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Abstract
We show a nearly quadratic separation between deterministic communication complexity and the
logarithm of the partition number, which is essentially optimal. This improves upon a recent
power 1.5 separation of Göös, Pitassi, and Watson (FOCS 2015). In query complexity, we estab-
lish a nearly quadratic separation between deterministic (and even randomized) query complexity
and subcube partition complexity, which is also essentially optimal. We also establish a nearly
power 1.5 separation between quantum query complexity and subcube partition complexity, the
first superlinear separation between the two measures. Lastly, we show a quadratic separation
between quantum query complexity and one-sided subcube partition complexity.

Our query complexity separations use the recent cheat sheet framework of Aaronson, Ben-
David, and Kothari. Our query functions are built up in stages by alternating function composi-
tion with the cheat sheet construction. The communication complexity separation follows from
“lifting” the query separation to communication complexity.
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1 Introduction

Deterministic communication complexity

In the standard model of communication complexity, we wish to compute a function F :
X × Y → {0, 1}, where the inputs x ∈ X and y ∈ Y are given to two different players,
while minimizing the communication between the players. We use Dcc(F ) to denote the
deterministic communication complexity of F , the number of bits communicated in the worst
case by the best deterministic protocol for the function F .

The partition number of F , denoted χ(F ), is the least number of monochromatic rectangles
in a partition or disjoint cover of X × Y (where a monochromatic rectangle is a set A×B,
with A ⊆ X and B ⊆ Y, such that F takes the same value on all elements of A×B). Yao
[30] observed that any C-bit communication protocol for F partitions the set of all inputs
X × Y into at most 2C monochromatic rectangles, which gives us logχ(F ) ≤ Dcc(F ). This
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4:2 Separations Between Communication/Query Complexity and Partitions

Table 1 Known separations between deterministic communication complexity, Dcc(F ), and
partition number, χ(F ).

Separation Reference

Dcc(F ) ≥ 2 logχ(F ) [18]
Dcc(F ) = Ω̃

(
log1.5 χ(F )

)
[10]

Dcc(F ) ≥
(
logχ(F )

)2−o(1) Theorem 1.1

Dcc(F ) = O
(
logχ(F )2) for all F : X × Y → {0, 1}

turns out to be a powerful lower bound, and in fact almost all lower bound techniques for
deterministic communication complexity, including the partition bound, discrepancy, fooling
sets, (nonnegative) rank, and various norm-based methods [13, 14, 22], actually lower bound
logχ(F ).

In addition to being a fruitful lower bound technique, logχ(F ) also yields an upper bound
on Dcc(F ). Aho, Ullman, and Yannakakis [4] showed that for all F : X × Y → {0, 1}, we
have

Dcc(F ) = O(log2 χ(F )). (1)

It has been a long-standing open problem to determine whether this upper bound can be
improved (see, e.g., [19, Open Problem 2.10]). We show that the upper bound in (1) is
essentially optimal.

I Theorem 1.1. There exists a function F : X ×Y → {0, 1} with Dcc(F ) ≥
(
logχ(F )

)2−o(1).

Until recently, the best known separation between the two measures was only by a factor
of 2 [18]. Recently, Göös, Pitassi, and Watson [10] showed that there exists a function F
with Dcc(F ) = Ω̃(log1.5 χ(F )), where the notation Ω̃(m) hides poly(logm) factors. Table 1
summarizes known separations between Dcc and logχ.

Deterministic query complexity

In the model of query complexity, we wish to compute a function f : {0, 1}n → {0, 1} on
an input x ∈ {0, 1}n given query access to the bits of the input, i.e., we can only access the
input via a black box that accepts an index i ∈ [n] (where [n] := {1, 2, . . . , n}) and responds
with xi ∈ {0, 1}. The goal is to compute f(x) while minimizing the number of queries made
to the black box. Let D(f) to denote the deterministic query complexity of f , the number of
queries made by the best deterministic algorithm that computes f correctly on all inputs.

As in communication complexity, most lower bounds for deterministic query complexity
are based on the simple observation that any d-query algorithm computing f partitions
the domain {0, 1}n into at most 2d monochromatic subcubes where each subcube fixes at
most d variables. A subcube is a restriction of the hypercube where some variables have
been fixed, and it is monochromatic if f takes the same value on all inputs in the subcube.
This motivates defining the subcube partition complexity of f as a smallest d such that the
domain {0, 1}n can be partitioned into at most 2d monochromatic subcubes that each fix
at most d variables. Subcube partition complexity can also be viewed as an unambiguous
version of certificate complexity as explained in Section 3, and hence we denote this measure
UC(f).
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Table 2 Known separations between deter-
ministic query complexity and subcube partition
complexity.

Separation Reference

D(f) = Ω(UC(f)1.261) [27]
D(f) = Ω̃(UC(f)1.5) [10]
D(f) ≥ UC(f)2−o(1) Theorem 1.2

D(f) = O(UC(f)2) for all f : {0, 1}n → {0, 1}

Table 3 Known separations between random-
ized query complexity and subcube partition
complexity.

Separation Reference

R(f) = Ω(UC(f)1.058) [17]
R(f) = Ω̃(UC(f)1.5) [9]
R(f) ≥ UC(f)2−o(1) Theorem 1.3

R(f) = O(UC(f)2) for all f : {0, 1}n → {0, 1}

Due to the observation above, we have UC(f) ≤ D(f). It turns out that this lower bound
is also relatively tight: for all f : {0, 1}n → {0, 1} we have

D(f) = O(UC(f)2). (2)

We show that this upper bound is essentially optimal.

I Theorem 1.2. There exists a total function f with D(f) ≥ UC(f)2−o(1).

The first separation between these two measures was a power 1.261 separation by Savický,
which was recently improved by Göös, Pitassi, and Watson [10] to power 1.5. Table 2
summarizes known separations between these measures.

Randomized query complexity

We can extend the query model to allow randomized algorithms in the natural way. We define
the bounded-error randomized query complexity of a function f , R(f), to be the minimum
number of queries needed in the worst case by a randomized algorithm that outputs f(x) on
input x with probability at least 2/3.

As before, almost all lower bound techniques for randomized query complexity are upper
bounded by UC(f), as shown in [17]. This includes the partition bounds [13, 14], approximate
polynomial degree [25], approximate nonnegative junta degree (also known as nonnegative
literal degree or conical junta degree) [16], block sensitivity [24], randomized certificate
complexity or fractional block sensitivity [1, 7, 29], and the classical analogue of the quantum
adversary bound [20, 28, 2].

Since we obviously have R(f) ≤ D(f), using (2) we know that R(f) = O(UC(f)2). We
show that this upper bound is also essentially optimal.

I Theorem 1.3. There exists a total function f with R(f) ≥ UC(f)2−o(1).

The first asymptotic separation between these measures was a power 1.058 separation
by Racicot-Desloges, Santha, and Kothari [17], which was later improved by Göös, Jayram,
Pitassi, and Watson [9] to a power 1.5 separation. Table 3 summarizes the known separations
between these measures.

Quantum query complexity

The query model can also be naturally extended to quantum algorithms. We denote by Q(f)
the bounded-error quantum query complexity of f , the minimum number of queries made in
the worst case by a quantum algorithm that outputs f(x) on input x with probability at
least 2/3. (See [6] for a formal definition.)
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4:4 Separations Between Communication/Query Complexity and Partitions

As before, since Q(f) ≤ D(f), using (2) we know that Q(f) = O(UC(f)2). However,
prior to our work no function was known for which Q(f)� UC(f) was known. Furthermore,
the functions previously used to show separations between D(f) or R(f) and UC(f) do not
separate Q(f) from UC(f). Indeed, even the functions constructed to prove Theorem 1.2 and
Theorem 1.3 do not separate Q(f) from UC(f). Despite this, we give the first superlinear
separation between Q(f) and UC(f).

I Theorem 1.4. There exists a total function f with Q(f) ≥ UC(f)1.5−o(1).

We are also able to show an improved separation between quantum query complexity
and one-sided subcube partition complexity, denoted by UC1(f), which is similar to subcube
partition complexity except that we only need to partition the 1-inputs using monochromatic
subcubes.

For this measure, the quadratic upper bound D(f) = O(UC1(f)2) still holds [8, Propo-
sition 5], and hence Q(f) = O(UC1(f)2). We show this upper bound is optimal up to log
factors, qualitatively improving upon [10] and [9] who proved the same result for deterministic
and randomized query complexity respectively.

I Theorem 1.5. There exists a total function f with Q(f) = Ω̃(UC1(f)2).

2 High-level overview

We now provide a high-level overview of the separations shown.

Deterministic communication complexity

We prove Theorem 1.1 by showing the analogous separation in query complexity (Theorem 1.2)
and “lifting” the result to communication complexity, which is also the strategy used in
[10]. Essentially, the deterministic simulation theorem of [10] provides a black-box way of
converting a query separation between D(f) and UC(f) to a separation between Dcc(F )
and logχ(F ). The theorem weakens the separation by log of the input size of f , but with a
suitable choice of parameters this is negligible compared to the o(1) term in the separation.

Deterministic query complexity

To prove Theorem 1.2, we use the recently introduced cheat sheet framework [3] and the
commonly used technique of function composition. Before describing the construction, we
need to define some notation. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1},
we define the composed function f ◦ g to be the function on mn bits whose output on
y = (y11, . . . , y1m, . . . , yn1, . . . , ynm) is f(g(y11, . . . , y1m), . . . , g(yn1, . . . , ynm)). Let Andn

and Orn denote the And and Or function on n bits respectively. For any function f , we
use fCS to denote the “cheat sheet version” of f , a new total Boolean function constructed
from f . (We review the cheat sheet framework in Section 4.)

An interesting feature of the cheat sheet framework is that UC1(fCS) can be substantially
smaller than UC1(f) because one can construct a partition for inputs with fCS = 1 without
using a partition for inputs with f = 1. This property is crucial for our construction but is
not sufficient by itself because the complexity of the best partition for inputs with fCS = 0 is
of a similar order as UC(f). To deal with this, we combine the cheat sheet construction with
several other steps which rebalance the complexity of partitions for f = 1 and f = 0.

We construct our function in stages starting with the function f0 = Andn that achieves
no separation between D(f) and UC(f). We then compose the function with Orn, construct
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the cheat sheet version, and then compose with Andn, to obtain the function f1 = Andn ◦
(Orn◦Andn)CS, which achieves a power 3/2 separation between D(f) and UC(f). Repeating
this construction once more yields f2 = Andn ◦ (Orn ◦Andn ◦ (Orn ◦Andn)CS)CS, which
achieves a power 5/3 separation, and so on. The function fk achieves a (2k + 1)/(k + 1)
separation, which yields a 2− o(1) separation if we choose k to be a slow growing function
of n.

Randomized query complexity

The function constructed above also yields the separation in Theorem 1.3 with slightly worse
parameters. The analysis of the constructed function is similar since deterministic and
randomized query complexities behave similarly with respect to the cheat sheet technique
and with respect to composition with the And and Or functions.

Quantum query complexity

Lastly, we establish the quantum separations using two functions introduced by Aaronson,
Ben-David and Kothari [3]: the Block-k-sum-of-k-sums function, which we denote Bkk,
and the Block-k-sum function, which we denote bk-sum. The function BkkCS yields the
separation in Theorem 1.5. The separation in Theorem 1.4 requires a function constructed in
stages again. The first function is f1 = And◦BkkCS, which achieves a power 5/4 separation,
the next is f2 = Andn ◦ (bk-sumn ◦ f1), which achieves a power 4/3 separation and so on.
The function fk achieves a power (3k + 2)/(2k + 2) separation.

3 Preliminaries

Communication complexity

The only communication complexity measures we need are Dcc(F ) and χ(F ), which were
defined in Section 1. The interested reader is referred to [19, 15] for more formal definitions
of these measures.

Query complexity

For more formal definitions of measures introduced in Section 1, the reader is referred to the
survey by Buhrman and de Wolf [6]. The only measure not covered in the survey is subcube
partition complexity, which is explained in detail in [17].

Subcube partition complexity can also be viewed as unambiguous certificate complexity
and we use this perspective in this paper. To explain this, let us begin with certificate
complexity.

A certificate for an input x ∈ {0, 1}n is a subset S ⊆ [n] of indices and claimed values for
these bits, such that x is consistent with the certificate and any input y consistent with the
certificate satisfies f(x) = f(y). In other words, a certificate for x is a partial assignment
of bits consistent with x such that any other string consistent with this partial assignment
has the same function value as x. For b ∈ {0, 1}, the b-certificate complexity of f , denoted
Cb(f), is the size of the smallest certificate for x maximized over all inputs with f(x) = b.
The certificate complexity of f , C(f), is defined as C(f) := max{C0(f), C1(f)}. Alternately,
C1(f) is the smallest w such that f can be written as a width-w DNF, i.e., a DNF in which
each term contains at most w variables. Similarly, C0(f) corresponds to CNF width.

CCC 2016



4:6 Separations Between Communication/Query Complexity and Partitions

Unambiguous certificate complexity is defined similarly, except we require the set of
certificates to be unambiguous, i.e., at most one certificate from the set of all certificates
should work for a given input. In other words, the unambiguous 1-certificate complexity of
f is the minimum w such that f can be written as a width-w DNF in which at most one
term evaluates to 1 on any input. Similar to certificate complexity, we denote unambiguous
b-certificate complexity by UCb(f) and define UC(f) := max{UC0(f),UC1(f)}. Clearly,
since unambiguous certificates are more restricted than certificates, we have for b ∈ {0, 1},
Cb(f) ≤ UCb(f) and C(f) ≤ UC(f).

For example, consider the Orn function on n bits defined as
∨

i∈[n] xi. Clearly C0(Orn) =
n since we must examine all n bits to be sure that all xi = 0. On the other hand, C1(Orn) = 1
since the location of any 1 in the input is a certificate. Obviously UC0(Orn) remains n.
However, a single 1 in the input is not an unambiguous 1-certificate since inputs with multiple
1s would have multiple valid certificates. In other words, although

∨
i∈[n] xi is a valid DNF

representation of Orn, it is not unambiguous since several terms can simultaneously be 1.
So consider the following DNF:

Orn(x) = x1 ∨ x1x2 ∨ x1x2x3 ∨ · · · ∨ x1x2 · · ·xn−1xn . (3)

This DNF is unambiguous since any term evaluating to 1 prevents other terms from evaluating
to 1. Thus we have UC1(Orn) ≤ n. Although this result in trivial because UC1(f) ≤ n for
any n-bit function f , this DNF representation of Orn will be useful to us later later because
it has the property that every unambiguous certificate has only one unnegated index xi.

Composition theorems

Composition theorems relate the complexity of composed functions with the complexities of
the individual functions. For example, for all Boolean functions f and g, D(f ◦g) = D(f)D(g)
[29, 23]. In our construction we will repeatedly compose functions with Andn and Orn, and
hence we need to understand the complexities of the resulting functions.

I Lemma 3.1 (AND/OR composition). For any total Boolean function f , the following
bounds hold:

D(Andn ◦ f) = nD(f)
R(Andn ◦ f) = Ω(nR(f))
Q(Andn ◦ f) = Ω(

√
nQ(f))

C0(Andn ◦ f) ≤ C0(f)
C1(Andn ◦ f) ≤ nC1(f)
UC0(Andn ◦ f) ≤
UC0(f) + (n− 1)UC1(f)
UC1(Andn ◦ f) ≤ nUC1(f)

D(Orn ◦ f) = nD(f)
R(Orn ◦ f) = Ω(nR(f))
Q(Orn ◦ f) = Ω(

√
nQ(f))

C0(Orn ◦ f) ≤ nC0(f)
C1(Orn ◦ f) ≤ C1(f)
UC0(Orn ◦ f) ≤ nUC0(f)
UC1(Orn ◦f) ≤ (n−1)UC0(f)+UC1(f)

Proof. We prove the claims for the function Andn◦f . Similar reasoning proves the analogous
claims for the function Orn ◦ f .

The first property follows from the fact thatD(f◦g) = D(f)D(g) for any Boolean functions
f and g [29, 23]. R(Andn ◦ f) = Ω(nR(f)) was recently proved by [9]. Q(Andn ◦ f) =
Ω(
√
nQ(f)) because Q(f ◦ g) = Θ(Q(f)Q(g)) for any Boolean functions f and g [12, 26, 21]

and we know that Q(Andn) = Q(Orn) = Θ(
√
n) [11, 5].

We have C0(Andn ◦ f) ≤ C0(f) since a 0-certificate for Andn is a 0-input to it, which
corresponds to an instance of f that evaluates to 0. On the other hand, by certifying
that all n instances of f evaluate to 1, we can certify Andn ◦ f evaluates to 1, and hence
C1(Andn ◦ f) ≤ nC1(f).
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We can unambiguously certify that Andn ◦ f evaluates to 0 by unambiguously certifying
the value of the first (from the left) 1-input to the Andn gate and unambiguously certifying
that all previous inputs are 0. This is the same idea used to construct the unambiguous DNF
for Orn in (3). This construction gives UC0(Andn ◦ f) ≤ UC0(f) + (n− 1)UC1(f). We can
unambiguously certify that Andn ◦ f evaluates to 1 by providing unambiguous 1-certificates
for all n instances of f . This gives UC1(Andn ◦ f) ≤ nUC1(f). J

4 Cheat sheet framework

We now overview the recently introduced cheat sheet framework [3]. The framework as
presented in [3] is more general and can fulfill different objectives such as making partial
functions total. We present a restricted version of the framework that only works for total
functions. We use the framework because it makes 1-certificates unambiguous in a natural
way.

I Definition 4.1 (Cheat sheet version of a total function). Let f : {0, 1}N → {0, 1} be a
function, c = 10 logN and m = 10C(f) log2 N . Then the cheat sheet version of f , denoted
fCS, is a total function

fCS : ({0, 1}N )c × ({0, 1}m)2c

→ {0, 1}.

Let the input be written as (x1, x2, . . . , xc, Y1, Y2, . . . , Y2c), where for all i ∈ [N ], xi ∈
{0, 1}N and for all j ∈ [2c], Yj ∈ {0, 1}m. Let `i = f(xi) and ` ∈ [2c] be the posi-
tive integer corresponding to the binary string `1`2 . . . `c. Then we define the value of
fCS(x1, x2, . . . , xc, Y1, Y2, . . . , Y2c) to be 1 if and only if Y` contains certificates for f(xi) = `i

for all i ∈ [c].

Informally, the cheat sheet construction takes any total function f and converts it into a
new total function fCS in the following way. An input to the new function fCS first contains
c = 10 logN inputs to f and then a vast array of size 2c of cells of size m bits. The outputs
of these c inputs to f is a bit string `1`2 . . . `c of length c that represents an integer ` ∈ [2c]
in the natural way. We treat this integer ` as an address into this array of size 2c and say
that these c inputs to f point to the `th cell of the array. At the `th cell of the array we
require certificates certifying that this was indeed the cell pointed to by the c inputs to f . In
other words, we require certificates certifying that f(xi), the output of f acting on the ith
input, is indeed equal to `i for all i ∈ [c]. Since a certificate for a single f consists of C(f)
pointers to the input, a certificate is of size C(f) logN bits, and hence c certificates are of
size m = C(f)c logN = 10C(f) log2 N . The function fCS is defined to be 1 if and only if the
input satisfies this property, i.e., if the cell pointed to by the c instances does indeed contain
certificates certifying it is the correct cell.

This construction preserves the complexity of f with respect to some measures. For
example, D(fCS) equals D(f) up to log factors. The upper bound uses the natural algorithm
for fCS: the deterministic algorithm first computes the c copies of f on inputs x1 to xc and
finds the cell pointed to by these c inputs. Then it checks if the certificates in this cell certify
that this is the right cell. This requires cD(f) queries to compute the c copies, m queries
to read the contents of the cell and cC(f) queries to check if the certificates are all correct.
Overall this uses O(cD(f)) queries. We also have D(fCS) = Ω(D(f)), because intuitively if
an algorithm cannot compute f it has no hope of finding the cheat sheet since that would
require solving c copies of f or searching in an array of size n10. Similarly, many measures
behave as expected under cheat sheets, and we show this below.
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4:8 Separations Between Communication/Query Complexity and Partitions

I Lemma 4.2 (Complexity of cheat sheet functions). For any total function f : {0, 1}N →
{0, 1}, if fCS : {0, 1}N ′ → {0, 1} denotes the cheat sheet version of f as defined in Defini-
tion 4.1, then we have the following upper and lower bounds:

D(fCS) = Ω(D(f))
R(fCS) = Ω(R(f)/ log2 N)
Q(fCS) = Ω(Q(f))
C0(fCS) = O(C(f) log2 N)
C1(fCS) = O(C(f) log2 N)
UC0(fCS) = O(UC(f) log2 N)
UC1(fCS) = O(C(f) log2 N)
N ′ = O(N12)

Proof. We have D(fCS) = Ω(D(f)) [3, Lemma 21], R(fCS) = Ω(R(f)/ log2 N) [3, Lemma
6], and Q(fCS) = Ω(Q(f)) [3, Lemma 12].

We have C0(fCS) = O(C(f) log2 N) because a valid 0-certificate for fCS can first certify
the c outputs to f , which requires O(cC(f)) queries. This points to a cell `. The certificate
can then contain the contents of cell ` of size O(C(f) log2 N) and the locations pointed to
(and the bits contained at these locations) by the certificates in cell `. After querying this
cell and all the locations pointed to by the certificates in this cell, it can be determined with
no further queries if this cell is incorrectly filled. We have C1(fCS) = O(C(f) log2 N) since
the location of the correct cell and the pointers within that cell along with the bits they
point to forms a 1-certificate.

We have UC0(fCS) = O(UC(f) log2 N) using the same argument as for certificate com-
plexity. We first certify the c outputs to f unambiguously using unambiguous certificates
of size UC(f). This points to a cell `. The certificate also contains the contents of cell `
and the locations pointed to (and the bits at these locations) by the certificates in cell `.
This certificate is unambiguous because this certificate evaluating to true prevents any other
certificate from evaluating to true. To see this, note that if another certificate tries to certify
a different value of ` then this will be an invalid certificate. If the certificate claims the same
value of `, then it must use the same certificates for the c instances of f because we used
unambiguous certificates and hence there is only one valid certificate for each f(xi) = `i.
Now if the other certificate has the same value of ` but different claimed values for the
contents of the `th cell or the locations pointed to by the cell, this will be inconsistent with
the actual input since our original certificate was consistent with the input.

We have UC1(fCS) = O(C(f) log2 N). For this case an unambiguous certificate will
contain only the contents of cell ` and the locations pointed to by the certificates in cell
` along with the bits contained at these locations. This is identical to the 1-certificate
we constructed above. Since this is clearly a valid certificate, we only need to show it is
unambiguous, i.e., that if this certificate evaluates to true, all other certificates must fail. If
another certificate has a different value of `, then its contents will not be able to certify that
the output of the c functions equals ` and the certificate will be rejected. On the other hand,
if the other certificate has the same value of ` but different claimed values for the contents of
the cell or the locations pointed to by the cell, this will be inconsistent with the input since
our original certificate was consistent with the input.

Lastly, we need to upper bound the input size of fCS. From Definition 4.1 we know the
input size is cN +m2c = 10N logN + 10N10C(f) log2 N = O(10N11 log2 N) = O(N12). J
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5 Randomized query complexity vs. subcube partitions and
deterministic communication vs. partition number

Randomized query complexity vs. subcube partitions

We now establish the following theorem which implies Theorem 1.3, which in turn implies
Theorem 1.2.

I Theorem 5.1. For every k ≥ 0, there exists a total Boolean function fk : {0, 1}Nk → {0, 1},
such that R(fk) = Ω̃(n2k+1) and UC(fk) = Õ(nk+1). Hence there is a function f with
R(f) ≥ UC(f)2−o(1).

Proof. Let f0 = Andn and fk be defined inductively as fk := Andn ◦ (Orn ◦ fk−1)CS, i.e.,
fk is the function obtain by composing Andn with the cheat sheet version of Orn composed
with fk−1.

We prove the claim by induction on k. The induction hypothesis and the base case,
f0 = Andn, are presented below, where Nk is the input size of the function fk.

Induction hypothesis (fk)
Nk = O(n25k )
D(fk) = Ω̃(n2k+1)
R(fk) = Ω̃(n2k+1)
C0(fk) = Õ(nk)
C1(fk) = Õ(nk+1)
UC0(fk) = Õ(nk+1)
UC1(fk) = Õ(nk+1)

Base case (f0 = Andn)
N0 = n

D(f0) = n

R(f0) = Ω(n)
C0(f0) ≤ 1
C1(f0) ≤ n
UC0(f0) ≤ n
UC1(f0) ≤ n

The complexities of f0 = Andn are straightforward to show and also follow from the general
composition lemma (Lemma 3.1) by letting f be the one-bit identity function. Clearly the
base case is consistent with the induction hypothesis.

We now show that the induction hypothesis for fk implies the same for fk+1. First we upper
bound the input size of fk+1 = Andn◦(Orn◦fk)CS. Since the input size of fk is O(n25k ), the
input size of Orn ◦ fk is O(n25k+1) and the input size of (Orn ◦ fk)CS is O(n12(25k+1)) (from
Lemma 4.2). Hence the input size of fk+1 is O(n12(25k+1)+1) = O(n12(25k)+13) = O(n25k+1).

The deterministic query complexity of fk+1 can be lower bounded as follows:

D(fk+1) = D(Andn ◦ (Orn ◦fk)CS) = nD((Orn ◦fk)CS) = Ω(nD(Orn ◦fk)) = Ω̃(n2k+3),

where we used Lemma 3.1 and Lemma 4.2 to compute the relevant measures. The same
calculation also works for R(fk+1) up to log factors since R(f) and D(f) behave similarly in
the aforementioned lemmas up to log factors. Similarly using Lemma 3.1 and Lemma 4.2 we
have

C0(fk+1) = C0(Andn ◦ (Orn ◦ fk)CS) ≤ C0((Orn ◦ fk)CS) = Õ(C(Orn ◦ fk)) = Õ(nk+1)

and

C1(fk+1) = C1(Andn ◦ (Orn ◦fk)CS) ≤ nC1((Orn ◦fk)CS) = Õ(nC(Orn ◦fk)) = Õ(nk+2).

In these bounds we do not differentiate between logNk and logn because they are
asymptotically equal, since logNk = 25k logn = O(logn). Finally, using Lemma 3.1 and
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Lemma 4.2 again we have

UC0(fk+1) = UC0(Andn ◦ (Orn ◦ fk)CS)
≤ max

{
UC0((Orn ◦ fk)CS), nUC1((Orn ◦ fk)CS)

}
= Õ

(
max

{
UC(Orn ◦ fk), nC(Orn ◦ fk)

})
= Õ(nk+2) and

UC1(fk+1) = UC1(Andn ◦ (Orn ◦ fk)CS) ≤ nUC1((Orn ◦ fk)CS)

= Õ(nC(Orn ◦ fk)) = Õ(max
{
nC0(fk), C1(fk)

}
= Õ(nk+2).

This completes the induction and establishes the first part of the theorem.
For the second part, since R(fk) = Ω̃(n2k+1) and UC(fk) = Õ(nk+1), we have R(fk) =

Ω̃(UC(fk)2− 1
k+1 ). Since we treated k as a constant, our notation hides constant and logn

factors that depend only on k, i.e., we only get R(fk) ≥
(

UC(fk)2− 1
k+1

)/(
h1(k) logh2(k) n

)
for some functions h1(k) and h2(k). But we can always choose k to be a slow growing
function of n so that these terms are negligible. This yields the desired separation R(f) ≥
UC(f)2−o(1). J

Clearly Theorem 1.2 and Theorem 1.3 follow from this, which we restate for convenience.

I Theorem 1.2. There exists a total function f with D(f) ≥ UC(f)2−o(1).

I Theorem 1.3. There exists a total function f with R(f) ≥ UC(f)2−o(1).

Deterministic communication vs. partition number

We now show Theorem 1.1 by lifting the previous separation to communication complexity.
From Theorem 1.3, we have a function f : {0, 1}N → {0, 1} such that R(f) ≥ UC(f)2−o(1),

which implies D(f) ≥ UC(f)2−o(1). Göös, Pitassi, and Watson [10] show that for any function
f , there is a corresponding communication problem F such that

Dcc(F ) = Ω(D(f) logN) = Ω(D(f)).

On the other hand, as explained in [10], we also have

logχ(F ) = O(UC(f) logN) = Õ(UC(f)),

where we used the fact that our function has N = n25k , where k is a slow growing function
of n, and hence logN = 25k logn = O(log2 n) = O(log2 UC(f)).

Since the conversion to communication complexity only weakens the result by log factors,
the separation D(f) ≥ UC(f)2−o(1) immediately yields

Dcc(F ) ≥
(
logχ(F )

)2−o(1)
,

which establishes Theorem 1.1:

I Theorem 1.1. There exists a function F : X ×Y → {0, 1} with Dcc(F ) ≥
(
logχ(F )

)2−o(1).

6 Quantum query complexity vs. subcube partitions

In this section we establish Theorem 1.4 and Theorem 1.5. To show this we require a function
Bkk from [3, Theorem 10] with the following properties.
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I Lemma 6.1. There exists a total function Bkk : {0, 1}n2 → {0, 1} such that C(Bkk) =
Õ(n) and Q(Bkk) = Ω̃(n2).

We are now ready to prove Theorem 1.5, restated for convenience:

I Theorem 1.5. There exists a total function f with Q(f) = Ω̃(UC1(f)2).

Proof. Let f = Bkk. Then using Lemma 4.2 we know that Q(fCS) = Ω(Q(f)) = Ω̃(n2) and
UC1(fCS) = O(C(f) log2 n) = Õ(n). J

To show Theorem 1.4, we need another function bk-sum, which is a variant of the k-sum
problem. It has the interesting property that any certificates for it consists essentially of
input bits set to 0 and very few input bits set to 1. As shown in the proof of [3, Theorem 10],
we have the following. (More precisely, our version of bk-sum swaps the roles of zeros and
ones compared to the function of [3], but this does not affect its quantum query complexity.)

I Lemma 6.2. There exists a total function bk-sum : {0, 1}n → {0, 1} with Q(bk-sum) =
Ω̃(n) such that for any function f , we have C(bk-sum ◦ f) = O(nC0(f) + C1(f) log3 n).

In our construction, we repeatedly compose bk-sum with other functions and hence we
need to understand the behavior of bk-sum under composition, analogous to Lemma 3.1 for
And and Or.

I Lemma 6.3 (bk-sum composition). For any function f , the following bounds hold:
Q(bk-sumn ◦ f) = Ω̃(nQ(f))
C(bk-sumn ◦ f) = O(nC0(f) + C1(f) log3 n).
UC(bk-sumn ◦ f) ≤ nUC(f)

Proof. The first lower bound follows because Q(f ◦ g) = Θ(Q(f)Q(g)) for any Boolean
functions f and g [12, 26, 21] and we have Q(bk-sum) = Ω̃(n) from Lemma 6.2. The second
relation follows from Lemma 6.2. Lastly, UC(bk-sumn ◦ f) ≤ nUC(f) because this holds for
any n-bit function. Any function h ◦ f can be unambiguously certified by showing all the
outputs to f and providing unambiguous certificates for each output. J

We are now ready to establish the following theorem, which implies Theorem 1.4. This
proof mimics the proof structure of Theorem 5.1 and reuses several ideas.

I Theorem 6.4. For every k ≥ 0, there exists a total Boolean function fk : {0, 1}Nk → {0, 1},
such that Q(fk) = Ω̃(n1.5k+1) and UC(fk) = Õ(nk+1). Hence there is a function f with
Q(f) ≥ UC(f)1.5−o(1).

Proof. Let f1 = Andn ◦BkkCS, where Bkk is the function on n2 bits in Lemma 6.1. Let
fk be defined inductively as fk := Andn ◦ (bk-sumn ◦ fk−1)CS, i.e., fk is the function obtain
by composing Andn with the cheat sheet version of bk-sumn composed with fk−1.

We prove the claim by induction on k. The induction hypothesis and the base case,
f1 = Andn ◦BkkCS, are presented below, where Nk is the input size of the function fk.

Induction hypothesis (fk)
Nk = O(n25k )
Q(fk) = Ω̃(n1.5k+1)
C0(fk) = Õ(nk)
C1(fk) = Õ(nk+1)
UC(fk) = Õ(nk+1)

Base case (f1 = Andn ◦BkkCS)
N1 = O(n25)
Q(f1) = Ω̃(n2.5)
C0(f1) = Õ(n)
C1(f1) = Õ(n2)
UC(f1) = Õ(n2)
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Let us first compute the complexities of f1 = Andn ◦ BkkCS and verify that they are
consistent with the induction hypothesis. First note that the input size of Bkk is n2, and
thus the input size of BkkCS is O(n24) (from Lemma 4.2), and hence the input size of
f1 = Andn ◦BkkCS is O(n25). We have Q(f1) = Ω̃(n2.5) since Q(f1) = Ω(

√
nQ(BkkCS)) =

Ω̃(n2.5). The other inequalities follow straightforwardly from Lemma 3.1 and Lemma 6.1.
We have C0(f1) = Õ(n) since C0(Andn ◦BkkCS) ≤ C0(BkkCS) = Õ(n). We have C1(f1) =
Õ(n2) since C1(Andn ◦ BkkCS) ≤ nC1(BkkCS) = Õ(n2). Lastly, we have UC(f1) =
UC(Andn ◦ BkkCS) ≤ UC0(BkkCS) + nUC1(BkkCS) ≤ D(BkkCS) + Õ(nC(Bkk)) =
Õ(D(Bkk) + nC(Bkk)) = Õ(n2).

We now show that the induction hypothesis for fk implies the same for fk+1. The input
size calculation is identical to that in Theorem 5.1 and hence we do not repeat it. The
quantum query complexity of fk+1 can be lower bounded as follows:

Q(fk+1) = Q(Andn ◦ (bk-sumn ◦ fk)CS) = Ω(
√
nQ((bk-sumn ◦ fk)CS))

= Ω(
√
nQ(bk-sumn ◦ fk)) = Ω(n1.5Q(fk)) = Ω̃(n1.5(k+1)+1),

where we used Lemma 3.1, Lemma 4.2, Lemma 6.2, and Lemma 6.3 to compute the relevant
measures.

Similarly we have

C0(fk+1) = C0(Andn ◦ (bk-sumn ◦ fk)CS) ≤ C0((bk-sumn ◦ fk)CS)

= Õ(C(bk-sumn ◦ fk)) = Õ(nC0(fk) + C1(fk)) = Õ(nk+1) and
C1(fk+1) = C1(Andn ◦ (bk-sumn ◦ fk)CS) ≤ nC1((bk-sumn ◦ fk)CS)

= Õ(nC(bk-sumn ◦ fk)) = Õ(n2C0(fk) + nC1(fk)) = Õ(nk+2).

Finally, using Lemma 3.1, Lemma 4.2, Lemma 6.2, and Lemma 6.3 again we have

UC(fk+1) = UC(Andn ◦ (bk-sumn ◦ fk)CS)
= O

(
max

{
UC0((bk-sumn ◦ fk)CS), nUC1((bk-sumn ◦ fk)CS)

})
= Õ

(
max

{
UC(bk-sumn ◦ fk), nC(bk-sumn ◦ fk)

})
= Õ

(
max

{
nUC(fk), n2C0(fk) + nC1(fk)

})
= Õ(nk+2).

This completes the induction and establishes the first part of the theorem. Using a similar
argument in Theorem 5.1, this yields a function with Q(f) ≥ UC(f)1.5−o(1). J

Finally, this establishes Theorem 1.4.

I Theorem 1.4. There exists a total function f with Q(f) ≥ UC(f)1.5−o(1).
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