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Abstract
A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair
of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a
O(n log2 n)-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally.
This improves on the O(n18)-time algorithm of Keating and Vince and generalizes recent work
by Brlek, Provençal, Fédou, and the second author.
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1 Introduction

The 18th of Hilbert’s 23 famous open problems posed in 1900 [20] concerned isohedral tilings
of polyhedra where every pair of copies in the tiling has a symmetry of the tiling that
maps one copy to the other (see Figure 1). Hilbert asked for an example of an anisohedral
polyhedron that admits a tiling, but no isohedral tilings.

Reinhardt [30] was the first to give an example of an anisohedral polyhedron. Along
with this example, Reinhardt also stated that a proof that no anisohedral polygons exist
was forthcoming, a claim thought to be supported by Hilbert [15]. In fact, Reinhardt
(and Hilbert?) were mistaken: no such proof is possible and Heesch provided the first
counterexample in 1935 [18] (see Figure 2).

In the 1963, Heesch and Kienzle [19] provided the first complete classification of isohedral
tilings. This classification was given as nine boundary criteria: conditions on a polygon’s
boundary that, if satisfied, imply an isohedral tiling and together form a necessary condition
for isohedral polygons. Each boundary criterion describes a factorization of the boundary
into a specific number of intervals with given properties, e.g., an interval is rotationally
symmetric or two intervals are translations of each other. Special cases of this classification
have been rediscovered since, including the criterion of Beauquier and Nivat [3] and Conway’s
criterion, attributed to John H. Conway by Gardner [11, 32] (see Figure 3).

While a complete classification of isohedral tilings exists, many problems in tiling classi-
fication and algorithmics remain open. For instance, complete classifications of pentagons
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50:2 A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

Figure 1 Isohedral (left) and anisohedral (right) tilings of a polyomino. There is no symmetry of
the right tiling mapping one colored tile to the other.

Figure 2 The anisohedral polygon of Heesch [18] and an anisohedral polyomino of Rhoads [31].
There is no symmetry of either tiling mapping one colored tile to the other.

that tile the plane were claimed as early as 1968 [23], but additional pentagons have been
discovered as recently as 2015 [26]. The existence of an algorithm for deciding if a polyomino
tiles the plane is a longstanding open problem [12, 13], as is the existence of a polygon that
tiles only without symmetry [34].

One of the most successful lines of work in tiling algorithmics was initiated by Wijshoff
and van Leeuwen [35], who considered tiling the plane using translated copies of a polyomino
(isohedrally or otherwise). They proved that deciding whether a polyomino admits such a
tiling is possible in polynomial time. Their algorithm was subsequently improved by Beauquier
and Nivat [3], who gave a simple boundary criterion for polyominoes that admit such a
tiling. Subsequent application of more advanced algorithmic techniques led to a sequence
of improved algorithms by Gambini and Vuillon [10], Provençal [29], Brlek, Provençal, and
Fédou [5], and the second author [36], who gave an optimal O(n)-time algorithm, where n is
the number of edges on the polyomino’s boundary.

The boundary criterion of Beauquier and Nivat matches one of the criteria of Heesch and
Kienzle, implying that this problem is a special case of deciding if a polyomino is isohedral.
The general problem of isohedrality was proved decidable in 1999 by Keating and Vince [22],
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Figure 3 Two of seven boundary criteria characterizations of isohedral tilings. These criteria
were given by Beauquier and Nivat [3] (top) and John H. Conway [11] (bottom). Precise definitions
are given in Sections 2.

who gave a matrix-based algorithm running in O(n18) time. Their algorithm does not make
use of boundary criteria, which we note yields a straightforward O(n6)-time algorithm.

Here we give a O(n log2 n)-time algorithm for deciding if a polyomino is isohedral. The
algorithm uses the original boundary characterization of Heesch and Kienzle [19] to decompose
the problem into seven subproblems, each of recognizing whether a polyomino’s boundary
admits a factorization with a specific form. Structural and algorithmic results on a variety of
word problems are used, extending the approach of [36] to factorizations of six additional
forms. The algorithm also finds a witness tiling and is easily extended to other classes of
lattice shapes, e.g. polyhexes and polyiamonds.

2 Definitions

Although the main result of the paper concerns geometric tilings, the proof is entirely
described using words, also called strings. We use the term “word” for consistency with
terminology in previous work on tilings of polyominoes.

Polyomino and Tiling

A polyomino is a simply connected polygon whose edges are unit length and parallel to one
of two perpendicular lines. Let T = {T1, T2, . . . } be an infinite set of finite simply connected
closed sets of R2. Provided the elements of T have pairwise disjoint interiors and cover the
Euclidean plane, then T is a tiling and the elements of T are called tiles. Provided every
Ti ∈ T is congruent to a common shape T , then T is monohedral and T is the prototile of T.

SoCG 2016



50:4 A Quasilinear-Time Algorithm for Tiling the Plane Isohedrally with a Polyomino

Figure 4 Polyominoes with (circular) boundary words ur3d3lu2l2, u2r3dl2dl, and u3(rd)2ldl
(from left to right).

In this case, T is said to have a tiling. A monohedral tiling is also isohedral provided, for
every pair of elements Ti, Tj ∈ T, there exists a symmetry of T that maps Ti to Tj . Otherwise
the tiling is anisohedral.

Letter

A letter is a symbol x ∈ Σ = {u,d, l, r} representing the directions up, down, left and right.
The Θ◦-rotation of a letter x, written tΘ(x), is defined as the letter obtained by rotating x
counterclockwise by Θ◦, e.g., t270(u) = r. A special case of Θ◦-rotations is the complement
of a letter, written x and defined as x = t180(x).

Word and Boundary Word

A word is a sequence of letters and the length of a word W , denoted |W |, is the number
of letters in W . For an integer i ∈ {1, 2, . . . , |W |}, W [i] refers to the ith letter of W and
W [−i] refers to the ith from the last letter of W . The notation W i denotes the repetition of
a word i times. In this work two kinds of words are used: non-circular words and circular
words (defining the boundaries of polyominoes). A word is non-circular if it has a first letter,
and circular otherwise. For a circular word W , an arbitrary but fixed assignment of the
letter W [1] may be used, resulting in a non-circular shift of W . The boundary word of a
polyomino P , denoted B(P ), is the circular word of letters corresponding to the sequence of
directions traveled along cell edges during a clockwise traversal of the polyomino’s boundary
(see Figure 4).

Rotation and complement

The rotation (or complement) of a word W , written tΘ(W ) (or W ), is the word obtained
by replacing each letter in W with its rotation (or complement). The reverse of a word W ,
written W̃ , are the letters of W in reverse order. The backtrack of a word W is denoted Ŵ
and defined as Ŵ = W̃ .

Factor

A factor of W is a contiguous sequence X of letters in W , written X � W . For integers
1 ≤ i, j ≤ |W | with i ≤ j, W [i..j] denotes the factor of W from W [i] to W [j], inclusive. A
factor X starts or ends at W [i] if W [i] is the first or last letter of X, respectively. Two factors
X,Y �W may refer the same letters ofW or merely have the same letters in common. In the
former case, X and Y are equal, written X = Y , while in the latter, X and Y are congruent,
written X ≡ Y . For instance, if W = uuulruuu then W [1..3] ≡W [6..8]. A factorization of
W is a partition of W into consecutive factors F1 through Fk, written W = F1F2 . . . Fk.
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Prefix, suffix, and center

A factor X �W is a prefix if X starts at W [1], written X �pre W . Similarly, X �W is a
suffix if X ends at W [−1], written X �suff W . The factor X � W such that W = UXV ,
|U | = |V |, and |X| ∈ {1, 2} is the center of W . Similar definitions for words are defined
equivalently, e.g., a word is a prefix of another word provided it is congruent to a prefix
factor of that word.

Period, composite, and primitive

A word X is a period of W provided W is congruent to a prefix of Xk for some k ≥ 0
(introduced by [24]). Alternatively, X is a prefix of W and W [i] = W [i + |X|] for all
1 ≤ i ≤ |W | − |X|. A word X is composite provided there exists a subword Y such that
X = Y k for some k ≥ 2, and otherwise is primitive.

Θ-drome and gapped mirror.

A word X is a Θ-drome provided X = Y tΘ+180(Ỹ ), e.g., a palindrome is a 180-drome. Such
a factor is admissible provided W = XU with U [−1] 6= tΘ+180(U)[1].1

A pair of disjoint factors X,Y � W is a gapped mirror provided X ≡ Ŷ . Such a pair
X,Y is admissible provided W = XUY V with U [1] 6= U [−1], V [1] 6= V [−1].

3 Proof Overview

The remainder of the paper is dedicated to proving the following theorem:

I Theorem 1. Let P be a polyomino with |B(P )| = n. It can be decided in O(n log2 n) time
if P has an isohedral tiling (of the plane).

Here we survey some of the ideas involved in the proof. The proof starts with a list of the
boundary word factorization forms that together characterize the polyominoes capable of tiling
isohedrally. These are found in the bordered subregion2 of Table 10 of [19]3 excluding the two
types of isohedral tilings that use 60◦ and 120◦ rotations of the shape. The factorizations can
be cross-verified using the incidence and adjacency symbols of a more detailed classification
of isohedral tiling types of Grünbaum and Shephard [14], and correspond to the isohedral
types IH 1, 4, 28, 2, 3, 5, and 6 in this classification. The factorization forms are:

Translation: ABCÂB̂Ĉ.
Half-turn: W = ABCÂDE with B, C, D, E palindromes.
Quarter-turn: W = ABC with A a palindrome and B, C 90-dromes.
Type-1 reflection: W = ABfΘ(B)ÂCfΦ(C) for some Θ, Φ.
Type-2 reflection: W = ABCÂfΘ(C)fΘ(B).
Type-1 half-turn-reflection: W = ABCÂDfΘ(D) with B, C palindromes.
Type-2 half-turn-reflection: W = ABCDfΘ(B)fΦ(D) with A, C palindromes and Θ◦ −
Φ◦ = ±90◦.

1 In this work, several types of factors and pairs of factors have restricted “admissible” versions. Intuitively,
admissible versions are maximal in a natural sense for each type. For instance, a Θ-drome is admissible
if it is the longest Θ-drome with its center.

2 A translation of the caption of Table 10: “The strong border contains 9 major types, from which the
others can be thought of as emerging by shrinking lines or line pairs.”

3 Reproduced on page 326 of [33].
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The second author [36] gave a O(n)-time algorithm for deciding if a boundary word of
length n has a translation factorization. Section 4 gives a O(n log2 n)-time algorithm for
deciding if a boundary word of length n has a half-turn factorization. For the remaining
boundary word factorization forms, O(n logn)-time or faster algorithms also exist. Due to
space constraints, these algorithms are omitted. Brlek, Koskas, and Provençal [4] provide
a O(n)-time algorithm for deciding if a given circular word is the boundary word of a
polyomino, and we assume for the remainder of the paper that the input is guaranteed to be
the boundary word of a polyomino and thus simple. This assumption of simplicity is used to
prove that factors and pairs of factors in a factorization are admissible: maximal in a natural
sense for each factor (pair) type. E.g., for half-turn factorizations:
I Lemma 17 (restated). Let P be a polyomino and B(P ) = ABCÂDE with B,C,D,E

palindromes. Then the gapped mirror pair A, Â and palindromes B, C, D, E are admissible.
For various factors and factor pairs, this implies there are O(n) or O(n logn) candidate

factors for these elements of a factorization, and they can be computed in similar time.
Note that this alone is not sufficient to solve these problems in quasi-linear time. Without
additional structural results, attempting to combine a quasi-linear number of factors into
a factorization with one of the 6 forms is at least as hard as searching for cycles of fixed
length between 3 and 6 in a graph with n vertices and O(n) edges, only known to admit a
O(n1.67)-time algorithm [1]. Additional structural results must be used, such as the following
for half-turn factorizations:
I Lemma 7 (restated). The prefix palindrome factorization of a word W has the form
W = Xr1

1 Xr2
2 . . . Xrm

m Q with:
Every Xi primitive.
For all 3 ≤ i ≤ m,

∑i−2
j=1 |X

rj

j | ≤ |Xi| and thus m = O(log |W |).

Such results allow more efficient “batch processing” of factors to achieve quasi-linear
running time. It can also be seen by cursory examination that each algorithm returns
affirmatively only once witness factorization is found. Witness factorizations define the set
of boundary intervals shared by pairs of neighboring tiles in an isohedral tiling, thus the
algorithm can also return a witness isohedral tiling if desired.

4 Half-Turn Factorizations

IDefinition 2. A half-turn factorization of a boundary wordW has the formW = ABCÂDE

with B, C, D, E palindromes.

4.1 Prefix palindrome factorizations
I Definition 3. Let W be a word. A factorization W = F1F2 . . . Fn+1 is a prefix palindrome
factorization of W provided that the set of prefix palindromes of W is {F1F2 . . . Fi : 1 ≤ i ≤
n}.

I Lemma 4. Let W = PX with P , W palindromes and 0 < |P | < |W |. Then W has a
period of length |X|. Furthermore, if X is composite, then W has a prefix palindrome longer
than P .

Proof. Since W = PX and P , W are palindromes, W = W̃ = P̃X = X̃P̃ = X̃P . So P is
a prefix of X̃P and so X̃ is a period of P and of W = X̃P . Since X̃ is a period of W and
|X̃| < |W |, there exist words Y , Z such that X̃ = ZY , W = (ZY )pZ, and P = (ZY )p−1Z

for some p ≥ 1. So X = Y Z and since W is a palindrome, Y and Z are palindromes.
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If X is composite, then X = Gk for some k ≥ 2. So there exist words G1, G2 such that
G = G1G2, Y = (G1G2)iG1, Z = G2(G1G2)k−i−1. Since Y and Z are palindromes, G1 and
G2 are palindromes.

Now we construct a prefix palindrome of W , called Q, that is longer than P . Without
loss of generality, assume |G2| > 0. Then there are two possibilities for the values of |G2|
and |Z|:
1. |G2| < |Z| and we let Q = X̃pG2.
2. |G2| = |Z| and we let Q = PG2.

In the first case, Q = X̃pG2 = (G1G2)pG2 = (G2G1)kpG2, so Q is a palindrome. Also,
W = (ZY )pZ and G2 is a prefix of Z, so Q is a prefix of W and |P | = |W | − |X| =
|W | − |ZY | = p|ZY | − |Y | < |Q| = p|ZY |+ |G2| < p|ZY |+ |Z| = |W |.

In the second case, Y = Gi
2 and Z = Gk−i

2 . So Q = PG2 = (ZY )p−1ZG2 =
Gkp−k

2 Gk−i
2 G2 = Gkp−i+1

2 and Q is a palindrome. Also, W = PX and G2 is a prefix
of X, so Q is a prefix of W and |P | < |Q| = |P |+ |G2| < |P |+ |X| = |W |. J

The following is a well-known result; see Chapter 2 of Crochemore and Rytter [6].

I Lemma 5 (Fine and Wilf’s theorem [8]). Let W be a word with periods of length p and q.
If p+ q ≤ |W |, then W also has a period of length gcd(p, q).

I Lemma 6. Let P1, P2, . . . , Pm be the set of prefix palindromes of a word with 0 < |P1| <
|P2| < · · · < |Pm|. Then for any 1 ≤ i ≤ m − 2, either |Pi+1| − |Pi| = |Pi+2| − |Pi+1| or
|Pi|+ |Pi+1| < |Pi+2|.

Proof. Let Pi+1 = PiXi and Pi+2 = PiXiXi+1.
Since there are no prefix palindromes of length between |Pi| and |Pi+1| or |Pi+1| and

|Pi+2|, Lemma 4 implies Xi and Xi+1 are primitive and Pi+1 and Pi+2 have periods of length
|Xi| and |Xi+1|, respectively. Since Pi+1 is a prefix of Pi+2, it also has a period of length
|Xi+1|.

The lemma permits |Xi| = |Xi+1|, so assume |Xi| 6= |Xi+1|. If |Xi+1| ≤ |Pi|, then
Pi+1 has periods of length |Xi| and |Xi+1| with |Xi+1|+ |Xi| ≤ |Pi+1|. Then by Lemma 5,
Pi+1 has a period of length gcd(|Xi|, |Xi+1|). This length must be at least |Xi| and |Xi+1|,
otherwise Xi or Xi+1 is not primitive. So |Xi| = |Xi+1|. Otherwise, |Xi+1| > |Pi| and so
|Pi|+ |Pi+1| < |Xi+1|+ |Pi+1| = |Pi+2|. J

The next lemma is a strengthening of similar prior results by Apostolico, Breslauer, and
Galil [2], I et al. [21], and Matsubara et al. [27].

I Lemma 7 (Prefix Palindrome Factorization Lemma). The prefix palindrome factorization of
a word W has the form W = Xr1

1 Xr2
2 . . . Xrm

m Q with:
Every Xi primitive.
For all 3 ≤ i ≤ m,

∑i−2
j=1 |X

rj

j | ≤ |Xi| and thus m = O(log |W |).

Proof. We give a constructive proof. Let P1, P2, . . . , Pn be the set of prefix palindromes of
W with |P1| < |P2| < · · · < |Pn|.

LetWi be the word such that Pi+1 = PiWi and let Q be the word such thatW = PnQ. So
W has a prefix palindrome factorization W1W2 . . .WnQ. By Lemma 4, every Wi is primitive.
Moreover, by Lemma 6 either |Wi| = |Wi+1| or |Pi| < |Wi+1| for every 1 ≤ i ≤ n− 2.

Suppose |Wi| = |Wi+1|. By Lemma 6, Pi and Pi+1 have a common period and thus
Wi = Wi+1. More generally, if |Wi| = |Wi+1| = · · · = |Wi+c|, then Wi = Wi+1 = · · · = Wi+c.
If |Pi| < |Wi+1|, then |Wi+1| > |Pi| =

∑i−1
j=1 |Wj |. So the factorization W1W2 . . .WnQ can

SoCG 2016
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be rewritten as Xr1
1 Xr2

2 . . . Xrm
m Q with the property that |Xi| ≥

∑i−2
j=1 |Xj |rj . So for all

i ≥ 4, 2|Xi−3| < |Xi| and thus m = O(log |W |). J

Such a factorization can be stored using O(log |W |) space by simply storing |Xi| and ri for
each i. Additional observations can be used prove that |W | prefix palindrome factorizations
of the suffixes of a word W can be computed in optimal time:

I Lemma 8. The prefix palindrome factorizations of all shifts of a circular word W can be
computed in O(|W | log |W |) total time.

Proof. Lemma 9 of [21] states that the prefix palindrome factorization of a non-circular
word xY can be computed in O(log |Y |) time given the factorization of Y . Thus the
factorizations of non-circular wordWW can be enumerated in O(|W | log |W |) time, beginning
with Y = W [−1]. Every shift of word W is a subword of the non-circular word WW , and
the computed factorizations can be trimmed in O(log |W |)-time per factorization to be the
factorizations of shifts of W . J

Identical results, including a suffix palindrome factorization lemma, clearly hold for suffix
palindromes as well.

4.2 Algorithm
The main idea is to iterate over all pairs of adjacent letters and guess the form of the
palindromes D and E in both directions from that location. Specifically, guess what repeated
factor Xri

i terminates them in their prefix and suffix palindrome factorizations. Then try
to complete the factorization using Lemma 16, which decides if it is possible to rewrite a
given portion of the boundary as LbABCÂRc with B, C palindromes and b, c in some range.
The results leading up to Lemma 16 provide the necessary structure to achieve this goal. In
particular, Lemma 14 shows how to decompose a word into two palindromes, and Lemmas 9
through 11 yield fast detection of a factorization of the form BCRk with B, C palindromes.

I Lemma 9. Let W be a word with subwords L, R such that W = LRr and R 6�suff L.
Let P1, P2 be palindromes such that W = P1P2R

k with |L| ≤ |P1|. Then there exists a
palindrome P ′2 and integer k′ such that W = P1P

′
2R

k′ with |P ′2| < |R|.

Proof. Since |L| ≤ |P1|, P2 is a a suffix of Ri for some minimal i. If i ≤ 1, then either
|P2| = |R| (and |P ′2| = 0, k′ = k + 1) or |P2| < |R| and the claim is satisfied. If i ≥ 2, then
there exist words Y , Z with |Y | > 0 such that R = Y Z and P2 = Z(Y Z)i−1.

Let P ′2 = Z and k′ = i− 1 + k. So W = P1P2R
k = P1P

′
2(Y P ′2)i−1Rk = P1P

′
2R

k′ . Since
|Y Z| = |Y P ′2| = |R| and |Y | > 0, it follows that |P ′2| < |R|. Since P2 = Z(Y Z)i−2Y Z,
Z = P ′2 is a palindrome. J

I Lemma 10 (Lemma C4 of [9]). If a word X1X2 = Y1Y2 = Z1Z2 with X2, Y1, Y2, Z1
palindromes. Then X1 and Z2 are palindromes.

I Lemma 11. Let R be a primitive word and let W = LRr. There is a set of integers H
with |H| = O(log |W |) such that W = P1P2R

k if and only if it does so with |LRh| ≤ |P1| ≤
|LRh+1| for some h ∈ H. Moreover, given |R| and the prefix palindrome factorization of W ,
H can be computed in O(log |W |) time.

Proof. We may assume |P2| < |R| by Lemma 9. Consider the prefix palindrome factorization
of W as described in Lemma 7. Any solution P1 ends with one of the repeating subwords Xi

of the factorization. There are three cases: |Xi| < |R|, |Xi| > |R|, and |Xi| = |R|.
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Case 1: |Xi| < |R|. We claim that if |Xi| < |R|, then Xri
i overlaps Rr in at most two

repetitions ofR (and there are at most three values of h). Assume, for the sake of contradiction,
that R2 is a subword of |Xri

i |. Then R2 is a word of length at least |Xi|+ |R| with periods
of length |Xi| and |R|. So by Lemma 5, R has a period of length gcd(|Xi|, |R|) ≤ |Xi| < |R|,
a contradiction.

Case 2: |Xi| > |R|. We claim that if |Xi| > |R|, then Xi cannot repeat in Rr (and there
are at most two values of h). Assume, for the sake of contradiction, that X2

i is a subword
of Rr. Then by Lemma 5, Xi has a period of length gcd(|Xi|, |R|) ≤ |R| < |Xi|. So by
Lemma 4, the factorization given was not a prefix palindrome factorization, a contradiction.

Case 3: |Xi| = |R|. We claim that if |Xi| = |R|, then h = 0 suffices. Suppose |LRh| ≤
|P1| ≤ |LRh+1| for some h ≥ 1. By Lemma 4, P1 has a period of length |Xi| = |R|. Let Y ,
Z be words such that Y Z is a period of P1 and |R| − |Z| = |P2|. So P1 = (Y Z)pY for some
p ≥ 1 and Y , Z are palindromes.

Since LRh+1 = (Y Z)pY P2 and |Y ZY P2| = 2|R|, Y Z = Y P2 = R. So LR = (Y Z)p−hY P2 =
P ′1P2, where P ′1 = (Y Z)p−hY and thus is a palindrome. So there exists a P ′1 with
|LR0| ≤ |P ′1| ≤ |LR1|.

Computing H. The value of h in case 3 is always 0. For case 1, use the values of h such
that Xri

i contains the last letter of LRh or LRh+1. For case 2, use the values of h such that
the prefix palindrome ending at the unique repetition of Xi has length between |LRh| and
|LRh+1|. J

I Lemma 12. Let R be a primitive word and let W = LRr. Assume that |R| and the prefix
and suffix palindrome factorizations of W are given. Then it can be decided in O(log |W |)
time if W = P1P2R

k with P1, P2 palindromes and |L| ≤ |P1|.

Proof. We may assume |P2| < |R| by Lemma 9. First, use Lemma 11 to compute a
O(log |W |)-sized candidate set of integers H such that a solution exists if and only if
LRh+1 = P1P2 with |LRh| ≤ |P1| ≤ |LRh+1 for some h ∈ H. By Lemma 10, it suffices to
check for such solutions with at least one of the following types of palindromes:

The longest prefix palindrome of LRh+1 with length at least |LRh|.
The longest suffix palindrome of LRh+1 with length less than |R|.

Compute the longest prefix palindromes of LRh+1 for all values of h in O(log |W |) total
time using a two-finger scan of (1) the prefix palindrome factorization of W and (2) the
values of h. Use a second two-finger scan of (1) these prefix palindromes and (2) the suffix
palindrome factorization of the last |R| letters of the suffix palindrome factorization of LRr

to search for a solution P1, P2.
The longest suffix palindrome of LRh+1 (with length less than R) is invariant for h

and can be computed in O(log |W |) time, using the last |R| letters of the suffix palindrome
factorization of LRr. Call the length of this palindrome λ. Use a scan of the prefix palindrome
factorization to determine if a prefix palindrome of W has length |LRh| − λ for some value
of h. J

Next, we develop a second result that is combined with the previous lemma to obtain
Lemma 16.

I Lemma 13. Let L and R be words such that L 6�pre R. Let Ai be the longest common
prefix of Ll−iR and a word U . Let k = l − d|A0|/|L|e. Then:
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For all i with 0 ≤ i ≤ k, Ai = A0 and |Ai| < |Ll−k|.
For all i with k + 2 ≤ i ≤ l, |Ai| − |Ll−i| = |Ak+2| − |Ll−(k+2)|.

Proof. Let k be the maximum k such that |Ak| < |Ll−k|. We show that this value of k has
the desired properties, including that k = l − d|A0|/|L|e.

Property 1. Let 0 ≤ i ≤ k. Since Ai is a prefix of Ll−iR and |Ai| < |Ll−i|, Ai is the longest
common prefix of Ll and U . This is true for all choices of Ai, and thus all Ai are equal.

Property 2. By definition, |Ak+1| ≥ |Ll−(k+1)| and so Ll−(k+1) is a prefix of U . Since
L 6�pre R, the length of Ak+2, the longest common prefix of Ll−(k+2)R and U , must be less
than |Ll−(k+1)|. So |Ak+2| < |Ll−(k+1)| and L is a period of Ak+2.

Let R1, R2 be words such that R = R1R2 and Ak+2 = Ll−(k+2)R1. Then |R1| < |L| and
so R1 is the longest common prefix of R and L.

So for all i ≥ k+2, the longest common prefix of Ll−iR and Ll−(k+1) is Ll−iR1. Moreover,
since |Ll−iR1| < |Ll−(k+1)| and Ll−(k+1) is a prefix of U , the longest common prefix of Ll−iR

and U is also Ll−iR1.

Property 3. Finally, we prove that k = l − d|A0|/|L|e. Since |A0| = |Ai| < |Ll−i| for all
0 ≤ i ≤ k, it follows that |A0| < |Ll−k| = |L|(l − k). Then by algebra, k < l − |A0|/|L|.

Since Ak+1 ≥ |Ll−(k+1)|, it must be that U has a prefix Ll−(k+1). So |A0| = |Ak| ≥
|Ll−(k−1)| = |L|(l−k−1). Then by algebra k+1 ≥ l−|A0|/|L|. So k < l−|A0|/|L| ≤ k+1. J

I Lemma 14. Let W be a word and l1, l2 integers. Assume the prefix and suffix palindrome
factorizations of W are given. Then it can be decided in O(log |W |) time if there exist
palindromes P1, P2 such that W = P1P2 with |P1| ≥ l1, |P2| ≥ l2.

Proof. By Lemma 10, such a pair of palindromes exist if and only if there exists such a pair
such that either P1 is the longest prefix palindrome of W with |P1| ≤ |W | − l2 or P2 is the
longest suffix palindrome of W with |P2| ≤ |W | − l1. Scan each factorization in O(log |W |)
time to find these specific palindromes, and then scan the opposite factorizations for a second
palindrome to complete W . J

The following result comes from a trivial modification of Theorem 9.1.1 of [17] to allow for
circular words, namely giving the concatenation of two copies of a corresponding non-circular
word as input, and returning ∞ if the output has length more than lcm(|X|, |Y |).

I Lemma 15 (Theorem 9.1.1 of [17]). Two circular words X, Y can be preprocessed in
O(|X|+ |Y |) time to support the following queries in O(1)-time: what is the longest common
factor of X and Y starting at X[i] and Y [j]?

I Lemma 16. Let W be a circular word. Let W = LlZ and W = Y Rr such that L 6�pre Z,
R 6�suff Y , and L, R are primitive. Assume that the prefix and suffix palindrome factorizations
of every shift of W are given. It can be decided in O((l+r) log |W |) time if there exist positive
integers b, c such that W = LbAP1P2ÂR

c with A, Â admissible and P1, P2 palindromes.

Proof. The approach is to iteratively search for a solution for each value of b, carrying out
the same algorithm on each value. Then performing an identical, symmetric iteration through
the values of c. First assume b is a fixed value and c is not. Let Ai be the longest word such
that LbAi and ÂiR

i are a prefix and suffix of W , respectively. Lemma 13 implies that there
exists an integer k such that:
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For all i with 0 ≤ i ≤ k, |LbAi| is fixed and |ÂiR
i| = |A0|+ |R|i.

For all i with k + 2 ≤ i ≤ l, |ÂiR
i| is fixed and |LbAi| = |Lb|+ |Ak+2| − |R|(i− (k + 2)).

k can be computed in O(1) time assuming a data structure allowing O(1) time longest
common prefix queries for suffixes of W and Ŵ is given.

In other words, k is an efficiently-computable integer that partitions the values of i into three
parts: one with a single value (i = k+1) and two others where either |LbAi| or |ÂiR

i| is fixed
and the other is a linear set. Handle the case of i = k+ 1 individually by using Lemma 14 to
check if the word between LbAk+1 and Âk+1R

k+1 has a factorization into two palindromes.
Next, check that all Ai, Âi except i = 0 are admissible by verifying Lb[−1] 6= Ri[1]. Also
handle i = 0 individually, including checking admissibility. Lemma 12 is used to handle the
remaining two cases in O(log |W |) time each.

Case 1: 0 ≤ i ≤ k. In this case, |LbAi| is fixed and |ÂiR
i| = |A0|+ |R|i. If k− 1 < 3, then

handle all three cases individually in O(log |W |) time using Lemma 14. Otherwise handle
only i = k similarly.

By Lemma 13, Ai = A0 for all 0 ≤ i ≤ k − 1 and |A0| < |Rr−k|. So Â0R
i for all 0 ≤ i ≤

k− 1 and Rr are suffixes of W . Also, for all i ≤ k− 1, |Â0R
i| ≤ |Â0R

k−1| ≤ |Â0R
k| − |R| ≤

|Rr|−|R|. So for some R′ with |R′| = |R|, {Â0R
i : 0 ≤ i ≤ k−1} = {(R′)iÂ0 : 0 ≤ i ≤ k−1}.

Let L′ be such that W = LbAiL
′(R′)kÂ0. Then a solution factorization exists if and only if

there exist palindromes P1P2 = L′(R′)k−i for some 0 ≤ i ≤ k − 1.
First, search for solutions with |P1| ≥ |L′|. We first prove that R′ is primitive, allowing

Lemma 12 to be invoked. Suppose, for the sake of contradiction, that R′ has a period of
length p with p < |R′|. So (R′)2 has periods of length |R′| and p such that |R′|+ p < |(R′)2|
and so by Lemma 5 has a period of length gcd(|R′|, p) < |R′|. Then since (R′)2 contains R
as a subword, R also has a period of length p and thus is not primitive, a contradiction.

For solutions with |P1| < |L′|, Lemma 10 implies that it suffices to check for solutions
with the longest possible P1 (longest possible P2 is handled when performing the symmetric
iteration over values of c). To do so, scan the prefix palindrome factorization starting at
L′[|P1|+ 1] for a palindrome of length |L′| − |P1|+ |(R′)k−i| with 0 ≤ i ≤ k − 1.

Case 2: k+2 ≤ i ≤ l. In this case, |ÂiR
i| is fixed and |LbAi| = |Lb|+|Ak+2|−|R|(i−(k+2)).

Then there exists a word R′ such that W = Lb(R̂)r−iArR
′ÂiR

i for all k + 2 ≤ i ≤ l. Let L′
be the suffix of R̂Ar of length |R|. Then W = LbAr(L′)r−(k+2)R′ÂrR

r. So there exists a
pair of palindromes P1, P2 with W = LbAiP1P2ÂiR

i for some k + 2 ≤ i ≤ l if and only if
(L′)r−iR′ = P1P2 for some k + 2 ≤ i ≤ l. This situation is identical to that encountered in
the previous case – handle in the same way.

Handling overlap. The description of the algorithm so far has ignored the possibility that
|LbAi| + |ÂiR

i| > |W |, i.e., that LbAi and ÂiR
i “overlap”. For the case of 0 ≤ i ≤ k,

this occurs when |LbA0| + |Â0R
i| > |W |. Restricting the values of i to satisfy 0 ≤ i ≤

min(k, b(|W | − b|L| − 2|A0|)/|R|c) ensures that W can be decomposed as claimed. For the
case of k + 2 ≤ i ≤ l, this occurs when |LbRr−iAr|+ |ÂrR

r| > |W |. Restricting the values
of i to satisfy max(d(2|Ar| + 2r|R| + b|L| − |W |)/|R|e, k + 2) ≤ i ≤ l ensures that W can
be decomposed as claimed. Check the individually handled cases, namely i = k, k + 1, for
overlap individually.

Running time. The running time of this algorithm is O((l + r) log |W |), since the amount
of time spent for each value of b and c is O(log |W |) to handle individual values of i and
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O(log |W |) to handle each large case by Lemma 12. However, this assumes a data structure
enabling O(1) time common prefix queries on W and Ŵ . Compute such a data structure in
O(|W |) time using Lemma 15. Since Ω(|W |) time must be spent to decide if a boundary
word has a half-turn factorization, such a computation has no additional asymptotic cost. J

I Lemma 17. Let P be a polyomino and B(P ) = ABCÂDE with B,C,D,E palindromes.
Then the gapped mirror pair A, Â and palindromes B, C, D, E are admissible.

Proof.

A, Â is admissible. It cannot be that |B| = |C| = 0, since then ABCÂ = AÂ is non-simple.
If BC[1] = BC[−1], then |B|, |C| > 0 and thus B[−1] = BC[1] = BC[−1] = C[1] and
BC is non-simple. So BC[1] 6= BC[−1] and by symmetry, DE[1] 6= DE[−1]. So A, Â are
admissible.

B, C, D, E are admissible. Consider the pairs of non-equal consecutive letters in W .
These pairs come from sets R = {lu,ur, rd,dl} and L = {ul, ld,dr, ru}, and Proposition 6
of [7] states that the number of pairs from R is four more than the number from L. Also,
any palindrome contains an equal number of consecutive letter pairs from L and R.

If |A| = 0, then W has factorization W = BCDE with the four consecutive-letter pairs
from R not contained in any factor, i.e., for each factor X ∈ {B,C,D,E}, W = XY with
Y [−1]X[1], X[−1]Y [1] ∈ R. Since X is a palindrome, X[−1]Y [1] = X[1]Y [1] ∈ R and so
Y [1] 6= Y [−1]. Thus X is admissible.

If |A| > 0, then |BC| > 0, since otherwise A[−1]Â[1] = A[−1]A[−1] is a subword
and W is non-simple. Without loss of generality, |B| > 0. If |C| = 0, then W = BY

with Y [1] = Â[1] = A[−1] 6= A[−1] = Y [−1] and B is admissible. If |C| > 0, then
C[1] = C[−1] 6= Â[1] = A[−1]. So W = BY with Y [−1] = A[−1] 6= C[1] = Y [1] and so B is
admissible. By symmetry, it is also the case that C, D and E are also admissible. J

I Theorem 18. Let P be a polyomino with |B(P )| = n. It can be decided in O(n log2 n)
time if B(P ) has a half-turn factorization.

Proof. First, compute the prefix palindrome factorizations of each shift of W by computing
and truncating the prefix palindrome factorizations of the |W | longest suffixes of W using
Lemma 8. Similarly compute the suffix palindrome factorization of every shift of W . By
Lemma 8, this takes O(|W | log |W |) total time.

Next, compute the admissible factors (including zero-length factors), i.e., palindromes
maximal about their center, by computing and truncating the maximal palindromes of WW

output by Manacher’s O(|W |)-time algorithm [25]. Each admissible factor F is contained in
a prefix palindrome factorization as Xr1

1 Xr2
2 . . . Xj

i with either 1 ≤ i ≤ m and 0 ≤ j < ri,
or i = m and j = rm if F is the longest prefix palindrome of the word. If j < ri, call Xri

i

the terminator of F , otherwise call Q1 the terminator of F . Either all or none of the prefix
palindromes with a given terminator are admissible. Similar definitions and observations
apply to suffix palindrome factorizations.

For each admissible factor W , mark the two terminators (one prefix, one suffix) of the
factor. Locating the prefix and suffix terminators for each of the 2|W | admissible factors
takes O(|W | log |W |) total time.

Without loss of generality, every solution half-turn factorization has |E| > 0. Search
for half-turn factorizations ABCÂDE by iterating over possible first letters of E. By
Lemma 17, only solutions with admissible D and E must be considered. This corresponds
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to a palindromes D and E starting and ending with a marked terminators Xrs
s and Xrp

p ,
respectively. For each such terminator pair Xrs

s , X
rp
p , use Lemma 16 with L = Xp, l = rp,

R = X̃s, r = rs to check for a partial factorization ABCÂ to complete the factorization along
with D and E with the marked terminator pair. By Lemma 7, Xs and Xp are primitive and
by definition of palindrome factorizations, l and r are maximal.

Checking for a partial factorization using Lemma 16, each pair Xrs
s , X

rp
p takes O((rs +

rp) log |W |) time, O(log |W |) time for each admissible factor involved. Moreover, each
admissible factor is involved in O(log |W |) pairs of terminators: O(log |W |) prefix (suffix)
terminators when E (D). So O(log2 |W |) total time is spent per admissible factor and in
total the the algorithm takes O(|W | log2 |W |) time. J

5 Conclusion

This work demonstrates that not just polynomial, but quasilinear-time algorithms exist for
deciding tiling properties of a polyomino. It remains to be seen if a linear-time algorithm
exists, or whether a super-linear lower bound for one of the factorization forms exists. The
slowest algorithm is for half-turn factorizations, so it seems natural to attack this special
case first.

I Open Problem 1. Can it be decided in o(n log2 n)-time if a polyomino P with |B(P )| = n

has a half-turn factorization?

I Open Problem 2. Can it be decided in O(n)-time if a polyomino P with |B(P )| = n has
an isohedral tiling of the plane?

For monohedral tilings containing only translations of the prototile, a polyomino has such
a tiling only if it has one that is also isohedral [3, 35]. Does this remain true for tilings using
other sets of transformations of the prototile? Modifying the anisohedral tile of Heesch [18]
(see [16]) proves that the answer is “no” for tilings with reflected tiles, while an example of
Rhoads [31] proves that the answer is “no” for tilings with 90◦ rotations of tiles. This leaves
one possibility open:

I Open Problem 3. Does there exist a polyomino P that has a tiling containing only
translations and 180◦ rotations of P and every such tiling is anisohedral?

As mentioned in Section 3, there are isohedral tiling types (characterized by boundary
factorizations) that cannot be realized by polyominoes due to angle restrictions. Moreover,
the boundary factorization forms here also apply to general polygons, under appropriate
definitions of “boundary word”. Extending the algorithms presented here to polygons, along
with developing algorithms for the remaining boundary factorizations is a natural goal.
However, significant challenge remains in efficiently converting a polygon’s boundary into a
word that can be treated with the approach used here.

I Open Problem 4. Can it be decided in O(n log2 n) time if a polygon with n vertices has
an isohedral tiling of the plane?

Observe that pairs of tiles in a tiling that can be mapped to each other via a symmetry
of the tiling induces a partition of the tiles. Define a tiling to be k-isohedral if the partition
has k parts, e.g., an isohedral tiling is 1-isohedral. Thus k-isohedral tilings are a natural
generalization of isohedral tilings that allow increasing complexity; specifically, they cannot
be characterized by a single boundary factorization. A natural generalization of the problem
considered here is as follows:
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I Open Problem 5. Can it be decided efficiently if a polyomino has a k-isohedral tiling?

An approach described by Joseph Myers [28] achieves a running time of approximately
nO(k2), though a precise analysis of the running time has not been performed. A fixed-
parameter tractable algorithm also may be possible. On the other hand, a proof of NP-
hardness is unlikely, since it implies, for each c ∈ N, the existence of prototiles whose only
tilings are k-isohedral for k ≥ c. Such tiles are only known to exist for c ≤ 10 [28].
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