SAT on bounded fan-in circuits of depth o(n) in 2n/2+o(n)

time, as such circuits can always be expressed as formulas of exp(o(n)) size. It is also clear
from the proof that we can trade off proof length and verification time: if we restrict the
proofs to have length 2` ≤ 2n/2 (so that Merlin sends a polynomial of degree roughly 2`),
then verifying the remaining sum over n− ` variables takes O?(2n−`) time.

We also observe that with more rounds of interaction, Merlin and Arthur can use shorter
proofs. This is somewhat expected, because it is well-known that in O(n) rounds, we can
compute #SAT with poly(n) communication and poly(n) verification time [39].

I Theorem 3.4. For any k > 0, and c > 2, #SAT for Boolean formulas with n variables
and m connectives has an interactive proof system with c rounds of interaction, using
2n/(c+1) · poly(n,m) time with randomness O(n) and error probability 1/ exp(n).

Proof. (Sketch) We essentially interpolate between our protocol and the LFKN protocol
([39]) for #SAT . Let F be a Boolean formula over AND, OR, and NOT with n variables
and m connectives, and let P be its arithmetization as in Theorem 3.3. We will work modulo
a prime p > 2n, as before. For simplicity let us assume n is divisible by c + 1, and that
m ≤ 2o(n). Partition the set of variables into subsets S1, . . . , Sc+1 of n/(c+ 1) variables each.
Via interpolation, define the polynomials Ψ1, . . . ,Ψ n

c+1
analogously to Theorem 3.1, where

for all j ∈ {0, 1, . . . , 2n/(c+1) − 1}, Ψi(j) outputs the ith bit of the j in n/(c+ 1)-bit binary
representation. Now consider the polynomial in c+ 1 variables:

Q1(y) :=
∑

j2,...,jc+1

∈{0,1,...,2n/(c+1)−1}

P (Ψ1(y), . . . ,Ψ n
c+1

(y),Ψ1(j2), . . . ,Ψ n
c+1

(j2), ,Ψ n
c+1

(jc+1)).

In the first round of interaction, an honest prover sends Q1(y), which has degree 2n/(c+1)+o(n).
The verifier then chooses a random r1 ∈ Fp, and sumsQ1(y) over all points {0, 1, . . . , 2n/(c+1)−
1}.

In the kth round of interaction for k = 2, . . . , c, an honest prover sends the 2n/(c+1)+o(n)-
degree polynomial Qk(y), which is∑

jk+1,...,jc+1

∈{0,...,2n/(c+1)−1}

P (Ψ1(r1), . . . ,Ψ n
c+1

(rk−1),Ψ1(y), . . . ,Ψ n
c+1

(y),Ψ1(jc+1) . . . ,Ψ n
c+1

(jc+1)).

The verifier again chooses a random rk ∈ Fp.
Finally in the cth round, after the prover has sendt Qc(y) and the verifier has chosen

rc ∈ Fp at random, the remaining computation is to compute the sum
∑2n/(c+1)−1
i=0 Qc(ji),

and to verify that Qc(rc) equals∑
jc+1

∈{0,...,2n/(c+1)−1}

P (Ψ1(r1), . . . ,Ψ n
c+1

(r1), . . . ,Ψ1(rc), . . . ,Ψ n
c+1

(rc),Ψ1(jc+1), . . . ,Ψ n
c+1

(jc+1)) .

In each of the c rounds, the probability of picking a “bad” ri is at most 2
n
c+1 +o(n)/p ≤

exp(−Ω(n)). J

Thus, with ω(1) rounds of interaction, Arthur and Merlin can compute #SAT in 2o(n)

verification time and communication.

CCC 2016

2:10 Strong ETH Breaks With Merlin and Arthur

3.2 Univariate Polynomial Identity Testing and the Nondeterministic
SETH

A nice aspect of Theorem 3.2 and its corollaries is that the randomness is low: for example,
the obvious derandomization strategy of simulating all O?(2n/2) coin tosses recovers a
nondeterministic O?(2n) time algorithm for counting SAT assignments modulo 2.

The proof system itself motivates the following problem. Let univariate polynomial
identity testing (UPIT) be the problem of testing identity for two arithmetic circuits with
one variable, degree n, and O(n) wires, over a field of order poly(n). The following corollary
is immediate from the proofs of Theorems 1.2, 3.3, and the above observations:

I Corollary 3.5. If UPIT ∈ NTIME[n2−ε] for some ε > 0, then #Circuit-SAT for o(n)-depth
circuits is computable in nondeterministic 2n(1−ε/2)+o(n) time. By [56, 32, 16], this further
implies that ENP does not have 2o(n)-size sublinear-depth circuits.

In particular, the randomized verification task of Arthur in the protocol of Theorem 3.3
directly reduces to solving UPIT on two univariate circuits of degree 2n/2+o(n) and size
2n/2+o(n). Hence, assuming the hypothesis of Corollary 3.5, Arthur’s verification can be
performed deterministically in 2n(1−ε/2)+o(n) time.

This is an intriguing example of how derandomization within polynomial time can imply
strong circuit lower bounds: it is easy to see that UPIT is solvable in Õ(n) time with
randomness, and in Õ(n2) time deterministically, by efficient interpolation on n+ 1 distinct
points (Theorem 2.2). In all other cases we are aware of (such as [33, 55]), the necessary
derandomization problem is only known to be solvable in deterministic exponential time.
Thus, the Nondeterministic SETH predicts that the exponent of the simple Õ(n2) algorithm
for UPIT cannot be improved, even with nondeterminism.

4 Quantified Boolean Formulas

In the previous section, we saw how generic #P counting problems can be certified faster
than exhaustive search. We can also give less-than-2n time three-round proof systems for
certifying quantified Boolean formulas, a PSPACE-complete problem. Our quantified Boolean
formulas have the form

(Q1x1) · · · (Qnxn)F (x1, . . . , xn),

where F is an arbitrary propositional formula on m connectives, and each Qi ∈ {∃,∀}.

Reminder of Theorem 1.4 Quantified Boolean Formulas with n variables and m ≤ 2o(n)

connectives have a three-round interactive proof system running in 22n/3 · poly(n,m) time
with O(n) bits of randomness.

Proof. Let φ = (Q1x1) · · · (Qnxn)F (x1, . . . , xn) be a quantified Boolean formula to certify.
Let δ > 0 be a parameter to set later. First, convert the propositional formula F ′ to an
equivalent arithmetic circuit P of poly(m) degree and size, as in Theorem 3.3. Note that
P outputs 0 or 1 on every Boolean input to its variables. Next, determine whether the
quantifier suffix (Qn−δn+1xn−δn+1) · · · (Qnxn) contains at least as many existential quantifiers
as universal quantifiers.

R. R. Williams 2:11

Case 1. If there are more existentially quantified variables, convert the subformula

φ′(x1, . . . , xn−δn) = (Qn−δn+1xn−δn+1) · · · (Qnxn)P (x1, . . . , xn)

into an arithmetic formula P ′ in a standard way, where each (∃xi) is replaced by a sum over
xi ∈ {0, 1}, and each (∀xi) is replaced by a product over xi ∈ {0, 1}. The formula P ′ has
size 2δn · poly(m), for the tree of possible assignments to the last 2δn variables times the size
of the polynomial P .

It is easy to see that P ′(a1, . . . , an−δn) is nonzero (over Z) on a Boolean assignment
(a1, . . . , an−δn) if and only if φ′(a1, . . . , an−δn) is true. Moreover, P ′ has degree at most
poly(m) · 2δn/2, since there are most δn/2 universal quantifiers among the last δn variables
(so the 2δn tree contains at most δn/2 layers of multiplication gates). Note the value
Va1,...,an−δn = P ′(a1, . . . , an−δn) is always at most (2n ·m)O(2δn/2).

Our protocol begins by having Arthur send a random prime p from the interval [2, 22n2 ·m]
to Merlin, to help reduce the size of the values Va1,...,an−δn . (A similar step also occurs in
the proof that IP = PSPACE [45, 46].) Since a nonzero Va1,...,an−δn has at most O(2δn/2nm)
prime factors, the probability that a random p ∈ [2, 22n2 ·m] divides a fixed Va1,...,an−δn is at
most

O(2δn/2n(n+ logm))
22n2 ,

by the Prime Number Theorem. By the union bound, p divides Va1,...,an−δn for some
a1, . . . , an−δn ∈ {0, 1} with probability at most (logm)/2Ω(n2).

Therefore for all a1, . . . , an−δn ∈ {0, 1}, the “non-zeroness” of P ′(a1, . . . , an−δn) over Z
is preserved over the field Fp, with high probability. Merlin and Arthur will work over Fp in
the following.

Applying Theorem 3.1 to P ′ with d := poly(m) · 2δn/2, p := 22n ·m, K := 2n−δn, and
s := poly(m) · 2δn, there is an MA-proof system where Merlin sends a proof of length at most
2n−δn/2 ·poly(n) bits, while Arthur uses at most poly(n) coins and (2n−δn/2 +2δn) ·poly(n,m)
time, outputting the value of P ′ on all 2n−δn Boolean inputs with high probability. It is easy
to determine the truth value of the original QBF φ from the 2n−δn-length truth table of P ′;
this is simply a formula evaluation on an O(2n−δn)-size formula defined by the quantifier
prefix (Q1x1) · · · (Qn−δnxn−δn).

Setting δ = 2/3 yields a 22n/3 · poly(n,m)-length proof and an analogous running time
bound.

Case 2. If there are at least as many universal variables as existential ones, then Merlin
and Arthur decide to prove that ¬φ is false, by flipping the type of every quantifier (from
existential to universal, and vice-versa) and replacing P with an arithmetic circuit for
¬F . Now the quantifier suffix (Q′n−δn+1xn−δn+1) · · · (Q′nxn) of the new QBF contains more
existential quantifiers than universal ones, and we proceed as in the first case, evaluating
an (n− δn)-variable formula of 2δn size (and at most δn/2 universally quantified variables)
on all of its possible assignments, and inferring the truth or falsity of the QBF from that
evaluation. J

5 Conclusion

By a simple but powerful protocol for batch multipoint evaluation, we have seen how
non-interactive proof systems can be exponentially more powerful than randomized or

CCC 2016

2:12 Strong ETH Breaks With Merlin and Arthur

nondeterministic algorithms, assuming some exponential-time hypotheses. There are many
questions left to pursue, for instance:

Are there more efficient proof systems if we just want to prove that a formula is UNSAT?
Perhaps UNSAT has an MA-proof system of O?(2n/3) time. Perhaps Parity-SAT could
be certified more efficiently, exploiting the nice properties of characteristic-two fields? By
the Valiant-Vazirani lemma [50], this would imply a three-round interactive proof system
for UNSAT that is also more efficient. Our MA-proof systems all have extremely low
randomness requirements of Arthur. If we allowed 2δn bits of randomness for some δ > 0,
perhaps they can be improved further.
Faster nondeterministic UNSAT algorithms are by now well-known to imply circuit lower
bounds for problems in nondeterministic exponential time [55, 32]. Can the proof systems
of this paper be applied to conclude new lower bounds? One difficulty is that we already
know MAEXP 6⊂ P/poly [14]. More seriously, it seems possible that one could apply our
protocol for #SAT on circuits of o(n) depth to show that (for instance) EpromiseMA does
not have 2o(n) size formulas; this would be a major advance in our understanding of
exponential-size circuits.
Can O?(2n/2)-time Merlin-Arthur proof system for #SAT be converted into a construction
of nondeterministic circuits of (2− ε)n size for UNSAT? To do this, we would want to
have a small collection of coin tosses that suffices for verification. If we convert the proof
system into an Arthur-Merlin game in the standard way, the protocol has the following
structure: for a proof-length parameter `, we can toss O(` · n) random coins are tossed
prior to the proof, then Merlin can give a single Õ(`)-bit proof of the protocol that needs
to be simulated on O(`) different coin tosses of n/2 + Õ(1) bits each. The difficulty is
that each of these O(`) coin tosses takes Ω(2n/`) time for Arthur to verify on his own, as
far as we can tell. So even though the probability of error here could be extremely small
(less than 1/2Ω(`)) we do not know how to get a (2− ε)n time algorithm for verification.
Does QBF on n variables and poly(n) connectives have an MA-proof system using (2−ε)n
time, for some ε > 0?

Acknowledgements. I thank Russell Impagliazzo for sending a draft of his paper (with
coauthors) on NSETH, MASETH, and AMSETH, and for discussions on the #SAT protocol.
I also thank Petteri Kaski for suggesting that I add a protocol for Closest Pair and Hamiltonian
Cycle, Shafi Goldwasser for references, and the anonymous reviewers for their comments.

References

1 Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory.
ACM TOCT, 1, 2009.

2 Amir Abboud, Arturs Backurs, and Virginia V. Williams. Quadratic-time hardness of LCS
and other sequence similarity measures. In FOCS, pages 59–78, 2015.

3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In FOCS, pages 434–443, 2014.

4 Amir Abboud, Richard Ryan Williams, and Huacheng Yu. More applications of the poly-
nomial method to algorithm design. In SODA, pages 218–230, 2015.

5 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.
In FOCS, pages 136–150, 2015.

6 Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient
verification via secure computation. In Proc. ICALP, Part I, pages 152–163, 2010.

R. R. Williams 2:13

7 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cam-
bridge University Press, 2009.

8 László Babai. Trading group theory for randomness. In STOC, pages 421–429, 1985.
9 László Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking computations

in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, pages 21–32, 1991.

10 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In STOC, pages 51–58, 2015.

11 Christopher Beck and Russell Impagliazzo. Strong ETH holds for regular resolution. In
STOC, pages 487–494, 2013.

12 Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, 1974.

13 Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly
subquadratic algorithms unless SETH fails. In FOCS, pages 661–670, 2014.

14 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations. In
CCC, pages 8–12, 1998.

15 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Parameterized and Exact Complexity (IWPEC), pages 75–85,
2009.

16 Marco Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mikhailin, Ramamohan Paturi,
and Stefan Schneider. Nondeterministic extensions of the Strong Exponential Time Hy-
pothesis and consequences for non-reducibility. In Proceedings of the ACM Conference on
Innovations in Theoretical Computer Science, (ITCS), pages 261–270, 2016.

17 Timothy M. Chan and Ryan Williams. Deterministic APSP, Orthogonal Vectors, and more:
Quickly derandomizing Razborov-Smolensky. In SODA, pages 1246–1255, 2016.

18 Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of compu-
tation using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

19 Charles M. Fiduccia. Polynomial evaluation via the division algorithm: The fast fourier
transform revisited. In STOC, pages 88–93, 1972.

20 Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In ACM CCS, pages 501–512, 2012.

21 Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

22 Oded Goldreich and Johan Håstad. On the complexity of interactive proofs with bounded
communication. Inf. Process. Lett., 67(4):205–214, 1998.

23 Oded Goldreich, Salil P. Vadhan, and Avi Wigderson. On interactive proofs with a laconic
prover. Computational Complexity, 11(1-2):1–53, 2002.

24 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4):27, 2015. Original in STOC’08.

25 Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of inter-
active proof-systems (extended abstract). In STOC, pages 291–304, 1985.

26 Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and poly-
nomial identity testing. In FOCS, pages 110–119, 2014.

27 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. In Proceedings of the
ACM Conference on Innovations in Theoretical Computer Science, (ITCS), pages 133–142,
2015.

28 Ellis Horowitz. A fast method for interpolation using preconditioning. Inf. Process. Lett.,
1(4):157–163, 1972.

29 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

CCC 2016

2:14 Strong ETH Breaks With Merlin and Arthur

30 Russell Impagliazzo, Ramamohan Paturi, and Stefan Schneider. A satisfiability algorithm
for sparse depth two threshold circuits. In FOCS, pages 479–488, 2013.

31 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

32 Hamid Jahanjou, Eric Miles, and Emanuele Viola. Local reductions. In ICALP, pages
749–760, 2015.

33 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

34 Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to delegate computations: the
power of no-signaling proofs. In STOC, pages 485–494, 2014.

35 Richard M Karp. Dynamic programming meets the principle of inclusion and exclusion.
Operations Research Letters, 1(2):49–51, 1982.

36 Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization and modular
composition. SIAM J. Comput., 40(6):1767–1802, 2011.

37 J. C. Lagarias and Andrew M. Odlyzko. Computing pi(x): An analytic method. J. Algo-
rithms, 8(2):173–191, 1987.

38 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

39 Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. JACM, 39(4):859–868, 1992.

40 Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE Symposium on Security and Privacy, pages 238–252, 2013.

41 Vaughan R. Pratt. Every prime has a succinct certificate. SIAM J. Comput., 4(3):214–220,
1975.

42 Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-sat (pre-
liminary version). In SODA, pages 128–136, 2000.

43 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In STOC, pages 515–524, 2013.

44 Herbert John Ryser. Combinatorial mathematics. Mathematical Association of America,
1963. The Carus mathematical monographs.

45 Adi Shamir. IP = PSPACE. Journal of the Association for Computing Machinery,
39(4):869–877, 1992.

46 A. Shen. IP = PSPACE: simplified proof. J. ACM, 39(4):878–880, 1992.
47 P. M. Spira. On time hardware complexity tradeoffs for boolean functions. In Proceedings

of the Fourth Hawaii International Symposium on System Sciences, pages 525–527, 1971.
48 Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, pages

71–89, 2013.
49 Leslie Valiant. Completeness classes in algebra. In STOC, pages 249–261, 1979.
50 Leslie Valiant and Vijay Vazirani. NP is as easy as detecting unique solutions. Theor.

Comp. Sci., 47(3):85–93, 1986.
51 Leslie G. Valiant. Reducibility by algebraic projections. In Logic and Algorithmic: an

International Symposium held in honor of Ernst Specker, volume 30, pages 365–380, 1982.
Monogr. No. 30 de l’Enseign. Math.

52 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular con-
jectures such as the strong exponential time hypothesis. In Proc. International Symposium
on Parameterized and Exact Computation, pages 16–28, 2015.

53 Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 2013. 3rd edition.

54 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005.

R. R. Williams 2:15

55 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM
Journal on Computing, 42(3):1218–1244, 2013. See also STOC’10.

56 Ryan Williams. Non-uniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.
Preliminary version in CCC’11.

57 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. In
SODA, pages 1867–1877, 2014.

A Quick Proof Systems For Some Poly-Time Problems

We can also obtain nearly-linear time MA-proof systems for quite a few problems which have
been conjectured to be hard to solve faster than quadratic time. Perhaps the most illustrative
example is a proof system for computing orthogonal pairs of vectors. Via reductions, this
result implies analogous proof systems for several other quadratic-time solvable problems
(see [4]); we omit the details here.

I Theorem A.1. Let d ≤ n. For every A ⊆ {0, 1}d such that |A| = n, there is a MA-proof
system certifying for every v ∈ A if there is a u ∈ A such that 〈v, u〉 = 0, with Õ(n · d) time
and error probability 1/poly(n).

Proof. Let p be a prime greater than n2 · d. Define the 2d-variable polynomial

P (x1, . . . , xd, y1, . . . , yd) :=
d∏
i=1

(1− xi · yi) .

Observe deg(P) ≤ 2d, and for a pair of Boolean vectors u, v ∈ {0, 1}d, P (u, v) = 1 if
〈u, v〉 = 0, otherwise P (u, v) = 0. Then, the polynomial

P ′(u[1], . . . , u[d]) :=
∑

j=1,...,n
P (u[1], . . . , u[d], vj [1], . . . , vj [d])

counts the number of vectors in A that are orthogonal to the input vector u ∈ {0, 1}d. Note
the size of P ′ as an arithmetic circuit is O(n ·d), and its degree is at most 2d as well. Applying
Theorem 3.1 directly, we can certify the evaluation of P ′ on all n vectors of d dimensions in
Õ(n · d) time. J

One consequence (among many) of Theorem A.1 is an MA-proof system for the dominating
pairs problem in computational geometry: given a set S of n vectors in Rd, determine if
there are u, v ∈ S such that u[i] < v[i] for all i = 1, . . . , d. (Here, our computational model
is the real RAM, where additions and comparisons of reals are unit time operations.)

I Corollary A.2. There is an MA-proof system for counting the number of dominating pairs
in Õ(n1.5 ·d1.5) time. As a consequence, there is a MA-proof system for counting 0-1 solutions
to a linear program with k variables and m constraints that runs in 23k/4 · poly(m, k) time.

Proof. Given that one can count orthogonal vectors of n vectors in d Boolean dimensions in
t(n, d) time, a recent reduction of Chan and the author [17] shows how to count the number
of dominating pairs among n vectors in Rd, in O(n2d2/s+ t(n, 2 + ds)) time, for any positive
natural number s. In fact, the reduction makes precisely one call to orthogonal vectors.
Theorem A.1 provides an Õ(n · d) time proof system for counting orthogonal vectors, so by
setting s =

√
n · d to balance the factors, there is a proof system for counting dominating

pairs in Õ(n1.5 · d1.5) time. By a reduction of Impagliazzo, Paturi, and Schneider [30] from
integer linear programming to dominating pairs, we obtain an MA-proof system for counting

CCC 2016

2:16 Strong ETH Breaks With Merlin and Arthur

the number of Boolean solutions to a linear program with k variables and m inequalities in
23k/4 · poly(m, k) time. J

Finally, we illustrate that the above ideas can certify Nearest Neighbors (in the Hamming
metric) in near-linear time as well:

Reminder of Theorem 1.6 Let d ≤ n. For every A ⊆ {0, 1}d with |A| = n, and every
parameter k ∈ {0, 1, . . . , d}, there is an MA-proof system certifying for every v ∈ A the
number of points in A with Hamming distance at most k from v, running in Õ(n · d) time
with error probability 1/poly(n).

Proof. (Sketch) Analogous to Theorem A.1. Let p be a prime greater than n2 · (2d + 1),
and let k ∈ {0, 1, . . . , d} be our proximity parameter. Define the degree-2d polynomial Ψ(x)
to be 0 on all j = −d, . . . , d − 2k, and 1 on all j = d − 2k, . . . , d. Note that such a Ψ can
easily be constructed by interpolation in Õ(d) time (cf. Theorem 2.2). Define the 2d-variable
polynomial

P (x1, . . . , xd, y1, . . . , yd) := Ψ
(

d∑
i=1

xi · yi

)
.

Observe that deg(P) ≤ 2d, and for a pair of Boolean vectors u, v ∈ {−1, 1}d, P (u, v) = 1 if
and only if u and v differ in at most k coordinates. (Differing in k coordinates is equivalent
to summing (d−k) ones and k minus-ones in the inner product.) Therefore, if we map all the
0/1 vectors in A to 1/− 1 vectors (mapping 0 to 1, and mapping 1 to −1), the polynomial

P ′(u[1], . . . , u[d]) :=
∑

j=1,...,n
P (u[1], . . . , u[d], vj [1], . . . , vj [d])

counts the number of vectors in A (construed as vectors in {−1, 1}, instead of {0, 1}) that
have Hamming distance at most k from the input u ∈ {−1, 1}d. The size of P ′ is O(n · d),
its degree is at most 2d, and applying Theorem 3.1 allows us to certify the evaluation of P ′
on all n vectors of d dimensions in Õ(n · d) time. Our prime p is chosen large enough so that
the values of all intermediate computations are preserved. J

A.1 Certifying the Number of Small Cliques
The final result of this section gives an efficient MA-proof system for verifying the number of
k-cliques in a graph:

Reminder of Theorem 1.7 For every k, there is a MA-proof system such that for every
graph G on n nodes, the verifier certifies the number of k-cliques in G using Õ(nbk/2c+2)
time, with error probability 1/poly(n).

Proof. The strategy (as in previous proofs) is to reduce the problem to multipoint evaluation
of an appropriate circuit on an appropriate list of points, and appeal to Theorem 3.1.

Given a graph G = (V,E) on n nodes with V = [n], let A be its adjacency matrix.
Let `-Cliques(G) be the collection of all `-cliques of G, represented as subsets of [n] of
cardinality `. Given a subset S ⊆ [n], let J(S) := {v ∈ (V −S) | (∀u ∈ S)[(u, v) ∈ E]} be the
joint neighborhood of S. We denote the members of J(S) as {uJ(S),1, . . . , uJ(S),|J(S)|} ⊆ [n].
Consider the polynomial

C(x1, . . . , xn) :=
∑

S∈`-Cliques(G)

Ek−`|J(S)|(xuJ(S),1 , . . . , xuJ(S),|J(S)|),

R. R. Williams 2:17

where Ekn is the kth elementary symmetric polynomial on n variables. Suppose a =
(a1, . . . , an) ∈ {0, 1}n contains exactly k − ` ones, and let Ta ⊆ [n] be the set corresponding
to a. Observe that C(a1, . . . , an) equals the number of S ⊆ (V − Ta) such that S is an
`-clique and every node of S has an edge to every node of Ta. Therefore, if we evaluate C
on the indicator vectors for every (k − `)-clique in G, the sum of these evaluations will be
the number of k-cliques in G times

(
n
k−`
)
(every k-clique will be counted

(
n
k−`
)
times in the

summation).
Therefore, it suffices to evaluate C on the O(

(
n
k−`
)
) indicator vectors of (k − `)-cliques in

G. These vectors of length n can obviously be prepared in O(nk−`+1) time.
It is well-known that for every k, the kth elementary symmetric polynomial on variables

x1, . . . , xn can be computed in O(n2) size and degree O(n) (this result is often attributed to
Ben-Or). To compute this polynomial, we just have to determine the coefficient of zk in the
polynomial

n∏
i=1

(z − xi),

which can be done by computing the coefficient of zk in the polynomial determined by
feeding the set of points {(x0,

∏n
i=1(x0−xi)), (x1, 0), . . . , (xn, 0)} into a circuit for univariate

interpolation, where x0 is a point different from x1, . . . , xn. Each of the joint neighborhoods
J(S) can easily be determined in O(` · n) time. The total degree of C is therefore O(n), and
its size is O(n2 ·

(
n
`

)
).

Applying Theorem 3.1 directly, we can evaluate C on O(
(
n
k−`
)
) points over Fp with

p > nk−`, in time

Õ

((
n

k − `

)
· n+

(
n

`

)
· n2
)
.

Setting ` = bk/2c yields a running time of Õ(nbk/2c+2). J

CCC 2016

	Introduction
	Our Results

	Preliminaries
	More Related Work

	Fast Multipoint Circuit Evaluation (With Merlin and Arthur)
	Evaluating Sums Over Polynomials
	Univariate Polynomial Identity Testing and the Nondeterministic SETH

	Quantified Boolean Formulas
	Conclusion
	Quick Proof Systems For Some Poly-Time Problems
	Certifying the Number of Small Cliques

