On the Sum-of-Squares Degree of Symmetric Quadratic Functions

Authors Troy Lee, Anupam Prakash, Ronald de Wolf, Henry Yuen



PDF
Thumbnail PDF

File

LIPIcs.CCC.2016.17.pdf
  • Filesize: 0.68 MB
  • 31 pages

Document Identifiers

Author Details

Troy Lee
Anupam Prakash
Ronald de Wolf
Henry Yuen

Cite AsGet BibTex

Troy Lee, Anupam Prakash, Ronald de Wolf, and Henry Yuen. On the Sum-of-Squares Degree of Symmetric Quadratic Functions. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 17:1-17:31, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
https://doi.org/10.4230/LIPIcs.CCC.2016.17

Abstract

We study how well functions over the boolean hypercube of the form f_k(x)=(|x|-k)(|x|-k-1) can be approximated by sums of squares of low-degree polynomials, obtaining good bounds for the case of approximation in l_{infinity}-norm as well as in l_1-norm. We describe three complexity-theoretic applications: (1) a proof that the recent breakthrough lower bound of Lee, Raghavendra, and Steurer [Lee/Raghavendra/Steurer, STOC 2015] on the positive semidefinite extension complexity of the correlation and TSP polytopes cannot be improved further by showing better sum-of-squares degree lower bounds on l_1-approximation of f_k; (2) a proof that Grigoriev's lower bound on the degree of Positivstellensatz refutations for the knapsack problem is optimal, answering an open question from [Grigoriev, Comp. Compl. 2001]; (3) bounds on the query complexity of quantum algorithms whose expected output approximates such functions.
Keywords
  • Sum-of-squares degree
  • approximation theory
  • Positivstellensatz refutations of knapsack
  • quantum query complexity in expectation
  • extension complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778-797, 2001. Earlier version in FOCS'98. Google Scholar
  2. G. Blekherman. Symmetric sums of squares on the hypercube. Manuscript in preparation, 2015. Google Scholar
  3. G. Blekherman and C. Riener. Symmetric nonnegative forms and sums of squares, 2012. arXiv:1205.3102. Google Scholar
  4. G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum amplitude amplification and estimation. In Quantum Computation and Quantum Information: A Millennium Volume, volume 305 of AMS Contemporary Mathematics Series, pages 53-74. AMS, 2002. quant-ph/0005055. Google Scholar
  5. H. Buhrman, R. Cleve, R. de Wolf, and Ch. Zalka. Bounds for small-error and zero-error quantum algorithms. In Proceedings of 40th IEEE FOCS, pages 358-368, 1999. cs.CC/9904019. Google Scholar
  6. T. Ceccherini-Silberstein, F. Scarabotti, and F. Tolli. Harmonic analysis on finite groups: representation theory, Gelfand pairs and Markov chains, volume 108. Cambridge University Press, 2008. Google Scholar
  7. A. Childs and T. Lee. Optimal quantum adversary lower bounds for ordered search. In Proceedings of 35th International Colloquium on Automata, Languages and Programming (ICALP'08), pages 869-880, 2008. Google Scholar
  8. Y. Filmus and E. Mossel. Harmonicity and invariance on slices of the boolean cube. In Proceedings of 31st CCC, 2016. arXiv:1507.02713. Google Scholar
  9. S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Exponential lower bounds for polytopes in combinatorial optimization. Journal of the ACM, 16(2), 2015. arxiv/1111.0837. Earlier version (under a different name) in STOC'12. Google Scholar
  10. C. Godsil. Association schemes, 2010. Lecture notes available on http://www.math.uwaterloo.ca/~cgodsil/pdfs/assoc2.pdf, version 1.
  11. M. de Graaf and R. de Wolf. On quantum versions of the Yao principle. In Proceedings of 19th Annual Symposium on Theoretical Aspects of Computer Science (STACS'02), pages 347-358, 2002. quant-ph/0109070. Google Scholar
  12. D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Computational Complexity, 10(2):139-154, 2001. Google Scholar
  13. D. Grigoriev, E. Hirsch, and D. Pasechnik. Complexity of semialgebraic proofs. Moscow Mathematical Journal, 2(4):647-679, 2002. Google Scholar
  14. D. Grigoriev and N. Vorobjov. Complexity of Null- and Positivstellensatz proofs. Annals of Pure and Applied Logic, 113:153-160, 2001. Google Scholar
  15. L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of 28th ACM STOC, pages 212-219, 1996. quant-ph/9605043. Google Scholar
  16. J. Kaniewski, T. Lee, and R. de Wolf. Query complexity in expectation. In Proceedings of 42nd International Colloquium on Automata, Languages and Programming (ICALP'15), pages 761-772, 2015. arXiv:1411.7280. Google Scholar
  17. A. Kurpisz, S. Leppänen, and M. Mastrolilli. Sum-of-squares hierarchy lower bounds for symmetric formulations. In Proceedings of 18th IPCO, 2016. arXiv:1407.1746. Google Scholar
  18. J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001. Google Scholar
  19. J. R. Lee, P. Raghavendra, and D. Steurer. Lower bounds on the size of semidefinite programming relaxations. In Proceedings of 47th ACM STOC, pages 567-576, 2015. Google Scholar
  20. J. Löfberg. YALMIP: A toolbox for modeling and optimization in Matlab. In Proceedings of the CACSD conference, 2004. Google Scholar
  21. M. Minsky and S. Papert. Perceptrons. MIT press, Cambridge, MA, 1968. Second, expanded edition 1988. Google Scholar
  22. N. Nisan and M. Szegedy. On the degree of Boolean functions as real polynomials. Computational Complexity, 4:301-313, 1994. Google Scholar
  23. R. O'Donnell and R. Servedio. New degree bounds for polynomial threshold functions. Combinatorica, 30(3):327-358, 2010. Google Scholar
  24. P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. PhD thesis, California Institute of Technology, 2000. Google Scholar
  25. R. Paturi. On the degree of polynomials that approximate symmetric boolean functions. In Proceedings of 24th ACM STOC, pages 468-474, 1992. Google Scholar
  26. M. Petkovšek, H. Wilf, and D. Zeilberger. "A=B". Springer Science &Business Media, 1997. Google Scholar
  27. T. Rivlin. An introduction to the approximation of functions. Dover publications, inc., 1969. Google Scholar
  28. A. Sherstov. Approximate inclusion-exclusion for arbitrary symmetric functions. Computational Complexity, 18:219-247, 2009. Google Scholar
  29. A. Sherstov. The pattern matrix method. SIAM Journal on Computing, 40(6):1969-2000, 2011. Google Scholar
  30. Y. Shi and Y. Zhu. Quantum communication complexity of block-composed functions. Quantum information and computation, 9(5,6):444-460, 2009. URL: http://www.rintonpress.com/xxqic9/qic-9-56/0444-0460.pdf.
  31. N. Z. Shor. An approach to obtaining global extremums in polynomial mathematical programming problems. Cybernetics, 23:695-700, 1987. Google Scholar
  32. G. Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische Annalen, 207:87-97, 1974. Google Scholar
  33. K.C. Toh, M.J. Todd, and R.H. Tutuncu. SDPT3 - a Matlab software package for semidefinite programming. Optimization methods and software, 11:545-581, 1999. Google Scholar
  34. R. de Wolf. A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions. Quantum Information and Computation, 8:943-950, 2008. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail