Allen, Sarah R. ;
Barba, Luis ;
Iacono, John ;
Langerman, Stefan
Incremental Voronoi diagrams
Abstract
We study the amortized number of combinatorial changes (edge insertions and removals) needed to update the graph structure of the Voronoi diagram VD(S) (and several variants thereof) of a set S of n sites in the plane as sites are added to the set. To that effect, we define a general update operation for planar graphs that can be used to model the incremental construction of several variants of Voronoi diagrams as well as the incremental construction of an intersection of halfspaces in R^3. We show that the amortized number of edge insertions and removals needed to add a new site to the Voronoi diagram is O(n^(1/2)). A matching Omega(n^(1/2)) combinatorial lower bound is shown, even in the case where the graph representing the Voronoi diagram is a tree. This contrasts with the O(log(n)) upper bound of Aronov et al. [Aronov et al., in proc. of LATIN, 2006] for farthestpoint Voronoi diagrams in the special case where points are inserted in clockwise order along their convex hull.
We then present a semidynamic data structure that maintains the Voronoi diagram of a set S of n sites in convex position. This data structure supports the insertion of a new site p (and hence the addition of its Voronoi cell) and finds the asymptotically minimal number K of edge insertions and removals needed to obtain the diagram of S U (p) from the diagram of S, in time O(K polylog n) worst case, which is O(n^(1/2) polylog n) amortized by the aforementioned combinatorial result.
The most distinctive feature of this data structure is that the graph of the Voronoi diagram is maintained explicitly at all times and can be retrieved and traversed in the natural way; this contrasts with other known data structures supporting nearest neighbor queries. Our data structure supports general search operations on the current Voronoi diagram, which can, for example, be used to perform point location queries in the cells of the current Voronoi diagram in O(log n) time, or to determine whether two given sites are neighbors in the Delaunay triangulation.
BibTeX  Entry
@InProceedings{allen_et_al:LIPIcs:2016:5907,
author = {Sarah R. Allen and Luis Barba and John Iacono and Stefan Langerman},
title = {{Incremental Voronoi diagrams}},
booktitle = {32nd International Symposium on Computational Geometry (SoCG 2016)},
pages = {15:115:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {9783959770095},
ISSN = {18688969},
year = {2016},
volume = {51},
editor = {S{\'a}ndor Fekete and Anna Lubiw},
publisher = {Schloss DagstuhlLeibnizZentrum fuer Informatik},
address = {Dagstuhl, Germany},
URL = {http://drops.dagstuhl.de/opus/volltexte/2016/5907},
URN = {urn:nbn:de:0030drops59079},
doi = {10.4230/LIPIcs.SoCG.2016.15},
annote = {Keywords: Voronoi diagrams, dynamic data structures, Delaunay triangulation}
}
2016
Keywords: 

Voronoi diagrams, dynamic data structures, Delaunay triangulation 
Seminar: 

32nd International Symposium on Computational Geometry (SoCG 2016)

Issue date: 

2016 
Date of publication: 

2016 