A Rupestrian Algorithm

Giuseppe A. Di Luna¹, Paola Flocchini², Giuseppe Prencipe³, Nicola Santoro⁴, and Giovanni Viglietta⁵

¹ School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
gdiluna@uottawa.ca
² School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
flocchin@site.uottawa.ca
³ Dipartimento di Informatica, Università di Pisa, Pisa, Italy
giuseppe.prencipe@unipi.it
⁴ School of Computer Science, Carleton University, Ottawa, Canada
santoro@scs.carleton.ca
⁵ School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
viglietta@gmail.com

Abstract
Deciphering recently discovered cave paintings by the Astracinca, an egalitarian leaderless society flourishing in the 3rd millennium BCE, we present and analyze their shamanic ritual for forming new colonies. This ritual can actually be used by systems of anonymous mobile finite-state computational entities located and operating in a grid to solve the line recovery problem, a task that has both self-assembly and flocking requirements. The protocol is totally decentralized, fully concurrent, provably correct, and time optimal.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.1.2 Modes of Computation, F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases mobile finite-state machines, self-healing distributed algorithms

Digital Object Identifier 10.4230/LIPIcs.FUN.2016.14

1 Introduction

1.1 Anthropological Discovery

Recently, an archaeological expedition in Budelli has discovered cave paintings and pottery from the 3rd millennium BCE. The artifacts have been attributed to the Astracinca semi-nomadic tribes, whose villages were located in a wide area of northern Sardinia. The Astracinca civilization, undeservedly little known, stood out for the highly sophisticated social organization and the advances in ethno-botanical techniques.

The abundance of resources, due to efficient agricultural techniques, and the high fertility, due to a joyously promiscuous social organization, cyclically brought each village to address the problem of overpopulation. As in many other civilizations, that problem was solved by...
selecting a group of settlers, or two of equal size, with the task of creating new settlements, thus solving the overpopulation problem.

Unlike other civilizations, the Astracinca were an egalitarian leaderless society: upon reaching puberty, all members of the tribe were socially equal and decisions were reached by consensus. All agreed-upon social procedures guiding major events were carried out without any member being pre-assigned a special role. Such social procedures have been shrouded in the deepest mystery, and their complexity had been only inferred by cultural anthropologists, because no archaeological finding describing the procedures was available so far.

The found cave paintings (two of which are shown in Figure 1) are remarkable because they contain the description of the procedure used by the Astracinca to create a new settlement, an event of major importance in the life of the tribe; hence the great excitement in deciphering the procedure, and the interest in its intricacies, unparalleled in history.

After a long study of the paintings and pottery found in the cave, the procedure has been finally deciphered; it is indeed composed of a set of intricate rules, defining a shamanistic ritual to be performed by the adult population of the village. Before providing the details, let us give an overview of the discovered process.

The ritual takes place in a large clearing, away from the village, on which a regular grid is engraved, each node of which is large enough to host a person. Before the start of the ritual, a large number of bowls filled with liquid are placed just outside the grid. Each villager picks up a bowl and then sits in an empty node, so to form a line.

Each bowl is filled with liquid from one of two preparations, indistinguishable from the outside; the proportion between the bowls filled by each preparation is unspecified. By analyzing the residues found in the pottery, we know the composition of the two potions. The first potion, based on poppy milk, induces in drinkers a deep comatose state, making movements and communication impossible. Those who consume this substance are catatonically locked in their starting position for the duration of the rite. Upon exiting their comatose state, they continue their life in the old village. The second potion, made from Amanita Muscaria and Cannabis Sativa, selects the settlers. The shamanic use of Amanita Muscaria to induce hallucinatory and dissociative states is well known. Dissociative substances may cause a drastic decrease in vision and perceptions; this effect is known as Kalnienk vision. Incredibly, the set of rules predict this eventuality: they only assume the ability to observe the nodes adjacent to the one occupied by a settler, and communication to be limited to the settlers in those locations. The knowledge of this phenomenon by Astracinca also explains the use of a grid with carefully studied proportions. The medical literature has a well-established knowledge of acute intoxication by phytocannabinoids, in particular the short-term deterioration of memory. The rules include this possibility, since each settler needs to remember a limited amount of information that does not depend on the number of participants.

During WONNAJO, the inebriated settlers leave their comrades in a catatonic state, and eventually form either a new line or two lines of equal length. All the settlers in the
same line eventually become in agreement on the same direction. Once this happens, the ritual ends and the migration starts.

1.2 Technological Interpretations and Contributions

The social structure of the Astracinca civilization and the rules they use in their rituals are surprisingly modern. Indeed, not only do they have impressive similarities with alternative visions of how human systems could function (e.g., [16]), but also directly reflect a variety of current artificial systems ranging from robotic swarms to mobile sensor networks, from biologically inspired systems to mobile software agents. Indeed, systems of mobile computational entities that operate in a spatial universe, obeying the same set of rules in a totally decentralized way, with very limited (or no) local memory and communication capabilities, are almost ubiquitous. From an algorithmic point of view, such systems are being extensively and intensively studied, in particular within distributed computing. They include the metamorphic robots (e.g., [5, 6, 20]), the amoeba-inspired amebots [8, 9], the finite-state mobile robotic sensors (e.g., [4, 13]), and the extensively studied oblivious mobile robots (e.g., [1, 7, 11, 12, 19]). In some of these systems the entities can move in a continuous spaces (e.g., \mathbb{R}^2); in others the movements occur in a discrete space (e.g., \mathbb{Z}^2). In particular, extensive investigations have been carried out when the computational entities are identical finite-state machines operating and moving in a (possibly incomplete) grid (e.g., [4, 8, 9, 10, 13, 15, 17]).

The model implied by the Astracinca ritual is precisely that of anonymous mobile finite-state machines located and operating in a grid in a fully synchronous system. Each entity is a finite-state machine, can move in the grid from node to node, and is able to communicate with the entities located at neighboring nodes; since the entities are finite-state, the amount of information exchanged in a communication is bounded by a constant. The entities are anonymous and behaviorally identical; that is they have no distinguished identifiers and they all execute the same algorithm. The entities do not rely on a common coordinate system: each entity fixes a local orientation of the grid, but different entities may have different orientations. How the communication between two neighboring entities is performed (e.g., accessing a shared variable, reading the other entity’s state, wireless transmission, etc.) is irrelevant for our investigation. Analogously irrelevant is how an entity performs its movement (e.g., extending and contracting its body, using wheels, transported by a service robot, etc).

The problem addressed by the WonnaGo ritual has two aspects. It is first of all a problem of self-assembly and self-repair of the system: initially located on a line, upon the (possible) failure of some entities, the non-faulty ones must reform the line excluding any faulty element. Solving this problem requires formulating a set of rules (the algorithm) that will allow the entities to form the line within finite time, regardless of the initial distribution and number of faults and of the local orientations of the non-faulty entities. It is also a problem of coordinated moving or flocking: the non-faulty entities must move away (possibly forever) while maintaining the line formation.

Unfortunately both these tasks, as formulated, are actually unsolvable, even in fully synchronous systems. In fact, there are initial configurations where unbreakable symmetries make it impossible to form a single line. Similarly, even if the non-faulty entities are all on a single line (e.g., if there are no faulty entities), if their number is even, there are assignments of the local orientations that render the flocking of the line impossible. Both impossibilities are circumvented by requiring that either one or two lines of equal size be formed, and that each formed line migrates maintaining its line formation; we shall call this problem line recovering. The Astracinca must have been aware of those impossibilities; in fact, the WonnaGo ritual meets precisely this requirement.
In this paper we present the deciphered ritual and analyze its effectiveness. We prove that the set of deciphered rules always and correctly leads the non-comatose participants to form either a single line or two lines of equal size, and each line moves to find new locations. We also prove that the short ritual allows the process to be performed in optimal time.

Additionally, we provide a ritual simulator. The C source code, a pre-compiled binary for Windows systems, and the relative instructions can be found at http://giovanniviglietta.com/files/rupestrian/Simulator.zip.

Summarizing, we show that the Astracinc have developed a synchronous protocol for the line recovery problem; the protocol is totally decentralized, fully concurrent, provably correct, and time optimal.

2 System Model and Rite Purpose

We consider the space to be an infinite unoriented anonymous mesh $G(V, E)$, i.e., the nodes in V are all equal, edges are bidirectional and unlabeled, G is constituted by an infinite number of rows and columns. The tribe is a set of n persons in distinct positions in G. Each person p is modeled as a tuple (x, s, dir, pre, b), where $x \in V$ represents the person’s position, $s \in S$ is a state (where S is a fixed finite set of possible states, with $S \supseteq \{\text{sleeper, settler}\}$), $dir, pre \in D = \{\text{up, down, left, right, none}\}$ represent two directions to which the person is pointing (the current direction dir and the previous location pre), and $b \in \{0,1\}$ is a bump flag.

The purpose of the bump flag is to let a person know that they bumped into someone while trying to move to a location, as will be explained shortly.

Given a node $x \in V$, $N(x)$ is the set of its four neighbors. For explanation purposes, we use a global reference system, which allows us to give consistent labels in $D \setminus \{\text{none}\}$ to the edges from x to $N(x)$. This reference system is unknown to the persons. Each person p has their own reference system: when on node x, person p associates to each node in $N(x)$ a direction in $D \setminus \{\text{none}\}$. The neighborhood of p in x is an ordered list of elements $\{\text{up, down, left, right}\}$. An element is empty if on the corresponding node, with respect to the reference system of p, there is no person. Otherwise, if there is an agent $p' = (y, s', dir', pre', b)$ in that direction, then the element is $(s', T(p, p', dir'), T(p, p', pre'))$, where T is a function that translates the direction d' of p' in the reference system of p. Essentially, a person can see the states of persons on the neighboring nodes and their directions, but not their coordinates and their bump flags.

Time is divided in fixed size intervals (rounds), $r \in \mathbb{N}^+$. At each round r, every person with state $s \neq \text{sleeper}$ is activated. Upon activation, a person performs some operations based on their view (i.e., their state, directions and neighborhood at the beginning of r). The operations to be executed are determined according to a set of rules, called ritual, which is the same for all persons. Given a person’s view at the beginning of a round, the ritual specifies whether the person must move and where, and indicates the new state and the directions at the end of the round. A person in node x at round r may move to any $y \in N(x)$. If at round r several persons move towards the same empty node y, only one of them succeeds and will be at node y at the beginning of round $r + 1$. All other persons remain in their nodes and at the beginning of round $r + 1$, and will have the bump flags set.

Given a set of persons we say that they are on a straight line if they are all on the same row or column of G. We say that they are on a compact straight line if they are on a straight line and the subgraph induced by their positions is connected. We say that a set of persons is oriented in direction d if their directions dir once translated in the global reference system
are all equal to \(d\). Initially, at round \(r = 1\), all persons are positioned on a compact straight line (the “initial line”), \(f \geq 0\) of them have state \textit{sleeper}, all the other \(n - f \geq 5\) have state \textit{settler} and directions set to \textit{none}.

The \textit{line recovery} problem is solved at round \(r^*\) if, for any round \(r \geq r^*\), the initial \textit{settlers} form a straight line and they are oriented in a certain direction, or they form two straight lines of equal size but with opposite orientations.

3 The \textsc{WonnaGo} Ritual

3.1 Overall Description

In the following, we will assume that persons can exchange fixed-size messages: this can be easily simulated in our model. Also, if not otherwise specified, the variable \(\text{dir}\) of a person \(p\) stores the movement’s direction of \(p\), that is, it stores the location where \(p\) intends to move; when no ambiguity arises, we will use the expression “direction of \(p\)” to indicate the content of \(\text{dir}\). Similarly, the content of variable \(\text{pre}\) stores the location of \(p\) in the previous round; again, when no ambiguity arises, we will use the expression “previous location of \(p\)” to denote the content of this variable. We will say that \(p\) is pointing at a person \(p'\) if \(p\) and \(p'\) are neighbors, and the direction \(\text{dir}\) of \(p\) is toward the location occupied by \(p'\). Finally, when a person \(p\) changes state from \(s\), we will say that \(p\) becomes \(s\).

The \textsc{WonnaGo} ritual is divided in several sub-rites: \textit{Exodus}, \textit{Explorer Divination}, \textit{Marker Creation}, \textit{Chief Identification}, \textit{The Chosen One}, \textit{Opposite Sides}, and \textit{Same Side}. Let \(L_0\) be the row where the initial line is placed, and \(L_1, L_{-1}\) the two rows adjacent to \(L_0\).

The rite starts by checking whether there are no \textit{sleeper}s: in this case, all \textit{settlers} are already in a compact line. This scenario is detected during the \textit{Exodus} sub-rite, started (at the first round) by the settlers who occupy the extreme positions of the starting configuration, i.e., by the two persons having only one neighbor. These two extreme \textit{settlers} send a special message inside the line: if the two messages meet, there are no \textit{sleeper}s; otherwise, the \textit{Exodus} gets interrupted.

Should there be \textit{sleeper}s, the second sub-rite (the \textit{Explorer Divination}) is performed, started by all the \textit{settlers} who have a \textit{sleeper} neighbor. In this sub-rite some \textit{settlers} become \textit{explorers} and move out of the line. The selection of the \textit{explorers} is made in such a way that their movement does not create “gaps” of more than two consecutive empty positions anywhere in the original line (this property is crucial to detect the end of the line in subsequent sub-rites). Notice that it is possible that both the \textit{Exodus} and the \textit{Explorer Divination} sub-rite are started concurrently, in which case the \textit{Exodus} process will die.

After stepping out of the initial line, the \textit{explorers} start moving in a direction of their choice, and the \textit{Marker Creation} sub-rite begins. The goal of this sub-rite is to place an \textit{explorer} at each end of the original line so to mark it for subsequent rites. To achieve this, the \textit{explorers} move along the chosen direction.

An \textit{explorer} that sees the end of the line (i.e., three consecutive empty positions), moves immediately after it and becomes a \textit{marker} with scepter flag set. After the \textit{marker}(s) are created, the other explorers continue to move towards the end of the line: this is handled in the \textit{Chief Identification} sub-rite.

The main goal of the \textit{Chief Identification} sub-rite is to select at most two \textit{explorers} as \textit{chiefs}. In particular, when an \textit{explorer} reaches a \textit{marker} with scepter flag set, they become a \textit{chief}, and the \textit{marker} loses the scepter. Then, the \textit{chief} inverts direction and tries to reach the other end of the line, i.e., the other \textit{marker}. Due to concurrency, several scenarios can occur which make the \textit{chief} understand whether it is unique or not. In case there are two

chiefs, each of them will understand whether they are located in different lines (L_1, L_{-1}) or on the same line (L_1 or L_{-1}) with opposite directions. Depending on the situation, a new sub-rite begins (The Chosen One, Opposite Sides, or Same Side).

The Chosen One sub-rite handles the easiest of the three possible outcomes of the Chief Identification sub-rite: in this case one of the chiefs is the first to reach also the other marker with scepter flag set (or reaches an extreme of the line with no marker at all), and becomes the (unique) chosen one. During this sub-rite, the chosen moves through the line, collecting anyone who is not sleeper,

forming a procession that will complete the assigned task.

In the Opposite Sides sub-rite, the two chiefs realize (when they reach the marker at the opposite end of their respective line) to be located on two different lines (i.e., one on L_1 and the other on L_{-1}): in this case, each chief becomes a collector, and a two-phase process is started. In the first one, a collector goes to the other marker, moving every two rounds, and collecting all people encountered on the way as well as the settlers still on L_0. The second phase is a counting process, which is an attempt to establish which of the processions formed by the two collectors is the longest. If one of the two processions is longer, its collector is elected, performs a final loop of the line, collecting everybody, and eventually forms a unique straight line, thus completing the task. Otherwise, in the case the two processions have the same length, the two chiefs move along opposite directions, until two distinct straight lines are formed, thus completing the task.

The Same Side sub-rite occurs when a chief meets another chief: in this case, the two chiefs realize to be on the same line, say L_1, and that they are moving in opposite directions. As soon as the two chiefs meet, they become opposers, switch directions, and move along the new direction, collecting everybody they encounter along the way. When an opposer reaches a marker, they start the final collecting phase: they keep moving in the same direction (on L_{-1}) and collect the settlers still on L_0. Eventually, the two opposers meet on L_{-1}: at this point, messages are exchanged among the people within the processions led by the two opposers, in an attempt of electing one of the opposers. If this is possible, the opposer that gets elected starts moving until the procession forms a straight line, thus completing the task. Otherwise (i.e., it is not possible to elect a unique opposer), the two opposers move along opposite directions, until two straight lines of equal size are formed, thus completing the task.

In the following the sub-rites are detailed; the complete set of rules and the reproductions can be found at the end of the paper.

3.2 Sub-rites

Exodus. In the Exodus sub-rite the settlers detect if there are no sleepers in the system, and in that case they elect one or two exodus.leaders, who will lead the migration. This is done as follows: in the first round, a settler detects if they are at the extreme of the line, i.e., they have only one neighbor. If this is the case, the settler becomes a marker with scepter flag set. At the end of the first round the marker sends an “Exodus?” message to an active neighbor, if any exists. A settler receiving such a message propagates it to the next settler. If there are no sleepers, then the two “Exodus?” messages meet; at that point, depending on the parity of the number of settlers, either one or two lines of equal size are formed. Otherwise (i.e., there are sleepers) the Explorer Divination sub-rite is eventually performed.

Explorer Divination. The sub-rite Explorer Divination is used to bootstrap the other sub-rites, and it is executed if at least one sleeper is present. The purpose of the rite is to select
at least three explorers among the settlers, who will move out of the line without creating empty “gaps” of more than two consecutive positions. This is done as follows. If a settler has a sleeper neighbor, then they become an explorer and they notify this decision to the neighboring settler, if any exists. Upon receiving such a notification, a settler becomes settler_notified. Any settler_notified who is not neighbor of another settler_notified becomes an explorer as well.

At this point (the fourth round) all explorers step out of the initial line.

Marker Creation. In this sub-rite the explorers move along the line until they find the end, which is detected by seeing three consecutive empty locations. The first explorer reaching the end of the line becomes a marker with scepter flag set and stays there. If two explorers try to become marker on the same extreme at the same time, only one is allowed to do so. Note that, when two explorers meet, they cannot pass through each other, and therefore they simply switch directions.

Depending on the initial configuration, either one or two markers are created by the end.

Chief Identification. The purpose of the Chief Identification sub-rite is to let at most two explorers become chiefs, and for a chief to determine if it is unique. An explorer who reaches a marker with scepter flag set receives the scepter flag from the marker and becomes a chief; should two explorers reach the same marker with scepter flag set at the same time, the marker will give the scepter to only one of them.

A newly elected chief now has to determine if they are the only one; to do so, they switch direction trying to reach the other extremity of the line. If the chief meets an explorer coming from opposite direction, it “virtually” continues its walk by switching roles with the explorer: the explorer becomes chief and switches direction, and the old chief becomes a disciple and stops. Similarly, if a chief and a disciple meet, they switch roles. If an explorer meets a marker without scepter flag or a disciple, it becomes disciple and stops.

There are three possible scenarios: (1) the chief reaches the other extremity, finding a marker with scepter flag or three empty spots; (2) the chief reaches the other extremity, finding a marker without scepter; (3) the chief meets another chief. Scenario (1) implies that the chief is unique; in this case the sub-rite The Chosen One starts. Scenario (2) implies that there are two chiefs who are moving on two different lines, adjacent to the initial one; in this case the sub-rite Opposite Sides is started. Scenario (3) means that there are two chiefs who are moving on the same line, adjacent to the initial one; in this case the sub-rite Same Side starts.

The Chosen One. The rules of the sub-rite The Chosen One are executed when a chief reaches a marker with scepter flag or detects that there is no marker on that side (three empty spots). When this happens, the chief becomes the chosen. The goal is for the chosen to collect everybody and eventually form a single line. To do so, the chosen reverses direction and moves, having everyone they meet follow them according to the Recruitment Procession rules described later. This movement is performed as follows: when the chosen meets a disciple, the chosen becomes a follower and the disciple becomes the chosen. When a chosen meets an explorer, a similar thing happens. In this process, a settler who sees a procession of followers will try to join the procession. Eventually, the chosen will reach the marker. When this happens, the marker becomes the chosen, and the chosen a follower. If there are no disciples around the marker, the chosen moves outside of the line and takes as direction the other endpoint of the line.
Opposite Sides. This sub-rite starts when a chief on \(L_1 \) (respectively, \(L_{-1} \)) reaches a marker \(m \) without the scepter flag: the chief understands that there is another chief moving in the same direction (clockwise or counter-clockwise) on \(L_{-1} \) (respectively, \(L_1 \)). The chief becomes collector, switches direction, and moves toward the other marker \(m' \); the collector moves every two rounds. During this swipe of \(L_1 \), the collector recruits all the encountered people, including the settlers still on \(L_0 \), thus forming a procession.

After at most \(2n \) rounds, they reach the other marker \(m' \). Let us assume for now that, during the swipe, they recruited at least one person. The collector, say \(x \), and the closest recruited follower, say \(z \), start now a phase to determine whether or not it is possible to form a unique procession. If not, two distinct processions of the same length will be formed. Specifically, at round \(r \), \(z \) becomes mover and moves on \(L_1 \) towards marker \(m' \), eventually reaching it. Meanwhile, at round \(r + 2 \), \(x \) becomes collector.counting and does not move (i.e., \(x \) remains close to marker \(m \)). After a finite number of rounds, a marker will have as neighbors both a collector.counting and a mover. When this occurs, the marker signals this event to both of them, say at round \(r' > r + 2 \). At this time, the collector.counting and the mover simultaneously change state, becoming probes.

The marker also memorizes the line where the collector.counting lies; this information will be used to break possible symmetric scenarios.

Let us now focus on one of the two markers, say \(m \): the two probes generated by \(m \) start moving towards \(m' \), one on \(L_1 \) and the other on \(L_{-1} \), using the probe move protocol described below. In Section 4, we will prove that both probes reach \(m' \) at the same time if and only if the two processions formed by the two collectors have the same number of people; in fact, should one procession be smaller than the other, the probe traversing it will reach a marker before the other. In any case, each marker will know whether the two processions have the same length and, if not, which one is smaller.

The probes move according to the following protocol: each probe has a modulo-5 counter, initially set to 1. If the counter is greater than 0, the probe decrements it at each round. When the counter reaches 0, the probe moves to the next location. If the next location is empty, the probe moves and the counter remains 0. If, instead, the next location is occupied by a person \(p \), then the probe “virtually” moves having \(p \) take the state of the probe, while the probe takes the state of \(p \); in this case, \(p \) adds 1 to the counter (it adds another 1 to the counter if there is a prefollower pointing at \(p \); refer to Section 3.3). If a probe reaches a marker, they first decrement the counter until 0, they then become a follower pointing towards the marker. There are two exceptions to this general rule: (E1) if at the same time two probes with counter 0 are neighbors of the same person \(p \), they both take the state of \(p \), \(p \) waits an appropriate number of rounds and signals to both neighbors (i.e., the old probes) to become probe pointing away from them with an appropriate set counter; (E2) two probes may move to the same empty location, with one of them bumping back. When this happens, both probes change direction but the one that did not bump sets the counter in such a way that they wait one round less; this is done to account for the fact that the bumping person did not move.

Eventually, a probe reaches a marker. If a marker detects that on the memorized side there is a new probe with counter 0, and on the other side there is no one or there is a probe with counter greater than 0, then the marker becomes a consul and points to the side opposite to the one they memorized. In this case a consul behaves as a chosen (see The Chosen One sub-rite), and does a loop around \(L_0 \) collecting all people (both the ones encountered on their way and the settlers still on \(L_0 \)). Note that in this case the other marker does nothing, waiting to be collected. If at a given round a marker detects that on
In this case, the marker, say \(m \), becomes a follower and signals to \(b \) to become a consul: the consul will lead the procession away from \(L_0 \). Symmetrically, the same will happen on the side of the other marker \(m' \).

At the beginning of this sub-rite, we assumed that the collector recruited at least one person. If this is not the case, when the collector reaches a marker, they become a collector.counted and move towards the other marker. If a marker sees a collector.counted and a collector.counting, they elect the collector.counted, appointing them a consul. Also in this case, a consul behaves as a chosen, and does a loop around \(L_0 \) collecting everyone encountered on the way (including the settlers still on \(L_0 \)).

Same Side

In the Same Side case a chief meets another chief; let us assume, without loss of generality, they are both on \(L_1 \). When this happens both chiefs become opposers, they switch directions and move towards a marker. If an opposer moving towards a marker, say \(m \), meets an explorer on its way, and their directions are opposite, the opposer continues moving collecting the explorer (i.e., the opposer becomes a follower, and the explorer becomes an opposer that still moves towards \(m \)). Eventually, the opposer reaches a marker: when this happens, the opposer moves to the spot occupied by the marker collecting the marker (i.e., the opposer becomes a follower, the marker becomes opposer and sets the follow-me flag, continuing to move in the same direction of the old opposer). From the next round on, the opposer (who is now on \(L_{-1} \)) starts collecting all encountered people (the ones met on \(L_{-1} \), as well as the settlers still on \(L_0 \)), thus forming their own procession.

Eventually, one of the two following scenarios can occur: (1) the two opposers are at distance 1 and between them there is a disciple (see Chief Identification sub-rite). In this case, both opposers become followers and the disciple becomes opposer.winner. (2) The two opposers meet on \(L_{-1} \). When this occurs, they first wait two rounds (giving enough time to their immediate followers to reach them). Then, they both change state to opposer.waiting. At this point, each opposer.waiting starts a straight line check phase, by sending a “straight line query” to their procession (see Section 3.3) to figure out if it is possible to select a unique winner to lead the procession. Three cases can occur: (a) The two processions have different length: one of the two opposer.waiting is elected, becoming an opposer.winner, while the other opposer becomes a follower. (b) The two processions have equal length, and one procession is not already forming a straight line: the opposer.waiting who leads this procession becomes a follower and the other becomes opposer.winner. (c) The processions have equal length and they are both forming a straight line: in this case two opposer.winners are elected.

In cases (1), (2).a and (2).b, the only opposer.winner will lead the final migration; in case (2).c, the two opposer.winners set the flag tail, reverse direction, and each of them will lead the migration of their own procession.

3.3 Sub-Phases

The following two processes, Recruitment Procession, and Straight Line Query, are required in some of the rites described in the previous section to create and maintain a procession, and to compare two created processions, respectively.

Recruitment Procession

A key procedure of the rite is the construction of a procession, a group of people following a designated leader during the migration. The leader is called the
head of the procession; all other people in the processions are called the followers, and the last follower is the tail (i.e., they have the tail flag set).

Let us show the details of the procession creation and maintenance.

A procession is created by a head; initially the head is also the tail of the procession. If the head wants to recruit settlers (i.e., people who are still on L_0) then they set the additional follow-me flag. When a settler sees a head p with the follow-me flag, they change their state to prefollower; furthermore, they memorize the direction, the tail flag, and the previous location of p. At the next round this prefollower will try to move in the location where p was seen. If such a move succeeds, they change state to follower and update their direction, tail flag, and previous location to the memorized values. If instead the location is occupied by another person p', who must also be part of a procession, the prefollower memorizes the direction and tail flag of p' and replicates the aforementioned steps; eventually, the settler will be able to leave L_0 and join the procession.

During the whole ritual, it might happen that new followers join the procession, hence the tail changes: if a follower has the tail flag set, and sees in their previous location a follower or a prefollower whose direction is pointing at then, then they lose the tail flag and skip the current round.

The procession moves according to the following general rule: a follower whose direction is not occupied by anyone and whose previous location is occupied moves towards the location pointed by the direction.

There are three exceptions to this rule: (E1) a tail moves regardless of the presence of someone in its previous location; (E2) if a follower moved in the previous round and they find that there is no person in their direction, than they change the direction to point to the only follower (or head) who is present in a location perpendicular to the old direction, towards L_0. This rule is used by followers to move around the extremes of L_0, thus allowing the procession to loop around the starting line; (E3) the last exception is given by a head that has both follow-me and tail flag set: in this case, when the head sees that there is a settler who may join the procession, they move to the next location and they wait for one round (giving time to the settler to join the procession).

A special procedure is executed when the head meets a marker or someone on their path: in this case, the head becomes a follower and a new head is elected (as an example, see Rules 4.F, 4.G of The Chosen One case).

Straight-Line Query. A stationary head can check if their own procession is aligned or not, by sending a “query message” to the closest follower in the procession (technically, they send the message to themselves, and then they process this message as a follower). Upon reception of the “query message”, a follower checks if there is a settler (or a prefollower) in a “non-previous” location who is pointing at them; if so, they wait two rounds. After waiting, they send the “query message” to the follower in the previous location. The “query message” is then propagated in this direction along the procession until it reaches the tail. When the message reaches a tail, they wait using the same rules of the followers, and then they send a “straight message” back towards the head (again, technically, they start the propagation of this message by sending it to themselves). This message is thus propagated through the followers in the procession, with the additional rule that it is changed from “straight message” to “not straight message” by a follower who has both direction and previous location set to vertical. When the head receives the “straight/not straight message”, the query terminates.
4 Analysis

We assume that at least \(n - f \geq 5 \) settlers participate in the rite. A settler steps out of the initial line if and only if they become an explorer or if they see a procession. Thus we can observe that, if \(f = 0 \), the settlers do not move outside the initial row.

▶ Lemma 1. The Exodus sub-rite terminates and it elects an exodus leader if and only if \(f = 0 \). If \(n \) is even, then two exodus leaders are elected; if \(n \) is odd, one exodus leader is elected. When the Exodus sub-rite terminates the rite specifications are satisfied.

▶ Lemma 2. If \(f > 0 \), then at the end of the third round we have that either there is at least one marker with flag scepter and two explorers, or there are at least three explorers.

From the rules of the Explorer Divination sub-rite we have the following corollary.

▶ Corollary 3. At the end of the third round, between the endpoints of the initial line, there cannot be three consecutive empty locations.

In the following we assume \(f > 0 \).

▶ Lemma 4. There exists a round \(r \in [3, 4n + 3] \) in which the rite is in one of the following configurations:
 (C1) There is a chosen (The Chosen One).
 (C2) There are two markers without sceptre and two chiefs on opposite sides of the initial line (Opposite Sides).
 (C3) There are two markers without sceptre and two chiefs on the same side of the initial line (Same Side).

Let a procession be called pious if it does not contain two consecutive empty spots and no follower without tail has empty spots both ahead and behind in the procession.

▶ Lemma 5. All the processions generated by WonnaGo are pious.

▶ Corollary 6. Let us consider a follower who is not a tail. If at round \(r \) there is no one in the follower’s previous location, then there will be a follower at round \(r + 1 \).

▶ Corollary 7. If there is a unique procession, the head occupies a new location within a constant number of rounds.

▶ Theorem 8. If a chosen is created, then it is unique, and line recovery is achieved within \(\mathcal{O}(n) \) rounds.

▶ Theorem 9. Let the tribe reach, at round \(r \), a configuration in which there are two markers without scepter and two chiefs on opposite sides of the initial line. Then, line recovery is achieved within \(\mathcal{O}(n) \) rounds.

▶ Theorem 10. Let the tribe reach, at round \(r \), a configuration in which there are two markers without scepter and two chiefs on the same sides of the initial line. Then, line recovery is reached in \(\mathcal{O}(n) \) rounds.

Due to Lemma 4 and Theorems 8, 9, 10, line recovery is achieved in \(\mathcal{O}(n) \) rounds.
5 Forming a compact straight line

The WonnaGo ritual solves a convergent task. However, it is also possible to modify the rite to obtain a solution to the stronger compact line recovery problem, where an explicit termination is required and the final configuration has to be a compact line (or two compact lines of equal length). To terminate explicitly, the head of a procession has to know when all settlers (or half if there exists another procession with opposite direction) have joined the procession and the procession is on a straight line. Knowing this, the head stops moving and, within n rounds, all followers will be in a compact position.

6 The Rules

- **Exodus 0:**
 - **Rule 0.A:** If I am a *settler* and I have only one neighbour and it is the first round, then I become a *marker* with flag sceptre. Moreover, if my neighbour is non-*sleeper* I ask they “Exodus?”.
 - **Rule 0.B:** If I am a *settler* and I receive for first time an “Exodus?” from only one neighbour and my other neighbour is a *settler*, then I ask they “Exodus?”.
 - **Rule 0.C:** If I am a *settler* and I receive “Exodus?” from both neighbours, then I become an *exodus.leader* and I set dir to point one of my neighbours.
 - **Rule 0.D:** If I am a *settler* and I receive an “Exodus?” message in two consecutive rounds, then I become an *exodus.leader* and I set dir the direction of the first received message and as pre the opposite.
- **Rule 0.E:** If I am an exodus.leader, then I send a “setdir message” to my neighbour pointed by dir and a “setbackdir message” to my neighbour pointed by pre.

- **Rule 0.F:** If I am a settler or a marker and I receive a “setdir message” from neighbour p in location x, then I set my dir to point at the opposite location of x and I send the message to neighbour in location pointed by dir.

- **Rule 0.G:** If I am a settler or a marker and I receive a “setbackdir message” from neighbour p in location x, then I set my dir to point at location of x and I send the message to neighbour in location opposite to x.

- **Explorer Divination (1):**
 - **Rule 1.A:** If I am a settler and I have two neighbours and I am near a sleeper, then I become an explorer. My direction dir will be pointing at the sleeper. If they are both sleepers the tie is broken arbitrary.
 - **Rule 1.B:** If it is the second round and I am a settler and I have only one explorer as neighbour, then I become a settler.notified. My direction dir will be pointing at my explorer neighbour.
 - **Rule 1.C:** If it is the third round and (I am an explorer or (I am a settler/notified and I do not have as neighbour a settler/notified)), then I become explorer and I move perpendicularly to my neighbours (up or down).

- **Marker Creation (2):**
 - **Rule 2.A:** If I am an explorer and there is no one in the dir direction and there is no (marker, premarker, chosen, opposer or collector) in my neighbourhood and on the initial line I have not seen three consecutive empty locations, then I move to that location.
 - **Rule 2.B:** If I am an explorer and on the initial line I have seen three consecutive empty locations, then I set my state to premarker and I move to occupy a free location on \(L_0 \).
 - **Rule 2.C:** If I am a premarker and I did bumped, then I become an explorer.
 - **Rule 2.D:** If I am a premarker and I did not bumped, then I become a marker with flag sceptre.
 - **Rule 2.E:** If I am an explorer and I see an explorer in my direction, then I switch the direction dir and I skip the current round.

- **Chief Identification (3):**
 - **Rule 3.A:** If I am an explorer and I see a marker with flag sceptre and I receive the sceptre from they, then I become a chief and I switch the direction dir.
 - **Rule 3.B:** If I am an explorer and I see a marker with flag sceptre and I do not receive the sceptre from they, then I become a disciple.
 - **Rule 3.C:** If I am an explorer and I see a marker without sceptre then I become a disciple.
 - **Rule 3.D:** If I am an explorer and there is a chief pointed by my dir and the dir of the chief is pointing at me, then I become a chief and I switch direction dir.
 - **Rule 3.E:** If I am an explorer and there is a disciple pointed by dir, then I become a disciple.
 - **Rule 3.F:** If I am a marker with flag sceptre and I see some explorers and I do not see a chief, then I unset the flag sceptre and I give the sceptre to only one explorer.
 - **Rule 3.G:** If I am a chief and there is an explorer pointed by my dir and the dir of the explorer is pointing at me, then I become a disciple.
 - **Rule 3.H:** If I am a chief and there is a disciple pointed by my dir, then I become a disciple.
Rule 3.1: If I am a disciple and there is a neighbour chief whose direction dir is pointing a me, then I become a chief and my direction dir will be the one of the old chief.

Rule 4.A: If I am a chief and I see a marker with flag sceptre, then I become the chosen, I set the follow-me flag and the tail flag and I skip the round.

Rule 4.B: If I am chosen and there is a person pointed by dir, then I become a follower and I unset the follow-me flag.

Rule 4.C: If direction dir of a chosen is pointing at me, then I copy the state of the chosen and I set direction prev to point the location the old chosen.

Rule 4.D: If I am chosen and I do not see a marker and in my direction dir there is no one and my direction dir is not pointing to a location outside L_1, L_0, L_{-1}, then I move to that location.

Rule 4.E: If I am chosen and I do not see a marker and in my direction dir there is no one and my direction dir pointing to a location outside L_1, L_0, L_{-1}, then I switch dir to point towards the farther endpoint of the line.

Rule 4.F: If I am chosen and I am a neighbour of a marker without sceptre, then I become follower and I set dir to point at the marker.

Rule 4.G: If I am a marker and I am a neighbour of a chosen, then I copy the state of the chosen and I set direction prev to point at location the old chosen and as direction dir the opposite location.

Rule 4.H: If I am a chief and on the line I see three consecutive empty locations, then: I set my state to chosen, I set the follow-me flag and the tail flag and I set as direction dir the only location in L_0.

Rule 4.I: If I am a marker with flag sceptre and I see a chief, then I unset the flag sceptre.

Opposite Sides (5):

Rule 5.A: If I am a chief and I reach a marker M without sceptre, then I become a collector, I set the follow-me and tail flags, and I switch direction dir.
Figure 4 Reproduction of paintings depicting a rite in which the Opposite Sides case arise.

- **Rule 5.B**: If I am a collector and there is no one in the direction of dir and I do not see a marker and the round is even, then I move.

- **Rule 5.C**: If I am a disciple and the dir of a collector is pointing at me and the round is even, then I become a collector and I copy the directions dir, prev and follow-me flag of old collector but not the tail flag.

- **Rule 5.D**: If I am a collector and my dir is pointing at disciple and the round is even,
then I become a follower, if the tail flag is set I retain it.

- **Rule 5.E:** If I am a collector and I have reached the marker M', then I wait for one round then I signal to the follower pointed by pref to become a mover and after waiting two rounds I become a collector.counting. If there is no such follower, then I become a collector.counted and I switch the direction in dir.

- **Rule 5.F:** If I am a mover and my dir is pointing at a follower, then I become a follower and I copy the state of the pointed follower.

- **Rule 5.G:** If I am a follower and the dir of a mover is pointing at me, then I become a mover and I copy the dir of the old mover.

- **Rule 5.H:** If I am a mover or a collector.counted and there is no one pointed by dir and I do not see a marker, then I move in the direction.

- **Rule 5.I:** If I am a marker and I see a collector.counted and a collector.counting, then I signal the victory to collector.counted.

- **Rule 5.J:** If I am collector.counted and I receive the victory signal, then I become a consul and I point the marker. A consul obeys to the same rules of the chosen. If somebody see a consul they do as if they see a chosen.

- **Rule 5.K:** If I am a marker and I see a mover and a collector.counting, then I send a probing signal to both and I memorise the side of the collector.counting in dir for future reference.

- **Rule 5.L:** If I am a mover or a collector.counting and I receive a probing signal from the marker, then I become a probe and I set probecounter = 1 and I switch direction.

- **Rule 5.M:** If I am probe with probecounter ≥ 1, and there is no probe whose dir is pointing at me with probecounter = 0, then I decrease my probecounter.

- **Rule 5.N:** If I am a probe and my probecounter is 0, and in there is no one in the direction pointed by dir, then I move in my direction.

- **Rule 5.O:** If I am a probe and I see a probe whose dir is pointing at me, and one of us has probecounter = 0, then I take the state of the other one, I add 1 to probecounter and I further add one to probecounter if I see a prefollower whose dir is pointing at me. Moreover, If I bumped then I set a visible bumped flag in my state.

- **Rule 5.P:** If I am a probe and behind me there is a probe with visible bumped flag set, then I decrease my probecounter, If the probecounter is 0 then I move in the direction of dir.

- **Rule 5.Q:** If I am a probe, my probecounter = 0 in my direction dir there is a person that is not a probe, then I copy the state of the other.

- **Rule 5.R:** If I am not a probe, and there is only one probe whose dir is pointing at me with probecounter = 0, then I become a probe I copy the direction dir from the old probe and I set probecounter = 1 and I further add one to probecounter if I see a prefollower pointing at me.

- **Rule 5.S:** If I am not a probe, and there are two probes whose dir are pointing at me with probecounter = 0, then I wait one round and a further round if I see a prefollower whose dir is pointing at me. Then, I order each of my neighbours to become a probe with dir pointing away from me and set their probecounter to 2 or 1, respectively if they see a prefollower pointing at them or not. At the next round I take my original non-probe state.

- **Rule 5.T:** If I am probe and I have reached a marker and my probecounter = 0, then I become a follower and I set dir to point the marker.

- **Rule 5.U:** If I am a marker, the first probe that reaches me and has probecounter = 0 is on the side I memorised in Rule 5.K then
• if on the other side there is a probe p that has probecounter > 0 or there is no one, then I become a consul and I point in the direction of p. A consul obeys to the same rules of the chosen. If somebody see a consul they do as if they see a chosen.
• if on the other side there is a probe p that has probecounter $= 0$, then I order p to become consul pointing in the direction opposite to the other marker, and I become follower pointing at p and setting as pre the opposite.

(a) Same Side: Two chiefs are elected on the same side (Rules 3.A, 3.F).
(b) Same Side: Two chiefs are moving towards each other.
(c) Same Side: Two chiefs met (Rule 6.A).
(d) Same Side: Two opposers are changing side (Rule 6.F, 6.G).
(e) Same Side: Two opposer meet. They are executing the Straight Line Query.
(f) Same Side: Migration of two processions of equal size.

Figure 5 Reproduction of paintings depicting a rite in which the Same Side case arise.

- Same Side (6):
- Rule 6.A: If I am a chief and there is another chief pointed by me, then: I become opposer, I set the tail flag and I switch direction.
- Rule 6.B: If I am an explorer and there is a opposer pointed by me and the opposer is pointing at me, then I become an opposer and I switch direction for dir and I set prev to point at the location the old opposer.
- Rule 6.C: If I am an opposer and there is an explorer pointed by me and the explorer is pointing at me, then I become a follower.
- Rule 6.D: If I am opposer and I see a disciple, then I become a follower.
- Rule 6.E: If I am a disciple and I see only one opposer, then I become the opposer and I set prev to point at the old opposer and dir to point at the location of the neighbour disciple if they exist otherwise the free location closer to the initial line.
Rule 6.F: If I am a marker and I see an opposer, then I become an opposer, I set the follow-me flag and I set prev to point at the old opposer and dir as the opposite.

Rule 6.G: If I am opposer and I see a marker, then I become a follower and I point at the marker.

Rule 6.H: If I am opposer and I see another opposer pointed by me for two consecutive rounds, then I do a query in my procession and I set my state to opposer.counting.

Rule 6.I: If I am an opposer.counting and I see a opposer.winner, then I become a follower.

Rule 6.J: If I am an opposer.counting and my query terminates and the result is “not-straight” and I do not see an opposer.winner, then I become an opposer.winner.

Rule 6.K: If I am an opposer.counting and my query terminates and the result is “not-straight” and I do not see an opposer.winner, then I become an opposer.winner.

Rule 6.L: If I am an opposer.winner and the previous round I was an opposer.counting and I have as neighbour an opposer.winner, then if we are both “straight” I set the tail flag and I switch direction dir, if I’m the only one “straight” I switch direction dir, if I’m not “straight” I become a follower.

Rule 6.M: If I am a follower and there is an opposer.winner that is pointing at me, then I become a opposer.winner and I switch direction dir, I clear my tail flag, and I set prev to point to the old opposer.winner.

Rule 6.N: If I am opposer.winner and there is a follower pointed by me, then I become a follower and I point the follower.

Rule 6.O: If I am a disciple and I see two opposers, then I become an opposer.winner.

Rule 6.P: If I am a opposer there is no one in the dir direction and I do not see a marker, then I move.

Procession (7):

Rule 7.A: If I am a follower without tail flag and I see a follower in my previous position and I do not see anyone in dir direction, then I move towards my direction.

Rule 7.B: If I am a settler or a settler.notified and I see an head with follow-me flag in location l, then I set my state to prefollower; from the person in l I copy their tail flag and their dir direction in my pre, and I point towards l.

Rule 7.C: If I am a prefollower and I bumped and there is no one in direction dir, then I move towards dir.

Rule 7.D: If I am a prefollower and I bumped and there is someone in direction dir, then I copy the tail flag from the person in dir.

Rule 7.E: If I am a prefollower and I moved, then I set my state to follower and I set my dir to be the pre and pre as the opposite of dir, the queue flag is set to the memorised value.

Rule 7.F: If I have a tail flag set and in the location pointed by pre there is a prefollower or follower neighbour pointing at me, then I unset my tail flag.

Rule 7.G: If I am a follower and I moved in the previous round and I do not see a follower or an head in direction dir, then I set dir to point towards the only head or follower perpendicular to my old dir.

Rule 7.H: If I am the head of a followers procession and I have the tail flag set and one of my neighbours is a settler, then I set the waiting flag and I move in my direction.

Rule 7.I: If I am the head of a followers procession, and at the previous round I had set the waiting flag, then I reset the waiting flag and I do not move in this round.

Rule 7.J: If I am the head of a followers procession, I do not have the tail flag, and I do not see a follower in my previous position, then I do not move.
Rule 7.K: If I am a \textit{prefollower} and I bumped and in direction \textit{dir} there is a \textit{probe}, then, I skip this round.

Straight Line Query (8):
- Rule 8.A: If I receive a “query message” and there is no \textit{settler} (or a \textit{prefollower}) pointing at me, then if I am a tail, I send the “straight message” to myself. Otherwise I forward the “query message” at the person pointed by \textit{pre}.
- Rule 8.B: If I receive a “query message” and there is a \textit{settler} (or a \textit{prefollower}) pointing at me, then I skip two rounds. Then if I am a tail I send the “straight message” to myself. Otherwise I forward the “query message” at the person pointed by \textit{pre}.
- Rule 8.C: If I receive a “straight message”, then if I my \textit{dir} and \textit{pre} are vertical I forward a “not-straight message”. Otherwise, I forward “straight message”.
- Rule 8.D: If I receive a “not-straight message”, then I forward a “not-straight message”.
- Rule 8.E: If I am an \textit{opposer} and I receive a “not-straight message”, then my query is terminated and the result is “not-straight”.
- Rule 8.F: If I am an \textit{opposer} and I receive a “straight message”, then my query is terminated and the result is “straight”.

7 Conclusion

The ritual that we have analyzed in this paper is the \textit{short WonnaGo}. The cave contains other paintings depicting a more complex version of the rite known as the \textit{long WonnaGo}. The long rite was used in the autumnal months, when the new flowers of Cannabis have the greatest quantity of THC. It is very likely that the Astracinca had knowledge of the temporal distortion caused by phytocannabinoids, an effect studied only recently by modern medicine [2]. Essentially, the long ritual takes into account that different settlers may have a different perception of the passage of time, and that furthermore they can unpredictably slow down both in their movements and communication. We are studying the \textit{long WonnaGo}, and we are confident that the Astracinca devised an algorithm for line recovery in the \textit{asynchronous} settings. However, we have yet to fully understand the many subtleties of the \textit{long WonnaGo}, which remains a challenging open problem.

References

