
Tight Lower Bounds for Data-Dependent
Locality-Sensitive Hashing
Alexandr Andoni∗1 and Ilya Razenshteyn2

1 Columbia University, New York, USA
2 MIT CSAIL, Cambridge, USA

Abstract
We prove a tight lower bound for the exponent ρ for data-dependent Locality-Sensitive Hashing
schemes, recently used to design efficient solutions for the c-approximate nearest neighbor search.
In particular, our lower bound matches the bound of ρ ≤ 1

2c−1 + o(1) for the `1 space, obtained
via the recent algorithm from [Andoni-Razenshteyn, STOC’15].

In recent years it emerged that data-dependent hashing is strictly superior to the classical
Locality-Sensitive Hashing, when the hash function is data-independent. In the latter setting,
the best exponent has been already known: for the `1 space, the tight bound is ρ = 1/c, with the
upper bound from [Indyk-Motwani, STOC’98] and the matching lower bound from [O’Donnell-
Wu-Zhou, ITCS’11].

We prove that, even if the hashing is data-dependent, it must hold that ρ ≥ 1
2c−1 − o(1).

To prove the result, we need to formalize the exact notion of data-dependent hashing that also
captures the complexity of the hash functions (in addition to their collision properties). Without
restricting such complexity, we would allow for obviously infeasible solutions such as the Voronoi
diagram of a dataset. To preclude such solutions, we require our hash functions to be succinct.
This condition is satisfied by all the known algorithmic results.
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1 Introduction

We study lower bounds for the high-dimensional nearest neighbor search problem, which is a
problem of major importance in several areas, such as databases, data mining, information
retrieval, computer vision, computational geometry, signal processing, etc. This problem
suffers from the “curse of dimensionality” phenomenon: either space or query time are
exponential in the dimension d. To escape this curse, researchers proposed approximation
algorithms for the problem. In the (c, r)-approximate near neighbor problem, the data
structure may return any data point whose distance from the query is at most cr, for
an approximation factor c > 1 (provided that there exists a data point within distance r
from the query). Many approximation algorithms are known for this problem: e.g., see
surveys [22, 3, 1, 24].

An influential algorithmic technique for the approximate near neighbor search (ANN) is
the Locality Sensitive Hashing (LSH) [13, 12]. The main idea is to hash the points so that the
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probability of collision is much higher for points that are close to each other (at distance ≤ r)
than for those which are far apart (at distance > cr). Given such hash functions, one can
retrieve near neighbors by hashing the query point and retrieving elements stored in buckets
containing that point. If the probability of collision is at least p1 for the close points and at
most p2 for the far points, the algorithm solves the (c, r)-ANN using essentially O(n1+ρ/p1)
extra space and O(dnρ/p1) query time, where ρ = log(1/p1)

log(1/p2) [12]. The value of the exponent
ρ thus determines the “quality” of the LSH families used.

Consequently, a lot of work focused on understanding the best possible value ρ for LSH,
including the sequence of upper bounds [13, 9, 2] and lower bounds [18, 19]. Overall, they
established the precise bounds for the best value of ρ: for `1 the tight bound is ρ = 1

c ± o(1).
In general, for `p, where 1 ≤ p ≤ 2, the tight bound is ρ = 1

cp ± o(1).
Surprisingly, it turns out there exist more efficient ANN data structures, which step

outside the LSH framework. Specifically, [5, 6] design algorithms using the concept of
data-dependent hashing, which is a randomized hash family that itself adapts to the actual
given dataset. In particular, the result of [6] obtains an exponent ρ = 1

2cp−1 + o(1) for the `p
space, thus improving upon the best possible LSH exponent essentially by a factor of 2 for
both `1 and `2 spaces.

Our result. Here we prove that the exponent ρ = 1
2cp−1 from [6] is essentially optimal even

for data-dependent hashing, and cannot be improved upon. Stating the precise theorem
requires introducing the precise model for the lower bound, which we accomplish below. For
now, we state our main theorem informally:

I Theorem 1 (Main, informal). Any data-dependent hashing scheme for `1 that achieves
probabilities p1 and p2 must satisfy

ρ = log 1/p1

log 1/p2
≥ 1

2c− 1 − o(1),

as long as the description complexity of the hash functions is sufficiently small.
An immediate consequence is that ρ ≥ 1

2cp−1 − o(1) for all `p with 1 ≤ p ≤ 2, using the
embedding from [17].

1.1 Lower Bound Model
To state the precise theorem, we need to formally describe what is data-dependent hashing.
First, we state the definition of (data-independent) LSH, as well as define LSH for a fixed
dataset P .

I Definition 2 (Locality-Sensitive Hashing). We say that a hash family H over {0, 1}d is
(r1, r2, p1, p2)-sensitive, if for every u, v ∈ {0, 1}d one has:

if ‖u− v‖1 ≤ r1, then Pr
h∼H

[h(u) = h(v)] ≥ p1;
if ‖u− v‖1 > r2, then Pr

h∼H
[h(u) = h(v)] ≤ p2.

We now refine the notion of data-independent LSH, where we require the distribution to
work only for a particular dataset P .

I Definition 3 (LSH for a dataset P ). A hash familyH over {0, 1}d is said to be (r1, r2, p1, p2)-
sensitive for a dataset P ⊆ {0, 1}d, if:

for every v ∈ {0, 1}d and every u ∈ P with ‖u− v‖1 ≤ r1 one has

Pr
h∼H

[h(u) = h(v)] ≥ p1;
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Pr
h∼H
u,v∼P

[h(u) = h(v) and ‖u− v‖1 > r2] ≤ p2.

Note that the second definition is less stringent than the first one: in fact, if all the
points in a dataset are at distance more than r2 from each other, then an LSH family H is
also LSH for P , but not necessarily vice versa! Furthermore, in the second definition, we
require the second property to hold only on average (in contrast to every point as in the first
definition). This aspect means that, while Definition 3 is certainly necessary for an ANN
data structure, it is not obviously sufficient. Indeed, the algorithm from [6] requires proving
additional properties of their partitioning scheme, and in particular analyzes triples of points.
Since here we focus on lower bounds, this aspect will not be important.

We are now ready to introduce data-dependent hashing.

1.1.1 Data-dependent hashing
Intuitively, a data-dependent hashing scheme is one where we can pick the family H as a
function of P , and thus be sensitive for P . An obvious solution would hence be to choose H
to consist of a single hash function h which is just the Voronoi diagram of the dataset P : it
will be (r, cr, 1, 0)-sensitive for P and hence ρ = 0. However this does not yield a good data
strcture for ANN since evaluating such a hash function on a query point q is as hard as the
original problem!

Hence, ideally, our lower bound model would require that the hash function is compu-
tationally efficient to evaluate. We do not know how to formulate such a condition which
would not make the question as hard as circuit lower bounds or high cell-probe lower bounds,
which would be well beyond the scope of this paper.

Instead, we introduce a condition on the hash family that can be roughly summarized
as “hash functions from the family are succinct”. For a precise definition and discussion see
below. For now, let us point out that all the known algorithmic results satisfy this condition.

Finally, we are ready to state the main result formally.

I Theorem 4 (Main theorem, full). Fix the approximation c > 1 to be a constant. Suppose
the dataset P lives in the Hamming space {0, 1}d, where the dataset size n = |P | is such that
d = ω(logn) as n tends to infinity. There exist distance thresholds r and (c− o(1))r with the
following property.

Suppose there exist T hash functions {hi}1≤i≤T over {0, 1}d such that for every n-point
dataset P there exists a distribution HP over hi’s such that the corresponding hash family is
(r, (c− o(1))r, p1, p2)-sensitive for P , where 0 < p1, p2 < 0.99. For any such data-dependent
scheme it must either hold that ρ = log 1/p1

log 1/p2
≥ 1

2c−1 − o(1) or that logT
p1
≥ n1−o(1).

1.1.2 Interpreting Theorem 4
Let us explain the conditions and the conclusions of Theorem 4 in more detail.

We start by interpreting the conclusions. As explained above, the bound ρ = log 1/p1
log 1/p2

≥
1

2c−1 − o(1) directly implies the lower bound on the query time n
1

2c−1−o(1) for any scheme
that is based on data-dependent hashing.

The second bound logT
p1
≥ n1−o(1) is a little bit more mysterious. Let us now explain

what it means precisely. The quantity log T can be interpreted as the description complexity
of a hash function sampled from the family. At the same time, if we use a family with
collision probability p1 for close points, we need at least 1/p1 hash tables to achieve constant
probability of success. Since in each hash table we evaluate at least one hash function, the
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quantity logT
p1

can be interpreted as the lower bound for the total space occupied by hash
functions we evaluate during each query. In all known constructions of (data-independent or
data-dependent) LSH families [13, 9, 2, 23, 5, 6] the evaluation time of a single hash function
is comparable to the space it occupies (for discussion regarding why is it true for [6], see
Appendix A), thus, under this assumption, we can not achieve query time n1−Ω(1), unless
ρ ≥ 1

2c−1 − o(1). On the other hand, we can achieve ρ = 0 by considering a data-dependent
hash family that consists only of the Voronoi diagram of a dataset (trivially, p1 = 1 and
p2 = 0 for this case), thus the conclusion logT

p1
≥ n1−o(1) can not be omitted in general1.

Note that the “Voronoi diagram family” is very slow to evaluate: to locate a point we need
to solve an instance of exact Nearest Neighbor Search, that is unlikely to be possible to do
in strongly sublinear time. Thus, this family satisfies the above assumption “evaluation time
is comparable to the space”.

We now turn to interpreting the conditions. We require that d = ω(logn). We conjecture
that this requirement2 is necessary and for d = O(logn) there is an LSH family that gives a
better value of ρ (the improvement, of course, would depend on the hidden constant in the
expression d = O(logn)). In fact, some evidence towards this conjecture is given in a recent
paper [7], where an improved data structure for ANN for the case d = O(logn) is presented,
albeit by stepping outside of the pure (data-dependent) LSH framework.

1.2 Techniques and Related Work
There are two components to our lower bound, i.e., Theorem 4.

The first component is a lower bound for data-independent LSH for a random dataset.
We show that in this case, we must have ρ ≥ 1

2c−1 − o(1). This is in contrast to the lower
bound of [19], who achieve a higher lower bound but for the case when the (far) points are
correlated. Our lower bound is closer in spirit to [18], who also consider the case when the
far points are random uncorrelated. In fact, this component is a strengthening of the lower
bound from [18].

We mention that, in [10], Dubiner has also considered the setting of a random dataset for
a related problem – finding the closest pair in a given dataset P . Dubiner sets up a certain
related “bucketing” model, in which he conjectures the lower bound, which would imply
a ρ ≥ 1

2c−1 lower bound for data-independent LSH for a random set. Dubiner verifies the
conjecture computationally and claims it is proved in a different manuscript.3

We also point out that, for the `2 case, the optimal data-independent lower bound
ρ ≥ 1

2c2−1 − o(1) follows from a recent work [4]. In fact, it shows almost exact trade-off
between p1 and p2 (not only the lower bound on ρ = log(1/p1)

log(1/p2) ). Unfortunately, the techniques
there are really tailored to the Euclidean case (in particular, a powerful isoperimetric
inequality of Feige and Schechtman is used [11]) and it is unclear how to extend it to `1, as
well as, more generally, to `p for 1 ≤ p < 2.

Our second component focuses on the data-dependent aspect of the lower bound. In
particular, we prove that if there exists a data-dependent hashing scheme for a random
dataset with a better ρ, then in fact there is also a data-independent such hashing scheme.

1 For the Voronoi diagram, log T ≥ n, since to specify it, one needs at least n bits.
2 When ANN for the general dimension d is being solved, one usually first performs some form of the

dimensionality reduction [14, 16, 8]. Since at this stage we do not want distances to be distorted by a
factor more than 1 + o(1), the target dimension is precisely ω(log n). So, the assumption d = ω(log n)
in Theorem 4 in some sense captures a truly high-dimensional case.

3 This manuscript does not appear to be available at the moment of writing of the present paper.
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To accomplish this, we consider the “empirical” average p1 and p2 for a random dataset, and
prove it is close to the average p1 and p2, for which we can deduce a lower bound from the
first component.

In terms of related work, we also must mention the papers of [20, 21], who prove cell-probe
lower bounds for the same problem of ANN. In particular, their work utilizes the lower bound
of [18] as well. Their results are however incomparable to our results: while their results
are unconditional, our model allows us to prove a much higher lower bound, in particular
matching the best algorithms.

2 Data-independent Lower Bound

In this section we prove the first component of Theorem 4. Overall we show a lower bound
of ρ ≥ 1

2c−1 + o(1) for data-independent hash families for random datasets. Our proof is a
strengthening and simplification of [18]. The final statement appears as Corollary 7. In the
second component, we will use a somewhat stronger statement, Lemma 6).

For u ∈ {0, 1}d and 0 ≤ α ≤ 1/2 define a random variable Nα(u) distributed over {0, 1}d
as follows: we set every bit of Nα(u) to the corresponding bit of u with probability 1− α
and with the remaining probability α we flip the bit.

The following lemma is proved via a combination of the averaging argument from [18]
and an estimate using Hypercontractivity on the Boolean cube that can be found, e.g., in
the proof of Lemma 3.6 of the arXiv version of [15].

I Lemma 5. For every hash function h : {0, 1}d → Z and every 0 ≤ α ≤ 1/2 one has:

Pr
u∼{0,1}d
v∼Nα(u)

[h(u) = h(v)] ≤ Pr
u,v∼{0,1}d

[h(u) = h(v)]
α

1−α .

Proof. Let A ⊆ {0, 1}d be a subset of the hypercube. Then, from the proof of Lemma 3.6
from the arXiv version of [15], we have

Pr
u∼{0,1}d
v∼Nα(u)

[v ∈ A | u ∈ A] ≤
(
|A|
2d

) α
1−α

. (1)

Low let us finish the proof using (1). For every h : {0, 1}d → Z one has:

Pr
u∼{0,1}d
v∼Nα(u)

[h(u) = h(v)] =
∑
k∈Z

Pr
u∼{0,1}d
v∼Nα(u)

[v ∈ h−1(k) | u ∈ h−1(k)] ·
(
|h−1(k)|

2d

)

≤
∑
k∈Z

(
|h−1(k)|

2d

) α
1−α

·
(
|h−1(k)|

2d

)
= E
u∼{0,1}d

[(
|h−1(h(u))|

2d

) α
1−α
]

≤ E
u∼{0,1}d

[
|h−1(h(u))|

2d

] α
1−α

= Pr
u,v∼{0,1}d

[h(u) = h(v)]
α

1−α ,

where the second step follows from (1), and the fourth step follows from the Jensen’s
inequality. J

We are now ready to prove the main lemma of this section, which will be used in the
later section on data-dependent hashing. We need to introduce two more definitions. We

SoCG 2016
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define “average p1” as:

ζ(c, d, α, h) := Pr
u∼{0,1}d
v∼Nα(u)

[
h(u) = h(v)

∣∣∣∣‖u− v‖1 ≤ d

2c

]

for c > 1, positive integer d, α > 0 and a hash function h : {0, 1}d → Z. Similarly, we define
the “average p2” as

η(d, β, h) := Pr
u,v∼{0,1}d

[
h(u) = h(v), ‖u− v‖1 >

(
1
2 − β

)
· d
]

for positive integer d, β > 0 and a hash function h : {0, 1}d → Z.

I Lemma 6. Let c > 1 be a fixed constant. Suppose that γ = γ(d) > 0 is such that γ = o(1)
as d→∞. Then, there exist α = α(d), β = β(d) and ρ = ρ(d) such that:

α = 1
2c − oc,γ(1),

β = oγ(1),

ρ = 1
2c− 1 − oc,γ(1)

as d→∞ such that, for every d and every hash function h : {0, 1}d → Z, one has

ζ(c, d, α, h) ≤ η(d, β, h)ρ + 2−γ·d.

Proof. We can choose α = 1
2c − oc,γ(1) such that

Pr
[
‖Nα(u)− u‖1 ≥

d

2c

]
<

2−γ·d

2 . (2)

We can choose β = oγ(1) so that

Pr
u,v∼{0,1}d

[
‖u− v‖ <

(
1
2 − β

)
· d
]
<

2−γ·d

2 . (3)

(Both follow from the standard Chernoff-type bounds.)
Now we apply Lemma 5 and get

Pr
u∼{0,1}d
v∼Nα(u)

[h(u) = h(v)] ≤ Pr
u,v∼{0,1}d

[h(u) = h(v)]ρ , (4)

where

ρ = α

1− α = 1
2c− 1 − oc,γ(1).

Finally, we combine (4), (2) and (3), and get the desired inequality. J

The following corollary shows how the above lemma implies a lower bound on data-
independent LSH.

I Corollary 7. For every c > 1 and γ = γ(d) > 0 such that γ = o(1) there exists β = β(d) > 0
with β = oγ(1) such that if H is a data-independent (d/(2c), (1/2 − β)d, p1, p2)-sensitive
family, then

p1 ≤ p
1

2c−1−oc,γ(1)
2 + 2−γ·d.
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Proof. We observe that for every α, β > 0:
p1 ≤ E

h∼H
[ζ(c, d, α, h)];

p2 ≥ E
h∼H

[η(d, β, h)].
Now we apply Lemma 6 together with the following application of Jensen’s inequality:

E
h∼H

[η(d, β, h)ρ] ≤ E
h∼H

[η(d, β, h)]ρ ,

since 0 < ρ ≤ 1. J

3 Data-Dependent Hashing

We now prove the second component of the main Theorem 4 proof. In particular we show
that a very good data-dependent hashing scheme would refute Lemma 6 from the previous
section.

3.1 Empirical Probabilities of Collision
For a particular dataset P , we will be interested in empirical probabilities p1, p2 – i.e., the
equivalents of ζ, η for a given set P – defined as follows. Let 0 < δ(d) < 1/3 be some function.
Let P be a random set of points from {0, 1}d of size 2δ(d)·d. The empirical versions of ζ and
η with respect to P are:

ζ̂(c, d, α, h, P ) := Pr
u∼P

v∼Nα(u)

[
h(u) = h(v)

∣∣∣∣‖u− v‖1 ≤ d

2c

]

η̂(d, β, h, P ) := Pr
u,v∼P

[
h(u) = h(v), ‖u− v‖1 >

(
1
2 − β

)
· d
]
.

We now want to prove that, for a random dataset P , the empirical ζ, η are close to the
true averages. For this we will need the following auxiliary lemma.

I Lemma 8. Let M be an n× n symmetric matrix with entries from [0; 1] and average ε.
Let M ′ be a principal nδ × nδ submatrix of M sampled uniformly with replacement. Then,
for every θ > 0, the probability that the maximum of the average over M ′ and θ does not lie
in [1/2; 2] ·max{ε, θ} is at most nδ · 2−Ω(θnδ).

Proof. We need the following version of Bernstein’s inequality.

I Lemma 9. Suppose that X1, . . . , Xn are i.i.d. random variables that are distributed over
[0; 1]. Suppose that E[Xi] = ε. Then, for every 0 < θ < 1, one has

Pr
[

max
{

1
n

n∑
i=1

Xi, θ

}
∈
[

1
2 ; 2
]
·max{ε, θ}

]
≥ 1− 2−Ω(θn).

We just apply Lemma 9 and take union bound over the rows of M ′. J

The following two lemmas are immediate corollaries of Lemma 9 and Lemma 8, respect-
ively.

I Lemma 10. For every c > 1, α > 0, positive integer d, θ > 0 and a hash function
h : {0, 1}d → Z, one has

Pr
P

[
max{ζ̂(c, d, α, h, P ), θ} ∈ [1/2; 2] ·max{ζ(c, d, α, h), θ}

]
≥ 1− 2−Ω(θ·2δ(d)·d).

SoCG 2016
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I Lemma 11. For every β > 0, positive integer d, θ > 0 and a hash function h : {0, 1}d → Z,
one has

Pr
P

[max{η̂(d, β, h, P ), θ} ∈ [1/2; 2] ·max{η(d, β, h), θ}] ≥ 1− 2δ(d)·d · 2−Ω(θ·2δ(d)·d).

3.2 Proof of Theorem 4
We are finally ready to complete the proof of the main result, Theorem 4.

Let us first assume that p1 = o(1) and then show how to handle the general case. Suppose
that n = |P | = 2δ·d. By the assumption of Theorem 4, δ = o(1). Let {h1, h2, . . . , hT } be
a set of hash functions. We can assume that logT

p1
≤ n1−Ω(1), since otherwise we are done.

Let us fix γ = γ(d) > 0 such that γ = o(1) and 2−γd � p
ω(1)
1 . We can do this, since if

p1 = 2−Ω(d), then 1/p1 = nω(1), and the desired statement is true. Then, by Lemma 6, there
is α = α(d) and β = β(d) = oγ(1) such that for every 1 ≤ i ≤ T

ζ(c, d, α, hi) ≤ η(d, β, hi)
1

2c−1−oc,γ(1) + 2−γd. (5)

Let us choose θ > 0 such that

T · 2δ·d � 2θ·2
δ·d

and θ � p1. We can do it since, by the above assumption, logT
p1
≤ n1−Ω(1) = 2δ·d(1−Ω(1)).

Then, from Lemma 10 and Lemma 11 we get that, with high probability over the choice
of P , one has for every 1 ≤ i ≤ T :

max{ζ̂(c, d, α, hi), θ} ∈ [1/2; 2] ·max{ζ(c, d, α, hi), θ};
max{η̂(d, β, hi), θ} ∈ [1/2; 2] ·max{η(d, β, hi), θ}.

Suppose these conditions hold and assume there exist a distribution D over [T ] such that
the corresponding hash family is (d/2c, (1/2− β(d))d, p1, p2)-sensitive for P . Then,

p1 ≤ E
i∼D

[ζ̂(c, d, α, hi)] ≤ E
i∼D

[max{ζ̂(c, d, α, hi), θ}] ≤ 2 · E
i∼D

[max{ζ(c, d, α, hi), θ}]

≤ 2 · E
i∼D

[ζ(c, d, α, hi)] + θ. (6)

Similarly,

p2 ≥ E
i∼D

[η̂(d, β, hi)] ≥ E
i∼D

[max{η̂(d, β, hi), θ}]− θ ≥
1
2 · E

i∼D
[max{η(d, β, hi), θ}]− θ

≥ 1
2 · E

i∼D
[η(d, β, hi)] − θ. (7)

Averaging (5) and applying Jensen’s inequality, we have

E
i∼D

[ζ(c, d, α, hi)] ≤ E
i∼D

[η(d, β, hi)]
1

2c−1−o(1) + 2−γ(d)·d. (8)

Thus, substituting (6) and (7) into (8)
p1 − θ

2 ≤ (2(p2 + θ))
1

2c−1−o(1) + 2−γd,

which proves the theorem, since θ � p1, 2−γd � p
ω(1)
1 , and p1 = o(1).

Now let us deal with the case p1 = Ω(1). This can be reduced to the case p1 = o(1) by
choosing a slowly-growing super constant k and replacing the set of T functions with the set
of T k tuples of length k. This replaces p1 and p2 with pk1 and pk2 , respectively. In the same
time, we choose k so that T ′ = T k still satisfy the hypothesis of the theorem. Then, we just
apply the above proof.
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A Upper Bounds Are in the Model

In this section, we show how the data-dependent hash family from [6] fits into the model of
the lower bound from Section 1.1.

Let us briefly recall the hash family construction from [6]. For simplicity, assume that
all points and queries lie on a sphere of radius R� cr. First, consider a data-independent
hash family from [5, 6], called Spherical LSH. It gives a good exponent ρ ≤ 1

2c2−1 + o(1) for
distance thresholds r vs

√
2R (the latter corresponds to a typical distance between a pair of

points from the sphere). The main challenge that arises is how to handle distance thresholds
r vs cr, where the latter may be much smaller than

√
2R. Here comes the main insight of [6].

We would like to process the dataset so that the distance between a typical pair of
data points is around

√
2R, so to apply Spherical LSH. To accomplish this, we remove all

the clusters of radius (
√

2 − ε)R that contain lots of points (think of ε > 0 being barely
sub-constant). We will treat these clusters separately, and will focus on the remainder of
the pointset for now. So for the remainder of the pointset, we just apply the Spherical LSH
to it. This scheme turns out to satisfy the definition of the data-dependent hash family for
the remaining points and for distance thresholds r vs. cr; in particular, the hash function is
sensitive for the remaining set only! The intuition is that, for any potential query point, there
is only a small number of data points within distance (

√
2− ε)R – otherwise, they would

have formed yet another cluster, which we would have removed – and the larger distances
are handled well by the Spherical LSH. Thus, for a typical pair of data points, Spherical LSH
is sensitive for P (see Definition 3).

How does [6] deal with the clusters? The main observation is that one can enclose such
a cluster in a ball of radius (1− Ω(ε2))R, which intuitively makes our problem a little bit
simpler (after we reduce the radius enough times, the problem becomes trivial). To answer
a query, we query every cluster, as well as one part of the remainder (partitioned by the
Spherical LSH). This can be shown to work overall, in particular, we can control the overall
branching and depth of the recursion (see [6] for the details).

For both the clusters, as well as the parts obtained from the Spherical LSH, the algorithm
recurses on the obtained point subsets. The overall partitioning scheme from [6] can be
seen as a tree, where the root corresponds to the whole dataset, and every node either
corresponds to a cluster or to an application of the Spherical LSH. One nuance is that, in
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different parts of the tree the Spherical LSH partitioning obtains different p1, p2 (depending
on R). Nonetheless, each time it holds that p1 ≥ pρ2 for ρ ≤ 1

2c2−1 + o(1). Hence, a node
terminates as a leaf once its accumulated p2 (product of p2’s of “Spherical LSH” nodes along
the path from the root) drops below 1/n.

We now want to argue that the above algorithm can be recast in the framework of
data-dependent hashing as per Definition 3. We consider a subtree of the overall tree that
contains the root and is defined as follows. Fix a parameter l = n−o(1) (it is essentially the
target p2 of the partition). We perform DFS of the tree and cut the tree at any “Spherical
LSH” node where the cumulative p2 drops below l. This subtree gives a partial partition
of the dataset P as follows: for “Spherical LSH” nodes we just apply the corresponding
partition, and for cluster nodes we “carve” them in the random order. It turns out that if we
choose l = n−o(1) carefully, the partition will satisfy Definition 3 and the preconditions of
Theorem 4. In particular, the description complexity of the resulting hash function is no(1).

Let us emphasize that, while Definition 3 is certainly necessary for an ANN data structure
based on data-dependent hashing, it is not sufficient. In fact, [6] prove additional properties
of the above partitioning scheme, essentially because the “p2 property” is “on average” one
(thus, we end up having to understand how this partitioning scheme treats triples of points).
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