
On Undefined and Meaningless in Lambda
Definability∗

Fer-Jan de Vries

Computer Science, University of Leicester, Leicester, UK
fdv1@le.ac.uk

Abstract
We distinguish between undefined terms as used in lambda definability of partial recursive func-
tions and meaningless terms as used in infinite lambda calculus for the infinitary terms models
that generalise the Böhm model. While there are uncountable many known sets of meaningless
terms, there are four known sets of undefined terms. Two of these four are sets of meaningless
terms.

In this paper we first present set of sufficient conditions for a set of lambda terms to serve
as set of undefined terms in lambda definability of partial functions. The four known sets of
undefined terms satisfy these conditions.

Next we locate the smallest set of meaningless terms satisfying these conditions. This set
sits very low in the lattice of all sets of meaningless terms. Any larger set of meaningless terms
than this smallest set is a set of undefined terms. Thus we find uncountably many new sets of
undefined terms.

As an unexpected bonus of our careful analysis of lambda definability we obtain a natural
modification, strict lambda-definability, which allows for a Barendregt style of proof in which the
representation of composition is truly the composition of representations.

1998 ACM Subject Classification F.4.1 [Mathematical Logic] lambda calculus and related sys-
tems

Keywords and phrases lambda calculus, lambda definability, partial recursive function, un-
defined term, meaningless term

Digital Object Identifier 10.4230/LIPIcs.FSCD.2016.18

1 Introduction

The intuition that not all lambda terms are equally significant from a computational point
of view is as old as lambda calculus itself. It is of particular interest that in lambda calculus,
unlike e.g. the notion of zero in arithmetic, the notion of insignificant term is not uniquely
determined. There are many different reasonable choices that one can make for a set of
unsignificant terms. Making a concrete choice is akin to choosing a semantics for the lambda
calculus.

The oldest, relatively understudied application of insignificant terms is made in the lambda
definability of partial recursive functions. In this area insignificant terms are traditionally
called undefined terms. The other more modern and better understood application is the
construction of infinitary term models of the lambda calculus. This construction generalises
the Böhm model. In the latter case the insignificant terms are called meaningless terms.

∗ Dedicated in friendship to Albert Visser on the occasion of his retirement.

© Fer-Jan de Vries;
licensed under Creative Commons License CC-BY

1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016).
Editors: Delia Kesner and Brigitte Pientka; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 On Undefined and Meaningless in Lambda Definability

There are four well-known sets of undefined terms used in lambda definability. In contrast
there are uncountably many sets of meaningless terms, that each give rise to their own model
of lambda calculus. As it happens only two of the four known sets of undefined terms are
also sets of meaningless terms. Hence it is a natural question to ask which of the uncountable
many other sets of meaningless terms can also play the role of set of undefined terms, so
that in the corresponding model the recursive functions can naturally be interpreted.

The proof technique of Statman’s theorem which, as Barendregt has shown, works
uniformly for each of the four known sets of undefined terms does not generalise to arbitrary
sets of meaningless terms, because in general sets of meaningless terms are not co-Visser-sets.
Instead we analyse the proof of lambda definability in Barendregt’s PhD thesis. With our
modern insight in sets of meaningless terms we can generalise and improve this old proof,
but we can also improve it.

Church and Kleene were the first to give lambda-representation of recursive functions.
In their representation the role of undefined terms is played by the terms without a finite
normal form. Barendregt criticises their representation and expresses the clear ideal that the
lambda-representation of recursive functions should preserve the way they are defined (this
wish is also known as Kreisel’s Superthesis). The Church-Kleene lambda-representation falls
short of this ideal: the representation of the composition of two recursive functions is not
the composition of their represenation. Barendregt then takes the rather revolutionary step
to replace their old notion of undefined term by the new concept of unsolvable term.1

This new notion of undefined term indeed allows for an improvement of the old proof.
But there is a surprise. Barendregts lambda-represenation of partial recursive functions falls
arguably short of his own ideal. He gives first a lambda-representation of the total recursive
functions and then a lambda representation of the partial recursive functions. In case of the
total functions he use the natural notion of composition of their representations. In case
of the partial recursive functions he defines composition in a slightly ad hoc way. He gets
around this definition by using a very clever “jamming” trick.

We observe in this paper that by using the novel concept of strict lambda definability we
can represent the partial recursive functions in such a way that their definition is completely
preserved, in line with Barendregt’s original "dream improvement" of the old proof by Church.
This reformulated proof is also more general: it now applies to any set of meaningless terms
satisfying one particular extra closure condition.

Ordered by inclusion the sets of meaningless terms form a lattice. The largest set of
meaningless terms that can be used to make a model of lambda calculus is the set of
unsolvables. The smallest such set is the set of rootactive terms2. The infinitary term models
constructed with these two sets of meaningless terms are the Böhm model and the Berarducci
model. In the Böhm model they are exactly the unsolvables that are equated with ⊥. In the
Berarducci model they are the rootactives that are equated with ⊥.

The smallest set of undefined terms that we can identify sits very low in this lattice of
sets of meaningless terms just above the the set of rootactives. This raises an open question:
whether the partial recursive functions can be interpreted in the Berarducci model of the

1 A closed lambda term M is solvable if MN1 . . . Nk = I for some sequence N1, . . . , Nk with k ≥ 0. An
open lambda term is called solvable if its closure is solvable. A lambda terms is called unsolvable if it is
not solvable.

2 A lambda termM is rootactive if any reduct ofM can further reduce to a redex. The classical rootactive
term is Ω. The unsolvable ΩI is not rootactive. Note that the definition of a rootactive terms allows for
free variables. The term EyE with E ≡ Θλxyz.zyx is a concrete example of a rootactive term with
free variable y.



F.-J. de Vries 18:3

lambda calculus in such a way that if a partial recursive function f is not defined on a natural
number n, then the interpretation of f(n) equals bottom.

2 Brief recap of 80 years of lambda definability

Lambda definability goes some 80 years back to the exciting, early days of lambda calculus
when, in the slipstream of Gödel’s incompleteness theorems, Church and his students Kleene
and Rosser were experimenting which functions could be represented in the lambda calculus,
Gödel and Herbrand defined the recursive functions and Turing tried to capture the intuitive
idea of “effective calculable” function with his machines. While Church was mainly using
the λI-calculus3 considers only in his papers, Turing realised that it is “naturally much
simpler” [22] to use λK-calculus, what we now call the lambda calculus.

That recursive functions on natural numbers can be represented in lambda calculus is
due to Kleene [15]. The converse, that lambda-definable functions on natural numbers are
recursive, is due to Kleene and Church independently [15, 9]. These results are important as
on one hand they led Church to his Church Thesis and on the other hand they demonstrate
that lambda calculus is a paradigmatic programming language [3].

The first definition of lambda definability dealt with total functions, as partial recursive
functions had not yet been defined.

I Definition 1. A total function f : N→ N is λ-definable if for some lambda term F and
each n ∈ N we have Fpnq = pf(n)q.

I Theorem 2. A total function f : N→ N is λ-definable if and only if f is recursive.

When Kleene [16] defined next the partial recursive functions, Theorem 2 was immediately
extended to partial recursive functions [10, 11]. This required an extra clause to Definition 1
to explain what happens when the function that one wants to represent happens to be
undefined on some input.

I Definition 3. Let U be a set of lambda terms. A partial function φ : N 7→ N is λU -definable
if for some lambda term F and each n ∈ N:

Fpnq = pφ(n)q if φ(n) ↓
Fpnq ∈ U else.

2.1 Kleene-Church: undefined is having no normal form
Church [10, p. 29] used the set NF lambda terms without normal form for U to represent
“undefined”.

I Theorem 4 (Kleene). A partial function φ : N 7→ N is λNF -definable if and only if φ is
partial recursive.

In his thesis [1, 3] Barendregt points out that there is a practical problem with composition
in the approach of Church and Kleene. If f, g are λNF -defined by F,G, then f ◦ g can not
be λNF -defined by λx.F (Gx), which would be the natural way to λNF -define F ◦ G. As
example, Barendregt takes for f the constant zero function represented by λx.p0q and for g
the function that is everywhere undefined represented by Ω. Then f ◦ g is totally undefined,

3 The λI-calculus allows terms of the form λx.M only if x is a free variable of M .

FSCD 2016



18:4 On Undefined and Meaningless in Lambda Definability

but F ◦G ≡ λx.F (Gx) = λx.p0q. The conclusion is then that “it is not immediate that the
λNF -definable functions are closed under composition.” Kleene and Church avoid this issue
by using Kleene’s normal form theorem. They represent only the normal form of a partial
recursive function. Barendregt emphasises that their representation of the partial recursive
functions is not intensional, as it does not preserve their definition trees.

2.2 Barendregt: undefined is being unsolvable
Barendregt’s solution is to take for U the set HNF4 of unsolvables.

I Theorem 5 (Barendregt). A partial function φ : N 7→ N is λHNF -definable if and only if
φ is partial recursive.

Barendregt uses Lercher’s jamming factor trick and represents the composition f ◦ g by
λx.GxKIIF (Gx). This clever trick works because if g(n) is undefined then Gpnq is unsolvable
and hence also Fpnq ≡ GpnqKIIF (Gpnq) is unsolvable, and if g(n) is defined then it can
be shown that GpnqKII→→β I in which case Fpnq = F (Gpnq). Cf. [3, Lemma 8.4.5].

Barendregt felt strongly about this change from NF to HNF in the definition of lambda
definability. In his thesis he writes on page xvi: ”This is not to be regarded as a mere
technical improvement but simply central to the objects which are here intended.” And in [4]
he explains in detail:

It has been stressed by Kreisel [18, p. 177-178] that in connection with the so-called
“superthesis”, Church’s thesis expresses less than we know. When we say that all
mechanically computable number theoretic functions are λ-definable or recursive, we
merely speak of the results of computations, of their graphs. But we have in mind
that λ-terms correspond to our procedures for defining these functions. As far as the
µ-recursive functions and the λ-definable functions are concerned, strong definability
proves the equivalence not only in the sense of Church but also of the super thesis:
definitions are preserved. [4]

Given these strong arguments against the traditional Kleene-Church proof of λNF -
definability, it is a bit unexpected that composition is not defined in the natural way as
λx.F (Gx) in λHNF -definability. Barendregt’s solution to deal with composition is arguably
almost but not quite in the spirit of the superthesis.

In Section 3 we will show that Lercher’s jamming factor trick is not needed for partial
functions either, and that composition can indeed be represented compositionally.

2.3 Statman: undefined is belonging to a co-Visser set
Statman takes a general approach: any non-empty co-Visser set of closed lambda terms can
be used as set U of undefined terms in λU -definability of the partial recursive functions.

I Definition 6. A set U ⊆ Λ0 is a co-Visser set, if:
1. Λ0\U is recursive enumerable,
2. Λ0\U is closed under finite β-reduction.

I Theorem 7 (Statman, 1990). Let A be a non-empty co-Visser set. Then any partial
recursive function is λA-definable.

4 Wadsworth has shown that a term is unsolvable iff it has no head normal form. Hence our notation
HN F for the set of unsolvables.



F.-J. de Vries 18:5

Barendregt [5] has given a detailed proof of Statman’s Theorem and Visser’s Anti Diagonal-
isation Theorem [24, Thm. 4.4] on which Statman’s Theorem is based. This way of proving
lambda definability has two consequences. First, Statman’s theorem is formulated for closed
terms. This is because the proof makes use of a self-interpreter, i.e. a lambda term E such
that for M ∈ Λ0 one has

Ep#Mq→→β M,

where # : Λ→ Nat is some effective bijection that assigns to a lambda term a unique natural
number. This equation cannot hold when M contains free variables [3, Definition 8.5.1].
Secondly, the Statman proof does not give support for Kreisel’s superthesis. Visser’s theorem
uses Ershov’s precomplete numerations, so that the proof of Visser’s theorem is ’“coordinate
free” i.e. the proof uses (nearly) no specific properties of lambda calculus’ in the words of [24].

Barendregt lists four sets that satisfy the condition of Statman’s theorem: (the subsets of
closed terms of) NF, HNF, the set WHNF of terms without a weak head normal form5 and
the set E of easy6 terms. Two of these, HNF,WHNF are sets of meaningless terms. We will
see in Section 6 that there are many other sets of meaningless terms which don’t satisfy the
Statman condition and yet can be used as set of undefined terms.

3 Strict λU-definability

In this section we search for general sufficient conditions for a set U of lambda terms so that
we can generalise Barendregt’s proof of lambda definability. We follow the notation of [3] for
the standard Church coding:

F ≡ λxy.y T ≡ λxy.x

and ≡ λxy.xyx if B then M else N ≡ BMN

[M,N ] ≡ λz.zMN Zero ≡ λx.xT
S+ ≡ λx.[T, x] P− ≡ λx.[F, x]
K ≡ λxy.x I ≡ λx.x

I Definition 8 (Turing’s fixed point combinator [23]). We define:

Θ ≡ (λxy(y(xxy))λxy(y(xxy).

I Definition 9 (Barendregt numerals [2]). We define p q : N→ Λ by induction:

p0q ≡ I
pn+ 1q ≡ [F, pnq]

Let us first follow [3] and define the class of partial recursive functions as the least class
of partial numeric functions which contains the total recursive functions and is closed under
composition and minimalisation.

Suppose our candidate set of undefined terms is U . We will inspect Barendregt’s proof to
see what requirements we have to make on U .

5 A lambda term has a weak head normal form if it can reduce to either an abstraction or a term of the
form xM1 . . .Mn.

6 A lambda term is easy if it can consistently be equated to any other lambda term.

FSCD 2016



18:6 On Undefined and Meaningless in Lambda Definability

3.1 Composition
Let F,G be the representations of the partial numeric functions f, g : N→ N. The natural
way to represent composition is

(F ◦G) ≡ (λx.F (Gx)),

as in the lambda definability proof of the total recursive functions in [3]. This works all right
in case g is well-defined on n and f is defined on g(n), because then

pf ◦ gqpnq ≡ (F ◦G)pnq→→β F (Gpnq) ≡ Fpg(n)q ≡ pf(g(n))q.

If g(n) is undefined, then Gpnq should reduce to some U ∈ U . With the notion of λU
definability we cannot infer from F (Gpnq) →→β FU that FU ∈ U . Barendregt’s jamming
trick argument can be repeated, provided that the set U of undefined terms has the property:
if U ∈ U then UM ∈ U for any M ∈ Λ. In particular the set of unsolvables has this property.

However, the jamming trick and the previous condition on U is not needed with the
following “stricter” definition of lambda definability:

I Definition 10. Let U be a set of lambda terms. A partial function φ : Np 7→ N is strictly
λU -definable if for some lambda term F and each ~n ∈ Np
1. Fp~nq→→ pmq if φ(~n) = m,
2. Fp~nq ∈ U if φ(~n) ↑,
3. F ~N ∈ U for all ~N ∈ Λp with at least one Ni ∈ U .

This new strictness clause does the trick for proving that the representation of composition
is the composition of the representations:

I Lemma 11. The strictly λU -definable partial functions are closed under composition.

Proof. To keep the notation simple we consider without loss of generality unary numeric
functions. Let F,G be the strict representations of the partial numeric functions f, g. Then
for U ∈ U we have GU ∈ U and hence also

(F ◦G)U ≡ (λx.F (Gx))U → F (GU) ∈ U .

For n ∈ N we have either g(n) ↓ or g(n) ↑. If the former than

(F ◦G)pnq ≡ (λx.F (Gx))pnq→ F (Gpnq)→→ Fpg(n)q→→ pf(g(n))q.

If the latter, then we have that Gpnq →→β U for some U ∈ U and therefore by the new
strictness clause we get

(F ◦G)pnq ≡ (λx.F (Gx))pnq→ F (Gpnq)→→ FU ∈ U . J

3.2 Minimalisation
In [3] a lambda term P is called a predicate if Ppnq reduces to either T or F for all n ∈ N.
We will use in this section strict predicates that satisfy the extra property that PU ∈ U
whenever U ∈ U for some fixed set U of undefined terms.

In the proof of [3, Prop. 8.4.10] we find this definition of a lambda term:

HP ≡ Θ(λhx.if Px then x else h(S+x))



F.-J. de Vries 18:7

where P is a predicate, together with the following reduction

HP pnq→→β if Ppnq then pnq else HP pn+ 1q.

Hence, this finite term HP can reduce with an infinite reduction to the infinite expression

if Pp0q then p0q else if Pp1q then p1q else if Pp2q then p2q else . . .

Recall that minimalisation is the construction of a new partial function

µm[χ(~n,m) = 0] : Np → N

from a given partial function χ : Np+1 → N. The new function calculates for given ~n the
least m such that χ(~n,m) = 0, if there is such an m and is undefined otherwise.

Suppose χ is λU -defined by G. We will now represent µm[χ(~n,m) = 0] by the lambda
term λ~n.((λp.Hpp0q) λm.Zero(G~nm)). we can safely say that this representation preserves
the definition of minimalisation. After all, instead of the notation µm[χ(~n,m) = 0] one could
just as well have opted for µ[λm.χ(~n,m) = 0] instead.

In [3] we find the following proposition:

I Proposition 12 ([3, Prop. 8.4.10]). Let P be such that for all n ∈ N one has Ppnq→→ F.
Then:
1. µP has no normal form,
2. µP is unsolvable.

Since we want to generalise from the set of unsolvables to other sets of undefined terms,
we can not use the previous proposition. However, we can reuse its proof, which actually
shows that µP is rootactive.7

This leads us to a more general proposition:

I Proposition 13. Let P be such that for all n ∈ N we have Ppnq →→ F. ThenµP is
rootactive.

Proof. Consider the following reduction from [3] that we reproduce here with slightly more
detail:

µP ≡ HP p0q
→→ if Pp0q then p0q else HP p1q
→→ if F then p0q else HP p1q
≡ Fp0q(HP p1q)
≡ (λxy.y)p0q(HP p1q)
→ (λy.y)(HP p1q)
→0 HP p1q
→→ if F then p1q else HP p2q
→→ λy.y(HP p2q)
→0 HP p2q
→→ . . .

In all segments HP pnq →→ HP pn+ 1q at least one reduction step takes place at the root
(the step →0). Hence using the terminology of [13] the infinite reduction starting from µP

7 It is well known that the set of rootactives is a proper subset of the set of unsolvables. E.g. λx.Ω, λx.Ωx
and ΘK are unsolvables that are not rootactive.

FSCD 2016



18:8 On Undefined and Meaningless in Lambda Definability

is hypercollapsing.8 Hence by [13, Theorem 12.8.3] we obtain that the initial term µP is
rootactive. J

I Lemma 14. Let U be a set of lambda terms such that U contains all rootactive terms and
U ∈ U implies UTpnqM ∈ U , for any M ∈ Λ. The strictly λU -definable partial functions
are closed under minimalisation.

Proof. Let U be a set of terms such that U contains all rootactive terms and U ∈ U implies
UTpnqM ∈ U . Let φ(~n) ≡ µm[χ(~n,m) = 0], where χ is total and λU -definable by, say, G.
Then we define:

F ≡ λ~x.µ[λy.Zero(G~xy)].

If φ(~n) ↓, then χ(~n,m) = 0 for some m ∈ N. Then by [3, Lemma 6.3.9(ii)] we get

Fp~nq = pφ(~n)q.

And if φ(~n) ↑, then χ(~n,m) 6= 0 and so Zero(G~nm) →→β F for all m ∈ N. Hence by
Proposition 13 we see that

Fp~nq→→β µ[λy.Zero(G~ny)]

is rootactive. Finally, consider an ~N ∈ Λ with at least one Ni ∈ U . Because G is strict, this
implies the existence of a U ∈ U such that G ~Np0q→→β U . We can now make the following
reduction:

F ~N →→β µ[λy.Zero(G ~Ny)]
→→β HP p0q
→→β if Pp0q then p0q else HP p1q
→→β if Zero(G ~Np0q) then p0q else HP p1q
→→β if Zero U then p0q else HP p1q
≡ Zero U p0q (HP p1q)
≡ (λx.xT)Up0q(HP p1q)
→→β UTp0q(HP p1q)

where P stands for λy.Zero(G ~Ny). The last term UTp0q(HP p1q) is undefined because of
our assumption on U .

Concluding, we have shown that φ(~n) is strictly λU -definable by F . J

3.3 Total recursive functions
After composition and minimalisation we will now look at a strict encoding of the total
recursive functions. This presents another obstacle: the usual representation of a total
recursive function is not strict. Consider for instance the constant 0 function represented by
Z ≡ λx.p0q in [3]. We get:

(λx.p0q)Ω ≡ (λx.I)Ω→ I.

8 A hypercollapsing reduction is a “quasi root reduction,” i.e. a reduction containing infinitely many root
reduction steps of the form (λx.M)N →0 M [x := N ].



F.-J. de Vries 18:9

Our previous analysis of minimalisation forced upon us the condition for U , that if U ∈ U
then also UTXY ∈ U for any X,Y ∈ Λ. Now, if I would be an element of U , then for any
M ∈ Λ we would get:

ITMM ≡ IKMM →β KMM →β M ∈ U .

This can not be the case, as the numerals are not supposed to be undefined.
There is, however, a strict way of representing the constant zero function. Consider the

following infinite expression:

λx.if x = p0q then p0q else if x = p1q then p0q else if x = p2q then p0q else . . .

in which we use x = pmq as shorthand for Zero(P−mpxq). Clearly, this expression will
reduce to p0q whenever x is a numeral pnq. The above infinite expression is of the simple
form

λx.if x = p0q then X else Y for some possibly infinite expressions X,Y.

If we provide the previous term with input U ∈ U , we get:

if U = p0q then X else Y ′ →→β λx.if Zero U then X else Y
→→β Zero UXY

≡ (λx.xT)UXY
→→β UTXY

We find that expression λx.if x = p0q then X else Y is strict for those sets U that
satisfy the same property that we needed in Lemma 14, namely that U ∈ U must imply
UTp0qM ∈ U for any M ∈ Λ.

In general, where Barendregt would use F to represent a total unary function f , we
transform his F to a finite term which can reduce to an infinite representation for f :

λn.if n = p0q then Fp0q else if n = p1q then Fp1q else if n = p2q then Fp2q else . . ..

This representation is strict, with a similar argument. And for all input of the form pnq with
n ∈ N the expression reduces to Fpnq. Thanks to the fixed-point trickery of Turing [22]
there is a finite term that reduces to this this infinite expression:

L ≡ λf.Θ(λwmn.(Zero n)(fm)(w(P− n)(S+ m)))

If F is the Church-Barendregt encoding of a total unary numeric function f , we get:

LFp0qpnq →→ if Zeropnq then Fp0q else KFp1q(P−pnq)
→→β if Zero (P−pnq) then Fp1q else LFp2q(P−2pnq)
→→β . . .

→→β if Zero (P−npnq) then Fpnq else LFpn+ 1q(P−n+1pn)q
→→β if Zero p0q then Fpnq else LFpn+ 1q(P−n+1pn)q
→→β Fpnq

I Lemma 15. Let U be a set of lambda terms such that U ∈ U implies UXY Z ∈ U , for any
X,Y, Z ∈ Λ. Then the total unary recursive functions are strictly λU -definable.

Proof. If F is the Barendregt representation of the total unary recursive function f , then
we will represent f now by λx.LFp0qx. J

FSCD 2016



18:10 On Undefined and Meaningless in Lambda Definability

I Corollary 16. The function S+(n) = n + 1 is strictly λU -definable by λx.LS+p0qx and
the function Z(n) = 0 is strictly λU -definable by λx.LZx, for any set U of lambda terms
satisfying the condition U ∈ U implies UTXY ∈ U , for any X,Y ∈ Λ.

Next we want to show that p-ary projections functions Upi can be strictly λU -defined.
With this goal in mind, consider the case where f is a constant function λn.g and g is total
p-ary recursive function that can be λU -defined by some lambda term G. Then we represent
f by

λn.L(λm.G)p0qn

which reduces to the infinite term

λn.if n = p0q then G else if n = p1q then G else if n = p2q then G else . . ..

I Lemma 17. The functions Upi ≡ λx1 . . . xp.xi with 0 ≤ i ≤ p are strictly λU -definable,
for any set U of lambda terms satisfying the condition U ∈ U implies UTXY ∈ U , for any
X,Y ∈ Λ.

Proof Sketch. Note that Upi can be rewritten λ~x.Upp ~y, where ~y is obtained from the se-
quence of variables ~x by moving xi to the leftmost position. Next, note that Upp ≡
λx1.(λx2. . . . (λxp.xp)).

The recursive identity function λxp.xp is strictly λU -definable by Fp with

Fp ≡ λxp.LIp0qxp.

But then λxp−1xp.xp, that is the constant function λxp−1.(λxp.xp), can be represented by
Fp−1 with

Fp−1 ≡ λxp−1.L(λm.Fp)p0qxp−1.

We continue this process until we find that Upp can be represented by

F1 ≡ λx0.L(λm.F1)p0qx0. J

Together, the functions of this lemma and the previous corollary are called the initial
functions.

Summarising: in this section we found that, modulo the condition that U ∈ U implies
UTXY ∈ U for any X,Y ∈ Λ, all unary total recursive functions and all initial functions are
strictly λU -definable. But we left open whether all p-ary total recursive functions are strictly
λU -definable. Hence we can not yet conclude that all partial recursive functions are strictly
λU -definable. To obtain this conclusion we must first show closure under primitive recursion.

3.4 Primitive recursion
I Lemma 18. The strictly λU -definable partial functions are closed under primitive recursion,
for any set U of lambda terms satisfying the condition U ∈ U implies UTXY ∈ U , for any
X,Y ∈ Λ.

Proof. We can mimic the proof of [3, Lemma 6.3.7] replacing λ-definable by strictly λU -
definable. Since the representing term F given there is of the form if Zero x then X else Y ,
we get strictness. J



F.-J. de Vries 18:11

3.5 Undefined is satisfying certain conditions
We will show that the partial functions are strictly λU -definable for any U satisfying certain
conditions. The conditions we have seen so far are not yet enough.

I Lemma 19. If F λU -defines a p-ary partial function φ, then for all n ∈ Np,m ∈ N:
1. φ(~n) = m iff Fp~nq = pmq and
2. φ(~n) ↑ iff Fp~nq ∈ U ,
provided U satisfies the conditions:
1. M /∈ U , for any M such that M →→ pnq for some n ∈ N and
2. U is closed under reduction.

Proof. One direction is by definition for both items.
1. If Fp~nq = pmq then, because pmq /∈ U , φ(~n) ↓ and φ(~n) = m′. But then pmq = pm′q

and hence m = m′. This argument is exactly as in [3, Lemma 8.4.12], but we use that
pmq /∈ U , where Barendregt uses that pmq is solvable.

2. Next suppose Fp~nq = U ∈ U , then Fp~nq 6= pmq for all m ∈ N. Suppose Fp~nq = pmq
for some m ∈ N. Then U and pmq have no common reduct, because by the conditions
on U any reduct of U belongs to U , while the normal form pmq does not. Therefore
φ(~n) 6= m for all m ∈ N. Hence φ(~n) ↑. J

Let us now take the standard definition of partial recursive functions as the smallest class
containing the initial functions, and closed under primitive recursion and minimalisation.
This is equivalent to the definition used in [3] that we repeated in Section 3.

I Theorem 20. Let U be a set of lambda terms such that
1. M /∈ U , for any M such that M →→ pnq for some n ∈ N.
2. U is closed under reduction.
3. U contains all rootactive terms.
4. U ∈ U implies UTM1M2 ∈ U , for any M1,M2 ∈ Λ.
Then a partial function φ : Np 7→ N is strictly λU -definable if and only if φ is partial recursive.

Proof. By Corollary 16 and Lemmas 17, 11, 18 and 14, and conditions 3 and 4 on U it
follows that all partial recursive functions are λU -definable.

For the converse, assume φ is strictly λU -definable. Then by Lemma 19 and conditions 1
and 2 on U we get for all n,m ∈ N: φ(n) = m iff λβ ` Fpnq = pmq. As we can recursively
enumerate all conversions of the form Fpnq = pmq that can be derived in the classical
lambda calculus, it follows that the graph of φ is recursive enumerable as well. Hence φ is
partial recursive. J

4 Proposal for a definition of a set of undefined terms

In Theorem 20 we needed four conditions on U . Let us promote them to a definition.

I Definition 21. A set U of lambda terms is a set of undefined terms if it satisfies the
following conditions:
1. M /∈ U , for any M such that M →→ pnq for some n ∈ N.
2. U is closed under reduction.
3. U contains all rootactive terms.
4. U ∈ U implies UTM1,M2 ∈ U , for any M1,M2 ∈ Λ.

FSCD 2016



18:12 On Undefined and Meaningless in Lambda Definability

Theorem 20 implies that this collection of condition is sufficient to prove that a partial
function φ : N 7→ N is strictly λU -definable if and only if φ is partial recursive.

We leave it open whether this set of conditions is necessary. But we consider the above
set of conditions to be a reasonable first attempt at defining the concept of a set of undefined
terms. Apart from condition 4, perhaps, these conditions feel quite natural.

Let us now go back to the four sets of terms NF, HNF, WHNF and E that satisfied the
condition of Statman’s theorem. Note that condition 4 is implied by the condition (*) U ∈ U
implies UM ∈ U , for any M ∈ Λ. It is not difficult to see that NF, HNF and WHNF satisfy
all four conditions of Definition 21. In case of the set E of easy terms condition 3 and (*) are
well known. Hence condition 4 holds as well for E . To show condition 1 we need a lemma,
that likely belongs to folklore.

I Lemma 22. The set E of easy terms is a set of undefined terms in the sense of Definition 21.

Proof.
1. The numerals pnq are all βη-normal form. Hence by an application of Böhm’s theorem [3,

Corollary 10.4.3] they can not be easy.
2. This follows directly from the definition of easy term.
3. Condition 3 is shown in [6].
4. Condition (*) goes at least back to [12]. Hence condition 4 holds as well. J

5 Recap of definition of set of meaningless terms

Sets of meaningless terms were studied in the context of infinite lambda calculus. Adding
infinite terms and infinite reductions that converge to a limit to the finite lambda calculus
results is a calculus that is not confluent with respect to infinitary reduction. The construction
of the Böhm model hints at the solution. First we add a fresh symbol ⊥ to the syntax of
finite lambda calculus and consider the set Λ∞⊥ of finite and infinite λ-terms

M ::=coinduction ⊥ | x | (λxM) | (MM)

By Λ∞ we denote the subset of finite and infinite terms not containing ⊥. Next, we choose a
set U ⊆ Λ∞ and add a new rule for some set U ⊆ Λ∞:

M [⊥ := Ω] ∈ U M 6= ⊥
(⊥U )

M → ⊥

The resulting infinitary lambda calculus we denote by λ∞β⊥U
. We use the notation of [13]:

→→ stands for finite reduction as in [3] and →→→ stands for strongly converging (in-)finite
reduction.

I Definition 23 ([20]). U ⊆ Λ∞ is called a set of (finite or infinite) meaningless terms, if it
satisfies the axioms of meaninglessness:
1. Axiom of Rootactiveness: R ⊆ U .
2. Axiom of Closure under β-reduction: If M →→→β N implies N ∈ U for all M ∈ U .
3. Axiom of Closure under Substitution: If M ∈ U then any substitution instance of M is

an element of U .
4. Axiom of (Weak) Overlap: Either for each λx.P ∈ U , there is some W ∈ U such that

P →→→β Wx , or alternatively (λx.P )Q ∈ U , for any Q ∈ Λ∞⊥ .
5. Axiom of Indiscernibility: Define M U↔ N if M can be transformed into N by replacing

pairwise disjoint subterms of M in U by terms in U . If M U↔ N then M ∈ U ⇔ N ∈ U .



F.-J. de Vries 18:13

The set Λ∞ satisfies all these conditions. But the resulting lambda calculus is inconsistent,
as all elements reduce to ⊥. So the sets that we are interested in should be non-trivial.

I Theorem 24 ([20]). If U is a meaningless set, then λ∞β⊥U
is confluent for infinitary

β-reduction.

For the converse we need one more condition: U is called closed under β⊥-expansion
from ⊥ if N →→→β⊥ ⊥ implies N ∈ U for all N ∈ Λ∞. Under this natural condition we have

I Theorem 25 ([20]). Let U satisfies Closure under β⊥-Expansion from ⊥. If λ∞β⊥U
is

confluent, then U is a meaningless set.

5.1 Sets of finite meaningless terms

There is now a mismatch: undefined terms are always finite and meaningless terms can be
infinite. This can be reconciled. Instead of using the full set Λ∞ we restrict to the closure
Λinf of Λ under strongly convergent reduction. The previous two theorems hold for Λinf
as well. We say that U is a set of finite meaningless terms, if its closure under strongly
converging reduction is a set of meaningless terms. From now, whenever we write set of
meaningless terms we mean a set of finite meaningless terms.

Let us go once more back to the four sets of terms NF, HNF, WHNF and E that satisfied
the condition of Statman’s theorem. Of the four, NF is the largest, and HNF the second
largest. Both WHNF and E9 are subsets of HNF. It is well known that HNF and WHNF are
sets of (finite) meaningless terms [14]. The other two are not:

I Lemma 26.
1. [14] The set NF does not satisfy Overlap.
2. The set E does not satisfy Indiscernibility.

Proof.
1. λx.xIΩ has no finite normal form, but (λx.xIΩ)K reduces in two steps to the normal

form I. Note that the resulting extension infinitary term model is not consistent: K←β

(λx.xKΩ)K→⊥ ⊥ ←⊥ (λx.xKΩ)I→β I.
2. In [14] this was left open. But if we combine the fact that λz.Ω(Θλxyz.xzy) is an easy

term [12]10 and the fact that λx.Ω(xx) is not an easy term [7, Remark 6.2] with [21,
Lemma 46(2)] (if a set of meaningless terms contains an abstraction, then it must contain
all abstractions), we see that E can not be a set of meaningless terms. In [14] it has been
shown that the first three properties hold, hence Indiscernibility does not hold. J

Since HNF and WHNF are sets of meaningless terms as well as sets of undefined terms,
there is the natural question which other sets of meaningless terms can be taken as set of
undefined terms. Statman’s theorem is now of no help, as HNF and WHNF are the only sets
of meaningless terms satisfying the Statman condition: the other sets of meaningless terms
are not co-Visser sets. In the next section we will answer this question.

9 It is straightforward to check that easy terms are unsolvable.
10The steps of the nice proof in [12] are: (1) C ≡ λxyz.xzy is right-invertible in λβη. (2) Ω is easy wrt
λβη. (3) C is easy wrt λβ. (4) If M is easy, then MN is easy for any N . (5) CΩ(Θ(CΩ)) is easy.

FSCD 2016



18:14 On Undefined and Meaningless in Lambda Definability

6 When is meaningless undefined?

I Lemma 27 ([21]). If U is a non-trivial set of finite or infinite meaningless terms (i.e.
U 6= Λ∞), then all its elements are unsolvable.

I Corollary 28. Let U be a non-trivial set of finite meaningless terms (i.e. U 6= Λ) that
satisfies Closure under β⊥-Expansion from ⊥. Then U satisfies conditions 1, 2 and 3 of
Definition 21.

Proof. 2 and 3 are trivial. If M →→ pnq for some n ∈ N, then M reduces to a finite normal
form. Hence M is solvable, because M has a head normal form. But then M /∈ U by
Lemma 27. J

There is a natural smallest set of meaningless terms satisfying condition 4 of Definition 21.

I Definition 29. Let us call lambda term M in Λ almost rootactive, if M can reduce to a
term of the form RTM1N1 . . .TMkNk where R is rootactive and Mi, Ni ∈ Λ for 1 ≤ i ≤ k.
Let W denote the set of almost rootactive terms.

Clearly the set W is the smallest set of undefined terms that satisfies the four conditions for
a set of undefined terms. We also have that

I Lemma 30. The set W is the smallest set of meaningless terms that is a set of undefined
terms.

Proof. With the techniques of [19, 21] one can show that W satisfies all conditions of a set
of meaningless terms. J

7 Conclusion

We have presented a set of sufficient conditions on a set U of lambda terms such that a partial
function φ : Np 7→ N is strictly λU -definable if and only if φ is partial recursive. The smallest
set W satisfying the these conditions is also a set of meaningless terms. By the Axiom of
Indiscernibility it follows that any larger set of meaningless terms is also a set of undefined
terms. Since W is larger than the set R of rootactibve terms, we conjecture that R can not
be used to prove that a partial recursive function φ : Np 7→ N is strictly λR-definable.

The notion of strict λU -definability is forced when one searches for representations of
partial recursive functions that preserve their definition. This has interesting consequences.
E.g. the strict predicates suggest strongly that lambda calculus contains a many-valued logic
related to McCarthy’s calculus for three-valued sequential logic [8, 17].

Acknowledgements. I am grateful to Alessandro Berarducci, Alexander Kurz and the
anonymous referees for helpful comments and suggestions.

References
1 H. P. Barendregt. Some extensional term models for combinatory logics and λ-calculi. PhD

thesis, Univ. Utrecht, 1971.
2 H. P. Barendregt. A global representation of the recursive functions in the lambda-calculus.

Theor. Comput. Sci., 3(2):225–242, 1976. doi:10.1016/0304-3975(76)90025-6.
3 H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, Ams-

terdam, Revised edition, 1984.

http://dx.doi.org/10.1016/0304-3975(76)90025-6


F.-J. de Vries 18:15

4 H.P. Barendregt. Solvability in lambda calculi. In M. Guillaume, editor, Colloque interna-
tional de logique: Clermont-Ferrand, 1975, pages 209–219. Éditions du C.N.R.S., 1977.

5 H.P. Barendregt. Representing ‘undefined’ in lambda calculus. J. Funct. Program.,
2(3):367–374, 1992. doi:10.1017/S0956796800000447.

6 A. Berarducci. Infinite λ-calculus and non-sensible models. In Logic and algebra (Pontig-
nano, 1994), pages 339–377. Dekker, New York, 1996.

7 A. Berarducci and B. Intrigila. Church-Rosser lambda-theories, Infinite lambda-terms and
consistency problems. In W. Hodges, M. Hyland, C. Steinhorn, and J. Truss, editors, Logic:
from Foundations to Applications, pages 33–58. Oxford Science Publications, 1996. URL:
http://www.dm.unipi.it/~berardu/Art/1996Church/CRtheories.pdf.

8 J. A. Bergstra and J. van de Pol. A calculus for four-valued sequential logic. Theor. Comput.
Sci., 412(28):3122–3128, 2011. doi:10.1016/j.tcs.2011.02.035.

9 A. Church. An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58(2):345–363, 1936.

10 A. Church. The Calculi of Lambda Conversion. Princeton University Press, 1941.
11 H. B. Curry, J. R. Hindley, and J. P. Seldin. Combinatory Logic II. North-Holland, 1972.
12 G. Jacopini and M. Venturini-Zilli. Easy terms in the lambda-calculus. Fundamenta In-

formaticae, VIII(2):225–233, 1985.
13 J. R. Kennaway and F. J. de Vries. Infinitary rewriting. In Terese, editor, Term Rewriting

Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science, pages 668–711.
Cambridge University Press, 2003.

14 J. R. Kennaway, V. van Oostrom, and F. J. de Vries. Meaningless terms in rewrit-
ing. Journal of Functional and Logic Programming, 1999(1), 1999. URL: http://danae.
uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html.

15 S. C. Kleene. λ-definability and recursiveness. Duke Math. J., 2(2):340–353, 06 1936.
doi:10.1215/S0012-7094-36-00227-2.

16 S. C. Kleene. On notation for ordinal numbers. J. Symb. Log., 3(4):150–155, 1938. doi:
10.2307/2267778.

17 Beata Konikowska, Andrzej Tarlecki, and Andrzej Blikle. A three-valued logic for software
specification and validation. Fundam. Inform., 14(4):411–453, 1991.

18 G. Kreisel. Some reasons for generalising recursion theory. In R.O. Gandy and C.M.E.
Yates, editors, Logic Colloquium 1969: proceedings of the summerschool and colloquium in
mathematical logic, Manchester, August 1969, pages 139–189. North-Holland, 1971.

19 P. Severi and F. J. de Vries. Order Structures for Böhm-like models. In Computer Science
Logic, volume 3634 of LNCS, pages 103–116. Springer-Verlag, 2005.

20 P. Severi and F. J. de Vries. Weakening the axiom of overlap in infinitary lambda calculus.
In M. Schmidt-Schauß, editor, Proc. of the 22nd Int’l Conf. on Rewriting Techniques and
Applications, May 30 – June 1, 2011, volume 10 of LIPIcs, pages 313–328. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.313.

21 P. G. Severi and F. J. de Vries. Decomposing the lattice of meaningless sets in the infinitary
lambda calculus. In L. D. Beklemishev and R. de Queiroz, editors, Proc. of the 18th Int’l
Workshop on Logic, Language, Information and Computation (WoLLIC 2011), pages 210–
227, 2011. doi:10.1007/978-3-642-20920-8_22.

22 A. M. Turing. Computability and λ-definability. J. Symb. Log., 2(4):153–163, 1937. doi:
10.2307/2268280.

23 A. M. Turing. The p-function in λ-K-conversion. J. Symb. Log., 2(4):164, 1937. doi:
10.2307/2268281.

24 A. Visser. Numerations, λ-calculus & arithmetic. In J.R. Hindley and J.P. Seldin, editors,
To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pages
259–284. Academic Press, 1980.

FSCD 2016

http://dx.doi.org/10.1017/S0956796800000447
http://www.dm.unipi.it/~berardu/Art/1996Church/CRtheories.pdf
http://dx.doi.org/10.1016/j.tcs.2011.02.035
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html
http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1999/A99-01/A99-01.html
http://dx.doi.org/10.1215/S0012-7094-36-00227-2
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.2307/2267778
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.313
http://dx.doi.org/10.1007/978-3-642-20920-8_22
http://dx.doi.org/10.2307/2268280
http://dx.doi.org/10.2307/2268280
http://dx.doi.org/10.2307/2268281
http://dx.doi.org/10.2307/2268281

	Introduction
	Brief recap of 80 years of lambda definability
	Kleene-Church: undefined is having no normal form
	Barendregt: undefined is being unsolvable
	Statman: undefined is belonging to a co-Visser set

	Strict lambda-uset-definability
	Composition
	Minimalisation
	Total recursive functions
	Primitive recursion
	Undefined is satisfying certain conditions

	Proposal for a definition of a set of undefined terms
	Recap of definition of set of meaningless terms
	Sets of finite meaningless terms

	When is meaningless undefined?
	Conclusion

