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Abstract
The graph crossing number problem, cr(G) ≤ k, asks for a drawing of a graph G in the plane with
at most k edge crossings. Although this problem is in general notoriously difficult, it is fixed-
parameter tractable for the parameter k [Grohe]. This suggests a closely related question of
whether this problem has a polynomial kernel, meaning whether every instance of cr(G) ≤ k can
be in polynomial time reduced to an equivalent instance of size polynomial in k (and independent
of |G|). We answer this question in the negative. Along the proof we show that the tile crossing
number problem of twisted planar tiles is NP-hard, which has been an open problem for some
time, too, and then employ the complexity technique of cross-composition. Our result holds
already for the special case of graphs obtained from planar graphs by adding one edge.
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1 Introduction

We refer to Sections 2,3 for detailed formal definitions. Briefly, the crossing number cr(G) of
a graph G is the minimum number of pairwise edge crossings in a drawing of G in the plane.
Finding the crossing number of a graph is one of the most prominent hard optimization
problems in geometric graph theory [10] and is NP-hard already in very restricted cases,
e.g., for cubic graphs [12], and for graphs with prescribed edge rotations [16]. Concerning
approximations, there exists c > 1 such that the crossing number cannot be approximated
within the factor c in polynomial time [5]. Moreover, the following very special case of the
problem is still hard – a result that greatly inspired our paper:

I Theorem 1 (Cabello and Mohar [6]). Let G be an almost-planar graph, i.e., G having an
edge e ∈ E(G) such that G \ e is planar (called also near-planar in [6]). Let k ≥ 1 be an
integer. Then it is NP-complete to decide whether cr(G) ≤ k.

On the other hand, it has been shown that the problem is fixed-parameter tractable when
parameterized by itself: one can decide whether cr(G) ≤ k in quadratic (Grohe [11]) and even
linear (Kawarabayashi–Reed [13]) time while having k fixed. Fixed-parameter tractability
(FPT) is closely related to the concept of so called kernelization. In fact, one can easily show

∗ This research was supported by the Czech Science Foundation project No. 14-03501S.

© Petr Hliněný and Marek Derňár;
licensed under Creative Commons License CC-BY

32nd International Symposium on Computational Geometry (SoCG 2016).
Editors: Sándor Fekete and Anna Lubiw; Article No. 42; pp. 42:1–42:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SoCG.2016.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


42:2 Crossing Number is Hard for Kernelization

that a (decidable) problem A parameterized by an integer k is FPT if, and only if, every
instance of A can be in polynomial time reduced to an equivalent instance (the kernel) of
size bounded only by some function of k. This function of k, bounding the kernel size, may
in general be arbitrarily huge. Though, the really interesting case is when the kernel size
may be bounded by a polynomial function of k (a polynomial kernel).

The nature of the methods used in [11, 13], together with the recent great advances in
algorithmic graph minors theory, might suggest that the crossing number problem cr(G) ≤ k
should have a polynomial kernel in k, as many related FPT problems do. This question
was raised as open, e.g., at WorKer 2015 [unpublished]. Polynomial kernels for some special
crossing number problem instances were constructed before, e.g., in [1]. The general result is,
however, very unlikely to hold as our main result claims:

I Theorem 2. Let G be an almost-planar graph, i.e., G having an edge e ∈ E(G) such that
G \ e is planar. Let k ≥ 1 be an integer. The crossing number problem, asking if cr(G) ≤ k
while parameterized by k, does not admit a polynomial kernel unless NP⊆ coNP/poly.

In order to prove Theorem 2, we use the technique of cross-composition [2]. While its
formal description is postponed till Section 3, here we very informally outline the underlying
idea of cross-composition. Imagine we have an NP-hard language L such that we can
“or-cross-compose” an arbitrary collection of instances x1, x2, . . . , xt of L into the crossing
number problem cr(G0) ≤ k0 for suitable G0 and k0 efficiently depending on x1, x2, . . . , xt.
By the words “or-cross-compose” we mean that cr(G0) ≤ k0 holds if and only if xi ∈ L for
some 1 ≤ i ≤ t (informally, x1 ∈ L or x2 ∈ L or . . . ). Now assume we could always reduce a
crossing number instance 〈G, k〉 into an equivalent instance of size p(k) where p is a polynomial.
Then, for the instance 〈G0, k0〉 and suitable t such that p(k0) << t ≈ |G0|<< 2|xi|, such a
reduction effectively means that we should somehow decide many of the t instances xi ∈ L
in time polynomial in |G0| (which is << 2|xi|). The latter sounds highly unlikely [9] in the
complexity theory.

The task is to find a suitable NP-hard language L for the aforementioned construction.
While the ordinary crossing number problem is not suitable for cross-composition (roughly,
since the crossing numbers of disjoint instances sum up together), a helping hand is given by
the concept of the tile crossing number [17], defined in detail in Section 2.

Informally, a tile is a graph T with two disjoint sequences of vertices defining the left and
right walls of T . A tile drawing is a drawing of T inside a rectangle such that the walls of T
lie respectively on the left and right sides of this rectangle. A tile T is planar if T admits
a tile drawing without crossings, and T is twisted planar if T becomes a planar tile after
inverting (upside-down) one of the walls. As observed by Schaefer [20], the tile crossing
number problem is NP-hard by a trivial reduction from ordinary crossing number, but we
need much more. In order to embed the tile crossing number problem in a cross-composition
construction, which will be realized as a concatenation of the tile instances across their
respective walls, we shall use only twisted planar tiles. See Figure 1. The underlying idea
which makes the cross-composition work, is that only one of the tile instances is drawn
twisted in the concatenation and all the other contribute no crossings.

Hence the proof of Theorem 2 would be finished, modulo technical details, if we show
that the tile crossing number problem of twisted planar tiles is NP-hard. This particular
question seems to have been latently considered in the crossing number community for the
past several years, and it is still open nowadays to our best knowledge. We provide the
following affirmative answer by adapting a construction from the proof [6] of Theorem 1:
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Figure 1 Schematic concatenation of an odd number of twisted planar tiles; in fact, only one
(and an arbitrary one) of the tiles needs to be drawn twisted in this case.

I Theorem 3 (Corollary 12). Let T be a twisted planar tile and k ≥ 1 an integer. Then it is
NP-complete to decide whether there exists a tile drawing of T with at most k edge crossings.
Furthermore, the same holds if both the walls of T are of size two and there exists an edge
e ∈ E(T ) such that T \ e is a planar tile.

Paper organization. We provide the necessary formal definitions of the aforementioned
concepts from crossing numbers and parameterized complexity in Sections 2,3. Then we prove
Theorem 3 in Section 4, and provide technical claims useful for the next cross-composition
construction in Section 5. Finally, we summarize the paper and present some additional
ideas in Section 6.

2 Crossing numbers

We consider multigraphs by default, even though we could always subdivide parallel edges in
order to make the graphs simple. We follow basic terminology of topological graph theory,
see e.g. [15]. A drawing of a graph G in the plane is such that, the vertices of G are distinct
points and the edges are simple curves joining their endvertices. It is required that no edge
passes through a vertex, and no three edges cross in a common point.

I Definition 4 (crossing number). The crossing number cr(G) of a graph G is the minimum
number of crossing points of edges in a drawing of G in the plane.

Hence, a graph G is planar if and only if cr(G) = 0. Note that the crossing number is
invariant under subdividing edges of G.

A useful concept in crossing numbers research are tiles. They were used already by Kochol
[14] and Richter–Thomassen [19], although they were formalized only later in the work of
Pinnontoan and Richter [17, 18]. So far, primary use of the tile concept in crossing numbers
research concerned study of so called crossing-critical graphs, as can be seen also in recent
papers such as [3, 4]. Here we will use tiles in a rather different way. We briefly sketch the
necessary terms as follows.

A tile is a triple T = (G,λ, ρ) where λ, ρ ∈ V (G)∗ are two disjoint sequences of distinct
vertices of G, called the left and right wall of T , respectively. A tile drawing of T is a drawing
of the underlying graph G in the unit square such that the vertices of λ occur in this order
on the left side of the square and those of ρ in this order on the right side of it. The tile
crossing number tcr(T ) of a tile T is the minimum number of crossing points of edges over
all tile drawings of T . The right-inverted tile T l is the tile (G,λ, ρ̄) and the left-inverted tile
lT is (G, λ̄, ρ), where λ̄ and ρ̄ denote the inverted sequences of λ, ρ.

SoCG 2016



42:4 Crossing Number is Hard for Kernelization

For simplicity, in this brief exposition, we shall assume that all tiles involved in one
construction satisfy |λ| = |ρ| = w for suitable w ≥ 2 (though, a more general treatment is
obviously possible). The join of two tiles T = (G,λ, ρ) and T ′ = (G′, λ′, ρ′) is defined as
the tile T ⊗ T ′ := (G′′, λ, ρ′), where G′′ is the graph obtained from the disjoint union of G
and G′, by identifying ρ(i) with λ′(i) for i = 1, . . . , w. Since the operation ⊗ is associative,
we can safely define the join of a sequence of tiles T = (T1, T2, . . . , Tm) as the tile given by
⊗T = T1 ⊗ T2 ⊗ . . .⊗ Tm.

A tile T = (G,λ, ρ) is planar if tcr(T ) = 0, and T is twisted planar if tcr(T l) = 0 (which
is clearly equivalent to tcr(lT ) = 0 ). We briefly illustrate these definitions (also Figure 1):

I Example 5. Let T = (T1, T2, . . . , Tm) be a sequence of twisted planar tiles Ti, i = 1, . . . ,m.
Then tcr(⊗T ) = 0 if m is even, and tcr(⊗T ) ≤ mini∈{1,...,m} tcr(Ti) otherwise.

Finally, the following is a useful artifice in crossing numbers research. In a weighted
graph, each edge is assigned a positive number (the weight, or thickness of the edge). Now
the crossing number is defined as in the ordinary case, but a crossing point between edges
e1 and e2, say of weights t1 and t2, contributes t1 · t2 to the result. In the case of integer
weights, this extension can be easily seen equivalent to the unweighted setting as follows:

I Proposition 6 (folklore). Let G be an integer-weighted graph, F ⊆ E(G), and G+ be
constructed from G via replacing each edge e ∈ F of weight t with a bunch of t parallel edges
of weight 1. Then cr(G) = cr(G+). Moreover, if G is the graph of a tile T and T+ is the
corresponding tile based on G+, then tcr(T ) = tcr(T+).

3 Parameterized complexity and kernelization

Here we introduce the relevant concepts of parameterized complexity theory. For more
details, we refer to textbooks [7, 8]. Let Σ be a finite alphabet. A parameterized problem
over Σ is a language A ⊆ Σ∗ ×N. An instance of A is thus a pair 〈x, k〉 where x is the input
and k ≥ 0 an (integer) parameter. In our case, e.g., 〈G, k〉 is the crossing number instance
“cr(G) ≤ k”. A parameterized problem is fixed-parameter tractable (FPT) if every instance
〈x, k〉 can be solved in time f(k) · |x|c, where f is a computable function and c is a constant.

A hot research direction in the area of parameterized complexity of the past decade is
that of kernelization. A kernelization for a parameterized problem A is an algorithm that
takes an instance 〈x, k〉 of A and, in time polynomial in |x|+ k, maps 〈x, k〉 to an equivalent
instance 〈x′, k′〉 of A such that |x′|+k′ ≤ f(k) where f is a computable function. The output
〈x′, k′〉 is called the kernel. We say that A has a polynomial kernel if there is a kernelization
for A such that f is a polynomial. Every fixed-parameter tractable problem admits a kernel,
but not necessarily a polynomial kernel.

We now describe the basic or-cross-composition framework of [2]. An equivalence relation
∼ on Σ∗ is called a polynomial equivalence if, for any x, y ∈ Σ∗, we can decide in polynomial
time whether x ∼ y and, moreover, on any finite S ⊆ Σ∗ the relation ∼ defines a number of
equivalence classes which is polynomially bounded in the size of a largest element of S. For
our purpose, ∼ will group together the tile crossing number instances of the same objective
value k.

I Definition 7 (or-cross-composition). Let L ⊆ Σ∗ be a language, ∼ be a polynomial
equivalence relation on Σ∗, and let A ⊆ Σ∗ × N be a parameterized problem. An or-cross-
composition of L into A is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L such
that x1 ∼ x2 ∼ · · · ∼ xt;
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Figure 2 A diagonally separated tile and a possible drawing of the corresponding right-inverted
tile. The underlying graph of this tile contains two vertex-disjoint subgraphs G1, G2 such that
V (G1) ∪ V (G2) = V (G) \ {x2, y1}, and their drawings “overlay” each other on the right.

in time polynomial in |x1|+ . . . |xt| it outputs an instance 〈y0, k0〉 ∈ Σ∗ ×N such that k0
is polynomially bounded in maxi |xi|+ log t, and
〈y0, k0〉 ∈ A if and only if xi ∈ L for some 1 ≤ i ≤ t.

I Theorem 8 (Bodlaender, Jansen and Kratsch [2]). If an NP-hard language L has an or-
cross-composition into the parameterized problem A, then A does not admit a polynomial
kernel unless NP⊆ coNP/poly.

We remark in passing that the full claim of [2] is even stronger than stated Theorem 8, and
in particular it also excludes the existence of a so-called polynomial compression of A.

4 Twisted planar tiles

For the purpose of our proof, we are especially interested in the following kind of integer-
weighted planar tiles. See Figure 2 for an illustration.

I Definition 9 (diagonally separated tile). Consider an integer-weighted planar tile T =
(G,λ, ρ) where the walls are λ = (x1, x2) and ρ = (y1, y2) for some distinct x1, x2, y1, y2 ∈
V (G). We say that T is diagonally separated if we can write G = G1 ∪G2 ∪Q such that

G1, G2 are vertex-disjoint subgraphs of G such that V (G1) ∪ V (G2) = V (G) \ {x2, y1},
E(Q) = E(G) \ (E(G1) ∪ E(G2)), x1, y2 6∈ V (Q), and Q is a “thick” path from x2 to y1

having each edge of weight t ≥ w1 ·w2 + 1 where wi is the sum of weights of all the edges
of the subgraph Gi \ V (Q),
G is connected and both G1 \V (Q) and G2 \V (Q) are connected subgraphs, and no edge
of G1 ∪G2 has both ends in V (Q) ∪ {x1, y2},
x1 ∈ V (G1) \ V (Q) and y2 ∈ V (G2) \ V (Q), both the vertices x1, y2 are of degree one
in G and the two incident edges have weight 1.

Twisted diagonally separated planar tiles have the suitable “or-composability” property:

I Lemma 10. Let T = (T l1 , T
l
2 , . . . , T

l
m) be a sequence of tiles such that, for i = 1, . . . ,m,

Ti is a diagonally separated planar tile. Let U := ⊗T if m is odd, and U := (⊗T )l otherwise.
Then tcr(U) = mini∈{1,...,m} tcr(T li ) .

Proof. Let the underlying graph of Ti be G1
i ∪G2

i ∪Qi, as anticipated by Definition 9, and
let ti be the weight of E(Qi). Let (x1

i , x
2
i ), (y2

i , y
1
i ) be the left and right walls, respectively, of

T
l
i . By the definition of join ⊗, y1

i = x2
i+1 and hence Q := Q1 ∪ · · · ∪Qm is a path from x2

1

SoCG 2016
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Figure 3 The planar tile Ul where U for m = 5 is from the statement of Lemma 10.

to y1
m. Similarly, y2

i = x1
i+1, and so Hi := G2

i ∪G1
i+1 is a connected component of U \ V (Q)

for i = 1, . . . ,m− 1. See Figure 3. For simplicity, we let H0 := G1
1 and Hm := G2

m which are
also components of U \ V (Q).

It clearly holds tcr(U) ≤ mini∈{1,...,m} tcr(T li ). Furthermore, we claim that ti > tcr(T li )
and so ti > tcr(U) for each i = 1, . . . ,m. Since Ti is planar, each of G1

i , G
2
i has a plane

embedding in which the vertices adjacent to V (Q) ∪ {x1
i , y

2
i } lie on the outer face. Con-

sequently, there is a tile drawing of T li with each of G1
i , G

2
i plane and crossings only between

the edges of G1
i and of G2

i that are not incident to Q. See Figure 2 right. By standard
arguments, we may assume that no two edges cross more than once in this drawing and so
tcr(T li ) ≤ w1

i · w2
i ≤ ti − 1 where wj

i is the sum of weights of all the edges of Gj
i \ V (Q).

From ti > tcr(U) for i = 1, . . . ,m we get that no edge of Q is ever crossed in an optimal
tile drawing of U . We may hence properly define, in any optimal tile drawing of U and for
each subgraph Hi, whether whole Hi lies (is drawn) above or below Q. We aim to show that
there always exists i ∈ {1, . . . ,m} such that Hi−1, Hi are drawn on the same side of Q, either
both above or both below Q.

Assume the contrary. Then H0 is drawn below Q by the left wall (x1
1, x

2
1) of U . Next, H1

is drawn above, H2 below, . . . , and finally, Hm should be drawn above U if m is odd and
below U otherwise. That is exactly the opposite position to what is requested by the right
wall of U which is (y2

m, y
1
m) if m is odd and (y1

m, y
2
m) otherwise, a contradiction.

So, Hi−1 and Hi are drawn on the same side of Q for some i ∈ {1, . . . ,m}. First assume
that 1 < i < m. By supposed connectivity of Gi−1 there is a path P 1 ⊆ G2

i−1 from x1
i = y2

i−1
to an internal vertex of Qi−1, and similarly, there is a path P 2 ⊆ G1

i+1 from y2
i = x1

i+1 to
an internal vertex of Qi+1 by connectivity of Gi+1. Let D be the drawing obtained from a
considered optimal tile drawing of U restricted to Ti, by prolonging the single weight-1 edge
incident with x1

i along P 1 and the single edge incident with y2
i along P 2. Since whole Q is

uncrossed, the paths Qi−1, Qi+1 can play the role of the left and right wall of D, and hence
D is a valid tile drawing of Ti having no more crossings than tcr(U).

If i = 1 or i = m, then we directly use the left or the right wall of U in the previous
argument. Consequently, mini∈{1,...,m} tcr(T li ) ≤ tcr(U) and the proof is finished. J

The last step of this section is to prove that the tile crossing number problem is NP-hard
for twisted diagonally separated planar tiles. Due to their similarity to intermediate steps
in the paper [6], it is no surprise that we can easily derive hardness using the same means;
from NP-hardness of the so called anchored crossing number.

An anchored graph [6] is a triple (G,A, σ), where G is a graph, A ⊆ V (G) are the anchor
vertices and σ is a cyclic ordering (sequence) of A. An anchored drawing of (G,A, σ) is a
drawing of G in a closed disc ∆ such that the vertices of A are placed on the boundary of ∆
in the order specified by σ, and the rest of the drawing lies in the interior of D. The anchored
crossing number acr(G,A, σ), or shortly acr(G), is the minimum number of pairwise edge
crossings in an anchored drawing of (G,A, σ). A planar anchored graph is an anchored graph
that has an anchored drawing without crossings. Any subgraph H ⊆ G naturally defines the
corresponding anchored subgraph

(
H,A ∩ V (H), σ �V (H)

)
.
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x1

x2 y2

y1H1
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Figure 4 Constructing a twisted diagonally separated planar tile; proof of Corollary 12.

I Theorem 11 (Cabello and Mohar [6]1). Let G be an anchored graph that can be decomposed
into two vertex-disjoint connected planar anchored subgraphs. Let k ≥ 1 be an integer. Then
it is NP-complete to decide whether acr(G) ≤ k.

I Corollary 12. Let T be a diagonally separated planar tile, and k ≥ 1 be an integer. Then
it is NP-complete to decide whether tcr(T l) ≤ k.

Note that twisted diagonally separated planar tiles satisfy all the assumptions of Theorem 3.
In particular, if f denotes the edge incident to x1 in T then both T and T l \ f are planar
tiles. Since the edge weights in the reduction are polynomial, the unweighted version in
Theorem 3 follows immediately via Proposition 6.

Proof. Membership of the “tcr(T l) ≤ k” problem in NP is trivial by a folklore argument;
we may guess the at most k crossings of an optimal drawing, replace those by new vertices
and test planarity of the new tile. We provide the hardness reduction from Theorem 11. Let
(G,A, σ) be an anchored graph anticipated in Theorem 11. Then G is a disjoint union of
two connected components H1 and H2 where each of the corresponding anchored subgraphs
H1, H2 is a planar anchored graph. Let a = |σ| and σ′ be an ordinary (non-cyclic) sequence
obtained from σ by “opening it” at any position such that σ′(1) ∈ V (H1) and σ′(a) ∈ V (H2).

Let Q be a path on the vertex set (x2, s1, s2, . . . , sa, y
1) in this order and let x1, y2 be

isolated vertices. We construct a graph G0 from the disjoint union G ∪ Q ∪ {x1, y2} by
adding the following edges: the edges {x1, σ′(1)} and {y2, σ′(a)}, and the edges {si, σ

′(i)} for
i = 1, 2, . . . , a. All the edges incident with V (Q) get weight t = (|E(H1)|+1)·(|E(H2)|+1)+1,
while the remaining edges have weight 1. Observe (Figure 4) that T0 :=

(
G0, (x1, x2), (y1, y2)

)
is a diagonally separated planar tile by Definition 9.

We claim that acr(G) ≤ k if and only if tcr(T l0 ) ≤ k. In the forward direction, we take an
anchored drawing of (G,A, σ) achieving acr(G) crossings. This drawing immediately gives
(see also Figure 2 right) a tile drawing of T l0 in which “thick” Q and its incident edges, and
the vertices x1 and y2, are all drawn along the boundary of the anchored drawing without
additional crossings. So, indeed, tcr(T l0 ) ≤ acr(G) ≤ k.

In the backward direction, we observe that there is a valid tile drawing of T l0 in which
the only crossings are between the edges from E(H1) ∪ {{x1, σ′(1)}} and the edges from
E(H2)∪{{y2, σ′(a)}}. Consequently, tcr(T l0 ) ≤ (|E(H1)|+1) · (|E(H2)|+1) = t−1. Assume

1 Note that [6] in general deals with weighted crossing number, in the same way as we do e.g. in
Proposition 6. However, since their weights are always polynomial in the graph size, Theorem 11 holds
also for unweighted graphs.

SoCG 2016
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a1

a2 a3

a4

Figure 5 A sketch of the construction of G in the proof of Lemma 13; the cycle C0 is in bold
and the tiles of U are shaded gray.

a tile drawing D0 (recall, D0 is contained in a unit square Σ with its walls on the left and
right sides of Σ) of T l0 with tcr(T l0 ) crossings. By the previous, no “thick” edge incident
with Q is crossed in D0. Since each of the subgraphs H1 + {x1, σ′(1)} and H2 + {y2, σ′(a)}
is connected, and both x1, y2 are positioned to the same side of the ends x2, y1 of Q on the
boundary of Σ, both subgraphs H1 and H2 of G are drawn in the same region of Σ separated
by the drawing of Q. Contracting the uncrossed (“thick”) edges {si, σ

′(i)} for i = 1, 2, . . . , a
hence results in an anchored drawing of G with at most tcr(T l0 ) crossings. The proof is
finished. J

5 Cross-composing

We now prove the main result, Theorem 2. By Theorem 8 we know that it is enough
to construct an or-cross-composition, that is an algorithm satisfying the requirements of
Definition 7.

I Lemma 13. Let L be the language of instances 〈T l, k〉 where T is a diagonally separated
planar tile and k an integer polynomially bounded in |T |, such that tcr(T l) ≤ k. Let an
equivalence relation ∼ be given as 〈T l1 , k1〉 ∼ 〈T l2 , k2〉 iff k1 = k2.

Then L admits an or-cross-composition, with respect to ∼, into the graph crossing number
problem “cr(G) ≤ k” parameterized by k. Moreover, this is true even if we restrict G to be
an almost-planar graph.

Proof. Assume we are given t equivalent instances 〈T li , k〉, i = 1, 2, . . . , t, of the tile crossing
number problem L; “tcr(T li ) ≤ k”. Each Ti is a diagonally separated planar tile. We construct
a weighted graph G as follows (see also Figure 5 and Lemma 10):

Let C0 be a cycle on four vertices a1, a2, a3, a4 in this cyclic order, and all edges of C0
having weight k + 1.
Let T = (T l1 , T

l
2 , . . . , T

l
t ). Let U := ⊗T if m is odd, and U := (⊗T )l otherwise.

G results from the union of C0 and U by identifying, in the prescribed order, the left wall
of U with (a1, a2) and the right wall of U with (a4, a3).

We show that cr(G) ≤ k iff tcr(U) ≤ k. In the backward direction, any tile drawing of U
with ` crossings gives a drawing of G with ` crossings simply by embedding C0 “around” the
tile U . Conversely, assume a drawing D of G with ` ≤ k crossings, and observe that no edge
of C0 (weighted k + 1) is crossed in D. Since G \ C0 is connected, it is drawn in one of the
two faces of C0 and this clearly gives a tile drawing of U with ` crossings.

Now, by Lemma 10, tcr(U) ≤ k iff there exists i ∈ {1, . . . , t} such that tcr(T li ) ≤ k,
as required by Definition 7. The construction of G is easily finished in polynomial time,
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and since the edge weights k + 1 in G are polynomially bounded, there is a polynomial
reduction to an unweighted crossing number instance by Proposition 6. It remains to verify
that G is almost-planar. Let e1 be the unique edge of T1 incident with a1 in G. Then
tcr(T l1 \ e1) = tcr(T1 \ e1) = 0 and hence cr(G \ e1) = 0. J

Theorem 2 follows from Corollary 12 and Lemma 13 via Theorem 8 (note that ∼ trivially
is a polynomial equivalence).

6 Conclusion

We have proved that the graph crossing number problem parameterized by the number of
crossings, which is known to be fixed parameter tractable, is highly unlikely to admit a
polynomial kernelization. The complexity of the crossing number problem has been commonly
studied under various additional restrictions on the input graph. Our negative result extends
even to the instances in which the input graph G is one edge away from planarity (i.e.,
almost-planar G).

On the other hand, the ordinary crossing number problem remains NP-hard for cubic
graphs and for the so-called minor crossing number [12], and for graphs with a prescribed
edge rotation system [16]. For a drawing of a graph, the rotation of a vertex is the clockwise
order of its incident edges (in a local neighbourhood). A rotation system is the list of rotations
of every vertex. As proved in [16], there is a polynomial equivalence between the problems of
computing the crossing number of cubic graphs and that of computing the crossing number
under prescribed rotation systems.

The construction we use to show hardness in the paper, produces instances which are
“very far” from having small vertex degrees or a fixed rotation system, and there does not
seem to be any easy modification for that. Nevertheless, we have an indication that the
following strengthening might also be true:

I Conjecture 14. Let G be a graph with a given rotation system. Let k ≥ 1 be an integer.
The problem of whether there is a drawing of G respecting the prescribed rotation system and
having at most k crossings, parameterized by k, does not admit a polynomial kernel unless
NP⊆ coNP/poly.

Consequently, the crossing number problem cr(G) ≤ k restricted to cubic graphs G, and
the analogous minor crossing number problem, do not admit a polynomial kernel w.r.t. k
unless NP⊆ coNP/poly.
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