Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Balas, Kevin; Dumitrescu, Adrian; Tóth, Csaba http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-59054
URL:

; ;

Anchored Rectangle and Square Packings

pdf-format:


Abstract

For points p_1,...,p_n in the unit square [0,1]^2, an anchored rectangle packing consists of interior-disjoint axis-aligned empty rectangles r_1,...,r_n in [0,1]^2 such that point p_i is a corner of the rectangle r_i (that is, r_i is anchored at p_i) for i=1,...,n. We show that for every set of n points in [0,1]^2, there is an anchored rectangle packing of area at least 7/12-O(1/n), and for every n, there are point sets for which the area of every anchored rectangle packing is at most 2/3. The maximum area of an anchored square packing is always at least 5/32 and sometimes at most 7/27. The above constructive lower bounds immediately yield constant-factor approximations, of 7/12 -epsilon for rectangles and 5/32 for squares, for computing anchored packings of maximum area in O(n log n) time. We prove that a simple greedy strategy achieves a 9/47-approximation for anchored square packings, and 1/3 for lower-left anchored square packings. Reductions to maximum weight independent set (MWIS) yield a QPTAS and a PTAS for anchored rectangle and square packings in n^{O(1/epsilon)} and exp(poly(log (n/epsilon))) time, respectively.

BibTeX - Entry

@InProceedings{balas_et_al:LIPIcs:2016:5905,
  author =	{Kevin Balas and Adrian Dumitrescu and Csaba T{\'o}th},
  title =	{{Anchored Rectangle and Square Packings}},
  booktitle =	{32nd International Symposium on Computational Geometry (SoCG 2016)},
  pages =	{13:1--13:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-009-5},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{51},
  editor =	{S{\'a}ndor Fekete and Anna Lubiw},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/5905},
  URN =		{urn:nbn:de:0030-drops-59054},
  doi =		{10.4230/LIPIcs.SoCG.2016.13},
  annote =	{Keywords: Rectangle packing, anchored rectangle, greedy algorithm, charging scheme, approximation algorithm.}
}

Keywords: Rectangle packing, anchored rectangle, greedy algorithm, charging scheme, approximation algorithm.
Seminar: 32nd International Symposium on Computational Geometry (SoCG 2016)
Issue date: 2016
Date of publication: 2016


DROPS-Home | Fulltext Search | Imprint Published by LZI