Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

Gaurav Sinha

Department of Mathematics, California Institute of Technology, Pasadena, USA
gsinha@caltech.edu

Abstract

Reconstruction of arithmetic circuits has been heavily studied in the past few years and has connections to proving lower bounds and deterministic identity testing. In this paper we present a polynomial time randomized algorithm for reconstructing $\Sigma\Pi\Sigma(2)$ circuits over \mathbb{F} ($\text{char}(\mathbb{F}) = 0$), i.e. depth-$3$ circuits with fan-in 2 at the top addition gate and having coefficients from a field of characteristic 0.

The algorithm needs only a blackbox query access to the polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ of degree d, computable by a $\Sigma\Pi\Sigma(2)$ circuit C. In addition, we assume that the “simple rank” of this polynomial (essential number of variables after removing the gcd of the two multiplication gates) is bigger than a fixed constant. Our algorithm runs in time $\text{poly}(n, d)$ and returns an equivalent $\Sigma\Pi\Sigma(2)$ circuit (with high probability).

The problem of reconstructing $\Sigma\Pi\Sigma(2)$ circuits over finite fields was first proposed by Shpilka [24]. The generalization to $\Sigma\Pi\Sigma(k)$ circuits, $k = O(1)$ (over finite fields) was addressed by Karnin and Shpilka in [15]. The techniques in these previous involve iterating over all objects of certain kinds over the ambient field and thus the running time depends on the size of the field \mathbb{F}. Their reconstruction algorithm uses lower bounds on the lengths of Linear Locally Decodable Codes with 2 queries. In our settings, such ideas immediately pose a problem and we need new ideas to handle the case of the characteristic 0 field \mathbb{F}.

Our main techniques are based on the use of Quantitative Sylvester Gallai Theorems from the work of Barak et al. [3] to find a small collection of “nice” subspaces to project onto. The heart of our paper lies in subtle applications of the Quantitative Sylvester Gallai theorems to prove why projections w.r.t. the “nice” subspaces can be “glued”. We also use Brill’s Equations from [8] to construct a small set of candidate linear forms (containing linear forms from both gates). Another important technique which comes very handy is the polynomial time randomized algorithm for factoring multivariate polynomials given by Kaltofen [14].

1998 ACM Subject Classification G.1.1 Interpolation, I.4.5 Reconstruction

Keywords and phrases Reconstruction, $\Sigma\Pi\Sigma(2)$, Sylvester-Gallai, Brill’s Equations

Digital Object Identifier 10.4230/LIPIcs.CCC.2016.31

1 Introduction

The last few years have seen significant progress towards interesting problems dealing with arithmetic circuits. Some of these problems include Deterministic Polynomial Identity Testing, Reconstruction of Circuits and recently Lower Bounds for Arithmetic Circuits. There has also been work connecting these three different aspects. In this paper we will primarily be concerned with the reconstruction problem. Even though it’s connections to Identity Testing and Lower Bounds are very exciting, the problem in itself has drawn a lot of attention because of elegant techniques and connections to learning. The strongest version of the problem requires that for any $f \in \mathbb{F}[x_1, \ldots, x_n]$ with blackbox access given one wants to
construct (roughly) most succinct representation i.e. the smallest possible arithmetic circuit computing the polynomial. This general problem appears to be very hard. Most of the work done has dealt with some special type of polynomials i.e. the ones which exhibit constant depth circuits with alternating addition and multiplication gates. Our result adds to this by looking at polynomials computed by circuits of this type (alternating addition/multiplication gates but of depth 3). Our circuits will have variables at the leaves, operations (+, ×) at the gates and scalars at the edges. We also assume that the top gate has only two children and the “simple rank” of this polynomial (essential number of variables after removing the gcd of the two multiplication gates) is bigger than a constant. The bottom most layer has addition gates and so computes linear forms, the middle layer then multiplies these linear forms together and the top layer adds two such products. Later in Remark 1.1 we discuss that we may assume the linear forms computed at bottom level to be homogeneous and the in-degree of all gates at middle level to be the same (= degree of f). Therefore these circuits compute polynomials with the following form:

\[f(x_1, \ldots, x_n) = G(x_1, \ldots, x_n)(T_0(x_1, \ldots, x_n) + T_1(x_1, \ldots, x_n)) \]

where \(T_i(x_1, \ldots, x_n) = \prod_{j=1}^{M} l_{ij} \) and \(G(x_1, \ldots, x_n) = \prod_{j=1}^{d-M} G_j \) with the \(l_{ij} \)'s and \(G_j \)'s being linear forms for \(i \in \{0, 1\} \). Also assume \(\gcd(T_0, T_1) = 1 \). Our condition about the essential number of variables (after removing gcd from the multiplication gates) is called “simple rank” of the polynomial and is defined as dimension of the space

\[\text{sp}\{l_{ij} : i \in \{0, 1\}, j \in \{1, \ldots, M\}\} \]

When the underlying field \(F \) is of characteristic 0 (\(\mathbb{Q}, \mathbb{R} \) or \(\mathbb{C} \) for simplicity), we give an efficient randomized algorithm for reconstructing the circuit representation of such polynomials. Formally our main theorem reads:

Theorem 1.1 (\(\Sigma\Pi\Sigma\varphi(2) \) Reconstruction Theorem). Let \(f = G(T_0 + T_1) \in F[x_1, \ldots, x_n] \) be any degree \(d \), \(n \)-variate polynomial (to which we have blackbox access) which can be computed by a depth 3 circuit with top fan-in 2 (i.e. a \(\Sigma\Pi\Sigma(2) \) circuit) i.e. \(G, T_i \) being products of affine forms. Assume \(\gcd(T_0, T_1) = 1 \) and span\(\{1 : t \mid T_0T_1\} \) is bigger than \(s + 1 \) (a fixed constant defined below). We give a randomized algorithm which runs in time \(\text{poly}(n, d) \) and computes the circuit for \(f \) with high probability.

Definition 1.2. We fix \(s \) to be any constant \(> \max(C_{2k-1} + k, c_\varphi(4)) \) where:

1. \(c_\varphi(l) = 3l^2 \) is the rank lower bound (see Theorem 1.7) that guarantees non-zeroness of any simple, minimal, \(\Sigma\Pi\Sigma(l) \) circuit with rank \(> c_\varphi(l) \).
2. \(k = c_\varphi(3) + 2 \).
3. \(\delta \) is some fixed number in \((0, \frac{7-\sqrt{31}}{6}) \).
4. \(C_k = \frac{C_\delta}{\delta} \) the constant that appears in Theorem B.4.

From our discussion before the theorem about Remark 1.1, we can assume in the above theorem that the polynomial and all linear forms involved are homogeneous.

As per our knowledge this is the first algorithm that efficiently reconstructs such circuits (over the char 0 fields). Over finite fields, the same problem has been considered by [24] and our method takes inspiration from their work. They also generalized this finite field version to circuits with arbitrary (but constant) top fan-in in [15]. However we need many new tools and techniques as their methods don’t generalize at a lot of crucial steps. For example:
They iterate through linear forms in a finite field which we unfortunately cannot do. They use lower bounds for Locally Decodable Codes given in [7] which again does not work in our setup. We resolve these issues by

- Constructing candidate linear forms by solving simultaneous polynomial equations obtained from Brill’s Equations (Chapter 4, [8]).
- Using quantitative versions of the Sylvester Gallai Theorems given in [3] and [6]. This new method enables us to construct nice subspaces, take projections onto them and glue the projections back to recover the circuit representation.

\section*{1.1 Previous Work and Connections}

Efficient Reconstruction algorithms are known for some concrete class of circuits. We list some here:

- Depth-2 \(\Sigma\Pi\) circuits (sparse polynomials) in [20]
- Read-once arithmetic formulas in [25]
- Non-commutative ABP’s [2]
- \(\Sigma\Pi\Sigma(2)\) circuits over finite fields in [24], extended to \(\Sigma\Pi\Sigma(k)\) circuits (over finite fields) with \(k = O(1)\) in [15].
- Depth 4 (\(\Sigma\Pi\Sigma\Pi\)) multilinear circuits with top fan-in 2 in [10]
- Random Arithmetic Formulas in [12]

All of the above work introduced new ideas and techniques and have been greatly appreciated.

It’s straightforward to observe that a polynomial time deterministic reconstruction algorithm for a circuit class \(C\) also implies a polynomial time Deterministic Identity Testing algorithm for the same class. From the works [1] and [13] it has been established that blackbox Identity Testing for certain circuit classes imply superpolynomial circuit lower bounds for an explicit polynomial. Hence the general problem of deterministic reconstruction cannot be easier than proving superpolynomial lower bounds. So one might first try and relax the requirements and demand a randomized algorithm. Another motivation to consider the probabilistic version comes from Learning Theory. A fundamental question called the exact learning problem using membership queries asks the following: Given oracle access to a Boolean function, compute a small description for it. This problem has attracted a lot of attention in the last few decades. For e.g. in [18][9] and [17] a negative result stating that a class of boolean circuits containing the trapdoor functions or pseudo-random functions has no efficient learning algorithms. Among positive works [23], [4], [19] show that when \(f\) has a small circuit (inside some restricted class) exact learning from membership queries is possible. Our problem is a close cousin as we are looking for exact learning algorithms for algebraic functions. Because of this connection with learning theory it makes sense to also allow randomized algorithms for reconstruction.

\section*{1.2 Depth-3 Arithmetic Circuits}

We will use the definitions from [16]. Let \(C\) be an arithmetic circuit with coefficients in the field \(\mathbb{F}\). We say \(C\) is a \(\Sigma\Pi\Sigma(k)\) circuit if it computes an expression of the form:

\[
C(\bar{x}) = \sum_{i \in [k]} \prod_{j \in [d]} l_{i,j}(\bar{x}).
\]
$l_{i,j}(\bar{x})$ are linear forms of the type $l_{i,j}(\bar{x}) = \sum_{s \in [n]} a_s x_s$ where $(a_1, \ldots, a_n) \in \mathbb{F}^n$ and (x_1, \ldots, x_n) is an $n-$ tuple of indeterminates. For convenience we denote the multiplication gates in C as

$$T_i = \prod_{j \in [d]} l_{i,j}(\bar{x}).$$

k is the top fanin of our circuit C and d is the fanin of each multiplication gate T_i. With these definitions we will say that our circuit is of type $\Sigma \Pi \Sigma_2(k, d, n)$. When most parameters are understood we will just call it a $\Sigma \Pi \Sigma(k)$ circuit.

Remark 1.1. Note that we are considering homogeneous circuits. There are two basic assumptions:

1. $l_{i,j}$'s have no constant term i.e. they are linear forms.
2. Fanin of each T_i is equal to d.

If these are not satisfied we can homogenize our circuit by considering $\mathbb{Z}^d(C(\bar{X}_1, \ldots, \bar{X}_n))$. Now both the conditions will be taken care of by reconstructing this new homogenized circuit.

We need a rank condition on our polynomial which remains essentially unchanged even after this substitution.

Definition 1.3 (Minimal Circuit). We say that the circuit C is minimal if no strict non empty subsets of the $\Pi \Sigma$ polynomials $\{T_1, \ldots, T_k\}$ sums to zero.

Definition 1.4 (Simple Circuit and Simplification). A circuit C is called Simple if the gcd of the $\Pi \Sigma$ polynomials $\gcd(T_1, \ldots, T_k)$ is equal to 1 (i.e. is a unit). The simplification of a $\Sigma \Pi \Sigma(k)$ circuit C denoted as $\text{Sim}(C)$ is the $\Sigma \Pi \Sigma(k)$ circuit obtained by dividing each term by the gcd of all terms i.e.

$$\text{Sim}(C) \overset{\text{def}}{=} \sum_{i \in [k]} \frac{T_i}{\gcd(T_1, \ldots, T_k)}.$$

Definition 1.5 (Rank of a Circuit). Identifying each linear form $l(\bar{x}) = \sum_{s \in [n]} a_s x_s$ with the vector $(a_1, \ldots, a_n) \in \mathbb{F}^n$, we define the rank of C to be the dimension of the vector space spanned by the set $\{l_{i,j} | i \in [k], j \in [d]\}$.

Definition 1.6 (Simple Rank of a Circuit). For a $\Sigma \Pi \Sigma(k)$ circuit C we define the Simple Rank of C as the rank of the circuit $\text{Sim}(C)$.

Before we go further into the paper and explain our algorithm we state some results about uniqueness of these circuits. In a nutshell for a $\Sigma \Pi \Sigma_F(2, d, n)$ circuit, if one assumes that the Simple rank of C is bigger than a constant ($c_{F \Sigma}(4)$: defined later) then the circuit is essentially unique.

1.3 Uniqueness of Representation

Shpilka et al. showed the uniqueness of circuit representation in [24] using rank bounds for Polynomial Identity Testing. The bound they used were from the work of Dvir et al. in [7]. It essentially states that the rank of a simple, minimal $\Sigma \Pi \Sigma(k)$ circuit $(d \geq 2, k \geq 3)$ which computes the identically zero polynomial is $\leq 2^{O(k^2)} \log^{k-2} d$. For circuits over char 0 fields improved rank bounds were given by Kayal et al. in [16].

In a series of following work the rank bounds for identically zero $\Sigma \Pi \Sigma(k)$ circuits got further improved. The best known bounds over char 0 fields were given by Saxena et al. in [22]. We rewrite Theorem 1.5 in [22] here for completion.
Theorem 1.7 (Theorem 1.5 in [22]). Let C be a $\Sigma\Pi\Sigma(k,d,n)$ circuit over field \mathbb{F} that is simple, minimal and zero. Then, $rk(C) < 3k^2$.

Let $c_\Sigma(k) = 3k^2$. This gives us the following version of Corollary 7, Section 2.1 in [24].

Theorem 1.8 ([24]). Let $f(\bar{x}) \in \mathbb{F}[x]$ be a polynomial which exhibits a $\Sigma\Pi\Sigma(2)$ circuit

$$\Pi = G(A + B).$$

where A, B, \bar{A}, \bar{B} are $\Pi\Sigma$ polynomials over \mathbb{F} and $gcd(\bar{A}, \bar{B}) = 1$ then we have $G = \bar{G}$ and $(A, B) = (\bar{A}, \bar{B})$ (upto scalar multiplication).

Proof. Let $g = gcd(G, \bar{G})$ and let $G = gG_1, \bar{G} = gG_1$. Then $gcd(G_1, \bar{G}_1) = 1$ and we get

$$G_1A + G_1B - \bar{G}_1\bar{A} - \bar{G}_1\bar{B} = 0$$

This is a simple $\Sigma\Pi\Sigma(4)$ circuit with rank bigger than $c_\Sigma(4) + 1$ and is identically 0 so it must be not minimal. Considering the various cases one can easily prove the required equality. ▶

1.4 Notation

$[n]$ denotes the set $\{1, 2, \ldots, n\}$. Throughout the paper we will work over the field \mathbb{F}. Let V be a finite dimensional \mathbb{F} vector space and $S \subset V$, $sp(S)$ will denote the linear span of elements of S. $dim(S)$ is the dimension of the subspace $sp(S)$. If $S = \{s_1, \ldots, s_k\} \subset V$ is a set of linearly independent vectors then $f(l(S)$ denotes the affine subspace generated by points in S (also called a $(k - 1)$ - flat or just flat when dimension is understood). In particular:

$$fl(S) = \{\sum_{i=1}^{k} \lambda_i s_i : \lambda_i \in \mathbb{F}, \sum_{i=1}^{k} \lambda_i = 1\}.$$

Let $W \subset V$ be a subspace, then we can extend basis and get another subspace W' (called the complement of W) such that $W \oplus W' = V$. Note that the complement need not be unique. Corresponding to each such decomposition of V we may define orthogonal projections $\pi_W, \pi_{W'}$ onto W, W' respectively. Let $v = w + w' \in V, w \in W, w' \in W'$:

$$\pi_W(v) = w, \pi_{W'}(v) = w'.$$

(\bar{x}) will be used for the tuple (x_1, \ldots, x_n).

$$Lin_{\bar{x}}[x] = \{a_1x_1 + \ldots + a_nx_n : a_i \in \mathbb{F}\} \subset \mathbb{F}[\bar{x}]$$

is the vector space of all linear forms over the variables (x_1, \ldots, x_n). For a linear form $l \in Lin_{\bar{x}}[x]$ and a polynomial $f \in \mathbb{F}[x]$ we write $l \mid f$ if l divides f and $l \nmid f$ if it does not. We say $l^d \mid f$ if $l^d \mid f$ but $l^{d+1} \nmid f$.

$$\Pi_{\Sigma}^{\Sigma}(\bar{x}) = \{l_1(\bar{x}) \ldots l_d(\bar{x}) : l_i \in Lin_{\bar{x}}[x]\} \subset \mathbb{F}[\bar{x}]$$
is the set of degree d homogeneous polynomials which can be written as product of linear forms. This collection for all possible d is called the set

$$\Pi\Sigma_F[x] = \bigcup_{d \in \mathbb{N}} \Pi\Sigma_F^d[x]$$

also called $\Pi\Sigma$ polynomials for convenience. Let $f(\vec{x}) \in \mathbb{F}[x]$ then $\text{Lin}(f) \in \Pi\Sigma_F[\vec{x}]$ denotes the product of all linear factors of $f(\vec{x})$. Let $\mathcal{L}(f)$ denote the set of all linear factors of f. For any set of polynomials $S \subset \mathbb{C}[\vec{x}]$, we denote by $\mathcal{V}(S)$, the set of all complex simultaneous solutions of polynomials in S (this set is called the variety of S), i.e.

$$\mathcal{V}(S) = \{a \in \mathbb{C} : \text{ for all } f \in S, f(a) = 0\}.$$

Let $\mathcal{B} = \{b_1, \ldots, b_n\}$ be an ordered basis for $V = \text{Lin}_F[\vec{x}]$. We define maps $\phi_{\mathcal{B}} : V \setminus \{0\} \to V$ as

$$\phi_{\mathcal{B}}(a_1b_1 + \ldots + a_nb_n) = \frac{1}{a_k}(a_1b_1 + \ldots + a_nb_n)$$

where k is such that $a_k = 0$ for all $i < k$ and $a_k \neq 0$.

A non-zero linear form l is called normal with respect to \mathcal{B} if $l \in \Phi_{\mathcal{B}}(V)$ i.e. the first non-zero coefficient is 1. A polynomial $P \in \Pi\Sigma_F[\vec{x}]$ is normal w.r.t. \mathcal{B} if it is a product of normal linear forms. For two polynomials $P_1, P_2 \in \Pi\Sigma_F[\vec{x}]$ we define:

$$\gcd_{\mathcal{B}}(P_1, P_2) = P \in \Pi\Sigma_F[\vec{x}], \text{ } P \text{ } \text{normal } \text{w.r.t. } \mathcal{B} \text{ such that } P \mid P_1, P \mid P_2$$

When a basis is not mentioned we assume that the above definitions are with respect to the standard basis.

We can represent any linear form in $\text{Lin}_F[\vec{x}]$ as a point in the vector space \mathbb{F}^n and vice versa. To be precise we define the cannonical map $\Gamma : \text{Lin}_F[\vec{x}] \to \mathbb{F}^n$ as

$$\Gamma(a_1x_1 + \ldots + a_nx_n) = (a_1, \ldots, a_n).$$

Γ is a linear isomorphism of vector spaces $\text{Lin}_F[\vec{x}]$ and \mathbb{F}^n. Because of this isomorphism we will interchange between points and linear forms whenever we can. We choose to represent the linear form $a(\vec{x}) = a_1x_1 + \ldots + a_nx_n$ as the point $a = (a_1, \ldots, a_n)$.

LI will be the abbreviation for Linearly Independent and LD will be the abbreviation for Linearly Dependent.

Definition 1.9 (Standard Linear Form). A non zero vector v is called standard with respect to basis $\mathcal{B} = \{b_1, \ldots, b_n\}$ if the coefficient of b_1 in v is 1. When a basis is not mentioned we assume we’re talking about the standard basis. (Equivalently for linear forms the coefficient of x_1 is 1). A $\Pi\Sigma$ polynomial will be called standard if it is a product of standard linear forms.

We close this section with a lemma telling us when can we replace the span of some vectors with the affine span or flat. We’ve used this several times in the paper.

Lemma 1.10. Let $l_1, \ldots, l_t \in \text{Lin}_F[\vec{x}]$ be standard linear forms w.r.t. some basis $\mathcal{B} = \{b_1, \ldots, b_n\}$ such that $l \in \text{sp}(\{l_1, \ldots, l_t\})$ then

$$l \in \text{fl}(\{l_1, \ldots, l_t\}).$$
Proof. Since \(l \in sp(\{l_1, \ldots, l_t\}) \), we know that \(l = \sum_{i \in [t]} \alpha_i l_i \) for some scalars \(\alpha_i \in \mathbb{F} \). All linear forms are standard w.r.t. \(\mathcal{B} \Rightarrow \) comparing the coefficients of \(b_1 \) we get that \(\sum_{i \in [t]} \alpha_i = 1 \) and therefore \(l \in fl(\{l_1, \ldots, l_t\}) \).

Let \(T \subset \mathbb{F}^n \), By a scaling of \(T \) we mean a set where all vectors get scaled (possibly by different scalars).

1.5 Summary of Technical Ideas

This Subsection includes the very broad technical ideas we used. First we explain a technique to reconstruct points from their projections. Then we give an overview of the Project-Reconstruct-Lift algorithm and how we plan to execute it. After that we illustrate the algorithm in quite generality. In this illustration we keep a lot of technicalities aside and try to motivate and picturize the algorithm through geometric intuition.

1.5.1 A Simple Reconstruction Technique

We describe a method to recover points from their projections. A more rigorous treatment is in Appendix C. It also contains details and proofs of the Algorithm that is used in this paper. Suppose we have two disjoint sets of points \(A = \{a_1, a_2\} \), \(B = \{b_1, \ldots, b_d\} \) in the projective space \(\mathbb{P}^{n+1} \) such that:

- We know the set \(A \).
- We know the projections of points in \(B \) w.r.t. \(a_1 \) and \(a_2 \) i.e we know lines joining \(L_{i,j} = \overrightarrow{a_i b_j} \) for \(i \in [2] \) and \(j \in [d] \).

We want to use lines \(L_{i,j} = \overrightarrow{a_i b_j} \) to find the set \(\{b_1, \ldots, b_d\} \) in \(O(poly(d)) \) time. Note that there are \(\leq d \) lines through \(a_1 \) and \(\leq d \) lines through \(a_2 \). The \(b_j \)'s lie at the intersection of these lines and so we have \(\leq d^2 \) intersections. These intersections form a set of candidate points for \(B \) but it is very hard to cut down this set to \(B \) in \(poly(d) \) time. There is a trivial \(O((d^2)^2) \) algorithm - Go through all \(d \) points in these intersection points, make the lines and check if you get the same set of lines. This will give all sets of size \(d \) which could generate this configuration. Here is how the entire point configuration looks like. The green points \(c_j \)'s are intersections of our lines which do not belong to \(B \).
However if one assumes some restrictions then a subset of B might be found in $\text{poly}(d)$ time. Assume that for some $t \in [d]$:
- $\{a_1, a_2, b_1\}$ are affinely independent.
- $fl\{a_2, b_1\} \cap B = \{b_1, \ldots, b_t\}$.
- $fl\{a_1, a_2, b_1\} \cap B = \{b_1, \ldots, b_t\}$.

That is we have a sub configuration that looks like:

Here is an algorithm to recover all $\{b_1, \ldots, b_t\} \subset B$ such that the above conditions are satisfied.
- We iterate through all lines passing through a_2.
- For each such line L, find the set of lines S_L through a_1 which intersects L. Clearly all lines in S_L and L are co-planar.
- If this plane does not contain any other line through a_2, output the intersections of lines in S_L with L.

It is more or less straightforward that this algorithm works. The line L we choose has to have some b_j on it. Now all lines $\tilde{L} \subset S_L$ that intersect L have to intersect it in some b_j otherwise \tilde{L} has some other b_i on it but then the plane of S_L, L will have another line $\overrightarrow{a_2b_s}$ passing through a_2 on it which is a contradiction. The algorithm actually finds all such configurations $\{b_1, \ldots, b_t\} \subset B$.

1.5.2 General Overview of the Algorithm

The broad structure of our algorithm is similar to that of Shpilka in [24] however our techniques are different. We first restrict the blackbox inputs to a low ($O(1)$) dimensional random subspace of \mathbb{F}^n and interpolate this restricted polynomial. Next we try to recover the $\Sigma\Pi\Sigma(2)$ structure of this restricted polynomial and finally lift it back to \mathbb{F}^n. The random subspace and unique $\Sigma\Pi\Sigma(2)$ structure will ensure that the lifting is unique. Similar to [24] we try to answer the following questions. However our answers (algorithms) are different from theirs:

1. For a $\Sigma\Pi\Sigma(2)$ polynomial f over $r = O(1)$ variables, can one compute a small set of linear forms which contains all factors from both gates?
2. Let V_0 be a co-dimension k subspace ($k = O(1)$) and V_1, \ldots, V_t be co-dimension 1 subspaces of a linear space V. Given circuits C_i ($i \in \{0, \ldots, t\}$) computing $f|_{V_i}$ (restriction of f to V_i) can we reconstuct from them a single circuit C for $f|_{V}$?

3. Given co-dimension 1 subspaces $V \subset U$ and circuits $f|_{V}$ when is the $\Sigma\Pi\Sigma(2)$ circuit representations of lifts of $f|_{V}$ to $f|_{U}$ unique?

Our first question is easily solved using Brill’s equations (See Chapter 4 [8]). These provide a set of polynomials whose simultaneous solutions completely characterize coefficients of complex $\Pi\Sigma$ polynomials. A linear form $l = x_1 - a_2 x_2 - \ldots - a_r x_r$ divides one of the gates of $f(x_1, \ldots, x_r) \Rightarrow f(a_2 x_2 + \ldots + a_r x_r, x_2, \ldots, x_r)$ is a $\Pi\Sigma$ polynomial modulo l. When this is applied into Brill’s equation (see Corollary A.2) we recover possible l’s which obviously include linear factors of gates. We can show that (see Claim E.2) the extra linear forms we get are not too many ($poly(d)$) and also have some special structure. We call this set C of linear forms as Candidate linear forms and non-deterministically guess from this set. It should be noted that we do all this when our polynomial is over $O(1)$ variables.

We deal with the second question while trying to reconstruct the $\Sigma\Pi\Sigma(2)$ representation of the interpolated polynomial $f|_{V}$, where V is the random low dimensional subspace. We divide the algorithm into Easy Case, Medium Case and a Hard Case.

- For the Easy Case our algorithm tries to reconstruct one of the multiplication gates of $f|_{V}$ by first looking at it’s restriction to a special co-dimension 1 subspace V_1. If $f = A + B$ with A, B being $\Pi\Sigma$ polynomials, the projection of one of the gates (say A) with respect to V_1 will be 0 and the other (say B) will remain unchanged giving us B and therefore both gates by factoring $f|_{V} - B$.

- In the Medium Case we have at least two extra dimensions in one of the gates. This can be used to show that the only linear factors of $f|_{V}$ are those coming from G. Now we can recover G by factoring f and then use Easy Case for the remaining polynomial. An important consequence of this case is that in the Hard Case we may now assume that both gates are high dimensional which is very crucial.

- In the Hard Case we will first need V_0, a co-dimension k (where $k = O(1)$) subspace and then iteratively select co-dimension 1 subspaces V_1, \ldots, V_t. For some gate (say B), all pairs (V_0, V_i) ($i \in [t]$) will reconstruct some linear factors of B. This process will either completely reconstruct B or we will fall into the Easy Case. Once B is known we can factor $f|_{V} - B$ to get A.

The restrictions that we compute always factor into product of linear forms and can be easily computed since we know $f|_{V}$ explicitly. They can then be factorized into product of linear forms using the factorization algorithms from [14]. It is the choice of the subspaces V_0, V_1, \ldots, V_t where our algorithm differs from that in [24] significantly. Our algorithm selects V_0 and iteratively selects the V_i’s ($i \in [t]$) such that (V_0, V_i) have certain “nice” properties which help us recover the gates in $f|_{V}$. The existence of subspaces with “nice” properties is guaranteed by Quantitative Sylvester Gallai Theorems given in [3]. To use the theorems we had to develop more machinery that has been explained later.

The third question comes up when we want to lift our solution from the random subspace V to the original space. This is done in steps. We first consider random spaces U such that V has co-dimension 1 inside them. Now we reconstruct the circuits for $f|_{V}$ and $f|_{U}$. The $\Sigma\Pi\Sigma(2)$ circuits for $f|_{V}$ and $f|_{U}$ are unique since the simple ranks are high enough (because U, V are random subspaces of high enough dimension) implying that the circuit for $f|_{V}$ lifts to a unique circuit for $f|_{U}$. When this is done for multiple U’s we can find the gates exactly.
1.5.2.1 Project-Reconstruct-Lift Algorithm

Here is a broad outline of the three aspects. This technique is quite common. Details of Project and Lift are in Section 4 and that of Reconstruct is in Section 3.

1.5.2.2 Project

- Input: \(f \in \mathbb{F}[x_1, \ldots, x_n] \) as blackbox
- Choose random basis \(\{y_1, \ldots, y_n\} \) of \(\mathbb{F}^n \), \(V = \text{sp}(\{y_1, \ldots, y_s\}), V_i = \text{sp}(\{v_1, \ldots, v_s, v_i\}) \) for \(i \in \{s + 1, \ldots, n\} \).
- Define \(f_0(y_1, \ldots, y_s) = f|_{V}, f_i(y_1, \ldots, y_s, y_i) = f|_{V_i}. \)
- Consider sets \(H \subset V, H_i \subset V_i \) with \(|H| \geq ds, |H_i| \geq ds + 1 \) and interpolate to find \(f_0, f_i. \)

1.5.2.3 Reconstruct

- Reconstruct to get \(f_0 = M_0 + M_1 \) and \(f_i = M_i^0 + M_i^1 \) with \(M_0, M_1 \in \Pi \Sigma[y_1, \ldots, y_s], M_i^0, M_i^1 \in \Pi \Sigma[y_1, \ldots, y_r, y_i]. \)

1.5.2.4 Lift

- Use \(M_0, M_1, M_i^0, M_i^1 \) to compute gates \(N_0, N_1 \) such that \(f = N_0 + N_1. \)
- If the reconstruction was successful return it, else return failed.

2 An Illustrative Example

Let \(\bar{x} \) denote the variables \((x_1, \ldots, x_r) \) where \(r \) is a constant (we will fix this constant later). Consider the following polynomial \(f(\bar{x}) \in \mathbb{F}[x_1, \ldots, x_r] \)

\[
f(\bar{x}) = T_0(\bar{x}) + T_1(\bar{x}).
\]

Such that:
1. \(T_0(\bar{x}) = A_1 \ldots A_d, T_1(\bar{x}) = B_1 \ldots B_d \) with \(A_i, B_j \) linear forms
2. \(\gcd(A_i, B_j) = 1 \) for all \(1 \leq i, j \leq d. \)
3. \(\dim(\{A_i, B_j : i, j \in [d]\}) = r \) i.e. there are no redundant variables.

Define the sets \(A = \{A_1, \ldots, A_d\}, B = \{B_1, \ldots, B_d\}. \) We are going to view the points in \(A \) and \(B \) as points in the space \(\mathbb{F}^r. \) We also identify (keep only one copy) linear forms which are scalar multiples of each other.

Theorem 2.1. Consider \(f(\bar{x}) \) from above and assume \(f(\bar{x}) = \sum_{\lambda \in \Lambda} c_{\lambda} x^\lambda \) where \(\lambda = (\lambda_1, \ldots, \lambda_r) \) and \(x^\lambda = x_1^{\lambda_1} \ldots x_r^{\lambda_r}. \) Suppose we know all the coefficients \(c_{\lambda} \) then in time \(\text{poly}(d) \) we can reconstruct \(T_0(\bar{x}), T_1(\bar{x}) \) with high probability.

We will describe an algorithm which proves the above theorem. At many points during the algorithm we will need results that are mentioned later in the paper. For better understanding we encourage the reader to first go through this algorithm assuming all the claims mentioned.
2.1 Candidate Linear Forms

Our job in this algorithm is to reconstruct $T_0(\bar{x}), T_1(\bar{x})$ i.e. A_i's and B_j's. Let us first observe a property these linear forms satisfy. One can see that for $l \in \{A_i, B_j : i, j \in [d]\}$ the following holds:

\[f_{|l=0} \text{ is a non-zero product of linear forms.} \]

Can we use this to reconstruct A_i, B_j? The two questions that pop up are:

1. Are there linear forms other than A_i, B_j that satisfy the above condition?
2. If yes, can we find out some structure of the bad l's (which are not A_i, B_j)?
3. Can we bound the total number of such l's by a polynomial in d?
4. Can we construct this set efficiently?

The answer to all the above questions is a YES!

\[\text{Example 2.2.} \text{ Consider } f(x_1, \ldots, x_r) = (x_1 + x_2)(x_1 + x_3) \ldots (x_1 + x_r) + x_2 \ldots x_r. \text{ We can see that } f_{|x_1=0} = x_2 \ldots x_r \text{ but } x_1 \text{ is not a factor of any of the gates.} \]

The next claim contains the information structure of the bad l's and their number. Proof will be given later in the paper in Appendix E.

\[\text{Claim 2.3. Consider the set } C = \{ l : f_{|l=0} \text{ is a non zero product of linear forms } \} \text{ and let } \{l_1, \ldots, l_k\} \subset T_1 \text{ be a set of LI linear forms where } k = c_\ell(3) + 2 \text{ (rank bound for } \Sigma \Pi \Sigma(3) \text{ circuits) then} \]

1. $\{A_i, B_j : i, j \in [d]\} \subseteq C$
2. $|C| \leq O(d^4)$
3. If $l \in C \setminus \{A_i, B_j, i, j \in [d]\}$, then there exists $i \in [k]$ and $j \in [d]$ such that $\{l, A_i, B_j\}$ are linearly dependent i.e. for every LI set $\{A_1, \ldots, A_k\}$, a bad l will match one of these A_i ($i \in [k]$) to some B_j.

Moreover the above set C can be constructed in time $poly(d)$. This is done by solving a set of multivariate polynomial equations of $poly(d)$ degree in $O(1)$ variables. Please see Appendix E for details.

2.2 Reconstruction Algorithm

Before going to the core of the algorithm let’s explain an easy case. Recall $A = \{A_1, \ldots, A_d\}$ and $B = \{B_1, \ldots, B_d\}$. Also color the points in A red and the points in B blue.

2.2.1 Easy Case

For this case we assume

\[sp(A) \subseteq sp(B). \]

So let’s say $A_1 \notin sp(B)$. The main advantage of such an A_1 is that on setting A_1 to 0 no linearly independent $\{B_i, B_j\}$ become dependent. Geometrically we have the following picture:
We guess a basis \(\{ l_1, \ldots, l_r \} \) of linear forms from the set \(C \). While doing this we assume:
- \(l_1 = A_1 \)
- \(l_2, \ldots, l_t \) is a basis for \(B \)
- \(l_{t+1}, \ldots, l_r \) are the rest of the basis vectors

If our guess was actually a basis we define an invertible linear transformation \(T \) sending \(l_i \) to \(x_i \). We apply \(T \) to \(f(\bar{x}) \) by applying it to each variable in the most natural way. If our guess was correct we get
\[
f'(\bar{x}) = f(T(\bar{x})) = x_1 A_2' \ldots A_d' + B_1' \ldots B_d'.
\]

Note that if our assumption for the basis is correct then none of the \(B_i' \)'s contain \(x_1 \). So we can compute \(f'|_{x_1=0} = B_1' \ldots B_d' \). Then we can apply \(T^{-1} \) and get back \(T_1(\bar{x}) = B_1, \ldots, B_d \).

We remind the reader that everything is recovered up to a scalar multiple but that is not a problem since that can be merged into one scalar for the gate \(B(\bar{x}) \) which can be easily recovered. We then factorize \(f - T_1(\bar{x}) \) and check if it factors into a product of linear forms and recover \(T_0(\bar{x}) \). Note that during the process we will guess the basis correctly at least once.

Also the last step checks if we actually get a \(\Sigma\Pi\Sigma(2) \) circuit and therefore the reconstruction will be complete. The case where \(\text{sp}(B) \subseteq \text{sp}(A) \) is symmetrical and is handled in the same way. Next we deal with the hard case.

2.2.2 Hard Case

The other case i.e. \(\text{sp}(A) = \text{sp}(B) \) is much harder but high dimensionality enables us to apply the Quantitative version of Sylvester Gallai Theorems from \([3]\). Let’s first just give some consequences of the Quantitative Sylvester Gallai theorem (from [3]) which will be useful for us. A slightly more general version with proof can be found in Appendix B.

Corollary 2.4. Let \(S = \{ s_1, \ldots, s_n \} \subseteq \mathbb{C}^d \) be a set of points. Assume \(\text{dim}(S) > \Omega(C^k) \) for some constant \(C \), then there exists a set of linearly independent points \(\{ s_1, \ldots, s_k \} \) and a set \(T \subset S \) with \(|T| \geq 0.99n \), such that \(f((s_1, \ldots, s_k, t)) \) is an elementary \(k \)-flat for every \(t \in T \). That is:
- \(t \notin fI(\{s_1, \ldots, s_k\}) \)
- \(fI(\{s_1, \ldots, s_k, t\}) \cap S = \{s_1, \ldots, s_k, t\} \).

Lemma 2.5 (Bichromatic semi-ordinary line). Let \(X \) and \(Y \) be disjoint finite sets in \(\mathbb{C}^d \) satisfying the following conditions.
1. \(\text{dim}(Y) > \Omega(C^4) \) where \(C \) is the constant in the above corollary.
2. \(|Y| \leq 99|X| \)

Then there exists a line \(l \) such that \(|l \cap Y| = 1 \) and \(|l \cap X| \geq 1 \).
At this point we would like to mention that the constants $99, 0.99$ and the one hidden in $\Omega(C^K)$ have more general values given by a parameter δ. For the time being we’ve fixed them for better exposition. Please see Appendix B for more details.

Using high dimensionality of A, B and the above mentioned corollaries we are able to prove the following theorem which forms the backbone of our algorithm.

Theorem 2.6. For some product gate (say A), there exists $k = O(1)$ points $S = \{A_1, \ldots, A_k\}$ and a large set $D \subset A$ such that on projecting D, B to the subspace W defined by $\{A_1 = 0, \ldots, A_k = 0\}$ (and throwing away zeros):

- There exists a lines $L = B_1' D_1'$ where B_1' and D_1' are projections of B_1, D_1 onto W. Also if B' is the projection of B onto W then $L \cap B' = \{B_1'\}$, so the line is a bichromatic semi-ordinary which were discussed in the lemma above.

Let’s pick one of these lines and see what would have happened in \mathbb{F}^r which led us to this line in W.

In the picture above the inner triangle denotes $sp(S)$ and the outer parallelogram denotes $sp(S \cup \{B_1\})$. The line in the previous picture i.e. projecting the points onto W has only one blue point implying:

- $sp(S \cup \{B_1\}) \cap B = sp(S \cup \{B_1\})$
- $sp(S \cup \{B_1\} \cup \{D_1\}) \cap B = sp(S \cup \{B_1\})$

Note that this looks very similar to what we had in Subsection 1.5.1. We used this kind of a configuration to recover points using their projections. A similar method is implemented here. Given that such a configuration exists we can come up with the following algorithm.
31:14 Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

1. From the set C guess the set $S = \{A_1, \ldots, A_k\}$ mentioned in the theorem above.
2. Using condition (3) in Claim 2.3 obtain a set X such that $D \subset X \subset A$. This can be done as explained in Algorithm 4. The reader should just assume this at the moment. We need to make sure that D_1 comes from A because the algorithm is iterative and we don’t want a spurious linear form in C give any reconstruction. We always want to set some A_i’s to 0 so that we only recover B_j’s.
3. Iterate over this set X and guess D_1.
4. By projecting f to the subspaces $\{A_1 = 0, \ldots, A_k = 0\}$ and $\{D_1 = 0\}$ we get B_1' and $(B_1)_{D_1=0}$. Because of the diagram above these two projections can be matched and used to reconstruct B_1.
5. If no $D_1 \in X$ worked then go to Easy Case since dimension should have fallen.

Basically the algorithm just exploits the existence of the line mentioned in the previous theorem and reconstructs the corresponding B_1 (whose projection lies on the line). This reconstruction was possible because this line had only one blue point. After finding B_1 we declare it known so that in the next iteration we can remove it’s projection when required. We will continue to get such bichromatic semi-ordinary lines till the unknown linear forms in the B set have high dimension. If at any stage this reconstruction is not possible then this dimension would have fallen and we can use the Easy Case.

2.2.2.1 Return Type

In all our algorithms we wish to return the reconstructed form of f. Since f and the two gates T_0, T_1 are to be returned we define an object for it. We call this object Decomposition. We assume having a data type polynomial for general polynomials and pi_sigma for polynomials which are product of linear forms. We use C++ syntax to define our structure.

```cpp
struct decomposition {
    bool is_correct; // is_correct will be true if f = M_0 + M_1
    polynomial f;
    pi_sigma M_0;
    pi_sigma M_1;

    // Constructor when a reconstruction is found
    decomposition (polynomial g, pi_sigma A, pi_sigma B) {
        is_correct = true;
        f = g;
        M_0 = A;
        M_1 = B;
    }

    // Constructor when no reconstruction is found
    decomposition () {
        is_correct = false;
    }
};
```

3 Reconstruction for low rank

Let’s recall Definition 1.2 following Theorem 1.1 in Section 1.

- **Definition 3.1.** We fix s to be any constant $> \max(C_{2k-1} + k, c_F(4))$ where:

 1. $c_F(l) = 3l^2$ is the rank lower bound (see Theorem 1.7) that guarantees non-zeroness of any simple, minimal, $\Sigma\Pi\Sigma(l)$ circuit with rank $> c_F(l)$.
2. \(k = c_F(3) + 2 \).
3. \(\delta \) is some fixed number in \((0, \frac{1}{k-1})\).
4. \(C_k = \frac{C_F}{\delta} \) the constant that appears in Theorem B.4.

Let \(r \) be any constant \(\geq s \) (In our application we need \(s \) and \(s + 1 \)). Our main theorem for this section therefore is:

Theorem 3.2. Let \(r \) be as defined above. Consider \(f(\bar{x}) \in \mathbb{F}[\bar{x}] \), a multivariate homogeneous polynomial of degree \(d \) over the variables \(\bar{x} = (x_1, \ldots, x_r) \) which can be computed by a \(\Sigma \Pi \Sigma(2) \) circuit \(C \) over \(\mathbb{F} \). Assume that rank of the simplification of \(C \) i.e. \(\text{Sim}(C) = r \). We give a \(\text{poly}(d) \) time randomized algorithm which computes \(C \) given blackbox access to \(f(\bar{x}) \).

We assume \(f \) has the following \(\Sigma \Pi \Sigma(2) \) representation:

\[
f = \tilde{G}(\tilde{a}_0 \tilde{T}_0 + \tilde{a}_1 \tilde{T}_1)
\]

where \(\tilde{G}, \tilde{T}_i \in \Pi \Sigma_\mathbb{F}[\bar{x}] \) are normal (i.e. leading non-zero coefficient is 1 in every linear factor) and \(\tilde{a}_0, \tilde{a}_1 \in \mathbb{F} \) with \(\text{gcd}(\tilde{T}_0, \tilde{T}_1) = 1 \). The \(\text{rank}(\text{Sim}(C)) = r \) condition then becomes

\[
\text{sp}(\mathcal{L}(\tilde{T}_0) \cup \mathcal{L}(\tilde{T}_1)) = \text{Lin}_\mathbb{F}[\bar{x}].
\]

Consider the set \(T = \mathcal{L}(\tilde{G}) \cup \mathcal{L}(\tilde{T}_0) \cup \mathcal{L}(\tilde{T}_1) \). By abuse of notation we will treat these linear forms also as points in \(\mathbb{F}^r \). Since linear factors of \(\tilde{G}, \tilde{T}_i \) are normal, two linear factors of \(\tilde{G}, \tilde{T}_i \) are LD iff they are same.

Random Transformation and Assumptions

Let \(\Omega, \Lambda \) be two \(r \times r \) matrices such that their entries \(\Omega_{i,j} \) and \(\Lambda_{i,j} \) are picked independently from the uniform distribution on \([N]\). Here \(N = 2^d \). We begin our algorithm by making a few assumptions. All of these assumptions are true with very high probability and we assume them in our algorithm. These assumptions make our work easy by removing redundancy in the co-ordinates. The idea is to move vectors randomly thereby introducing non-zero coefficients in them. Consider the standard basis of \(\mathbb{F}^r \) given as \(S = \{ e_1, \ldots, e_r \} \). Let \(E_j = \text{sp}(\{e_1, \ldots, e_j\}) \) and \(E'_j = \text{sp}(\{e_{j+1}, \ldots, e_r\}) \), clearly \(\mathbb{F}^r = E_j \oplus E'_j \). Let \(\pi_{\mathbb{F}^r_j} \) be the orthogonal projection onto \(E_j \) w.r.t. this decomposition. Note that \(T \) is a finite set of vectors in \(\mathbb{F}^r \).

Assumption 0: \(\Omega \) is invertible. This is just the complement of event \(E_0 \) in Section D and so occurs with high probability.

Assumption 1: For all \(t \in T \), \(\pi_{\mathbb{F}^r_j}(\Omega(t)) \neq 0 \) i.e. \([\Omega(t)]_{S_0} \neq 0 \) (coefficient of \(e_1 \) is non-zero). This is the complement of event \(E_1 \) in Section D. and so occurs with high probability.

Assumption 2: For all LI sets \(\{t_1, \ldots, t_r\} \subset T \), \(\{\Omega(t_1), \ldots, \Omega(t_r)\} \) is LI. This essentially means that \(\Omega \) is invertible. This is the complement of \(E_2 \) in Section D and so occurs with high probability.

Assumption 3: Fix a \(k < r \). For all LI sets \(\{t_1, \ldots, t_r\} \subset T \), \(\{\Omega(t_1), \ldots, \Omega(t_k), \Lambda \Omega(t_{k+1}), \ldots, \Lambda \Omega(t_d)\} \) is LI i.e. is a basis. This is the complement of event \(E_3 \) in Section D and so occurs with high probability. It’ll be used later in this paper.

Assumption 4: Fix a \(k < r \). For all LI sets \(\tilde{T} = \{t_1, \ldots, t_r\} \subset T \), define the set \(B = \{\Omega(t_1), \ldots, \Omega(t_k), \Lambda \Omega(t_{k+1}), \ldots, \Lambda \Omega(t_d)\} \). By Assumption 3 this is a basis. Consider any \(t \in T \) such that \(\Omega(t) \notin \text{sp}(\{\Omega(t_1), \ldots, \Omega(t_k)\}) \). Then \([\Omega(t)]_{B_{k+1}} \neq 0 \). This event is the complement of \(E_5 \) and so it occurs with high probability. We want non-zeroness of co-ordinates even after projecting to a codimension-\(k \) subspace. That is where this will be useful.
From now onwards we will assume that all the above assumptions are true. Since all of them occur with very high probability, their complements occur with very low probability and by union bound the union of their complements is a low probability event. So intersection of the above assumptions occurs with high probability and we assume all of them are true. Note that the assumptions will continue to be true if we scale all linear forms (possibly different scaling for different vectors, but non-zero scalars) in T i.e. if the assumptions were true for T then they would have been true had we started with a scaling of T.

The first step of our algorithm is to apply Ω to f. We have a natural identification between linear forms and points in F^n. This identification converts Ω into a linear map on $\text{Lin}_F[x]$ which can be further converted to a ring homomorphism on polynomials by assuming that it preserves the products and sums of polynomials. So Ω gets applied to all linear forms in the $\Sigma\Pi\Sigma(2)$ representation of f. Since f is a degree d polynomial in r variables it has almost $\text{poly}(d')$ coefficients. Applying Ω to each monomial and expanding it takes $\text{poly}(d')$ time and gives $\text{poly}(d')$ terms. So computing $\Omega(f)$ takes $\text{poly}(d')$ time and has $\text{poly}(d')$ monomials.

Now we try and reconstruct the circuit for $\Omega(f)$. If this reconstruction can be done correctly, we can apply Ω^{-1} and get back f. Note that Assumption 1 tells us that the coefficient of x_1 in $\Omega(l)$ is non-zero for all l in T. Let $X = \{x_1, \ldots, x_r\}$ and \bar{x} is used for the tuple (x_1, \ldots, x_r). From this discussion we know that:

$$\Omega(f) = \Omega(\bar{G})(\tilde{\alpha}_0\Omega(\tilde{T}_0) + \tilde{\alpha}_1\Omega(\tilde{T}_1)) = G(\alpha_0T_0 + \alpha_1T_1)$$

where α_i are chosen such that linear factors of G, T_i have their first coefficient (that of x_1) equal to 1. So they are standard $\Pi\Sigma$ polynomials. Note that we’ve used Assumption 1 here. Since we’ve moved constants to make linear forms standard we can assume $G = \lambda\Omega(\bar{G}), T_i = \lambda_i\Omega(\tilde{T}_i)$ with $\lambda, \lambda_i \in F$. Consider some scaling T_{sc} of T such that $\mathcal{X} = \mathcal{L}(G) \cup \mathcal{L}(T_0) \cup \mathcal{L}(T_1)$ is $\Omega(T_{sc})$ i.e. X. Also since Ω is invertible $\gcd(T_0, T_1) = 1$.

Let

$$T_i = \prod_{j \in [M]} l_{ij}, i = 0, 1 \text{ and } G = \prod_{k \in [d-M]} G_k$$

with l_{ij}, G_k linear forms (so $d = \text{deg}(f)$).

For simplicity from now onwards we call $\Omega(f)$ by f and try to reconstruct it’s circuit. Once this is done we may apply Ω^{-1} to all the linear forms in the gates and get the circuit for f. This step clearly takes $\text{poly}(d')$ time in the same way as applying Ω took. Since r is a constant, the steps described above take $\text{poly}(d)$ time overall.

Known and Unknown Parts

We also define some other $\Pi\Sigma$ polynomials $K_i, U_i, i = 0, 1$ which satisfy

$$K_i \mid \alpha_i GT_i, U_i = \frac{\alpha_i GT_i}{K_i}$$

with the extra condition

$$\gcd(K_i, U_i) = 1.$$
K_i are the known factors of α_iGT_i and U_i the unknown factors. The gcd condition just means that that known and unknown parts of α_iGT_i don’t have common factors. In other words linear forms in α_iGT_i are known with full multiplicity. We initialize $K_i = 1$ and during the course of the algorithm update them as and when we recover more linear forms. At the end $K_i = \alpha_iGT_i$ and so we know both gates.

3.1 Outline of the algorithm

1. **Set C of Candidate Linear Forms:** We compute a $poly(d)$ size set C of linear forms which contains $\mathcal{L}(T_i), i = 0, 1$. We will non-deterministically guess from this set C making only a constant number of guesses everytime (thus polynomial work overall). It is important to note that the uniqueness of our circuit guarantees that our answer if computed can always be tested to be right. For more details on this please see Appendix E. We also give an efficient algorithm to construct this set. See Algorithm 8.

2. **Easy Case:** $\mathcal{L}(T_{1-i}) \subseteq \text{sp}(U_i)$, for some $i \in \{0, 1\}$

 So T_{1-i} has a linear factor $l_{(1-i)1}$ such that
 \[
 \text{sp}(\{l_{(1-i)1}\}) \cap \text{sp}(U_i) = \{0\}
 \]

 Let $W = \text{sp}(\{l_{(1-i)1}\})$ and extend to a basis of V and in the process obtain another subspace $W' \subseteq V$ such that $W \oplus W' = V$. We can see from Equation 1 that LI linear forms in U_i remain LI when we project to W'. We use this to compute U_i and then since $K_iU_i = \alpha_iGT_i$ we know one of the gates. To find the other gate simply factorize $f - \alpha_iGT_i$. If it factors into a product of linear forms we have the reconstruction.

3. **Medium Case:** $\dim(\text{sp}(T_{1-i}) + \text{sp}(T_i) / \text{sp}(T_i)) \geq 2$ for some $i \in \{0, 1\}$

 This case is just to facilitate the Hard Case. We know that T_{1-i} has two linear factors $l_{(1-i)1}, l_{(1-i)2}$ such that $\text{sp}(\{l_{(1-i)1}, l_{(1-i)2}\}) \cap \text{sp}(T_i) = \{0\}$. We show that the only linear factors of f are those which appear in G. So we can first factorize f using Kaltofen’s factoring ([14]) and obtain G. Update $K_j = G, j = 0, 1$. So $U_j = \alpha_jT_j$ for $j = 0, 1$. Clearly we also have $\mathcal{L}(T_{1-i}) \subseteq \text{sp}(T_i) = \text{sp}(U_i)$ and we can go to Easy Case above with $K_i = G$.

4. **Hard Case:** $\mathcal{L}(T_{1-i}) \subseteq \text{sp}(U_i)$, for $i = 0$ and 1

 We know that we are not in Medium Case and so $\dim(\text{sp}(T_0) + \text{sp}(T_1)) - \text{sp}(T_i) \leq 1$ for $i = 0, 1$. Also $\dim(\text{sp}(T_0) + \text{sp}(T_1)) = r$ by assumption on the simple rank of our polynomial. So this guarantees that $\dim(\text{sp}(T_{1-i})) \geq r - 1 \Rightarrow$ (by the condition of this hard case) $\dim(\text{sp}(U_{1-i})) \geq r - 1$ for $i = 0, 1$. This enables us to use the Quantitative Sylvester Gallai theorems on both sets $\mathcal{L}(T_i), \mathcal{L}(U_i)$.

 - Our first step is to identify a certain “bad” IIΣ factor I of G and get rid of it to get $G = \frac{G}{I}$ and thus $f = \frac{f}{I}$. The factors of I don’t satisfy certain properties we need later and so we remove them. Thankfully we have an efficient algorithm to recover I. Our algorithm uses something we call a Detector Pair (See 3.4) whose existence is shown using the Quantitative Sylvester Galai Theorems mentioned above.

 - So now our job is to reconstruct f with known (and unknown resp.) parts as K_0^*, K_1^* (U_0^*, U_1^* resp.).

 - If $\text{sp}(U_{1-i})$ becomes low dimensional we may fall in Easy Case and recover the circuit for f directly. Otherwise the same detector pairs then provide certain “nice” subspaces corresponding to linear forms in T_i. Projection of U_{1-i} onto these subspaces can be easily glued together to recover some linear factors (with multiplicities) of U_{1-i}, which will then be multiplied to K_i^*.
We give algorithms for Easy and Medium cases. Hard Case will require more preparation and will be done after these subsections. From now onwards we assume that we have constructed a \(\text{poly}(d) \) sized set of linear forms \(\mathcal{C} \) which contains \(\mathcal{L}(T_i) \) for \(i = 0, 1 \). We have other structural results about linear forms in this set. See Appendix E for more details and algorithms. Algorithm 8 constructs this set in \(\text{poly}(d) \) time.

3.2 Easy Case

\[
\mathcal{L}(T_{1-i}) \subseteq \text{sp}(U_i), \text{ for some } i \in \{0, 1\}
\]

Claim 3.3. Suppose for some \(i \in \{0, 1\} \), \(\mathcal{L}(T_{1-i}) \subseteq \text{sp}(U_i) \) then we can reconstruct \(f \).

Algorithm 1: Easy Case Reconstruction.

```
FunctionName: EasyCase
input : \( f \in \Sigma \Pi \Sigma (2)[\bar{x}], K_0 \in \Pi \Sigma \Sigma [\bar{x}], K_1 \in \Pi \Sigma \Sigma [\bar{x}], \mathcal{C} \subset \text{Lin}_Y [\bar{x}] \)
output : An object of type decomposition

1 for \( i \leftarrow 0 \) to 1 do
2     for each LI set \( \{l_1, l_2, \ldots, l_r\} \subset \mathcal{C} \) do
3         Define \( K_i' \leftarrow K_i \);
4         Find \( t \) such that \( l_i^t \parallel f \);
5         // i.e. \( l_i^t \parallel f \) & \( l_i^{t+1} \parallel f \)
6         \( W \leftarrow \text{sp}(\{l_1\}), W' \leftarrow \text{sp}(\{l_2, \ldots, l_r\}) \);
7         if \( l_i^t \parallel K_i' \) then
8             \( \tilde{f} = f_{l_i}; \tilde{K}_i = K_i' \);
9             if \( U_i = \frac{\pi_{W'}(f)}{\pi_{W'}(K_i)} \in \Pi \Sigma \Sigma [\bar{x}] \) & \( \Theta f - K_i U_i \in \Pi \Sigma \Sigma [\bar{x}] \) then \( K_i = K_i U_i \); \( K_{i-1} = f - K_i U_i \);\n10            return decomposition(\( f, K_0, K_1 \));
11        end
12     end
13 end
14 return decomposition();
```

Explanation and Correctness Analysis

- The first for loop just guesses the gate with extra dimensions i.e. it’s not contained in span of the unknown part of the other gate.

- If for some basis \(\{l_1, \ldots, l_r\} \subset \mathcal{C} \) the algorithm actually computes a \(\Sigma \Pi \Sigma (2) \) representation in the end then it ought to be correct since the last 'if' also checks if it is correct.

- If our guess for \(i \) is correct, we show that there exists a basis \(\{l_1, \ldots, l_r\} \subset \mathcal{C} \) for which all conditions will be satisfied and we actually arrive at a \(\Sigma \Pi \Sigma (2) \) representation in the end. Since \(\mathcal{L}(T_{1-i}) \subseteq \text{sp}(U_i) \) and \(\mathcal{L}(T_{1-i}) \subset \mathcal{C} \) there exists \(l_1 \in \mathcal{L}(T_{1-i}) \setminus \text{sp}(U_i) \subset \mathcal{C} \). Choose a basis \(\{l_2, \ldots, l_s\} \) of \(\text{sp}(U_i) \), then \(\{l_1, \ldots, l_s\} \) is an LI set. Now extend this to a basis \(\{l_1, \ldots, l_s, l_{s+1}, \ldots, l_r\} \subset \mathcal{C} \) of \(V \). We go over all choices of basis in \(\mathcal{C} \) and will arrive at the right one.
We initialize a dummy polynomial K'_i to represent K_i since we do not want to update K_i till we actually have a solution. Let’s assume $l_i^j || f$ i.e. $l_i^j || f$ and $l_i^{j+1} || f$. We know $l_i | T_{i-1}$, $l_i^{j+1} | T_i$. Therefore $l_i^j || G \Rightarrow l_i^j || \alpha_i T_i = K_i U_i$. Also $l_i \not\in sp(U_i) \Rightarrow l_i^j \not\in U_i$ thus $l_i^j || K_i \Rightarrow l_i^j || K'_i$. We remove l_i^j from both f, K_i' to get f, K_i'. Let $W = sp([l_1])$ and $W' = sp([l_2, \ldots, l_r])$, therefore $V = W \oplus W'$. Note that since $l_i \in \mathcal{L}(T_{i-1})$

$$\pi_W(f) = \pi_W(U_i) \pi_W(K'_i)$$

Since $\pi_W(K'_i) \neq 0$, we get $\pi_W(U_i) = \frac{\pi_W(f)}{\pi_W(K'_i)}$. If $U_i = u_1 \ldots u_s$ with $u_j \in W'$, we see that $\pi_W(U_i) = \pi_W(u_1) \ldots \pi_W(u_s) = u_1 \ldots u_s = U_i$. So we get U_i and hence $\alpha_i G T_i = K_i U_i$. Once $\alpha_i G T_i$ is known we factorize $f - \alpha_i G T_i$ to get $\alpha_{i-1} G T_{i-1}$. For the correct choice of our basis this will factorize completely into a $\Pi \Sigma$ polynomial. Now we update $K_i = K_i U_i$ and $K_{i-1} = f - K_i U_i$ and an object decomposition(f, K_0, K_1). Throughout the algorithm we use Kaltofen’s factoring [14] wherever necessary.

If we were not able to find the $\Sigma \Pi \Sigma(2)$ representation then we return an object decomposition().

Time Complexity
We can see above all loops run only $poly(d)$ many times. The most expensive step is choosing r vectors from C. But recall that r is a constant and so this also takes only polynomial time in d. Other steps like factoring polynomials (using Kaltofen’s factoring algorithm from [14]), taking projection onto known subspaces, dividing by polynomials require $poly(d)$ time (r is a constant) as has been explained multiple times before.

3.3 Medium Case

$$\dim(sp(T_{i-1}) + sp(T_i)/sp(T_i)) \geq 2$$ for some $i \in \{0, 1\}$

Claim 3.4. If $\dim(sp(T_{i-1}) + sp(T_i)/sp(T_i)) \geq 2$ then $\mathcal{L}(\alpha_i T_i + \alpha_{i-1} T_{i-1}) = \phi$.

Proof. $\dim(sp(T_{i-1}) + sp(T_i)/sp(T_i)) \geq 2 \Rightarrow$ there exists $l_{i_1}, l_{i_2} \in \mathcal{L}(T_{i-1}) \setminus sp(T_i)$ be such that $\dim([l_{i_1}, l_{i_2}] \cup \mathcal{L}(T_i)) = \dim(\mathcal{L}(T_i)) + 2$. Assume there exist $l \in \mathcal{L}(\alpha_i T_i + \alpha_{i-1} T_{i-1})$.

$$l | \alpha_i T_i + \alpha_{i-1} T_{i-1} \Rightarrow l | T_i \text{ and } l | T_{i-1} \text{ (since they are coprime)}$$

$$0 \not\equiv \alpha_i \prod_{j \in [M]} l_{i,j} = -\alpha_{i-1} \prod_{j \in [M]} l_{(i-1),j} \pmod{l}.$$ Thus there exist $l_1, l_2 \in \mathcal{L}(T_i)$ and scalars $\gamma_j, \delta_j, j \in [2]$ such that $l = \gamma_j l_j + \delta_j l'_j$. Since $l | T_0, l | T_1$ we get γ_j, δ_j are non zero.

$$\delta_1, \delta_2 \not\equiv 0,$$

$$l_1', l_2' \in sp([l] \cup \mathcal{L}(T_i)) \Rightarrow \dim([l_1', l_2'] \cup \mathcal{L}(T_i)) \leq \dim(\mathcal{L}(T_i)) + 1$$ which is a contradiction. So $\mathcal{L}(\alpha_i T_i + \alpha_{i-1} T_{i-1}) = \phi$.

Therefore the only linear factors of f are present in G, which can now be correctly found by using Kaltofen’s algorithm [14] and identifying the linear factors. Update $K_j = G$ for $j = 0, 1$, therefore $U_j = T_j$. Also this case implies that $\mathcal{L}(T_{i-1}) \subseteq sp(T_i) = sp(U_i)$, and so we can use Easy Case.
So we have the following claim:

▶ Claim 3.5. If the condition in Medium Case is true, the following algorithm reconstructs f, if there is a reconstruction.

FunctionName: MediumCase

input : $f \in \Sigma\Pi\Sigma(2)[\bar{x}], C \subset Lin_\Sigma[\bar{x}]$

output : An object of type decomposition

1 $L \leftarrow Lin(f)$;

2 // Use Kaltofen’s factoring from [14] to compute $Lin(f) \overset{\text{def}}{=} \text{product of all linear factors of } f$

3 if EasyCase(f, L, L, C) $\not\rightarrow$ iscorrect then

4 return EasyCase(f, L, L, C);

5 end

6 return decomposition().

Algorithm 2: Medium Case Reconstruction

The above algorithm does exactly what has been explained in the preceding paragraph. It works in $\text{poly}(d)$ time if EasyCase(f, K_0, K_1, C) works in $\text{poly}(d)$ time. Kaltofen’s factoring and all other steps are $\text{poly}(d)$ time.

Now we need to handle the Hard Case. This is quite technical and so we do some more preparation. We devise a technique to get rid of some factors of f to get a new polynomial f without destroying the $\Sigma\Pi\Sigma(2)$ structure. If Easy Case holds for f we stop there itself. Otherwise we will use combination of different subspaces of V, project f onto them and glue projections to get gates for f.

3.4 Detector Pair, Reducing Factors, Hard Case Preparation

Let’s recall:

$$g = \frac{f}{G} = \alpha_0 T_0 + \alpha_1 T_1$$

We outline an approach to identify some factors of f. These factors will divide G but won’t divide g. This is going to be useful in the Hard Case. The linear factors left after removing these identified factors will have very strong structural properties and so will be instrumental in reconstruction. The main tool in this identification is a pair (S, D) (defined below) inside one of the $L(T_i)$’s. This pair will be called a “Detector Pair”. It will also decide the subspaces on which we take projections of f and glue back to get the gates.

Detector Pairs (S, D)

Fix $k = c_S(3) + 2$ (See Theorem 1.7 for definition of $c_S(m)$). Let $S = \{l_1, \ldots, l_k\} \subset L(T_i)$ be an LI set of linear forms. Let $D(\neq \phi) \subseteq L(T_i)$. We say that (S, D) is a “Detector Pair” in $L(T_i)$ if the following are satisfied for all $l_{k+1} \in D$:

- $\{l_1, \ldots, l_k, l_{k+1}\}$ is an LI set. Let $F = fl(\{l_1, \ldots, l_k, l_{k+1}\})$. F is elementary in $L(T_i)$ i.e. $F \cap L(T_i) = \{l_1, \ldots, l_k, l_{k+1}\}$. See Definition B.1.
- $F \cap L(T_{i-1}) \subseteq fl(\{l_1, \ldots, l_k\})$ i.e. F contains only those points from $L(T_{i-1})$ which lie inside $fl(\{l_1, \ldots, l_k\})$.
3.4.1 Identifying Some Factors Which Don’t Divide \(g \)

The two claims below give results about structure of linear forms which divide \(g \). The proofs are easy but technical and so we move them to the appendix.

Claim 3.6. Let \((S = \{l_1, \ldots, l_k\}, D) \) be a Detector set in \(\mathcal{L}(T) \). Let \(l_{k+1} \in D \). For a standard linear form \(l \in V \), if \(l \mid g \) then \(l \not\in \text{sp}(\{l_1, \ldots, l_k\}) \).

Proof. See F.1 in appendix.

Claim 3.7. Let \(l \in \text{Lin}_F[\bar{x}] \) be standard such that \(l \mid g \) and \(C \) be the candidate set. Assume \((S = \{l_1, \ldots, l_k\}, D(\neq \phi)) \) is a Detector pair in \(\mathcal{L}(T) \). Then \(|\mathcal{L}(T_{-i}) \cap (fl(S \cup \{l\}) \setminus fl(S))| \geq 2 \). That is the flat \(fl(\{l_1, \ldots, l_k, l\}) \) contains atleast two distinct points from \(\mathcal{L}(T_{-i})(\subseteq C) \) outside \(fl(\{l_1, \ldots, l_k\}) \).

Proof. See F.2 in appendix.

Claim 3.8. Suppose \((S = \{l_1, \ldots, l_k\}, D(\neq \phi)) \) is a Detector Pair in \(\mathcal{L}(T) \). The following algorithm identifies some factors in \(\mathcal{L}(G) \setminus \mathcal{L}(g) \). It returns the product of all linear forms identified.

```
FunctionName: IdentifyFactors
input : \( f \in \Pi \Sigma\Sigma(2)[\bar{x}], C \subseteq \text{Lin}_F[\bar{x}], S = \{l_1, \ldots, l_k\} \subseteq \text{Lin}_F[\bar{x}] \)
output : a \( \Pi \Sigma\Sigma[\bar{x}] \) polynomial
1    I = 1, bool flag;
2    for each factor \( l \) of \( f \) do
3        flag = false;
4        if all \( l, l_1, \ldots, l_k \) are LI then
5            for \( l'_1 \neq l'_2 \in C \setminus fl(\{l_1, \ldots, l_k\}) \) do
6                if \( l'_1, l'_2 \in \text{sp}(\{l, l_1, \ldots, l_k\}) \) then flag = true;
7                break;
8            end
9        end
10       if !flag then
11           I = I \times l;
12       end
13    end
14    return I;
```

Algorithm 3: Identify Factors.

Proof. The proof of the claim is a part of Lemma 3.9 below.

3.4.1.1 Time Complexity

Since \(C \) has size \(\text{poly}(d) \) and \(\text{deg}(f) = d \), the nested loops run \(\text{poly}(d) \) times. \(k, r \) are constants so checking linear independence of \(k + 1 \) linear forms in \(r \) variables takes constant time. Checking if some vectors belong to a \(k + 1 \) dimensional space also takes constant time. Multiplying linear forms to \(I \) takes \(\text{poly}(d) \) time. So overall the algorithm runs in \(\text{poly}(d) \) time.

CCC 2016
So the above algorithm identified a factor I of G for us. Let us define new polynomials

$$G = \frac{G}{I} = \prod_{t \in [N_1]} G_t$$

and

$$f = \frac{f}{I} = G(\alpha_0 T_0 + \alpha_1 T_1)$$

\begin{itemize}
 \item \textbf{Lemma 3.9.} The following are true:
 \begin{enumerate}
 \item If $l \mid I$ (i.e. l was identified) then $l \in \mathcal{L}(G) \setminus \mathcal{L}(g)$.
 \item If $l \mid G$ (i.e. l was retained) then $(f ll(\{l_1, \ldots, l_k, l\}) \setminus f ll(\{l_1, \ldots, l_k\}) \cap (\mathcal{L}(T_{i-1}) \cup (\mathcal{L}(T_i) \setminus D)) \neq \emptyset$ that is:
 \begin{align*}
 (f ll(\{l_1, \ldots, l_k, l\}) \setminus f ll(\{l_1, \ldots, l_k\}))
 \end{align*}
 contains a point from $\mathcal{L}(T_i) \setminus D$ or $\mathcal{L}(T_{i-1})$.
 \item If $l \mid G$ and $l_{k+1} \in D$ then $l \notin sp(\{l_1, \ldots, l_k, l_{k+1}\})$.
 \end{enumerate}
\end{itemize}

\textbf{Proof.} See F.3 in appendix.

\subsection{Overestimating the set D of the detector pair (S, D)}

Lemma 3.9 is going to help us actually find an overestimate of D corresponding to $S = \{l_1, \ldots, l_k\}$ in the detector pair (S, D) as described in the lemma below. This will be important since we need D during our algorithm for the Hard Case.

\begin{itemize}
 \item \textbf{Lemma 3.10.} Let $(S = \{l_1, \ldots, l_k\}, D)$ be a detector in $\mathcal{L}(T_i)$. For each $(l, l_j) \in C \times S$ define the space $U_{(l, l_j)} = sp\{l, l_j\}$. Extend $\{l, l_j\}$ to a basis and in the process obtain $U'_{(l, l_j)}$ such that $V = U_{(l, l_j)} \oplus U'_{(l, l_j)}$. Define the set:
 \begin{align*}
 X = \{l \in C : \pi_{U'_{(l, l_j)}}(f) \neq 0, \text{ for all } l_j \in S\}
 \end{align*}
 Then $D \subset X \subset \mathcal{L}(T_i)$.
\end{itemize}

\textbf{Proof.} See F.4 in appendix.

This set X is an overestimate of D inside $\mathcal{L}(T_i)$ and also easy to compute. Given S we may easily construct X in time $\text{poly}(d)$ because of it’s simple description. Let’s give an algorithm to compute X given f, S, C.

\begin{itemize}
 \item \textbf{Claim 3.11.} Algorithm 4 computes the overestimate X of D as discussed above.
\end{itemize}

\subsection{Time Complexity}

Inside the inner for loop we look for $(r - 2)$ linear forms from C. $|C| = \text{poly}(d)$ and r is a constant and so this step only needs $\text{poly}(d)$ time. The nested loops run polynomially many times. Checking linear independence of r linear forms and projecting to known constant dimensional subspaces also take $\text{poly}(d)$ time as has been discussed before. So the algorithm runs in $\text{poly}(d)$ time.
The above point shows the existence of a detector pair

Our first application (see Lemma 3.13) of Quantitative Sylvester Gallai will help us

This subsection will involve the most non trivial ideas. We handled

This subsection will involve the most non trivial ideas. We handled
prove the existence of a $d_1 \in D$ which together with the set S found above will give the existence of a “Reconstructor” (see Claim C.4 and Algorithm 7) which recovers some linear factors of U_{1-1} with multiplicity (see Theorem 3.14).

3.5.1 Large Size of Detector Sets

W.l.o.g, we assume $|L(T_0)| < |L(T_1)|$. First we point out a simple calculation that will be needed later. For $\delta \in (0, \frac{7}{6} - \sqrt{3})$ and $\theta \in (\frac{38}{36}, 1 - 3\delta)$, let $v(\delta, \theta)$ be defined as follows:

$$v(\delta, \theta) = \begin{cases} 1 - \delta - \theta & \text{if } |L(T_0)| \leq \theta|L(T_1)| \\ (1 - \delta)(1 + \theta) - 1 & \text{if } \theta|L(T_1)| < |L(T_0)| \leq |L(T_1)| \end{cases}$$

Claim 3.12. The following is true

$$\frac{(2 - v(\delta, \theta))}{v(\delta, \theta)} \leq \frac{1 - \delta}{\delta}.$$

Proof. See G.1 in appendix.

Lemma 3.13. Let $k = c_F(3) + 2$ (see defn of $c_F(m)$ in Theorem 1.7). Fix δ, θ in range given in Claim 3.12 above. Then for some $i \in \{0, 1\}$ there exists a Detector $(S = \{1, \ldots, l_k\}, D)$ in $L(T_i)$ with $|D| \geq v(\delta, \theta) \max(|L(T_0)|, |L(T_1)|)$.

Proof. See G.2 in appendix.

3.5.2 Assuming $L(T_1) \subseteq sp(L(U_{1-1}))$ and reconstructing factors of U_{1-1}

Let’s begin by stating our main reconstruction theorem for this Subsubsection. We will go through several steps to prove it:

Theorem 3.14. There exist pairwise disjoint LI sets S_0, S_1, S_2 with $S_0 \cup S_1 \cup S_2$ being a basis of $V = \text{Ling}_2[x_1, \ldots, x_r] \cong F^r$, and non constant polynomials P, Q dividing U_{1-1} such that $P \parallel Q$ and (Q, P, S_0, S_1, S_2) is a Reconstructor.

Once we know this result we actually recover P by computing $\pi_{W_0}^r(Q)$ and $\pi_{W_1}^r(Q)$ and then using Algorithm 7. We state this in the following corollary. Proof is given as Algorithm 5

Corollary 3.15. Using $f, K_{1-1}, S_0, S_1, S_2$ from above we can compute $\pi_{W_0}^r(Q), \pi_{W_1}^r(Q)$ for Q defined in the proof above.

Before going to the proof let’s do some more more preparation.

Consider the set of linear forms $X = L(G) \cup L(T_0) \cup L(T_1)$. We know that $sp(X) = V = \text{Ling}_2[x] \cong F^r$ (By abuse of notation we will use linear forms as points in F^r wherever required). Let $(S_0 = \{1, \ldots, l_k\}, D)$ be a detector in $L(T_i)$ with $|D| \geq v(\delta, \theta) \max(|L(T_0)|, |L(T_1)|)$ as obtained in the preceeding discussion.

Define $W_0 = sp(S_0)$ and extend S_0 to a basis $\{l_1, \ldots, l_k, l_k', l_{k+1}', \ldots, l_r'\}$. Now it’s time to use the other random matrix Δ. Since we had applied Ω in the beginning, $\{\Omega^{-1}(l_1), \ldots, \Omega^{-1}(l_k)\}$ are linear forms in our input polynomial for this section. By Assumption 3 we know that the set

$$\{\Omega(\Omega^{-1}l_1), \ldots, \Omega(\Omega^{-1}l_k), \Delta\Omega(\Omega^{-1}l_{k+1}')', \ldots, \Delta\Omega(\Omega^{-1}l_r')\}$$
is LI. Let \(l_j = \Lambda l_j, j \in \{k + 1, \ldots, r\} \). So \(\mathcal{B} = \{l_1, \ldots, l_r\} \) is a basis and define \(W_0^\perp = \text{sp}(\{l_{k+1}, \ldots, l_r\}) \). Clearly \(V = W_0 \oplus W_0^\perp \).

By Assumption 4 for any \(l \in \mathcal{X} \setminus W_0 \), \([l]_B^{k+1} \neq 0 \). We re-normalize all linear forms in \(\mathcal{X} \setminus W_0 \) making sure that the coefficient of \(l_{k+1} \) is 1 in them. From now onwards this will be assumed.

With this notation we proceed towards detecting linear factors of the unknown parts. But first let’s show that even after projecting onto \(W_0^\perp \), the detector is larger in size (upto a function of \(\delta \)) compared to one of the unknown parts.

\begin{lemma}
\textbf{Lemma 3.16.} The following are true:
\begin{enumerate}
\item \(\dim(\pi_{W_0^\perp}(\mathcal{L}(U_{1-i})) > C_4 \)
\item \(\pi_{W_0^\perp}(\mathcal{L}(U_{1-i})) \cap \pi_{W_0^\perp}(D) = \phi \)
\item \(|\pi_{W_0^\perp}(\mathcal{L}(U_{1-i})) \setminus \{0\}| \leq \frac{1-\delta}{\pi_{W_0^\perp}(D)} \)
\end{enumerate}
\end{lemma}

\textbf{Proof.} See G.3 in appendix.

This lemma enables us to apply Lemma B.6 from Appendix B. Consider the sets \(Y = \pi_{W_0^\perp}(\mathcal{L}(U_{1-i})) \setminus \{0\} \) and \(X = \pi_{W_0^\perp}(D) \). We’ve shown all conditions in Lemma 2.5, so there exists a line \(\tilde{L} \) (called a “semiordinary bichromatic” line) in \(W_0^\perp \) such that \(|\tilde{L} \cap Y| = 1 \) and \(|\tilde{L} \cap X| \geq 1 \).

Let’s prove another short lemma which is useful for technical reasons.

\begin{lemma}
\textbf{Lemma 3.17.} For any subspace \(W_0' \) such that \(V = W_0 \oplus W_0' = W_0 \oplus W_0^\perp \) there is a line \(\hat{L} \subset W_0' \) such that
\begin{enumerate}
\item \(|\hat{L} \cap \pi_{W_0'}(D)| \geq 1 \)
\item \(|\hat{L} \cap (\pi_{W_0'}(\mathcal{L}(U_{1-i})) \setminus \{0\})| = 1 \)
\end{enumerate}
\end{lemma}

\textbf{Proof.} We have the following commutative diagram:
\[
\begin{array}{ccc}
V & \xrightarrow{\pi_{W_0'}} & W_0' \\
\pi_{W_0^\perp} & \downarrow & \pi_{W_0^\perp} \\
W_0 & \rightarrow & W_0^\perp
\end{array}
\]

Let \(v = w + w^\perp \in V \) where \(w \in W_0, w^\perp \in W_0^\perp \), then
\[
\pi_{W_0^\perp}(\pi_{W_0^\perp}(v)) = \pi_{W_0^\perp}(w^\perp) = \pi_{W_0^\perp}(w^\perp) + \pi_{W_0^\perp}(w) = \pi_{W_0^\perp}(v)
\]
So \(\pi_{W_0'} = \pi_{W_0^\perp} \circ \pi_{W_0^\perp} \)

Next let \(T : V \to V \) be any bijection then \(T(A \cap B) = T(A) \cap T(B) \) and therefore \(|A \cap B| = |T(A) \cap T(B)| \). Since the maps above are projections one can easily see that \(\pi_{W_0^\perp} : W_0^\perp \to W_0^\perp \) is an isomorphism where the inverse of any \(w' \in W_0^\perp \) is given as \(\pi_{W_0^\perp}(w') \). Call this map \(T \). Now any linear isomorphism between vector spaces also preserves affine dependence since:
\[
T(\lambda u + (1-\lambda)v) = \lambda T(u) + (1-\lambda)T(v).
\]
So image of a line is a line. Let \(\tilde{L} \) be the line obtained in Lemma 3.16.

\(T(\tilde{L}) \) is a line in \(W_0' \).
Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

Let \(T \) be a linear isomorphism (as defined in the discussion above). For definition) for \(\pi \mid T \) be the line obtained right after Lemma 3.17. Since coefficient of \(\pi \) is non constant since \(\pi \notin W \) is a linear form then \(Q \). Clearly \(\pi \notin W \) does not exist. So such a \(\pi \notin W \) \(0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

- \(\pi \notin W \) \(0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

- \(\pi \notin W \) \(0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

So the lemma is true with \(\bar{L} \) being the line \(T(\bar{L}) \) obtained in this proof.

Finally it’s time to give the proof of Theorem 3.14. Let \(d_1 \in D \) such that \(\pi \notin W \) \(d_1 \) \(\in \bar{L} \) where \(L \) was the line obtained right after Lemma 3.16. Since coefficient of \(d_{k+1} \) is non-zero in \(d_1, \{l_1, \ldots, l_k, d_1, l_{k+2}, \ldots, l_r\} \) is also a basis. Define \(S_0 = \{l_1, \ldots, l_k\}, S_1 = \{d_1\}, S_2 = \{l_{k+2}, \ldots, l_r\} \). Then \(Q \) is a Reconstructor (See Subsection C for definition) for \(P \). Let’s check this is true:

- \(\pi \notin W \) \(0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

- \(\pi \notin W \) \(0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

- \(\pi \notin W \) \(0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

So the lemma is true with \(\bar{L} \) being the line \(T(\bar{L}) \) obtained in this proof.

Finally it’s time to give the proof of Theorem 3.14. Let \(d_1 \in D \) such that \(\pi \notin W \) \(d_1 \) \(\in \bar{L} \) where \(L \) was the line obtained right after Lemma 3.16. Since coefficient of \(d_{k+1} \) is non-zero in \(d_1, \{l_1, \ldots, l_k, d_1, l_{k+2}, \ldots, l_r\} \) is also a basis. Define \(S_0 = \{l_1, \ldots, l_k\}, S_1 = \{d_1\}, S_2 = \{l_{k+2}, \ldots, l_r\} \). Note this implies \(V = W_0 \oplus W_0 \) and so Lemma 3.17 above can be used. Let \(L \) be the line the Lemma 3.17 gives. By re-normalization we also assume that all linear forms in \(X \setminus W_0 \) have coefficient of \(d_1 \) equal to 1.

Proof of Theorem 3.14

We show this in steps:

- Let \(S_0, S_1, S_2 \) be as defined in the discussion above.

- Let \(Q \) be the largest factor of \(U_{1-i} \) such that for all linear forms \(q \mid Q, \pi \notin W(q) \neq 0 \). So \(\pi \notin W \) \(Q \neq 0 \) and if \(u^* \mid \frac{U_{1-i}}{Q} \) is a linear form then \(\pi \notin W \) \(u^* \neq 0 \). Let \(P \) be the II\(\Sigma \) polynomial with the largest possible degree such that for all linear factors \(p \mid P, \pi \notin W \) \(p \in \bar{L} \cap (\pi \notin W \) \((\mathcal{L}(U_{1-i})) \setminus \{0\}) \). Clearly \(P \) is non constant since \(|\bar{L} \cap (\pi \notin W \) \((\mathcal{L}(U_{1-i})) \setminus \{0\})| = 1 \). Clearly \(\pi \notin W \) \(P \neq 0 \Rightarrow P \mid Q \). Then \(Q, P, S_0, S_1, S_2 \) is a Reconstructor (See Subsection C for definition) for \(P \). Let’s check this is true:

- \(\pi \notin W \) \(Q \neq 0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

- \(\pi \notin W \) \(Q \neq 0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

- \(\pi \notin W \) \(Q \neq 0 \) - By definition of \(Q \) we know this for all its factors and therefore for \(Q \) itself.

Now we give the algorithm for reconstruction in this case, see Algorithm 5.

3.5.2.1 Correctness

Let’s assume we returned an object \(\text{obj} \) of type decomposition.

1. If \(\text{obj} \rightarrow \text{isincorrect} \Rightarrow \text{true} \): then we ought to be right since we check if \(\text{obj} \rightarrow f = \text{obj} \rightarrow M_0 + \text{obj} \rightarrow M_1 \). Since the representation is unique this will be the correct answer.

2. If \(\text{obj} \rightarrow \text{isincorrect} \Rightarrow \text{false} \): Let’s assume \(f \) actually has a \(\Sigma \Pi \Sigma(2) \) representation. If we were in Easy Case or Medium Case we would have already found the circuit using their algorithms. So we are in the Hard Case. So by Lemma 3.13 there exists \(i \) such that
FunctionName: HardCase
Fix \(k = \sigma_f(3) + 2 \)
input : \(f \in \Sigma \Pi \Sigma_f(2)[\bar{x}], C \subset Lin_f[\bar{x}], \Lambda \in \mathbb{F}^{r \times r} \)
output : An object of type decomposition
for \(i \leftarrow 0 \) to \(1 \) do
 for each \(LI \ B' = \{ l_1, \ldots, l_r, l_k'_{k+1}, \ldots, l_r' \} \subset C \) do
 \(S_0 = \{ l_1, \ldots, l_r \} \);
 for \(j \leftarrow k + 1 \) to \(r \) do
 \(l_j' \leftarrow \Lambda(l_j') \);
 end
 if \(B = \{ l_1, \ldots, l_r \} \) is LI then
 \(I \leftarrow IdentifyFactors(f, C, S_0) \);
 if \(I \mid f \) then
 \(f \leftarrow \frac{f}{l_j}, K_0^* = 1, K_1^* = 1, X \leftarrow OverRestDetector(f^*, C, S_0) \);
 while \(deg(K_1^*) < deg(f) \) do
 if \(EasyCase(f, K_0^*, K_1^*, C) \rightarrow iscorrect \) then
 return object decomposition\((f, IK_0^*, IK_1^*) \);
 end
 end
 for each \(d_i \in X \) do
 if \(B_0 = \{ l_1, \ldots, l_r, d_i, l_k+1, \ldots, l_r \} \) is LI then
 \(V_j' = \mathbb{F}l_j, j \in [r] \setminus \{ k+1 \}, V_{k+1} = \mathbb{F}d_1, V_j' = \bigoplus_{\ell \in [r] \setminus \{ j \}} V_\ell; \)
 \(S_0 = \{ l_1, \ldots, l_r \}, S_1 = \{ u_{k+1} \}, S_2 = \{ l_{k+2}, \ldots, l_r \}; \)
 \(W_j = sp(S_j), W_j' = \bigoplus_{r \neq j} W_j, \) for \(j \in \{ 0, 1, 2 \}; \)
 \(Q_0 = \pi_v^{(f)}(f), Q_1 = \pi_w^{(f)}(f); \)
 if \(Q_0, Q_1 \in \Pi \Sigma[\bar{x}] \) and non-zero then
 for \(q_0 || Q_0 \not\equiv q_0 \in W_0' \), \(q_1 || Q_1 \not\equiv q_1 \in W_1' \) do
 \(Q_0 = \frac{Q_0}{q_0}, Q_1 = \frac{Q_1}{q_1}; \)
 end
 end
 end
 end
 end
 if \(f - IK_1^* \in \Pi \Sigma[\bar{x}] \) then
 \(M_0 = IK_1^*, M_1 = f - M_0, \) return new object \(\text{decomposition}(f, M_0, M_1); \)
 end
 end
 end
 end
end
return decomposition();

Algorithm 5: Hard Case Reconstruction.
Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

\(\mathcal{L}(T_i) \) has a detector pair \((S_0, D)\) with \(|D|\) large. For this \(i\) there exists such an \(S_0\), so sometime during the algorithm we would have guessed the correct \(i\) and the correct \(S_0\).

Now let’s analyze what happens inside the while and the third for loop when the first two guesses are correct. Note that this also implies that the \(I\) we have identified is correct and now we need to solve for

\[
f = G(\alpha_0 T_0 + \alpha_1 T_1)
\]

Let \(K_0^i, K_1^i\) (initialized to 1) be the known parts of the gates for this polynomial \(f\) and \(U_0^i, U_1^i\) be the unknown parts. Note that \(T_0, T_1\) are same for both polynomials so \(\text{rank}(f) = \text{rank}(f)\) and for \(j = 0, 1; K_j \mid GT_j\).

Assume until the \(m^{th}\) iteration of the while loop \(K^i_j \mid GT_i\) for \(t \in \{0, 1\}\), we show that after the \((m+1)^{th}\) iteration, this property continues to hold and \(\text{deg}(K^i_{j-1})\) increases.

- If after the \(m^{th}\) iteration of the while loop for some \(j \in \{0, 1\}\), \(\mathcal{L}(T_j) \subsetneq \text{sp}(\mathcal{L}(U_{i-j}))\) we are in Easy Case for \(f\). The first step in while loop is to call EasyCase\((f, \mathcal{C}, K_0^i, K_1^i)\). This will clearly recover the circuit for \(f\) and return true since \(K^i_j \mid GT_i\) for \(t \in \{0, 1\}\). However this does not happen so for both \(j = 0, 1\), we have \(\mathcal{L}(T_j) \subseteq \mathcal{L}(U_{i-1})\). This means that we can use the ideas in Subsection 3.5.2, specifically Theorem 3.14.

- The first two guesses are correct imply that \(D \subseteq X \subseteq \mathcal{L}(T_i)\).

- If \(d\) gets rejected then \(K_t, t \in \{0, 1\}\) remain unchanged. If some \(d_1\) does not get rejected then since \(d_1 \in \mathcal{L}(T_i)\), \(Q_0 = \pi_{W_1^j}(U_{i-j})\) is a non-zero \(\Pi\Sigma\) polynomial. Then some factors (the ones in \(W_2^j\)) are removed from \(Q_0\). Also on projecting to \(W_0^j\) this still remains non-zero (as \(d_1\) was not rejected).

- We know that \(d_1 \in \mathcal{L}(T_i)\) and \(d_1\) not getting rejected implies that \(Q_1 = \pi_{W_1^j}(U_{i-1})\) is a non-zero \(\Pi\Sigma\) polynomial. We again remove some factors (i.e. the ones in \(W_2^j\)) from \(Q_1\). The non-zero-ness of \(Q_0, Q_1\) imply that \(Q_0 = \pi_{W_1^j}(Q), Q_1 = \pi_{W_1^j}(Q)\) i.e. they are projections of the same polynomial \(Q\) which is the largest factor of \(U_{i-1}\) with the property that any linear form \(q \mid Q\) is not in \(W_2^j = W_0^j \oplus W_1\).

- \(d_1\) was not rejected implies that \(\text{Reconstructor}(Q_0, Q_1, S_0, S_1, S_2)\) returned a non-trivial polynomial \(P\). This has to be a factor of \(Q\) by Claim C.6 following Algorithm 7 and therefore a factor of \(U_{i-1}\).

- Proof of Theorem 3.14 implies that in every iteration at least one \(d_1\) will not be rejected.

- So clearly the new \(K_{i-1}^1 = K_{i-1}^1 \times P\) divides \(GT_{i-1}\). \(K_i\) remains unchanged. Therefore even after the \((m+1)^{th}\) iteration \(K_t \mid GT_i\) for both \(j = 0, 1\) but degree of \(K_{i-1}^1\) increases.

So the while loop cannot run more than \(\text{deg}(f)\) times and in the end \(GT_{i-1}\) will be reconstructed completely and correctly and we should have returned \(\text{obj}\) with \(\text{obj} \rightarrow \text{iscorrect} = \text{true}\). Therefore we have a contradiction and so \(f\) did not have a \(\Pi\Sigma\Sigma(2)\) circuit and we correctly returned false.

Running Time

- First for loop runs twice.
- Inside it choosing \(r\) linear forms from \(\mathcal{C}\) (\(|\mathcal{C}| = \text{poly}(d)\)) takes \(\text{poly}(d)\) time.
- Applying \(\Lambda\) to \(r - k\) vectors takes \(\text{poly}(r) = O(1)\) time.
Checking if a set of size \(r \) inside \(\mathbb{F}^r \) is LI takes \(\text{poly}(r) = O(1) \) time since it is equivalent to computing determinant.

- \text{IdentifyFactors}() takes \(\text{poly}(d) \) time and computing \(f \) also takes \(\text{poly}(d) \) time.
- \text{OverestDetector}() runs in \(\text{poly}(d) \) time.
- while loop runs atmost \(d \) times
- \text{EasyCase} runs in \(\text{poly}(d) \) time and so does polynomial multiplication.
- \(X \subseteq \mathcal{L}(T_i) \) and \(|\mathcal{L}(T_i)| \leq \text{deg}(f) \) and so for loop runs \(d \) times.
- Change of bases in \(\mathbb{F}^r \) and application to a polynomial of degree \(d \) takes \(\text{poly}(d) \) time.
- Therefore projecting to subspaces also takes \(\text{poly}(d) \) time.
- \text{Reconstructor}() runs in \(\text{poly}(d) \) time (since \(r \) is a constant) and so does polynomial multiplication and factoring by [14].

Since all of the above steps run in \(\text{poly}(d) \) time, nesting them a constant number of times also takes \(\text{poly}(d) \) time. Therefore the running time of our algorithm is \(\text{poly}(d) \).

3.6 Algorithm including all cases

The algorithm we give here will be the final algorithm for rank \(r \) \(\Sigma\Pi\Sigma \) polynomials. It will use the previous three cases. Our input will be a \(\Sigma\Pi\Sigma(2) \) polynomial \(f(x_1,\ldots,x_r) \) and output will be a circuit computing the same.

```plaintext
FunctionName: RECONSTRUCT
input : \( f \in \Sigma\Pi\Sigma_F(2)[\overline{x}] \)
output : An object of type decomposition

1. decomposition obj;
2. \((\Omega_{i,j}), (\Lambda_{i,j}), r \times r \) matrices with entries chosen uniformly randomly from \([N]\);
3. \( L_i(\overline{x}) \leftarrow \sum_{k=1}^{r} \Omega_{i,k} x_k; \)
4. \( f(x_1,\ldots,x_r) \leftarrow f(L_1(\overline{x}), \ldots, L_r(\overline{x})); \)
5. \( \mathcal{C} \leftarrow \text{Candidates}(f(x_1,\ldots,x_r)); \)
6. if \( \text{MediumCase}(f, \mathcal{C}) \rightarrow \text{iscorrect} \) then
   7. \( \text{obj} \leftarrow \text{MediumCase}(f, \mathcal{C}); \)
8. end
9. else if \( \text{EasyCase}(f, K_0, K_1, \mathcal{C}) \rightarrow \text{iscorrect} \) then
   10. \( \text{obj} \leftarrow \text{EasyCase}(f, K_0, K_1, \mathcal{C}); \)
11. end
12. else
13. \( \text{obj} \leftarrow \text{HardCase}(f, \mathcal{C}, \Lambda); \)
14. end
15. Apply \( \Omega^{-1} \) to \text{obj} \( \rightarrow f, \text{obj} \rightarrow M_0, \text{obj} \rightarrow M_1; \)
16. return \text{obj};
```

Algorithm 6: Reconstruction in low rank.

Explanation

Here we explain every step of the given algorithm:

- The function \(\text{RECONSTRUCT}(f) \) takes as input a polynomial \(f \in \Sigma\Pi\Sigma_F(2)[\overline{x}] \) of rank \(r \) and outputs two polynomials \(K_0, K_1 \in \Pi\Sigma_F[\overline{x}] \) which are the two gates in it’s circuit representation.
4 Reconstruction for arbitrary rank

This section reduces the problem from $\Sigma\Pi\Sigma(2)$ Circuits with arbitrary rank $n (> s)$ to one with constant rank r (still $> s$). Also once the problem has been solved efficiently in the low rank case we use multiple instances of such solutions to lift to the general $\Sigma\Pi\Sigma(2)$ circuit. The idea is to project the polynomial to a small (polynomial) number of random subspaces of dimension r, reconstruct these low rank polynomials and then lift back to the original polynomial. The uniqueness of our circuit’s representation plays a major role in both the projection and lifting steps. Let

$$f = G(\alpha_0 T_0 + \alpha_1 T_1)$$

G, T_i are normal $\Pi\Sigma$ polynomials. All notations are borrowed from the previous section. It is almost identical to the restriction done in [24] except that the dimension of random subspaces is different. For more details see Section 4.2.1 and 4.2.3. in [24]. Since all proofs have been done in detail in [24] we do not spend much time here. A clear sketch with some proofs is however given.

4.1 Projection to a Random Low Dimensional Subspace

We explain the procedure of projecting to the random subspace below. In this low dimensional setup we can get coefficient representation of $\pi_V(f)$, also some important properties of f are retained by $\pi_V(f)$. Proofs are simple and standard so we discuss them in the appendix at end.

Pick n vectors $v_i, i \in [n]$ with each co-ordinate chosen independently from the uniform distribution on $[N]$. Let $V = sp\{v_i : i \in [r]\}$ and $V' = sp\{v_i : i \in \{r+1,\ldots,n\}\}$. Then $V \oplus V' = \mathbb{F}^n$ Let π_V denote the orthogonal projection onto V. With high probability the following hold:

1. $\{v_i : i \in [n]\}$ is linearly independent (see Appendix H.1 for proof).
2. Let $\{l_1,\ldots,l_r\}$ be a set of r linearly independent linear forms in $\mathcal{L}(T_0) \cup \mathcal{L}(T_1)$. Then $\pi_V(\{l_1,\ldots,l_r\})$ is linearly independent with high probability. So $\text{rank}(\pi_V(f)) = r$ (see Appendix H.2 for proof).
3. Let $l_{01} \in \mathcal{L}(T_0), l_{11} \in \mathcal{L}(T_1)$, then $\pi_V(l_{01}), \pi_V(l_{11})$ are linearly independent with high probability and so $\text{gcd}(\pi_V(l_{01}), \pi_V(l_{11})) = 1$.

Pick large number of $([d'])$ random points $p_i, i = 1,\ldots,d'$ in the space V. Use the values $\{f(p_i)\}$ and get a coefficient representation for $\pi_V(f)$. With high probability over the choice of points interpolation will work (See Appendix H.3 for Proof). We will effectively be solving a linear system. Note that the number of coefficients in $f|_V = O(d')$. Now this coefficient
representation of \(\pi_V(f) \) is reconstructed using the algorithm in Section 3. A number of such reconstructions are then glued to reconstruct the original polynomial.

4.2 Lifting from the Random Low Dimensional Subspace

1. Consider spaces \(V_i = V \oplus \mathbb{F}_v \) for \(i = r + 1, \ldots, n \).
2. Reconstruct \(\pi_{V_i}(f) \) and \(\pi_V(f) \) for each \(i \in \{ r + 1, \ldots, n \} \).
3. Let \(l = \sum_{i=1}^n a_i v_i \) be a linear form dividing one of the gates of \(f \) say \(T_0 \). \(\pi_V(l) = \sum_{i=1}^r a_i v_i \) and \(\pi_{V_i}(l) = \sum_{j=1}^r a_j v_j + a_i v_i \). Using our algorithm discussed in Section 3 we would have reconstructed \(\pi_V(f) \) and \(\pi_{V_i}(f) \). So we know the triples \((\pi_V(G), \pi_V(T_0), \pi_V(T_1)) \) and \((\pi_{V_i}(G), \pi_{V_i}(T_0), \pi_{V_i}(T_1)) \)

On restricting \(V_i \) to \(V \):

a. *Only Factors become factors* with high probability so we can easily find the correspondence between \(\pi_V(G) \) and \(\pi_{V_i}(G) \).

b. \(\pi_V(\pi_{V_i}(T_0)) = \pi_{V_i}(T_0) \) and \(\neq \pi_V(T_1) \) because of uniqueness of representation and therefore we get the correspondence between gates.

c. Now to get correspondence between linear forms. Let \(\pi_V(l) \) have multiplicity \(k \) in \(\pi_{V_i}(T_0) \). Then with high probability \(l \) has multiplicity \(k \) in \(T_0 \) Since two LI vectors remain LI on projecting to a random subspace of dimension \(\geq 2 \) (again see Appendix H.2 for proof). Therefore \(\pi_{V_i}(l) \) has multiplicity \(k \) and is the unique lift of \(\pi_V(l) \) for all \(i \).

Let \(\pi_{V_i}(l) = \pi_V(l) + a_i v_i \). Then \(l = \pi_V(l) + \sum_{i=r+1}^n a_i v_j \). This finds \(G, T_0, T_1 \) for us

4.3 Time Complexity

- Interpolation to find coefficient representation \(\pi_V(f) \) which is a degree \(d \) polynomial over \(r \) variables clearly takes \(poly(d^r) \) time (accounts to solving a linear system of size \(poly(d^r) \)).
- Solving \(n - r \) instances of the low rank problem (simple ranks \(r \) and \(r + 1 \)) takes \(npoly(d^r) \) time.
- The above mentioned approach to glue the linear forms in the gates clearly takes \(poly(n, d) \) time.
- Overall the algorithm takes \(poly(n, d) \) time since \(r \) is a constant.

5 Conclusion and Future Work

We described an efficient randomized algorithm to reconstruct circuit representation of multivariate polynomials which exhibit a \(\Sigma \Pi \Sigma(2) \) representation. Our algorithm works for all polynomials with rank(number of independent variables greater than a constant \(r \)). In future we would like to address the following:

- **Reconstruction for Lower Ranks:** As can be seen in the paper, rank of the polynomial for uniqueness (i.e. \(c_{\mathbb{F}}(4) \)) and the rank we’ve assumed in the low rank reconstruction (i.e. \(r \)) are both \(O(1) \) but \(c_{\mathbb{F}}(4) \) is smaller than \(r \). Since one would expect a reconstruction algorithm whenever the circuit is unique we would like to close this gap.

- \(\Sigma \Pi \Sigma(k) \) circuits: The obvious next step would be to consider more general top fan-in. In particular we could consider \(\Sigma \Pi \Sigma(k) \) circuits with \(k = O(1) \).

- **Derandomization:** We would like to derandomize the algorithm as it was done in the finite field case in [15].
Acknowledgements. I am extremely thankful to Neeraj Kayal for introducing me to this problem. Sukhada Fudnavis, Neeraj Kayal and myself started working on the problem together during my summer internship at Microsoft Research India Labs in 2011. We solved the first important case together. I’m grateful to them for all helpful discussions, constant guidance and encouragement.

I would like to thank Zeev Dvir for communicating the most recent rank bounds on $\delta - SG_k$ configurations from [6] and his feedback on the work. This reduces the gap in the first problem we mentioned above.

I would also like to thank Vinamra Agrawal, Pravesh Kothari and Piyush Srivastava for helpful discussions. I would also like to thank the anonymous reviewers for their suggestions. Lastly I would like to thank Microsoft Research for giving me the opportunity to intern at their Bangalore Labs with the Applied Mathematics Group.

References

In this section we will explicitly compute a set of polynomials whose common solutions characterize the coefficients of all homogeneous $\Pi \Sigma C[x_1, \ldots, x_r]$ polynomials of degree d. A clean mathematical construction is given by Brill’s Equations given in Chapter 4, [8]. However we still need to calculate the time complexity. But before that we define some operations on polynomials and calculate the time taken by the operation along with the size.

Characterizing $\Pi \Sigma$ polynomials (Brill’s Equations)

In this section we will explicitly compute a set of polynomials whose common solutions characterize the coefficients of all homogeneous $\Pi \Sigma C[x_1, \ldots, x_r]$ polynomials of degree d. A clean mathematical construction is given by Brill’s Equations given in Chapter 4, [8]. However we still need to calculate the time complexity. But before that we define some operations on polynomials and calculate the time taken by the operation along with the size.
of the output. Note that all polynomials are over the field of complex numbers \mathbb{C} and all computations are also done for the complex polynomial rings.

Let $\bar{x} = (x_1, \ldots, x_r)$ and $\bar{y} = (y_1, \ldots, y_r)$ be variables. For any homogeneous polynomial $f(\bar{x})$ of degree d, define

$$f_{x^k}(\bar{x}, \bar{y}) = \frac{(d-k)!}{d!} \left(\sum_i x_i \frac{\partial}{\partial y_i} \right)^k f(\bar{y})$$

Expanding $(\sum_i x_i \frac{\partial}{\partial y_i})^k$ as a polynomial of differentials takes $O((r + k)^r)$ time and has the same order of terms in it. $f(\bar{y})$ has $O((r + k)^r)$ terms. Taking partial derivatives of each term takes constant time and therefore overall computing $(\sum_i x_i \frac{\partial}{\partial y_i})^k f(\bar{y})$ takes $O((r + k)^{2r})$ time. Also the expression obtained will have at most $O((r + k)^{2r})$ terms. Computing the external factor takes $\text{poly}(d)$ time and for an arbitrary $f(\bar{x})$ computing all $f_{x^k}(\bar{x}, \bar{y})$ for $0 \leq k \leq d$ takes $\text{poly}((r + d)^r)$ time and has $\text{poly}((r + d)^r)$ terms in it. From Section E., Chapter 4 in [8] we also know that $f_{x^k}(\bar{x}, \bar{y})$ is a bihomogeneous form of degree k in \bar{x} and degree $d-k$ in \bar{y}. It is called the kth polar of f.

Next we define an \odot operation between homogeneous forms. Let $f(\bar{x})$ and $g(\bar{x})$ be homogeneous polynomials of degrees d, define

$$(f \odot g)(\bar{x}, \bar{y}) = \frac{1}{d+1} \sum_{k=0}^d (-1)^k \binom{d}{k} f_{x^k}(\bar{x}, \bar{y}) g_{x^k}(\bar{x}, \bar{y})$$

From the discussion above we know that computing $f_{x^k}(\bar{y}, \bar{x}) g_{x^k}(\bar{y}, \bar{x})$ takes $\text{poly}((r + d)^r)$ time and it is obvious that this product has $\text{poly}((r + d)^r)$ terms. Rest of the operations take $\text{poly}(d)$ time and therefore computing $(f \odot g)(\bar{x}, \bar{y})$ takes $\text{poly}((r + d)^r)$ time and has $\text{poly}((r + d)^r)$ terms. From the discussion before we may also easily conclude that the degrees of \bar{x}, \bar{y} in $(f \odot g)(\bar{x}, \bar{y})$ are $\text{poly}(d)$. The form $(f \odot g)$ is called the vertical(Young) product of f and g. See Section G., Chapter 4 in [8].

Next for $k \in \{0, \ldots, d\}$ and $\bar{z} = (z_1, \ldots, z_r)$ consider homogeneous forms:

$$e_k = \binom{d}{k} f_{x^k}(\bar{x}, \bar{z}) f(\bar{z})^{k-1}$$

Following arguments from above, it’s straightforward to see that computing e_k takes $\text{poly}((r + d)^r)$ time and has $\text{poly}((r + d)^r)$ terms. Each e_k is a homogeneous form in \bar{x}, \bar{z} and f. It has degree k in \bar{x}, degree $k(d-1)$ in \bar{z}, and k in coefficients of f. See Section H. of Chapter 4 in [8]. Let’s define the following function of \bar{x} with parameters f, z

$$P_{f,z}(\bar{x}) = (-1)^d \sum_{i_1 + 2i_2 + \ldots + ri_r = d} (-1)^{(i_1 + \ldots + i_r)} \binom{i_1 + \ldots + i_r - 1}{i_1, \ldots, i_r} e_1^{i_1} \cdots e_r^{i_r}$$

Note that $\{(i_1, \ldots, i_r) : i_1 + 2i_2 + \ldots + ri_r = d\} \subseteq \{(i_1, \ldots, i_r) : i_1 + i_2 + \ldots + i_r \leq d\}$ and therefore the number of additions in the above summand is $O(\text{poly}(r + d)^r)$. For every fixed (i_1, \ldots, i_r) computing the coefficient $\binom{i_1 + \ldots + i_r - 1}{i_1, \ldots, i_r}$ takes $O(\text{poly}((r + d)^r))$ time using multinomial coefficients. Each e_k takes $\text{poly}((r + d)^r)$ time to compute. There are r of them in each summand and so overall we take $O(\text{poly}((r + d)^r))$ time. A similar argument shows that number of terms in this polynomial is $O(\text{poly}((r + d)^r))$. Some more analysis shows
that $P_{f,z}(\bar{x})$ is a form of degree d in \bar{x} whose coefficients are homogeneous polynomials of degree d in f and degree $d(d-1)$ in \bar{z}. Let

$$B_f(\bar{x}, \bar{y}, \bar{z}) = (f \odot P_{f,z})(\bar{x}, \bar{y})$$

By the arguments given above calculating this form also takes time $\text{poly}((r + d)^r)$ and it has $\text{poly}((r + d)^r)$ terms. This is a homogeneous form in $(\bar{x}, \bar{y}, \bar{z})$ of multidegree $(d, d, d(d-1))$ and its coefficients are forms of degree $(d+1)$ in the coefficients of f. See Section H., Chapter 4 in [8]. So in time $\text{poly}((r + d)^r)$ we can compute $B_f(\bar{x}, \bar{y}, \bar{z})$ explicitly.

Now we arrive at the main theorem

Theorem A.1 (Brill’s Equation – see 4.H. [8]). A form $f(\bar{x})$ is a product of linear forms if and only if the polynomial $B_f(\bar{x}, \bar{y}, \bar{z})$ is identically 0.

We argued above that computing $B_f(\bar{x}, \bar{y}, \bar{z})$ takes $O(\text{poly}((r + d)^r))$ time. Its degrees in $\bar{x}, \bar{y}, \bar{z}$ are all $\text{poly}(d)$ and so the number of coefficients when written as a polynomial over the 3r variables $(x_1, \ldots, x_r, y_1, \ldots, y_r, z_1, \ldots, z_r)$ is $\text{poly}((r + d)^r)$. We mentioned that each coefficient is a polynomial of degree $(d+1)$ in the coefficients of f. Therefore we have the following corollary.

Corollary A.2. Let

$$I \overset{def}{=} \{(a_1, \ldots, a_n) : \forall i : a_i \geq 0, \sum_{i \in [r]} a_i = d\}$$

be the set capturing the indices of all possible monomials of degree exactly d in r variables (x_1, \ldots, x_r). Let $f_n(y_1, \ldots, y_r) = \sum_{\alpha \in I} a_\alpha y^\alpha$ denote an arbitrary homogeneous polynomial.

The coefficient vector then becomes $a = (a_\alpha)_{\alpha \in I}$. Then there exists an explicit set of polynomials $F_1(a), \ldots, F_m(a)$ on $\text{poly}((r + d)^r)$ variables $(a = (a_\alpha)_{\alpha \in I})$, with $m = \text{poly}((r + d)^r)$, $\deg(F_i) \leq \text{poly}(d)$ such that for any particular value of a, the corresponding polynomial $f_n(y) \in \Pi^d_{\geq 2}[y]$ if and only if $F_1(a) = \ldots = F_m(a) = 0$. Also this set $\{F_i, i \in [m]\}$ can be computed in time $\text{poly}((r + d)^r)$ time.

Proof. Clear from the theorem and discussion above.

Note that in our application $r = O(1)$ and so $\text{poly}((d + r)^r) = \text{poly}(d)$.

B Tools from Incidence Geometry

Later in the paper we will use the quantitative version of Sylvester-Gallai Theorem from [3]. In this subsection we do preparation for the same. Our main application will also involve a corollary we prove towards the end of this subsection.

Definition B.1 ([3]). Let S be a set of n distinct points in complex space \mathbb{C}^r. A k–flat is elementary if its intersection with S has exactly $k+1$ points.

Definition B.2 ([3]). Let S be a set of n distinct points in \mathbb{C}^r. S is called a δ–SG_k configuration if for every independent $s_1, \ldots, s_k \in S$ there are at least δn points $t \in S$ such that either $t \in fl\{s_1, \ldots, s_k\}$ or the k–flat $fl\{s_1, \ldots, s_k, t\}$ contains a point in $S \setminus \{s_1, \ldots, s_k, t\}$.

Theorem B.3 ([3]). Let S be a δ–SG_k configuration then $\dim(S) \leq \frac{C\delta n}{\log \delta}$. Where $C > 1$ is a universal constant.
This bound on the dimension of S was further improved by Dvir et al. in [6]. The latest version now states

Theorem B.4 ([6]). Let S be a $\delta - \text{SG}_k$ configuration then $\text{dim}(S) \leq C_k = \frac{C}{\delta}$. Where $C > 1$ is a universal constant.

Corollary B.5. Let $\text{dim}(S) > C_k$ then S is not a $\delta - \text{SG}_k$ configuration i.e. there exists a set of independent points $\{s_1, \ldots, s_k\}$ and $\geq (1 - \delta) n$ points t such that $\text{fl}(\{s_1, \ldots, s_k, t\})$ is an elementary $k - \text{flat}$. That is:

1. $t \notin \text{fl}(\{s_1, \ldots, s_k\})$
2. $\text{fl}(\{s_1, \ldots, s_k, t\}) \cap S = \{s_1, \ldots, s_k, t\}$.

Right now we set δ to be a constant $< 0.5, C_k = \frac{C}{\delta}$. Note that $C_i < C_{i+1}$. Using the above theorem we prove the following lemma which will be useful to us later

Lemma B.6 (Bi-chromatic semi-ordinary line). Let X and Y be disjoint finite sets in \mathbb{C}^r satisfying the following conditions.

1. $\text{dim}(Y) > C_4$.
2. $|Y| \leq c|X|$ with $c < \frac{1 - \delta}{7}$.

Then there exists a line l such that $|l \cap Y| = 1$ and $|l \cap X| \geq 1$.

Proof. We consider two cases:

Case 1: $c|X| \geq |Y| \geq |X|$ Since $\text{dim}(Y) > C_4$, using the corollary above for $S = X \cup Y, k = 1$ we can get a point $s_1 \in X \cup Y$ for which there exist $(1 - \delta)(|X| + |Y|)$ points t in $X \cup Y$ such that $t \notin \text{fl}(\{s_1\})$ and $\text{fl}(\{s_1\})$ is elementary. If $s_1 \in X$ then $(1 - \delta)(|X| + |Y|) - |X| \geq (1 - 2\delta)|X| > 0$ of these flats intersect Y and thus we get such a line l. If $s_1 \in Y$ then $(1 - \delta)(|X| + |Y|) - |Y| \geq ((1 - \delta)(\frac{1}{2} + 1) - 1)|Y| > 0$ of these flats intersect X giving us the required line l with $|l \cap X| = 1$ and $|l \cap Y| = 1$.

Case 2: $|Y| \leq |X|$ Now choose a subset $X_1 \subseteq X$ such that $|X_1| = |Y|$. Now using the same argument as above for $S = X_1 \cup Y$ there is a point $s_1 \in X_1 \cup Y$ such that $(1 - \delta)(|X_1| + |Y|) = 2(1 - \delta)|Y| = 2(1 - \delta)|X_1|$ flats through it are elementary in $X_1 \cup Y$. If $s_1 \in Y$ then $(1 - 2\delta)|Y| > 0$ of these flats intersect X_1. If $s_1 \in X_1, (1 - 2\delta)|X_1| > 0$ of these flats intersect Y. In both these above possibilities the flat intersects Y and X_1 in exactly one point each. But it may contain more points from $X \setminus X_1$ so we can find a line l such that $|l \cap Y| = 1$ and $|l \cap X| \geq 1$.

C A Method of Reconstructing Linear Forms

In a lot of circumstances one might reconstruct a linear form (upto scalar multiplication) inside $V = \text{Lin}_F[x]$ from it’s projections (upto scalar multiplication) onto some subspaces of V. For example consider a linear form $L = a_1 x_1 + a_2 x_2 + a_3 x_3 (\in \text{Lin}_F[x_1, x_2, x_3])$ with $a_3 \neq 0$, and assume we know scalar multiples of projections of L onto the spaces Fx_1 and Fx_2 i.e. we know $L_1 = \alpha (a_2 x_2 + a_3 x_3)$ and $L_2 = \beta (a_1 x_1 + a_3 x_3)$ for some $\alpha, \beta \in F$. Scale these projections to $\tilde{L}_1 = x_3 + \frac{a_3}{a_2} x_3$ and $\tilde{L}_2 = x_3 + \frac{a_3}{a_1} x_3$. Using these two define a linear form $x_3 + \frac{a_3}{a_2} x_1 + \frac{a_3}{a_1} x_2$. This is a scalar multiple of our original linear form L. We generalize this a little more below.

Let $\tilde{x} \equiv (x_1, \ldots, x_r)$, $B = \{l_1, \ldots, l_r\}$ be a basis for $V = \text{Lin}_F[x_1, \ldots, x_r]$. For $i \in \{0, 1, 2\}$, let S_i be pairwise disjoint non empty subsets of B such that $S_0 \cup S_1 \cup S_2 = B$. Let $W_i = \text{sp}(S_i)$ and $W_i' = \bigoplus_{j \neq i} W_j$. Clearly $V = W_0 \oplus W_1 \oplus W_2 = W_1 \oplus W_1', i \in \{0, 1, 2\}$.

Lemma C.1. Assume $L \in V$ is a linear form such that
\[\pi_{W_2}(L) \neq 0 \]
For $i \in \{0,1\}$, $L_i = \beta_i \pi_{W_i}(L)$ are known for some non-zero scalars β_i.
Then L is unique up to scalar multiplication and we can construct a scalar multiple \tilde{L} of L.

Proof. Let $L = a_1 l_1 + \ldots + a_r l_r, a_i \in \mathbb{F}$. Since $\pi_{W_2}(L) \neq 0$, there exists $l_j \in S_2$ such that $a_j \neq 0$. Let $\tilde{L} = \frac{1}{a_j} L$. For $i \in \{0,1\}$, re-scale L_i to get \tilde{L}_i making sure that coefficient of l_j is 1 in them. Thus for $i = 0, 1$
\[\pi_{W_i}(\tilde{L}) = \tilde{L}_i. \]
Since $W_0' = W_1 \oplus W_2$ and $W_0' = W_0 \oplus W_2$ by comparing coefficients we can get \tilde{L}.

Algorithm Assume we know S_0, S_1, S_2 and therefore the basis change matrix to convert vector representations from S to \mathcal{B}. It takes $\text{poly}(r)$ time to convert $\mathbb{F}[v]_S$ to $\mathbb{F}[v]_G$. Given L_i in the basis S it takes $\text{poly}(r)$ time by (a linear scan) to find $l_j \in S_2$ with $a_j \neq 0$. This l_j has a non zero coefficient in both L_0, L_1. After this we just rescale L_i to get \tilde{L}_i such that coefficient of l_j is 1. Then since $\tilde{L}_i = \pi_{W_i}(\tilde{L})$ the coefficient of l_i in \tilde{L} is as follows:
\[
= \begin{cases}
\text{coefficient of } l_i \text{ in } \tilde{L}_1 & : l_i \in S_0 \\
\text{coefficient of } l_i \text{ in } \tilde{L}_0 & : l_i \in S_1 \\
\text{coefficient of } l_i \text{ in } \tilde{L}_0 = \text{coefficient of } l_i \text{ in } \tilde{L}_1 & : l_i \in S_2
\end{cases}
\]
Finding the right coefficients using this also takes $\text{poly}(r)$ time.

Next we try and use this to reconstruct $\Pi\Sigma$ polynomials. This case is slightly more complicated and so we demand that the projections have some special form. In particular the projections onto one subspace preserves pairwise linear independence of linear factors and onto the other makes all linear factors scalar multiples of each other.

Corollary C.2. Let $S_i, W_i, i \in \{0,1,2\}$ be as above and $P \in \Pi\Sigma_{\mathbb{F}}[x_1, \ldots, x_r]$ such that
1. $\pi_{W_2}(P) \neq 0$
2. For $i \in \{0,1\}$ there exists $\beta_i(\neq 0) \in \mathbb{F}$ such that $P_0 = \beta_0 \pi_{W_i}(P) = p^i$ and $P_1 = \beta_1 \pi_{W_i}(P) = d_1 \ldots d_t$ are known i.e. $p, d_j (j \in [t])$ and t are known.
Then P is unique up to scalar multiplication and we can construct a scalar multiple \tilde{P} of P.

Proof. Let $P = L_1 \ldots L_t$ with $L_i \in \text{Lin}_F[\tilde{x}]$. There exists $\beta_i^j, i \in \{0,1\}, j \in [t]$, such that $\beta_0^j \pi_{W_i}(L_j) = p$ and $\beta_1^j \pi_{W_i}(L_j) = d_j$. Since p, d_j are known by above Lemma C.1 we find a scalar multiple $\tilde{L}_j = \beta_1^j L_j$ of L_j and therefore find a scalar multiple $\tilde{P} = \tilde{L}_1 \ldots \tilde{L}_t$ of P.
Note that this method also tells us that such a P is unique up to scalar multiplication. Since we’ve used the above Algorithm C at most t times with $t \leq \text{deg}(P)$, it takes $\text{poly}(\text{deg}(P), r)$ time to find \tilde{P}.

This corollary is the backbone for reconstructing $\Pi\Sigma$ polynomials from their projections. But first we formally define a “Reconstructor”:

Definition C.3 (Reconstructor). Let $S_i, W_i, i \in \{0,1,2\}$ be as above. Let Q be a standard $\Pi\Sigma$ polynomial and P be a standard $\Pi\Sigma$ polynomial dividing Q with $Q = PR$. Then (Q, P, S_0, S_1, S_2) is called a Reconstructor if:
1. $\pi_{W_2}(P) \neq 0$.
2. $\pi_{W_2}(P) = \alpha p^t$, for some linear form p.
3. Let $l \mid R$ be a linear form and $\pi_{W_2}(l) \neq 0$ then $\gcd(\pi_{W_2}(P), \pi_{W_2}(l)) = 1$.

G. Sinha 31:37
CCC 2016
Note: Let L_1, L_2 be two LI linear forms dividing P, then one can show

\[L_1, L_2 \text{ are LI } \iff \pi_{W'_1}(L_1), \pi_{W'_1}(L_2) \text{ are LI} \]

To see this first observe that the second bullet implies for $i \in [2], L_i \in W_0 + p \Rightarrow sp\{(L_1, L_2)\} \subseteq W_0 + p$.

If $\pi_{W'_1}(L_1), \pi_{W'_1}(L_2)$ are LD then

\[sp\{(L_1, L_2)\} \cap W_1 \neq \{0\} \]

$\Rightarrow (W_0 + p) \cap W_1 \neq \{0\}$. Since $W_0 \cap W_1 = \{0\}$ we get that $p \in W_0 \oplus W_1 = W'_2 \Rightarrow \pi_{W'_2}(p) = 0 \Rightarrow \pi_{W'_2}(P) = 0$ contradicting the first bullet.

Geometrically the conditions just mean that all linear forms dividing P have LD projection ($= \gamma p$ for some non zero $\gamma \in \mathbb{F}$) w.r.t. the subspace W'_0 and LI linear forms p_1, p_2 dividing P have LI projections (w.r.t. subspace W'_1). Also no linear form l dividing R belongs to $fl(S_0 \cup S_1 \cup \{p\})$.

We are now ready to give an algorithm to reconstruct P using $\pi_{W'_0}(Q)$ and $\pi_{W'_1}(Q)$ by gluing appropriate projections corresponding to P. To be precise:

\[\textbf{Claim C.4. Let } Q, P \text{ be standard } \Pi \Sigma \text{ polynomials and } P \mid Q. \text{ Assume } (Q, P, S_0, S_1, S_2) \text{ is a Reconstructor. If we know both } \pi_{W'_0}(Q) \text{ and } \pi_{W'_1}(Q). \text{ Then we can reconstruct } P. \]

\[\textbf{Proof.} \text{ See Algorithm 7.} \]

C.1 Explanation

- The algorithm takes as input projections $\pi_{W'_0}(Q)$ and $\pi_{W'_1}(Q)$ along with the sets $S_i, i = 0, 1, 2$ which form a partition of a basis B. We know that there exists a polynomial $P \mid Q$ such that (Q, P, S_0, S_1, S_2) is a reconstructor and so we try to compute the projections $\pi_{W'_2}(P), \pi_{W'_2}(P)$.

- If one assumes that $\pi_{W'_0}(Q) = \gamma \prod_{i \in [s]} c_i^{m_i}$ with the c_i’s co-prime, then by the properties of a reconstructor the projection (of a scalar multiple of P) onto W'_0 say $P_0 = \beta_0 \pi_{W'_0}(P)$ (for some β_0) has to be equal to $c_i^{m_i}$ for some i. We do this assignment inside the first for loop.

- The third property of a reconstructor implies that when we project further to W_2, it should not get any more factors and so we check this inside the second for loop by going over all other factors c_j of $\pi_{W'_2}(Q)$ and checking if c_i, c_j become LD on projecting to W_2 (i.e. by further projecting to W'_1).

- Now to find (scalar multiple of) the other projections i.e. $P_1 = \beta_1 \pi_{W'_2}(P)$ (for some β_1), we go through $\pi_{W'_1}(Q)$ and find d_k such that $\{\pi_{W'_1}(c_i), \pi_{W'_0}(d_k)\}$ are LD (i.e. they are projections of the same linear form). We collect the product of all such d_k’s. If the choice of c_i were correct then all d_k’s would be obtained correctly.

- The last “if” statement just checks that the number of d_k’s found above is the same as m_i since $P_0 = c_i^{m_i}$ tells us that the degree of P was m_i. We recover a scalar multiple of P using the algorithm explained in Corollary C.2 and then make it standard to get P.

C.2 Correctness

The correctness of our algorithm is shown by the lemma below.
It is clear that for one and only one value of i, c_i divides p. Fix this i. Let $Q = PR$, if $c_i^{m_i} \nmid \pi_{W_i}(P)$ then $c_i \mid l$ for some linear form $l \mid \pi_{W_i}(R)$. Condition 3 in definition of Reconstructor implies that $gcd(\pi_{W_i}(P), \pi_{W_i}(l)) = 1$ but $\pi_{W_i}(c_i)$ divides both of them giving us a contradiction. Since $\pi_{W_0}(P)$ has just one linear factor $\Rightarrow \pi_{W_0}(P)$ is a scalar multiple of $c_i^{m_i}$ for some i.

2. Assume the correct $c_i^{m_i}$ has been found. Now let $d_j \mid \pi_{W_i}(Q)$ such that $\{\pi_{W_1}(c_i), \pi_{W_1}(d_j)\}$ are LD. then we can show that $d_j \mid \pi_{W_1}(P)$. Assume not, then for some linear form $l \mid R = \frac{Q}{P}$, $d_j \mid \pi_{W_1}(l)$. $\pi_{W_0}(d_j) \neq 0$ (which we checked) $\Rightarrow \pi_{W_0}(l) \neq 0$. So we get

\[\begin{array}{|c|}
\hline
\text{input} & : \pi_{W_0}(Q) \in \Pi \Sigma[x], \pi_{W_1}(Q) \in \Pi \Sigma[x], S_0, S_1, S_2 \\
\text{output} & : \text{a } \Pi \Sigma \text{ polynomial } P \mid Q \\
1 & \text{bool flag, } \Pi \Sigma \text{ polynomial } P_0, P_1; \\
2 & \text{Factor } \pi_{W_0}(Q) = \gamma \prod_{i \in [s]} c_i^{m_i}, c_i \text{'s pairwise LI and normal, } \gamma \in \mathbb{F}; \\
3 & \text{Factor } \pi_{W_1}(Q) = \delta d_1 \ldots d_m, \delta \in \mathbb{F} \text{ and } d_j \text{ normal;} \\
4 & \text{for } i \in [s] \text{ do } \text{if } \pi_{W_1}(c_i) \neq 0 \text{ do } \\
5 & \quad \text{flag} = \text{true, } P_0 = c_i^{m_i}; \\
6 & \quad \text{// Assuming projection w.r.t. } W_0' \text{ to be } c_i^{m_i}. \\
7 & \text{for } j \in [s] \text{ do } \text{if } j \neq i \text{ do } \\
8 & \quad \text{if } gcd(\pi_{W_1}(c_i), \pi_{W_1}(c_j)) \neq 1 \text{ then } \\
9 & \quad \quad \text{flag} = \text{false}; \\
10 & \text{end } \\
11 & \text{if } \text{flag} = \text{true then } \\
12 & \quad P_1 = 1; \\
13 & \text{end } \\
14 & \text{for } j \in [m] \text{ do } \\
15 & \quad \text{if } \pi_{W_1}(d_j) \neq 0 \text{ do } \\
16 & \quad \quad \text{if } \{\pi_{W_0}(d_j), \pi_{W_1}(c_j)\} \text{ are LD then } \\
17 & \quad \quad \quad P_1 = P_k d_j; \\
18 & \quad \quad \text{// This steps collects projection w.r.t. } W_1' \text{ in } P_1. \\
19 & \text{end } \\
20 & \text{end } \\
21 & \text{if } (\deg(P_1) = m_i) \text{ do } \text{if } (P_0, P_1) \text{ give } \tilde{P} = \beta P \text{ using Corollary C.2 then } \\
22 & \quad \text{Make } \tilde{P} \text{ standard w.r.t. the standard basis } S \text{ to get } P; \\
23 & \text{Return } P; \\
24 & \text{end } \\
25 & \text{end } \\
26 & \text{Return } 1; \\
\hline
\end{array} \]

Algorithm 7: Reconstructing Linear Factors.

\[\text{Claim C.5. If } (Q, P, S_0, S_1, S_2) \text{ is a reconstructor for non-constant } P, \text{ then Algorithm refrconalgo returns } P. \]

\[\text{Proof. } (Q, P, S_0, S_1, S_2) \text{ is a reconstructor therefore } \]
\[= \pi_{W_2}(P) \neq 0 \]
\[= \pi_{W_1}(P) = \delta P^l \]
\[= q \mid \frac{Q}{P} \Rightarrow gcd(\pi_{W_2}(q), \pi_{W_2}(P)) = 1 \]

1. It is clear that for one and only one value of i, c_i divides p. Fix this i. Let $Q = PR$, if $c_i^{m_i} \nmid \pi_{W_i}(P)$ then $c_i \mid l$ for some linear form $l \mid \pi_{W_i}(R)$. Condition 3 in definition of Reconstructor implies that $gcd(\pi_{W_i}(P), \pi_{W_i}(l)) = 1$ but $\pi_{W_i}(c_i)$ divides both of them giving us a contradiction. Since $\pi_{W_0}(P)$ has just one linear factor $\Rightarrow \pi_{W_0}(P)$ is a scalar multiple of $c_i^{m_i}$ for some i.

2. Assume the correct $c_i^{m_i}$ has been found. Now let $d_j \mid \pi_{W_i}(Q)$ such that $\{\pi_{W_1}(c_i), \pi_{W_1}(d_j)\}$ are LD. then we can show that $d_j \mid \pi_{W_1}(P)$. Assume not, then for some linear form $l \mid R = \frac{Q}{P}$, $d_j \mid \pi_{W_1}(l)$. $\pi_{W_0}(d_j) \neq 0$ (which we checked) $\Rightarrow \pi_{W_0}(l) \neq 0$. So we get
We know from proof of Corollary C.2 that if we know \(c_i, m_i \) and \(d_j \)'s correctly then we can recover a scalar multiple of \(P \) correctly. But \(Q, P \) are standard so we return \(P \) correctly.

Claim C.6. If Algorithm 7 returns a \(\Pi \Sigma \) polynomial \(P \), then \(P \mid Q \).

1. If the algorithm returns 1 from the last return statement, we are done. So let’s assume it returns something from the previous return statement.
2. So flag has to be true at end \(\Rightarrow \) there is an \(i \in [s] \) such that \(P_0 = c_i^m \) with the conditions that \(\pi_{W_i}(c_i) \neq 0 \) and \(\gcd(c_i, c_j) = 1 \) for \(j \neq i \). It also means that for exactly \(m_i \) of the \(d_j \)'s (say \(d_1, \ldots, d_{m_i} \)) \(\{\pi_{W_i}(c_i),\pi_{W_i}(d_j)\} \) are LD and \(P_1 = d_1 \ldots d_{m_i} \).
3. Since \(c_i^m \mid \pi_{W_i}(Q) \), there exists a factor \(\tilde{P} \mid Q \) of degree \(m_i \) such that \(\pi_{W_i}(\tilde{P}) = c_i^m \) and \(\pi_{W_i}(c_i) \neq 0 \). This \(\Rightarrow \pi_{W_i}(\tilde{P}) \neq 0 \). Clearly \(\pi_{W_i}(\tilde{P}) \mid \pi_{W_i}(Q) = d_1 \ldots d_{m_i} \), hence for all linear factors \(\tilde{P} \) of \(\pi_{W_i}(\tilde{P}) \) should be some \(d_j \) with the condition that \(\{\pi_{W_i}(c_i),\pi_{W_i}(d_j)\} \) should be LD. The only choice we have are \(d_1, \ldots, d_{m_i} \). So \(\pi_{W_i}(\tilde{P}) = d_1 \ldots d_{m_i} \). All conditions of Corollary C.2 are true and so \(\tilde{P} \) is uniquely defined (upto scalar multiplication) by the reconstruction method given in Corollary C.2. So what we returned was actually a factor of \(Q \).

C.3 Time Complexity

Factoring \(\pi_{W_i}(Q), \pi_{W_j}(Q) \) takes \(\text{poly}(d) \) time (using Kaltofen’s Factoring from [14]). The nested for loops run \(\leq d^3 \) times. Computing projections with respect to the known decomposition \(W_0 \oplus W_1 \oplus W_2 = \mathbb{F}^r \) of linear forms over \(r \) variables takes \(\text{poly}(r) \) time. Computing \(\gcd \) and linear independence of linear forms takes \(\text{poly}(r) \) time. The final reconstruction of \(P \) using \((P_0, P_1) \) takes \(\text{poly}(d, r) \) time as has been explained in Corollary C.2. Multiplying linear forms to \(\Pi \Sigma \) polynomial takes \(\text{poly}(d^r) \) time. Therefore overall the algorithm takes \(\text{poly}(d^r) \) time. In our application \(r = O(1) \) and therefore the algorithm takes \(\text{poly}(d) \) time.

D Random Linear Transformations

This section will prove some results about linear independence and non-degeneracy under random transformations on \(\mathbb{F}^r \). This will be required to make our input non-degenerate. From here onwards we fix a natural number \(N \in \mathbb{N} \) and assume \(0 < k < r \). Let \(T \subset \mathbb{F}^r \) be a finite set with \(\dim(T) = r \). Next we consider two \(r \times r \) matrices \(\Omega, \Lambda \). Entries \(\Omega_{i,j}, \Lambda_{i,j} \) are picked independently from the uniform distribution on \([N]\). For any basis \(B \) of \(\mathbb{F}^r \) and vector \(v \in \mathbb{F}^r \), let \([v]_B\) denote the co-ordinate vector of \(v \) in the basis \(B \). If \(B = \{b_1, \ldots, b_r\} \) then \([v]_B\) denotes the \(i \)-th co-ordinate in \([v]_B\). Let \(S = \{e_1, \ldots, e_r\} \) be the standard basis of \(\mathbb{F}^r \). Let \(E_j = sp(\{e_1, \ldots, e_j\}) \) and \(E_j' = sp(\{e_j+1, \ldots, e_r\}) \), then \(E_j' = E_j \oplus E_j' \). Let \(\pi_{W_{E_j}} \) be the orthogonal projection onto \(E_j \). For any matrix \(M \), we denote the matrix of it’s co-factors by \(co(M) \). We consider the following events:

1. \(E_0 = \{\Omega \text{ is not invertible}\} \)
2. \(E_1 = \{\exists \Omega(t) \neq 0 \in T : \pi_{W_{E_j}}(\Omega(t)) = 0\} \)
3. \(E_2 = \{\exists \{t_1, \ldots, t_r\} \text{ LI vectors in } T : \{\Omega(t_1), \ldots, \Omega(t_r)\} \text{ is LD}\} \)
4. \(E_3 = \{\exists \{t_1, \ldots, t_r\} \text{ LI vectors in } T : \{\Omega(t_1), \ldots, \Omega(t_k), \Delta \Omega(t_{k+1}), \ldots, \Delta \Omega(t_r)\} \text{ is LD}\} \)
When \(t_i, \Lambda, \Omega \) are clear we define the matrix \(M = [M_1 \ldots M_r] \) with columns \(M_i \) given as:
\[
M_i = \begin{cases}
[\Omega(t_i)]_S & : i \leq k \\
[\Lambda \Omega(t_i)]_S & : i > k
\end{cases}
\]

\(M \) corresponds to the linear map
\[
e_i \mapsto \Omega(t_i) \text{ for } i \leq k \text{ and } e_i \mapsto \Lambda \Omega(t_i) \text{ for } i > k
\]
\(E_4 = \{ \{ t_1, \ldots, t_r \} \text{ LI vectors in } T \text{ and } t \in T \setminus sp(\{ t_1, \ldots, t_k \}) : [\text{co}(M)[\Omega(t)]_S^k+1 = 0} \}
\(E_5 = E_4 \mid E_3^c \)

Next we show that the probability of all of the above events is small. Before doing that let’s explain the events. This will give an intuition to why the events have low probabilities.

- \(E_0 \) is the event where \(\Omega \) is not-invertible. Random Transformations should be invertible.
- \(E_1 \) is the event where there is a non-zero \(t \in T \) such that the projection to the first co-ordinate (w.r.t. \(S \)) of \(\Omega \) applied on \(t \) is 0. We don’t expect this for a random linear transformation. Random Transformation on a non-zero vector should give a non-zero coefficient of \(e_1 \).
- \(E_2 \) is the event such that \(\Omega \) takes a basis to a LD set i.e. \(\Omega \) is not invertible (random linear operators are invertible).
- \(E_3 \) is the event such that for some basis applying \(\Omega \) to the first \(k \) vectors and \(\Lambda \Omega \) to the last \(n - k \) vectors gives a LD set. So this operation is not-invertible. For ranrom maps this should not be the case.
- \(E_4 \) is the event that there is some basis \(\{ t_1, \ldots, t_r \} \) and \(t \) outside \(sp(\{ t_1, \ldots, t_k \}) \) such that the \((k + 1)^{th}\) co-ordinate of \(\text{co}(M)[\Omega(t)]_S \) w.r.t the standard basis is 0. If \(M \) were invertible, clearly the set \(B = \{ \Omega(t_1), \ldots, \Omega(t_k), \Lambda \Omega(t_{k+1}), \ldots, \Lambda \Omega(t_r) \} \) would be a basis and \(\text{co}(M) \) will be a scalar multiple of \(M^{-1} \). So we are asking if the \((k + 1)^{th}\) co-ordinate of \(\Omega(t) \) in the basis \(B \) is 0. For random \(\Omega, \Lambda \) we would expect \(M \) to be invertible and this co-ordinate to be non-zero.

Now let’s formally prove everything. We will repeatedly use the popular Schwarttz-Zippel Lemma which the reader can find in [21].

\[\text{Claim D.1. } Pr[E_1] \leq \frac{|T|}{N^r}. \]

Proof. Fix a non-zero \(t = \begin{pmatrix} a_1 \\ \vdots \\ a_r \end{pmatrix} \) with \(a_i \in \mathbb{F} \) and let \(\Omega = (\Omega_{ij}), 1 \leq i, j \leq r \). Then the first co-ordinate of \(\Omega(t) \) is \(\Omega_{11} a_1 + \Omega_{12} a_2 + \ldots + \Omega_{1r} a_r \). Since \(t \neq 0 \), not all \(a_i \) are 0 and this is therefore not an identically zero polynomial in \((\Omega_{11}, \ldots, \Omega_{1r}) \). Therefore by Schwartz-Zippel lemma \(Pr[\Omega(t)]_S^k = 0] \leq \frac{1}{N^r} \). Using a union bound inside \(T \) we get \(Pr[\exists t(\neq 0) \in T : [\Omega(t)]_S^k = 0] \leq \frac{|T|}{N^r}. \)

\[\text{Claim D.2. } Pr[E_2] \leq \frac{1}{N^r}. \]

Proof. Clearly \(E_2 \subseteq E_0 \) and so \(Pr[E_2] \leq Pr[E_0] \). \(E_0 \) corresponds to the polynomial equation \(\text{det}(\Omega) = 0 \). \(\text{det}(\Omega) \) is a degree \(r \) polynomial in \(r^2 \) variables and is also not identically zero, so using Schwartz-Zippel lemma we get \(Pr[E_2] \leq Pr[E_0] \leq \frac{1}{N^r}. \)

\[\text{Claim D.3. } Pr[E_3] \leq \left(\frac{|T|}{r} \right) \frac{4}{N^r}. \]
Proof. Fix an LI set \(t_1, \ldots, t_r \). The set \(\{\Omega(t_1), \ldots, \Omega(t_k), \Lambda(t_{k+1}), \ldots, \Lambda(t_r)\} \) is LD iff the \(r \times r \) matrix \(M \) formed by writing these vectors (in basis \(S \)) as columns (described in part D above) has determinant 0. \(M \) has entries polynomial (of degree \(\leq 2 \)) in \(\Omega_{i,j}, \Lambda_{i,j} \) and so \(det(M) \) is a polynomial in \(\Omega_{i,j}, \Lambda_{i,j} \) of degree \(\leq 2r \). For \(\Omega = \Lambda = I \) (identity matrix) this matrix just becomes the matrix formed by the basis \(\{t_1, \ldots, t_r\} \) which has non-zero determinant and so \(det(M) \) is not the identically zero polynomial. By Schwartz-Zippel lemma \(\Pr[det(M) = 0] \leq \frac{2r}{N} \). Now we vary the LI set \(\{t_1, \ldots, t_r\} \), there are \(\binom{T}{r} \) such sets and so by a union bound \(\Pr[\mathcal{E}_3] \leq \binom{T}{r} \frac{2r}{N} \).

Claim D.4. \(\Pr[\mathcal{E}_4] \leq \left(\frac{|T|}{r+1} \right)^{2r-1} \frac{1}{N} \).

Proof. Fix an LI set \(t_1, \ldots, t_r \) and a vector \(t \notin sp\{t_1, \ldots, t_k\} \). Let \(t = \sum_{i=1}^{r} a_i t_i \). Since \(t \notin sp\{t_1, \ldots, t_k\} \), \(a_s \neq 0 \) for some \(s \in \{k+1, \ldots, r\} \). Let \(\mathcal{B} = \{\Omega(t_1), \ldots, \Omega(t_k), \Lambda(t_{k+1}), \ldots, \Lambda(t_r)\} \). Let \(M \) be the matrix whose columns are from \(\mathcal{B} \) (Construction has been explained in part D above). We know that the co-factors of a matrix are polynomials of degree \(\leq r-1 \) in the matrix elements. In our matrix \(M \) all entries are polynomials of degree \(\leq 2 \) in \(\Omega_{i,j}, \Lambda_{i,j} \), so all entries of \(co(M) \) are polynomials of degree \(\leq 2r-2 \) in \(\Omega_{i,j}, \Lambda_{i,j} \). Thus \(co(M)[\Omega(t)]_S^{k+1} = \sum_{i=1}^{r} co(M)_{k+1,i}[\Omega(t)]_S^{i} \) is a polynomial of degree \(\leq 2r-1 \). This polynomial is not identically zero. Define \(\Omega \) to be the matrix (w.r.t. basis \(S \)) of the linear map \(\Omega(t_i) = e_i \) and \(\Lambda \) to be the matrix (w.r.t. basis \(S \)) of the map

\[
\Lambda = \begin{cases}
\Lambda(e_i) = e_i : i \notin \{s, k+1\} \\
\Lambda(e_s) = e_{k+1} \\
\Lambda(e_{k+1}) = e_s
\end{cases}
\]

With these values the set \(\mathcal{B} \) becomes \(\{e_1, \ldots, e_s, e_{k+2}, \ldots, e_{k+1}, e_{k+1}, \ldots, e_r\} \). If one now looks at \(M \) i.e. the matrix formed using entries of \(\mathcal{B} \) as columns it’s just the permutation matrix that flips \(e_s \) and \(e_{k+1} \). This matrix is the inverse of itself and so has determinant \(\pm 1 \),

\[
\begin{pmatrix}
a_1 \\
\vdots \\
a_k \\
a_s \\
\vdots \\
a_{k+2} \\
a_{k+1} \\
\vdots \\
a_r
\end{pmatrix}
\]

thus \(co(M) = \pm M^{-1} = \pm M \). Therefore \(co(M)[\Omega(t)]_S^{k+1} = \pm M \begin{pmatrix}
a_1 \\
\vdots \\
a_k \\
a_s \\
\vdots \\
a_{k+2} \\
a_{k+1} \\
\vdots \\
a_r
\end{pmatrix} = \pm \begin{pmatrix}
a_1 \\
\vdots \\
a_{k+2} \\
a_{k+1} \\
\vdots \\
a_r
\end{pmatrix}.
\]

Since \(a_s \neq 0 \), we get \([co(M)[\Omega(t)]_S^{k+1}]_{|S} \neq 0 \). So the polynomial is not identically zero and we can use Schwartz-Zippel Lemma to say that \(\Pr[[co(M)[\Omega(t)]_S^{k+1}]_{|S} = 0] \leq \frac{2r-1}{N} \). Now we vary \(\{t_1, \ldots, t_r, t\} \) inside \(T \) and use union bound to show \(\Pr[\mathcal{E}_4] \leq \left(\frac{|T|}{r+1} \right)^{2r-1} \frac{1}{N} \).

Even though this is just basic probability we include the following:

Claim D.5. \(\Pr[\mathcal{E}_5] \leq \left(\frac{|T|}{r+1} \right)^{2r-1} \frac{1}{N} \).

Proof. \(\Pr[\mathcal{E}_5] = \Pr[\mathcal{E}_4 | \mathcal{E}_3^c] \leq \frac{\Pr[\mathcal{E}_4]}{\Pr[\mathcal{E}_3]} \leq \left(\frac{|T|}{r+1} \right) \frac{2r-1}{N} \left(\frac{1}{r+1} \right)^{2r-1} = \left(\frac{|T|}{r+1} \right)^{2r-1} \frac{1}{N} \).
In our application of the above $r = O(1), |T| = poly(d)$, $N = 2^d$ and so all probabilities are very small as d grows. So we will assume that none of the above events occur. By union bound that too will have small probability and so with very high probability $\mathcal{E}_0, \mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_4, \mathcal{E}_5$ do not occur.

E Set \mathcal{C} of Candidate Linear Forms

This section deals with constructing a $poly(d)$ size set \mathcal{C} which contains each $l_{ij}, (i, j) \in \{0, 1\} \times [M]$. First we define the set and prove a bound on its size.

E.1 Structure and Size of \mathcal{C}

Let’s recall $f = G(o_0T_0 + o_1T_1)$ and define two other polynomials:

\[g = \frac{f}{G} = o_0T_0 + o_1T_1 \]

\[h = \frac{\text{Lin}(f)}{\text{Lin}(g)} = \frac{g}{\text{Lin}(g)} \]

Assume $\deg(h) = d_h$:

Definition E.1. Our candidate set is defined as:

\[\mathcal{C} \overset{\text{def}}{=} \{ l = x_1 - a_2x_2 - \ldots - a_rx_r \in \text{Lin}_F[x] : h(a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r) \in \Pi\Sigma_F^{d_h}[x_2, \ldots, x_r] \} \]

(for definition of $\Pi\Sigma_F^{d_h}[x_2, \ldots, x_r]$ see Section 1.4).

In the claim below we show that linear forms dividing polynomials $T_i, i = 0, 1$ are actually inside \mathcal{C} (first part of claim). The remaining linear forms in \mathcal{C} (which we call “spurious”) have a nice structure (second part of claim). In the third part of our claim we arrive at a bound on the size of \mathcal{C}. Recall the definition of $c_F(k)$ from Theorem 1.7.

Claim E.2. The following are true about our candidate set \mathcal{C}.

1. $\mathcal{L}(T_1) \subseteq \mathcal{C}, i = 0, 1$.
2. Let $k = c_F(3) + 2$ and suppose $\{l_j : j \in [k]\} \subseteq \mathcal{L}(T_1)$ are LI. Then for any $l \in \mathcal{C} \setminus (\mathcal{L}(T_0) \cup \mathcal{L}(T_1))$, there exists $j \in [k]$ such that $\text{fl}(\{l, l_j\}) \cap \mathcal{L}(T_{1-i}) \neq \emptyset$ i.e. the line joining l and l_j does not intersect the set $\mathcal{L}(T_{1-i})$.
3. $|\mathcal{C}| \leq M^4 + 2M \leq d^4 + 2d$.

Proof. Let’s first recall the definition of our candidate set

\[\mathcal{C} \overset{\text{def}}{=} \{ l = x_1 - a_2x_2 - \ldots - a_rx_r \in \text{Lin}_F[x] : h(a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r) \in \Pi\Sigma_F^{d_h}[x_2, \ldots, x_r] \} \]

Also recall that

\[h = \frac{g}{\text{Lin}(g)} = \frac{f}{\text{Lin}(f)} \cdot \]

1. Let $l = x_1 - a_2x_2 - \ldots - a_rx_r \in \mathcal{L}(T_{1-i})$. Let’s denote the tuple $v \equiv (a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r)$. Since $\gcd(T_0, T_1) = 1$ and $l \mid T_{1-i}$ we know that $l \mid T_i$ and therefore $\text{Lin}(g)(v) \neq 0$. We can then compute

\[h(v) = \frac{o_iT_i(v)}{\text{Lin}(g)(v)} = o_iH_1(v)\ldots H_{d_h}(v) \in \Pi\Sigma_F^{d_h}[x_2, \ldots, x_r] \]

where $H_j \in \text{Lin}_F[x_2, \ldots, x_r]$. So $\mathcal{L}(T_i) \subseteq \mathcal{C}$ for $i = 0, 1$.
2. Consider $l = x_1 - a_2x_2 - \ldots - a_rx_r \in C \setminus (L(T_0) \cup L(T_1))$ and assume that $sp(\{l, l_j\}) \cap L(T_{1-i}) = \emptyset$ for all $j \in [k]$. We know that

$$g(v) = \text{Lin}(g)(v)H_1(v) \ldots H_{d_k}(v) = \alpha_0T_0(v) + \alpha_1T_1(v).$$

Let g' be the following identically zero $\Sigma\Pi\Sigma$ polynomial (with circuit C')

$$g' = \text{Lin}(g)(v)H_1(v) \ldots H_{d_k}(v) - \alpha_0T_0(v) - \alpha_1T_1(v).$$

We know

$$C' = \text{gcd}(C')Sim(C') \Rightarrow Sim(C') \equiv 0.$$

Recall that $l_j(v) \mid T_1(v)$, therefore the $l_j(v)$ cannot be factors of $\text{gcd}(C')$ because if they did then there exist pair $l_j, l_{(1-i)j}$ such that $\{l_j(v), l_{(1-i)j}(v)\}$ is LD or in other words $sp(\{l, l_j\}) \cap L(T_{1-i}) \neq \emptyset$ and we have a contradiction. Also the set $\{l_j(v) : j \in [k]\}$ has dimension $\geq k - 1$ since the dimension could fall only by 1 when we go modulo a linear form (project to hyperplane). This means that $\text{rank}(\text{Sim}(C')) \geq k - 1 \geq c_3(3) + 1$.

If $\text{Sim}(C')$ were not minimal $\Rightarrow C'$ is not minimal \Rightarrow one of it’s gates would be 0. Since $l \notin L(T_0)$, $l \notin L(T_1)$, $l \notin L(T_{1-i})$ \Rightarrow for every $j \in [k]$, $l_{(1-i)j}$ \mid T_1, such that $l_{(1-i)j}(v), l_j(v)$ are LD. \Rightarrow $sp(\{l, l_j\}) \cap L(T_{1-i}) \neq \emptyset$ for $j \in [k]$, a contradiction to our assumption.

If $\text{Sim}(C')$ were minimal, we have an identically zero simple minimal circuit $Sim(C')$ with $\text{rank}(\text{Sim}(C')) \geq c_3(3) + 1$ contradicting Theorem 1.7.

So our assumption is wrong and $sp(\{l, l_j\}) \cap L(T_{1-i}) \neq \emptyset$ for some $j \in [k]$.

3. Let $l \in C \setminus (L(T_0) \cup L(T_1))$. Consider a set $\{l_1, \ldots, l_{k+2}\} \subset L(T_1)$ of $k + 2$ Li linear forms. By the above argument there exist three distinct elements in this set say l_1, l_2, l_3 such that $sp(\{l_j, l\}) \cap L(T_{1-i}) \neq \emptyset$ for $j \in [3]$. Let $\{l'_1, l'_2, l'_3\} \subset L(T_{1-i})$ such that $l'_j \in sp(\{l_j, l\})$ for $j \in [3]$. Then $gcd(l_j, l'_j) = 1$ implies that $l \in sp(\{l_j, l'_j\})$ for $j \in [3]$. Since l, l_j, l'_j are all standard (coefficient of x_1 is 1), Lemma 1.10 tells us

$$l \in fl(\{l_j, l'_j\})$$

for $j \in [3]$. So l lies on the lines $L_j = fl(\{l_j, l'_j\})$ for $j \in [3]$. Atleast two of these lines should be distinct otherwise $\text{dim}(\{l_1, l_2, l_3\}) \leq 2$ which is a contradiction. So l is the intersection of these two lines. There are M^2 such lines and so M^4 such intersections. If $l \in L(T_0) \cup L(T_1)$ we have $\leq 2M$ other possibilities. So $|C| \leq M^4 + 2M = O(d^4)$.

Let’s now give an algorithm to construct this set.

E.2 Constructing the set C

Here is an algorithm, Algorithm 8, to construct the set C. An explanation is given in the lemma below.

Lemma E.3. Given a polynomial $f \in \mathbb{F}[x_1, \ldots, x_r]$ of degree d in r independent variables which admits a $\Sigma\Pi\Sigma$ polynomial representation : $f = \prod_{i \in [d-M]} G_i(\alpha_0 \prod_{j \in [M]} l_{0j} + \alpha_1 \prod_{k \in [M]} l_{1k})$ such that $G_i, l_{ij}(t \in [d-M], i \in \{0,1\}, j \in [M])$ are standard w.r.t. the standard basis $\{x_1, \ldots, x_n\}$ then we can find in deterministic time $\text{poly}(d)$, the corresponding candidate set C (see Definition E.1) described above.
FunctionName: Candidates
input : $f \in \Sigma \Pi \Sigma (2)[\bar{x}]$
output : Set \mathcal{C} of Linear Forms

1. Define $\mathcal{C} = \phi$;
2. Use polynomial factorization from [14] to find $\text{Lin}(f)$;
3. Consider polynomial $h = \frac{f}{\text{Lin}(f)}$;
4. Let a_2, \ldots, a_r be variables;
5. Compute coefficient vector b of $h(a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r)$;
6. Consider the polynomials $\{F_i, i \in [m]\}$ constructed in Corollary A.2;
7. Using your favorite algorithm (e.g. Buchberger’s [5]) to solve polynomial equations, find all complex solutions to the system $\{F_i(b) = 0, i \in [m]\}$;
8. For each solution $(a_2, \ldots, a_r) \in \mathbb{F}^r$ do: $\mathcal{C} = \mathcal{C} \cup \{(1, a_2, \ldots, a_r)\}$;
9. return \mathcal{C};

Algorithm 8: Set \mathcal{C} of candidate linear forms

Proof. The proof also contains an explanation of the algorithm above

- Let $t = x_1 - a_2x_2 - \ldots - a_rx_r \in \mathcal{C}$ be a candidate linear form. We know that $h(a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r) \in \Pi \Sigma^d[x_2, \ldots, x_r] \subset \Pi \Sigma^d[C][x_2, \ldots, x_r]$.
- Using Theorem A.2 we know that $h(a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r) \in \Pi \Sigma^d[x_2, \ldots, x_r] \Leftrightarrow$ for the coefficient vector b of $h(a_2x_2 + \ldots + a_rx_r, x_2, \ldots, x_r)$ inside $\mathbb{C}[x_2, \ldots, x_r]$ satisfies $F_1(b) = \ldots = F_m(b) = 0$ for the polynomials $\{F_i : i \in [m]\}$ obtained in Corollary A.2.
- For any $t \leq d_h$, computing $(a_2x_2 + \ldots + a_rx_r)^t$ requires $\text{poly}(t')$ time and it also has $\text{poly}(t')$ terms and degree t. Multiplying such powers to other variables and adding $\text{poly}(d_h)$ many such expressions also requires $\text{poly}(d_h)$ time. Hence computing the coefficient vector b takes polynomial time since r is a constant. Each co-ordinate of this coefficient vector is a polynomial in $r - 1$ variables (a_2, \ldots, a_r) of degree $\text{poly}(d_h)$.
- Now we think of the a_i’s as our unknowns and obtain them by solving the polynomial system $\{F_t(b) = 0, i \in [m]\}$. The number of polynomials is $m = \text{poly}(d')$ and degrees are $\text{poly}(d)$. F_t’s are polynomials in $\text{poly}(d')$ variables. Expanding $F_t(b)$ will clearly take $\text{poly}(d')$ time and now we will have $\text{poly}(d')$ polynomials in r variables of degrees $\text{poly}(d')$. Note that $r = O(1)$ and so we need to solve $\text{poly}(d)$ polynomials of degree $\text{poly}(d)$ in constant many variables. Also Claim E.2 implies that the number of solutions $\leq M^4 + 2M = O(\text{poly}(d))$. So using Buchberger’s algorithm [5] we can solve the system for (a_2, \ldots, a_r) in $\text{poly}(d)$ time. Once we have the solutions we consider only those linear forms which are in $\mathbb{F}[x_1, \ldots, x_r]$ and add them to \mathcal{C}.

F Proofs from Subsection 3.4

Claim F.1. Let $(S = \{l_1, \ldots, l_k\}, D)$ be a Detector pair in $\mathcal{L}(T_i)$. Let $T_{k+1} \in D$. For a standard linear form $l \in V$, if $l \mid g$ then $l \notin \text{sp}(\{l_1, \ldots, l_k\})$.

Proof. Assume $l \mid g$ and $l \in \text{sp}(\{l_1, \ldots, l_k\})$. Let $W = \text{sp}(\{l\})$, extend it to a basis and in the process obtain W' such that $W \oplus W' = V$. We get

$$\pi_{W'}(\alpha_0T_0 + \alpha_1T_1) = 0.$$ $\pi_{W'}(\alpha_0T_i) \neq 0$ (i.e. $l \nmid T_i$), otherwise l divides both T_0, T_1 and $gcd(T_0, T_1)$ won’t be 1. So
we have an equality of non zero $\prod \sigma$ polynomials

$$
\prod_{j=1}^{M} \pi_{W}^r(l_{0j}) = \prod_{j=1}^{M} \pi_{W}^r(l_{1j}).
$$

Therefore there exists a permutation $\theta : [M] \to [M]$ such that $\{\pi_{W}^r(l_{1-i,j}), \pi_{W}^r(l_{0(j)}))$ are LD $\Rightarrow l \in sp(\{l_{1-i,j}, l_{0(j)}))$. Since $l \in T_0T_1$ this also means that $l_{1-i,j} \in sp(\{l, l_{0(j)})$ and $l_{0(j)} \in sp(\{l, l_{1-i,j})$.

In particular there is an $l'_{k+1} \in L(T_{1-i})$ such that $l'_{k+1} \in sp(\{l, l_{k+1})$ and $l_{k+1} \in sp(\{l, l'_{k+1})$.

Since $l \in sp(\{l_1, \ldots, l_k) \Rightarrow l'_{k+1} \in sp(\{l_1, \ldots, l_k, l_{k+1})$. All linear forms here are standard (i.e. coefficient of x_1 is 1) and so by Lemma 1.3, $l'_{k+1} \in fl(\{l_1, \ldots, l_k, l_{k+1})$. Below we use the definition of detector pair and get

$$
l'_{k+1} \in fl(\{l_1, \ldots, l_k, l_{k+1}) \cap L(T_{1-i}) \subseteq fl(\{l_1, \ldots, l_k).
$$

And $l_{k+1} \in sp(\{l, l'_{k+1})$ which is a contradiction to (S, D) being a detector pair.

\begin{claim}
Claim F.2. Let $l \in \lin[x] \mathbb{F}$ be standard such that $l \mid g \mathbb{C}$ be the candidate set. Assume $(S = \{l_1, \ldots, l_k), D(\neq \emptyset)$ is a Detector pair in $L(T_i)$. Then $|L(T_{1-i}) \cap (fl(S \cup \{l\}) \setminus fl(S))| \geq 2$. That is the flat $fl(\{l_1, \ldots, l_k\})$ contains atleast two distinct points from $L(T_{1-i}) \subset \mathbb{C}$ outside $fl(\{l_1, \ldots, l_k\})$.
\end{claim}

\begin{proof}
From the previous claim we know that $\{l_1, \ldots, l_k, l\}$ is an LI set. Also like above we know there exists $l'_j \in L(T_{1-i}), j \in [3]$ such that $l_j \in sp(\{l, l'_j\}, l'_j \in sp(\{l, l_j\})$. Since $\{l_1, l_2, l_3\}$ are LI, atleast two of the l'_j's, $j \in [3]$ must be distinct, otherwise $sp(\{l_1, l_2, l_3\}) \subseteq sp(\{l, l'_j\})$ which is not possible as LHS has dimension 3 and RHS has dimension 2. Thus there exist two distinct $l'_1, l'_2 \in sp(\{l_1, l_2, l_3\}) \subseteq sp(\{l_1, \ldots, l_k\})$. Note that $l_1, \ldots, l_k, l, l'_1, l'_2$ are all standard (i.e. coefficient of x_1 is 1) and so by Lemma 1.10

$$
l'_j \in fl(\{l_1, \ldots, l_k, l\})
$$

for $j \in [2]$.

If for any $j \in [2], l'_j \in sp(\{l_1, \ldots, l_k\}$ then $l \in sp(\{l_j, l'_j\}) \Rightarrow l \in sp(\{l_1, \ldots, l_k\})$ which is a contradiction. This also shows that $l'_j \notin fl(\{l_1, \ldots, l_k\})$ for $j \in [2]$.

From what we showed above we may conclude:

$$
l'_j \in fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\})
$$

\end{proof}

\begin{lemma}
Lemma F.3. The following are true:
1. If $l \mid l$ (i.e. l was identified) then $l \in L(G) \setminus L(g)$.
2. If $l \mid G$ (i.e. l was retained) then $(fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\})) \cap (L(T_{1-i}) \cup (L(T_i) \setminus D)) \neq \emptyset$ that is

$$
(fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\})) \text{ contains a point from } L(T_i) \setminus D \text{ or } L(T_{1-i}).
$$

3. If $l \mid G$ and $l_{k+1} \in D$ then $l \notin sp(\{l_1, \ldots, l_k, l_{k+1}\})$.
\end{lemma}
Proof.
1. Assume $l | I$ (i.e. l was identified) and $l | g$. Then by Claim 3.6 we know that $\{l_1, \ldots, l_k, l\}$ are LI and so the first “if” condition is true. By Claim 3.7 we know that there are two other points $\{l'_1, l'_2\} \subset \mathcal{C} \cap (fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\}))$, so the second “if” condition will also be true and thus l will not be identified which is a contradiction. Therefore $l \in \mathcal{L}(G) \setminus \mathcal{L}(g)$.
2. Assume $l | G$ (i.e. l was not identified). This means both “if” statements were true for l. Thus $\{l_1, \ldots, l_k, l\}$ is LI. Also there exist distinct $\{l'_1, l'_2\} \subset \mathcal{C} \cap (fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\}))$. If
 \[
 l'_1 \in (\mathcal{L}(T_{l-i}) \cup (\mathcal{L}(T_i) \setminus D)) \text{ or } l'_2 \in (\mathcal{L}(T_{l-i}) \cup (\mathcal{L}(T_i) \setminus D))
 \]

we are done so assume both are in
 \[
 \mathcal{C} \setminus ((\mathcal{L}(T_{l-i}) \cup (\mathcal{L}(T_i) \setminus D))) = (\mathcal{C} \setminus (\mathcal{L}(T_i) \cup (\mathcal{L}(T_{l-i})))) \cup D
 \]

If one of them say $l'_1 \subset \mathcal{C} \setminus (\mathcal{L}(T_i) \cup (\mathcal{L}(T_{l-i})))$, then by Part 2 of Claim E.2, for some $j \in [k]$, $sp(\{l'_1, l'_2\}) \cap L(T_{l-i}) \neq \phi$. Let $l_j \in sp(l'_1, l'_2) \cap L(T_{l-i}) \Rightarrow$
 \[
 l_j \in sp(\{l'_1, l'_2\}) \subseteq sp(\{l_1, \ldots, l_k, l\})
 \]

Since all linear forms l_j, l_1, \ldots, l_k, l are standard (coefficient of x_1 is 1) by Lemma 1.10
 \[
 l_j \in fl(\{l_1, \ldots, l_k, l\})
 \]

Also l_j, l_j are LI and $l_j \in sp(\{l'_1, l'_2\})$ together imply $l'_1 \in sp(\{l_j, l_j\}).$ Note that $l'_1 \notin fl(\{l_1, \ldots, l_k\}) \Rightarrow l'_1 \notin sp(\{l_1, \ldots, l_k\})$ which along with $l'_1 \in sp(\{l_j, l_j\})$ will then give
 \[
 l_j \notin sp(\{l_1, \ldots, l_k, l\})
 \]

So we found $l_j \in L(T_{l-i}) \cap (fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\}))$ and we are done.

So the only case that remains now is that $l'_1, l'_2 \subseteq D$. Let’s complete the proof in the following steps
 \[
 l'_1 \in fl(\{l_1, \ldots, l_k\}) \setminus fl(\{l_1, \ldots, l_k, l\})
 \]

Using the above bullet, $l'_2 \in fl(\{l_1, \ldots, l_k, l\}) \Rightarrow l'_2 \in sp(\{l_1, \ldots, l_k, l\})$. Linear forms $l'_2, l_1, \ldots, l_k, l$ are standard (coefficient of x_1 is 1) so using Lemma 1.10, $l'_2 \in fl(\{l_1, \ldots, l_k, l\})$
 \[
 l'_2 \in D \Rightarrow l'_2 \notin fl(\{l_1, \ldots, l_k\})
 \]

The above two bullets and $\{l'_1, l'_2\} \subset L(T_i)$ tell us that $fl(\{l_1, \ldots, l_k, l'_1\})$ is not elementary which is a contradiction.

So at least one of l'_1, l'_2 is inside $L(T_{l-i}) \cup (L(T_i) \setminus D)$

3. Let $l_{k+1} \in D$ and $l \in sp(\{l_1, \ldots, l_k, l_{k+1}\})$. Since $l_1, l_1, \ldots, l_k, l_{k+1}$ are standard, by Lemma 1.10, $l \in fl(\{l_1, \ldots, l_k, l_{k+1}\}).$ Clearly $l \notin fl(\{l_1, \ldots, l_k\})$ otherwise it would get identified at the first “if” condition. Therefore $l \in fl(\{l_1, \ldots, l_k, l_{k+1}\}) \setminus fl(\{l_1, \ldots, l_k\})$. By Part 2 above let $l'_1 \in fl(\{l_1, \ldots, l_k, l\}) \setminus fl(\{l_1, \ldots, l_k\}) \cap (L(T_{l-i}) \cup (L(T_i) \setminus D)).$ So $l'_1 \in L(T_{l-i})$ or $l'_1 \in L(T_i)$.

This tells us that $l'_1 \in sp(\{l_1, \ldots, l_k, l_{k+1}\}) \setminus fl(\{l_1, \ldots, l_k\})$. All linear forms $l'_1, l_{k+1}, \ldots, l_k, l_{k+1}$ are standard (i.e. coefficients of x_1 is 1) so by Lemma 1.10 we get that $l'_1 \in fl(\{l_1, \ldots, l_k, l_{k+1}\}) \setminus fl(\{l_1, \ldots, l_k\})$. Now using the definition of detector pair $l'_1 \notin L(T_{l-i})$ since $fl(\{l_1, \ldots, l_{k+1}\}) \cap L(T_{l-i}) \subseteq fl(\{l_1, \ldots, l_k\})$. The flat $fl(\{l_1, \ldots, l_{k+1}\})$ is elementary in $L(T_i)$, so l'_1 cannot belong here only if $l'_1 = l_{k+1}$ which is not possible since $l'_1 \notin D$. So we have a contradiction. Hence proved. \[\square\]
Lemma F.4. Let \(S = \{l_1, \ldots, l_k, D\} \) be a detector in \(\mathcal{L}(T_i) \). For each \((l, l_j) \in C \times S \) define the space \(U_{(l, l_j)} = sp\{(l, l_j)\} \). Extend \(\{l, l_j\} \) to a basis and in the process obtain \(U'_{(l, l_j)} \) such that \(V = U_{(l, l_j)} \oplus U'_{(l, l_j)}. \) Define the set:
\[
X = \{l \in C : \pi_{U'_{(l, l_j)}}(f) \neq 0, \text{ for all } l_j \in S\}
\]
Then \(D \subset X \subset \mathcal{L}(T_i) \).

Proof. \((D \subset X): \) Consider \(l_{k+1} \in D. \) Since \(D \subset \mathcal{L}(T_i) \Rightarrow l_{k+1} \in C. \) Assume \(l_{k+1} \notin X, \) so there exists a \(j \in [k] \) such that \(\pi_{U'_{(l_{k+1}, l_j)}}(f) = 0. \) That is:
\[
\pi_{U'_{(l_{k+1}, l_j)}}(G_0 T_0 + \alpha_1 T_1)) = 0.
\]
So
\[
\prod_{t \in [N_1]} \pi_{U'_{(l_{k+1}, l_j)}}(G_t)\prod_{s \in [M]} \pi_{U'_{(l_{k+1}, l_j)}}(l_{0s}) + \alpha_1 \prod_{s \in [M]} \pi_{U'_{(l_{k+1}, l_j)}}(l_{1s}) = 0
\]
Now
\[
l_j \in \mathcal{L}(T_i) \Rightarrow \pi_{U'_{(l_{k+1}, l_j)}}(T_i) = 0 \Rightarrow \prod_{t \in [N_1]} \pi_{U'_{(l_{k+1}, l_j)}}(G_t)\prod_{s \in [M]} \pi_{U'_{(l_{k+1}, l_j)}}(l_{(1-s)i}) = 0.
\]
Since \(G_t \mid G \), by Part (3) of Lemma 3.9 \(\pi_{U'_{(l_{k+1}, l_j)}}(G_t) \neq 0 \) for all \(t \in [N_1]. \) If for some \(s \in [M], \)
\[
\pi_{U'_{(l_{k+1}, l_j)}}(l_{(1-s)i}) = 0 \text{ then } l_{(1-s)i} \in sp\{(l_j, l_{k+1})\} \Rightarrow l_{(1-s)i} \in sp\{(l_1, \ldots, l_k, l_{k+1})\} \Rightarrow l_{(1-s)i} \in sp\{(l_1, \ldots, l_k)\} \text{ (by definition of Detector Pair in 3.4).}
\]
This means \(l_{k+1} \in sp\{(l_1, \ldots, l_k, l_{(1-s)i})\} \subseteq sp\{(l_1, \ldots, l_k)\} \) which is a contradiction to \(\pi_{U'_{(l_{k+1}, l_j)}}(f) \neq 0 \) for all \(j \in [k] \Rightarrow l_{k+1} \in X. \) Therefore \(D \subset X. \)

\((X \subset \mathcal{L}(T_i)): \) Consider \(l \in X. \) We need to show \(l \in \mathcal{L}(T_i). \) We already know \(l \in C. \)
- If \(l \in \mathcal{L}(T_{1-i}) \), then \(\pi_{U'_{(l, l_j)}}(f) = 0 \) for all \(j \in [k] \) since \(l \mid T_{1-i} \) and \(l_j \mid T_i \). Contradiction to \(l \in X. \)
- If \(l \in \mathcal{C} \setminus (\mathcal{L}(T_i) \cup \mathcal{L}(T_{1-i})) \) by Part 2 of Claim E.2 we know that there exists \(j \in [k] \) such that \(sp\{(l_j, l)\} \cap \mathcal{L}(T_{1-i}) \neq \emptyset. \) Let \(l'_j \in sp\{(l_j, l)\} \cap \mathcal{L}(T_{1-i}). \) We show that \(sp\{(l'_j, l)\} = sp\{(l_j, l)\} = U_{(l_j, l)}. \)
- \(l'_j \in sp\{(l_j, l)\} \Rightarrow sp\{(l'_j, l)\} \subseteq sp\{(l_j, l)\}. \)
- Let \(l'_j = \alpha l_j + \beta l. \) We know that \(\{l'_j, l_j\} \) are LI since \(l_j \in \mathcal{L}(T_i) \) and \(l'_j \in \mathcal{L}(T_{1-i}). \) So \(\beta \neq 0 \Rightarrow l \in sp\{(l'_j, l_j)\} \Rightarrow sp\{(l'_j, l_j)\} \subset sp\{(l_j, l)\} \Rightarrow sp\{(l'_j, l_j)\} = sp\{(l_j, l)\}. \)

Use the same extension for \(sp\{(l, l_j)\} = sp\{(l'_j, l_j)\} = U_{(l_j, l)} \) to get \(\pi_{U'_{(l, l_j)}}(f) = \pi_{U'_{(l'_j, l_j)}}(f) = 0 \) (since \(l'_j \mid T_{1-i} \) and \(l_j \mid T_i \)). Contradiction to \(l \in X. \)

Therefore \(l \in \mathcal{L}(T_i) \Rightarrow X \subset \mathcal{L}(T_i). \)

G Proofs from Subsection 3.5

Claim G.1. The following is true
\[
\frac{(2 - v(\delta, \theta))}{v(\delta, \theta)} \leq 1 - \frac{\delta}{\delta}.
\]
Proof. Note that
\[
(2 - v(\delta, \theta) \frac{1 + \delta + \theta}{1 - \delta + \theta}) = \begin{cases}
\frac{1 + \delta + \theta}{1 - \delta + \theta} & \text{if } |\mathcal{L}(T_0)| \leq \theta |\mathcal{L}(T_1)| \\
\frac{1 - (1 - \delta)(1 + \theta)}{1 - \delta} & \text{if } \theta |\mathcal{L}(T_1)| < |\mathcal{L}(T_0)| \leq |\mathcal{L}(T_1)|
\end{cases}
\]
By simple computation \(\delta \in (0, \frac{3\sqrt{6}}{6})\) gives
\[
3\delta^2 - 7\delta + 1 > 0 \Rightarrow 0 < \frac{3\delta}{1 - \delta} < 1 - 3\delta < 1 \Rightarrow \frac{1 + \delta + \theta}{1 - \delta - \theta} < \frac{1 - \delta}{\delta}
\]
Also
\[
\theta > \frac{3\delta}{1 - \delta} \Rightarrow \frac{3 - (1 - \delta)(1 + \theta)}{1 - \delta} < 1 - \delta
\]

\[\blacktriangleright \text{Lemma G.2.} \quad \text{Let } k = c_2(3) + 2 \text{ (see definition of } c_2(k) \text{ in Theorem 1.7). Fix } \delta, \theta \text{ in range given in Claim 3.12 above. Then for some } i \in \{0, 1\} \text{ there exists a Detector Pair } (S = \{l_1, \ldots, l_k\}, D) \text{ in } \mathcal{L}(T_i) \text{ with } |D| \geq v(\delta, \theta) \max(|\mathcal{L}(T_0)|, |\mathcal{L}(T_1)|).
\]

Proof. We assume \(|\mathcal{L}(T_0)| \leq |\mathcal{L}(T_1)|\). The other case gives the same result for (maybe) a different value of \(i\). We will consider linear forms as points in the space \(\mathbb{F}^r\). Let’s consider the two cases used in the definition of \(v(\delta, \theta)\).

Case 1: \(|\mathcal{L}(T_0)| \leq \theta |\mathcal{L}(T_1)| \) (i.e. \(\mathcal{L}(T_0) \) is much smaller) \(\Rightarrow v(\delta, \theta) = 1 - \delta - \theta\) Since \(\dim(\mathcal{L}(T_1)) \geq r - 1 \geq C_{2k-1} > C_k\) (see Appendix B for definition of \(C_k\)) by Corollary B.5 there exists a set \(S \) of \(k\) LI points say \(S = \{l_1, \ldots, l_k\} \subseteq \mathcal{L}(T_1)\) and a set \(Z \subseteq \mathcal{L}(T_1)\) of size \(\geq (1 - \delta)|\mathcal{L}(T_1)|\) such that for any \(l_{k+1} \in Z\)

\[= l_{k+1} \notin f(l(l_1, \ldots, l_k)).
\]

Next we define our set \(D\) according to the condition we needed in the definition of detector (See Subsection 3.4).

\[D \overset{\text{def}}{=} \{l_{k+1} \in Z : f(l(l_1, \ldots, l_k, l_{k+1})) \cap \mathcal{L}(T_0) \subset f(l(l_1, \ldots, l_k))\}
\]

In the following lines we will show that this set \(D\) has large size, to be precise:

\[|D| \geq (1 - \delta - \theta)|\mathcal{L}(T_1)|
\]

We do this in steps:

1. First we define a special subset of \(Z\)

\[
\tilde{Z} = \{l_{k+1} \in Z : (f(l(l_1, \ldots, l_k, l_{k+1})) \setminus f(l(l_1, \ldots, l_k))) \cap \mathcal{L}(T_0) \neq \emptyset\}
\]

We claim that \(Z \setminus \tilde{Z} \subset D\). Let \(l_{k+1} \in Z \setminus \tilde{Z}\) \(\Rightarrow (f(l(l_1, \ldots, l_{k+1})) \setminus f(l(l_1, \ldots, l_k))) \cap \mathcal{L}(T_0) = \emptyset \Rightarrow f(l(l_1, \ldots, l_{k+1})) \cap \mathcal{L}(T_0) \subset f(l(l_1, \ldots, l_k))\) and so \(l_{k+1} \in D\).

2. Next we show that for distinct \(l_{k+1}, \tilde{l}_{k+1} \in Z(\subseteq \mathcal{L}(T_1))\)

\[
(f(l(l_1, \ldots, l_k, l_{k+1})) \setminus f(l(l_1, \ldots, l_k))) \cap (f(l(l_1, \ldots, l_k, \tilde{l}_{k+1})) \setminus f(l(l_1, \ldots, l_k))) = \emptyset
\]

If not then there exist scalars \(\mu_j, \nu_j, j \in [k + 1]\) such that

\[\nu_1 l_1 + \ldots + \nu_k l_k + \nu_{k+1} \tilde{l}_{k+1} = \mu_1 l_1 + \ldots + \mu_k l_k + \mu_{k+1} \tilde{l}_{k+1}\]

with \(\nu_{k+1} \neq 0\) implying that \(l_{k+1} \in \text{sp}(\{l_1, \ldots, l_k, \tilde{l}_{k+1}\})\). Since all linear forms are standard this implies \(l_{k+1} \in f(l(l_1, \ldots, l_k, \tilde{l}_{k+1}))\) (see Lemma 1.10). Also \(l_{k+1} \in Z \Rightarrow l_{k+1} \notin f(l(l_1, \ldots, l_k))\). Together this means that \(l_{k+1} \in f(l(l_1, \ldots, l_k, \tilde{l}_{k+1})) \setminus f(l(l_1, \ldots, l_k))\) and we arrive at a contradiction to \(f(l(l_1, \ldots, l_k, \tilde{l}_{k+1}))\) being elementary.
3. From what we showed above every $l \in \mathcal{L}(T_0)$ can belong to at most one of the sets $f(l_1, \ldots, l_{k+1}) \setminus f(l_1, \ldots, l_k)$ with $l_{k+1} \in Z$ (since intersection between two such sets is ϕ) and therefore there can be at most $|\mathcal{L}(T_0)|$ such l_{k+1}’s in $Z \Rightarrow |Z| \leq |\mathcal{L}(T_0)|$.

So we get:

$$|D| \geq |Z| - |\mathcal{L}(T_0)| \geq (1 - \delta - \theta)|\mathcal{L}(T_1)|$$

(S, D) is a detector pair in $\mathcal{L}(T_1)$ by the choice of Z and D.

Case 2: $|\mathcal{L}(T_0)| < |\mathcal{L}(T_1)|$ (i.e. sizes are comparable) $\Rightarrow v(\delta, \theta) = (1 - \delta)(1 + \theta) - 1$

Since $\dim(\mathcal{L}(T_0) \cup \mathcal{L}(T_1)) = r > C_{2k-1}$, by Corollary B.5 we know that there exist $2k-1$ independent points $l_1, \ldots, l_{2k-1} \in \mathcal{L}(T_0) \cup \mathcal{L}(T_1)$ and a set $Z \subseteq \mathcal{L}(T_0) \cup \mathcal{L}(T_1)$ of size $\geq (1 - \delta)(|\mathcal{L}(T_0)| + |\mathcal{L}(T_1)|)$ such that for all $l \in Z$

$= l \notin f(l_1, \ldots, l_{2k-1})$.

$= f(l_1, \ldots, l_{2k-1})$ is elementary in $\mathcal{L}(T_0) \cup \mathcal{L}(T_1)$.

By pigeonhole principle, k of the $\{l_j\}_{j=1}^{2k-1}$ points must belong to either $\mathcal{L}(T_0)$ or $\mathcal{L}(T_1)$. Let’s assume they belong to $\mathcal{L}(T_1)$ (for some $i \in \{0, 1\}$) (say the points are l_1, \ldots, l_k), then consider $D = Z \cap \mathcal{L}(T_i)$. Clearly for every $l \in D$, $l \notin f(l_1, \ldots, l_k)$ and $f(l_1, \ldots, l_k) = \mathcal{L}(T_1)$ is elementary in $\mathcal{L}(T_0) \cup \mathcal{L}(T_1)$. This immediately tells us that $(S = \{l_1, \ldots, l_k\}, D)$ satisfies all properties of being a detector pair in $\mathcal{L}(T_i)$. We defined $D = Z \cap \mathcal{L}(T_i)$. Since $Z \subseteq \mathcal{L}(T_1) \cup \mathcal{L}(T_{1-i})$ we have $Z = (Z \cap \mathcal{L}(T_i)) \cup (Z \cap \mathcal{L}(T_{1-i})) \subset D \cup \mathcal{L}(T_{1-i})$ giving

$$|D| + |\mathcal{L}(T_{1-i})| \geq |Z| \Rightarrow |D| \geq |Z| - |\mathcal{L}(T_{1-i})| \geq (1 - \delta)(|\mathcal{L}(T_0)| + |\mathcal{L}(T_1)|) - |\mathcal{L}(T_{1-i})|$$

$$\geq (1 - \delta)(1 + \theta) - 1 \max(|\mathcal{L}(T_0)|, |\mathcal{L}(T_1)|)$$

Combining the two cases we see that for some $i \in \{0, 1\}$ there exists a Detector set $(S = \{l_1, \ldots, l_k\}, D)$ in $\mathcal{L}(T_i)$ with $|D| \geq v(\delta, \theta) \max(|\mathcal{L}(T_0)|, |\mathcal{L}(T_1)|)$.

Lemma G.3. The following are true:

1. $\dim(\pi_{\mathcal{L}}(U_{i-1})) > C_4$
2. $\pi_{\mathcal{L}}(U_{i-1}) \cap \pi_{\mathcal{L}}(D) = \phi$
3. $|\pi_{\mathcal{L}}(U_{i-1})| \leq \frac{1}{2}\pi_{\mathcal{L}}(D)$

Proof.

1. Since $\dim(\mathcal{L}(U_{i-1})) \geq r - 1$ we get $\dim(\pi_{\mathcal{L}}(U_{i-1})) \geq r - 1 - k > C_4$.
2. Assume $\exists d_1 \in D, u \in U_{i-1}$ such that $\pi_{\mathcal{L}}(d_1) = \pi_{\mathcal{L}}(u)$ $\Rightarrow \exists \nu, \lambda \in \mathbb{F}$ such that $\nu d_1 + \lambda u \in W_{\mathcal{L}}$. Since $\pi_{\mathcal{L}}(d_1) = 0$ both $\nu, \lambda \neq 0$. Thus $u \in sp(\{l_1, \ldots, l_k, d_1\}) \Rightarrow u \in f(l_1, \ldots, l_k, d_1)$ (using Lemma 1.10 since all linear forms involved are standard i.e. have coefficient of x_1 equal to 1). Also $u \in f(GT_{i-1}) \Rightarrow u \in f(l_1, \ldots, l_k, d_1) \cap (\mathcal{L}(G) \cup \mathcal{L}(T_{i-1}))$. We know from Part (2) of Lemma 3.9 that $f(l_1, \ldots, l_k, d_1) \cap \mathcal{L}(G) = \phi \Rightarrow u \in f(l_1, \ldots, l_k, d_1) \cap \mathcal{L}(T_{i-1}) \subseteq \mathcal{L}(U_{i-1})$ because (S, D) was a detector pair. But $u \in f(l_1, \ldots, l_k) \Rightarrow d_1 \in sp(\{l_1, \ldots, l_k\})$ which is a contradiction because $d_1 \in D$ and (S, D) is a detector pair.
3. We first plan to show $\pi_{\mathcal{L}}(U_{i-1}) \subseteq \pi_{\mathcal{L}}(T_{i-1}) \cup \pi_{\mathcal{L}}(T_i) \setminus \mathcal{L}(D)$. Clearly $U_{i-1} \cap \mathcal{L}(T_{i-1}) \subseteq \mathcal{L}(U_{i-1}) \subseteq \mathcal{L}(GT_{i-1}) \Rightarrow \mathcal{L}(GT_{i-1}) \subseteq \mathcal{L}(U_{i-1}) \subseteq \pi_{\mathcal{L}}(U_{i-1}) \subseteq \pi_{\mathcal{L}}(G) \cup \pi_{\mathcal{L}}(L_{T_i})$. Now consider any $l \in \mathcal{L}(G)$. We know that $(S_0 = \{l_1, \ldots, l_k\}, D)$ is a detector pair, so by Part (2) of Lemma 3.9 we get

$$(f(l_1, \ldots, l_k, l)) \cap (\mathcal{L}(T_{i-1}) \cup (\mathcal{L}(T_i) \setminus D)) \neq \phi$$
Then $\pi_{W_0}^{-1}(l)$, $\pi_{W_0}^{-1}(l')$ are both non-zero and are LD $\Rightarrow \pi_{W_0}^{-1}(l) = \pi_{W_0}^{-1}(l')$ implying that $\pi_{W_0}^{-1}(L(G)) \subset \pi_{W_0}^{-1}(L(T_{i-1}) \cup (L(T_i) \setminus D))$ giving us $\pi_{W_0}^{-1}(L(U_{i-1})) \subset \pi_{W_0}^{-1}(L(T_{i-1})) \cup \pi_{W_0}^{-1}(L(T_i) \setminus D)$ and therefore

$$|\pi_{W_0}^{-1}(L(U_{i-1}))| \leq |\pi_{W_0}^{-1}(L(T_{i-1}))| + |\pi_{W_0}^{-1}(L(T_i) \setminus D)|$$

Now we try to show $|\pi_{W_0}^{-1}(L(T_i) \setminus D)| = |\pi_{W_0}^{-1}(L(T_i))| - |D|$

a. It’s straightforward to see $\pi_{W_0}^{-1}(L(T_i)) = \pi_{W_0}^{-1}(D) \cup \pi_{W_0}^{-1}(L(T_i) \setminus D)$. Also $\pi_{W_0}^{-1}(L(T_i) \setminus D) \cap \pi_{W_0}^{-1}(D) = \emptyset$. If not then there exists $l' \in \tilde{L}(T_i) \setminus D, l'' \in D$ such that $0 \neq \pi_{W_0}^{-1}(l'') = \pi_{W_0}^{-1}(l') \Rightarrow \pi_{W_0}^{-1}(l') \in \text{sp}\{l_1, \ldots, l_k, l''\} \forall l' \in \text{sp}\{l_1, \ldots, l_k\}$ (by Lemma 1.10), $l'' \in l' \cap \text{fl}\{l_1, \ldots, l_k, l''\}$ which is a contradiction to the flat being elementary inside $\tilde{L}(T_i)$. So $|\pi_{W_0}^{-1}(L(T_i))| = |\pi_{W_0}^{-1}(D)| + |\pi_{W_0}^{-1}(L(T_i) \setminus D)|$.

b. $\pi_{W_0}^{-1}$ is injective on D. Let $\pi_{W_0}^{-1}(l') = \pi_{W_0}^{-1}(l'')$ for LI forms $\{l', l''\} \subset D, l' \in \text{sp}\{l_1, \ldots, l_k, l''\}$ then $l' \in \text{sp}\{l_1, \ldots, l_k\}$ (by Lemma 1.10), $l' \in l' \cap \text{fl}\{l_1, \ldots, l_k, l''\}$ and clearly $l' \notin l' \cap \text{fl}\{l_1, \ldots, l_k\}$ (since l' is in D), which is again a contradiction to the flat being elementary, thus $|\pi_{W_0}^{-1}(D)| = |D| = |D|$ (since D is a set of normal linear forms).

Combining these with Claim 3.12 and Lemma 3.13 we get

$$|\pi_{W_0}^{-1}(L(U_{i-1}))| \leq 2 \max(|\tilde{L}(T_0)|, |\tilde{L}(T_i)|) - |D| \leq (2 - v(\delta, \theta)) \max(|\tilde{L}(T_0)|, |\tilde{L}(T_i)|)$$

$$\Rightarrow \frac{|\pi_{W_0}^{-1}(L(U_{i-1}))|}{|\pi_{W_0}^{-1}(D)|} \leq \frac{(2 - v(\delta, \theta))}{v(\delta, \theta)} \leq 1 - \frac{\delta}{\delta} \quad \Box$$

H \hspace{1em} Proofs from Section 4

Our field \mathbb{F} has characteristic zero. For simplicity let’s assume it is an extension of \mathbb{Q} and therefore contains \mathbb{Z}. All random selections are done from the set $[N] = \{1, \ldots, N\}$.

\textbf{Lemma H.1.} Let \mathbb{F}^n be the n dimensional vector space over \mathbb{F}. Suppose $v_i : i \in [n]$ are vectors in \mathbb{F}^n with each co-ordinate chosen independently from the uniform distribution on $[N]$. Consider the event

$$\mathcal{E} = \{\{v_1, \ldots, v_n\} \text{ are LI}\}.$$

Then $\Pr[\mathcal{E}] \geq 1 - \frac{n}{N}$.

\textbf{Proof.} Each $v_i \in \mathbb{F}^n$ is chosen such that each co-ordinate is chosen uniformly randomly from the set $[N]$. Let v_i be the vector $(V_{i,1}, \ldots, V_{i,n})$. Consider the matrix $\tilde{V} = (V_{i,j})$. The v_i’s will be linearly independent if and only if \tilde{V} is invertible i.e. $\det(V_{i,j}) \neq 0$. Note that $\det(V_{i,j})$ is not the zero polynomial since the monomial $V_{1,1}V_{2,2} \ldots V_{n,n}$ has coefficient 1. Now we can use Schwartz-Zippel Lemma [21] on this polynomial to yield:

$$\Pr[\det(\tilde{V}) = 0] \leq \frac{n}{N}$$

Therefore $\Pr[\mathcal{E}] = \Pr[\det(\tilde{V}) \neq 0] \geq 1 - \frac{n}{N}$. \hspace{1em} \Box

\textbf{Lemma H.2.} Assume conditions in the previous lemma. For a fixed r, consider the subspaces $V = \text{sp}\{v_1, \ldots, v_r\}$ and $V' = \text{sp}\{v_{r+1}, \ldots, v_n\}$. Let’s assume that that \mathcal{E} occurs i.e. $\{v_1, \ldots, v_n\}$ are LI. So $\dim(V) = r$. We know $\mathbb{F}^n = V \oplus V'$. Let $\pi_V : \mathbb{F}^n \to V$ be the
Reconstruction of Real Depth-3 Circuits with Top Fan-In 2

orthogonal projection onto V under this decomposition. Let $T \subset \mathbb{F}^n$ be finite. Consider the event

$$\mathcal{F} = \{ \exists \text{ an LI set } \{l_1, \ldots, l_r\} \subset T \text{ such that } \{\pi_V(l_1), \ldots, \pi_V(l_r)\} \text{ is LD } \}. $$

Then $Pr[\mathcal{F}] \leq \left(\binom{|T|}{r} \frac{n}{N} + \frac{r(n-1)}{N} \right)$.

Proof. Fix $\{l_1, \ldots, l_r\} \subset T$ an LI set. Extend it to get a basis $\{l_1, \ldots, l_n\}$ of \mathbb{F}^n. Let

$$l_i = \sum_{j \in [n]} L_{i,j} e_j$$

and L be the matrix $(L_{i,j})$. From the discussion above we have $\tilde{V} = (V_{i,j})$.

Now let P_r be the $n \times n$ matrix

$$P_r = \begin{bmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r,n-r} \end{bmatrix}$$

where I_r is the $r \times r$ identity matrix and $0_{p,q}$ is the $p \times q$ matrix with all 0 entries. Also for any $n \times n$ matrix A, define $M_r(A)$ to be the principal $r \times r$ minor of A. Consider the equation given by

$$\det(M_r(P_r \text{Lco}(\tilde{V}))) = 0$$

where $\text{co}(\tilde{V})$ is the co-factor matrix of \tilde{V}. Since entries of $\text{co}(\tilde{V})$ are polynomials in the $V_{i,j}$’s and L is a fixed matrix, the entries of $P_r \text{Lco}(\tilde{V})$ are polynomials in $V_{i,j}$’s. So $\det(M_r(P_r \text{Lco}(\tilde{V})))$ is a polynomial in $V_{i,j}$’s. This polynomial can’t be identically 0. Choose $V_{i,j} = L_{i,j}$, then since \tilde{V} is invertible, $\text{Lco}(\tilde{V}) = \det(L)I$ giving $P_r \text{Lco}(\tilde{V}) = \det(L)P_r \Rightarrow \det(M_r(P_r \text{Lco}(\tilde{V}))) = \det(L) \neq 0$. Degree of the polynomial $\det(M_r(P_r \text{Lco}(\tilde{V})))$ is clearly $\leq r(n-1)$. Therefore by Schwartz Zippel Lemma

$$\Pr[\det(M_r(P_r \text{Lco}(\tilde{V}))) = 0] \leq \frac{r(n-1)}{N}.$$

Consider the set

$$S(\{l_1, \ldots, l_r\}) = \{(V_{i,j}) : \det(\tilde{V}) \neq 0, \det(M_r(P_r \text{Lco}(\tilde{V}))) \neq 0 \}.$$

On this set $S(\{l_1, \ldots, l_r\}), \{v_1, \ldots, v_n\}$ is a basis and we have the following matrix equations:

$$\begin{bmatrix} v_1 \\ \vdots \end{bmatrix} = \tilde{V} \begin{bmatrix} v_1 \\ \vdots \end{bmatrix} \text{ and } \begin{bmatrix} l_1 \\ \vdots \end{bmatrix} = L \begin{bmatrix} v_1 \\ \vdots \end{bmatrix} \Rightarrow \begin{bmatrix} l_1 \\ \vdots \end{bmatrix} = L \tilde{V}^{-1} \begin{bmatrix} v_1 \\ \vdots \end{bmatrix}$$

and so

$$\begin{bmatrix} \pi_V(l_1) \\ \vdots \\ \pi_V(l_r) \end{bmatrix} = \frac{1}{\det(\tilde{V})} M_r(P_r \text{Lco}(\tilde{V})) \begin{bmatrix} v_1 \\ \vdots \end{bmatrix}$$

Therefore $\{\pi_V(l_1), \ldots, \pi_V(l_r)\}$ is an LI set. Now $S(\{l_1, \ldots, l_r\})^c = \{(V_{i,j}) : \det(\tilde{V}) = 0 \text{ or } \det(M_r \text{Lco}(M)) = 0 \} \Rightarrow \Pr[S(\{l_1, \ldots, l_r\})^c] \leq \frac{n}{N} + \frac{r(n-1)}{N}$. Next we vary $\{l_1, \ldots, l_r\}$ and apply union bound to get

$$\Pr[\mathcal{F}] \leq \sum_{\{l_1, \ldots, l_r\} \subset T} S(\{l_1, \ldots, l_r\})^c \leq \left(\binom{|T|}{r} \frac{n}{N} + \frac{r(n-1)}{N} \right).$$

In our application $|T| = poly(d)$ and r is a constant, so we choose $N = 2^{k+n}$ and make this probability very small. ◯
Lemma H.3. Let \(f|_V(\bar{X}) = \sum_{\{\bar{\alpha} : |\bar{\alpha}| = d\}} a_{\bar{\alpha}} \bar{X}^{\bar{\alpha}} \) be a homogeneous multivariate polynomial of degree \(d \) in \(r \) variables \(X_1, \ldots, X_r \). Let \(p_i : 1 \leq i \leq \binom{d+r-1}{r-1} \) be randomly chosen points in \(V \) (dimension \(r \) random subspace of \(\mathbb{F}^n \) chosen in the above lemmas). Then with high probability one can find all the \(a_{\bar{\alpha}} \).

Proof. We evaluate the polynomial at each of the \(p_i \)'s. So we have \(\binom{d+r-1}{r-1} \) evaluations. The number of coefficients is also \(\binom{d+r-1}{r-1} \) so we get a linear system in the coefficients where the matrix \((X) \) entries are just monomials evaluated at the \(p_i \)'s. Since \(f \) is not identically zero clearly there exist values for the points \(p_i \)'s such that the determinant of this matrix is non zero polynomial so it cannot be identically zero. Now the degree of the determinant polynomial is bounded by \(d' \binom{d+r-1}{r-1} \leq \text{poly}(d + r)^r \). So by Schwarz Zippel lemma

\[
\Pr[\text{\(a_{\bar{\alpha}} \) is recovered correctly }] = \Pr[\det(X) \neq 0] \geq 1 - \frac{\text{poly}(d^r)}{N}
\]