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Abstract
In this paper, we use declarative and domain–specific languages for representing expert knowledge
in the field of change management in organisational psychology. Expert rules obtained in practical
case studies are represented as declarative rules in a deductive database. The expert rules are
annotated by information describing their provenance and confidence. Additional provenance
information for the whole – or parts of the – rule base can be given by ontologies.

Deductive databases allow for declaratively defining the semantics of the expert knowledge
with rules; the evaluation of the rules can be optimised and the inference mechanisms could be
changed, since they are specified in an abstract way. As the logical syntax of rules had been
a problem in previous applications of deductive databases, we use specially designed domain–
specific languages to make the rule syntax easier for non–programmers.

The semantics of the whole knowledge base is declarative. The rules are written declaratively
in an extension Datalog∗ of the well–known deductive database language Datalog on the data
level, and additional Datalog∗ rules can configure the processing of the annotated rules and
the ontologies.
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1 Introduction

There have been many rule–based approaches for knowledge representation, but the declara-
tive approach of deductive databases appears very promising. Especially when armed with
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7:2 Declarative Rules for Annotated Expert Knowledge in Change Management

domain–specific languages, it becomes much easier to incorporate domain expertise into the
development process of an information system.

The knowledge in organisations plays an important role in day–to–day business, even more
if routines and organisational structures have to be changed. Knowledge in organisations is
represented in many ways. Some rules are documented explicitly in rules but there are also
informal procedural rules, which are mostly undocumented. A reason why it is so difficult to
compare these implicit and explicit rules is because they exist fragmented in different sources
(e.g. individuals, groups) and can not be collected in a standardised manner. An approach
to solve this problem is to transfer differently collected information about procedures in a
standard format using content analysis, which allows to manage the rules in a deductive
database system. The system DDbase [17] allows to analyse rules during input and to link
them in the evaluation process. Both a graphical visualiser interface and automated reasoning
facilitate the linking of conclusions and help to detect contradictions. An expandable rule
base enables the extension of an overall model and its validation across methodologically
different studies. Having a semantically sound and functionally rich declarative rule language
is an enabling factor when presented as a domain–specific language (DSL). These results pave
the way for the comparison of informal knowledge and official rules as well as documenting
and modelling their history accurately.

We have described a rule concept for knowledge in change management and some methods
for querying and visualizing the rules from the point of view of organizational psychology
in [21]; the syntax of the rules has been modelled using operator precedences yielding an
internal DSL in Prolog. In the present paper, we give a context–free grammar for the rule
language, which might be textended later, and we provide a theory about the semantics and
evaluation of declarative rule bases following concepts from Datalog and logic programming
in general. Moreover, it is necessary to include provenance information, that can be given by
ontologies, and confidence annotations of the rules.

Organization of the Paper
The rest of this paper is organised as follows: Section 2 recalls some basic ideas from
declarative programming, domain–specific languages, and deductive databases. Section 3 is
about declarative rule bases; it introduces rules for change management and defines syntax,
semantics, and evaluation using deductive databases and logic programming. Section 4
shows how the rule base can be represented using a suitable DSL. The analysis of rule
bases is investigated in Section 5; ideas for queries and the visual analysis in interactive rule
editors are given. Section 6 shows how the knowledge base can be augmented by contextual
information given in ontologies and how rules can be annotated with confidence information.
The paper is concluded with some final remarks.

2 Background Concepts

In this section, we recall some concepts useful for reading the rest of the article, namely
declarative programming, domain–specific languages, deductive databases and logic program-
ming. We will mainly summarize and highlight some of the general statements found in
literature.

2.1 Declarative Programming
Declarative programming is a programming paradigm that expresses the logic of a computation
in an abstract way, without having to describe its control flow. Thus, the semantics of a
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declarative language becomes easier to grasp for domain experts. Declarative programming
offers, e.g., the following advantages for data and knowledge engineering: security, safety, and
shorter development times, as known from information systems with relational databases.
There exists a plethora of results about query optimisation in relational and deductive
databases, e.g., [7, 4, 19, 20, 14]. For instance, Minker and his students have interesting
results in the field of semantic query optimisation [5]: evaluation plans can be derived and
cached results can be included.

Languages which claim to be declarative usually attempt to minimise or eliminate side
effects by describing what the program must accomplish in terms of the problem domain rather
than describing how to accomplish it as a sequence of the programming language instructions –
the how is implicitly left to be decided by the implementation of the language. In contrast,
imperative (or procedural) languages require algorithms to be implemented in explicit
steps. Declarative programming often considers programs as theories of a formal logic, and
computations as deductions, or proofs. Declarative programming may greatly simplify writing
parallel programs, as it does away with explicit control. Examples of declarative languages
include database query languages (e.g., Sql, Datalog, XQuery), regular expressions, logic
and constraint programming (e.g. Prolog), and functional programming.

2.2 Domain Specific Languages

A domain–specific language (DSL) is a computer language specifically tailored to a particular
application domain, in contrast to a general–purpose language (GPL), which aims for broad
applicablility across domains. The syntax of a DSL is meant to be intelligible for domain
experts. According to Martin Fowler [9], DSLs are small languages, focused on a particular
aspect of a software system, i.e. they cannot be used to write a whole program, although it is
frequent to resort to multiple DSLs in a single system, which is basically written in a GPL.

DSLs can take on two forms: external or internal. The first form is parsed independently
of the host GPL, for instance CSS or regular expressions. Internal DSLs, also known as
embedded DSLs, are a dialect of a host programming language, and are intrinsically part of
the host syntax; they amount to an API in a general–purpose language.

DSLs are appreciated because, for its target domain, a DSL is much easier to wield than
either a GPL or a traditional library. The outcome is increased programmer productivity,
which is always welcome. Having a DSL also improves communication with the domain
experts. In short, a DSL raises the level of abstraction required to program an application,
allowing non–computer savvy experts to work more productively.

There are DSLs for numerous areas of application, such as, e.g., expert rules, business
rules, configuration rules/constraints, and queries to databases. A systematic mapping study
has been given in [12].

2.3 Deductive Databases and Logic Programming

A deductive database (DDB) is a database which may carry out deductions based not only
on facts but also on rules which are also stored in the database itself [4]. DDBs combine
logic programming languages and relational databases, as they share the querying flexibility
of the former while retaining the performance and scalability of the latter.

DDBs commonly use variants of the logic programming language Datalog, whose syntax
restricts the standard logic programming language Prolog [3, 22], and whose declarative
bottom–up semantics, given in Section 3, is closer to relational databases.

SLATE’16



7:4 Declarative Rules for Annotated Expert Knowledge in Change Management

Typically DDBs will operate on data which are more restrictive than that of Prolog, yet
more general than that which may structurally be accessed with Sql. Deductive database
languages have been used in many applications, such as data integration, computer networking,
program analysis or security [1, 14].

3 Declarative Rule Bases

Besides relational databases, ontologies have played an important role for building intelligent
information systems. Currently, ontology languages like Owl are extended by rule–based
elements and links. We have built tools for managing and analysing relations, ontologies,
and rules. Techniques from deductive databases and logic programming can integrate hybrid
knowledge bases with structured knowledge. We will show how domain–specific languages
and declarative languages can offer a clear syntax and semantics to modern information
systems. Nowadays, semantic web technology including linked data (JSON–LD) is also very
important. Data and knowledge engineering can clearly benefit from the declarative approach
provided by logic programming.

3.1 Declarative Rules in Change Management
Currently, the results obtained in psychological studies of organisations are not collected in a
uniform data format. The data are kept in proprietary systems, which so far only serve for
persistent storage without trying to obtain new insights. Some databases are used, but joining
the data records and the underlying research results remained almost impossible for lack of
integration. The field of change management offered a perfect case study for an integrated
rule management [21]. The following types of rules have been considered in organisations:
explicit, official business processes, and informal rules. Often, the sources of the rules are
fragmented, distributed, and hybrid. To collect and manage the rules systematically, we have
used the Prolog–based deductive database system DDbase [17]. We have investigated the
analysis, evaluation, and visualisation of the rule base as well as reasoning techniques. Since
we use a deductive database system, we are able to do a continuous integration of further
rules. Based on the facilities of DDbase, we could perform a comparison of informal and
official rules.

We are developing a textual, logic–based rule format, which tries to represent the rules –
as far as possible – in a natural language syntax. We have modelled the emotional processes
in connection with projects for introducing new software. Currently, we have about 50 rules
including the rules shown below. The rules are relevant for companies that are considering
to introduce an ERP system. E.g., the second rule states that the acceptance of an ERP
system is decreasing if other software exists and the functionality and the acceptance of other
Software is increasing.

if ’Processes in ERP System’ = partly
then ’Processes in other Software’ = partly .

if ’Existence of other Software’ = yes
and ’Functionality of other Software’ = increasing
and ’Acceptance of other Software’ = increasing
then ’Acceptance of ERP System’ = decreasing .

if ’Use of other Software’ = increasing/constant
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then ’Acceptance of ERP System by Users’ = decreasing .

if ’Test of ERP System by Users’ = yes
then ’Discovery of ERP Function by Users’ = yes .

We have developed a DSL for intuitively representing the business rules, which maps to
Prolog in simple manner. We have also implemented mechanisms for analysing and
visualising the rule base. We use the deductive database system DDbase, which works
with an extension of Datalog, a logic programming language extending the well–known
relational query language Sql.

3.2 Deductive Databases and Logic Programming
A comprehensive description of the syntax and semantics of deductive databases and logic
programming is given, e.g., in [14]. A logic program P is a set of rules, which are range–
restricted implications A ← β, where A is an atom and β can be any formula over atoms
built with the junctors ∨, ∧, and not (default negation). Some extensions can also handle
literals with classical negation (¬), rather than just atoms in the rules. We allow for function
symbols and an arbitray use of the junctors in the rules, whereas frequently in deductive
databases β = B1∧ . . .∧Bm∧not C1∧ . . .∧not Cn is just taken as a conjunction of atoms Bi

or default negated atoms not Ci without function symbols. A is called the head, and β is
called the body of the rule. The property range–restricted means that every variable symbol
in the head must also occur in the body, where variable symbols within default negated
formulas not φ are not counted. Facts A are rules with an empty body and thus correspond
to tuples in a relational database; rules A← β are implications. For instance, the well–known
transitive closure rules can be expressed as:

tc(X,Y )← arc(X,Y ),
tc(X,Y )← arc(X,Z) ∧ tc(Z, Y ).

Semantics and Evaluation
In logic programming, terms are defined inductively: terms can be variable symbols or
constant symbols or of the form f(t1, ..., tn), where f is a function symbol and t1, ..., tn are
terms themselves. An atom is of the form p(t1, ..., tn), where p is a predicate symbol and
t1, ..., tn are terms. A ground atom is an atom without variable symbols. E.g., arc(a, b) is a
ground atom with the predicate symbol arc, where the ground terms t1 = a and t2 = b are
constants (strings starting with a lower case character), and the atom arc(X,Y ) contains the
variable symbols X and Y (strings starting with an upper case character). The Herbrand
base HBP is the set of all ground atoms over the logic program P , i.e. their predicate, function,
constant and variable symbols must occur in P . An Herbrand interpretation I is a subset
of HBP .

Consequences and Evaluation

Assuming the standard definition, we write I |= β, if I models β. Here, I(not φ) = ¬I(φ)
and I(φ1 � φ2) = I(φ1)� I(φ2), for formulas φ, φ1, φ2, and junctors � = ∨,∧. A ground
rule A← β ∈ gnd (P) is obtained by substituting all variable symbols of a rule by ground
terms. The immediate consequence operator TP derives all ground atoms A, such that there
exists a ground rule in gnd (P), where I models its body:

TP(I) = { A ∈ HBP | A← β ∈ gnd (P), I |= β }.

SLATE’16



7:6 Declarative Rules for Annotated Expert Knowledge in Change Management

Since the rules are range–restricted, TP(I) will be finite, if I is finite. E.g., for the transitive
closure rules together with the facts arc(a, b), arc(b, c), arc(c, d), the bottom–up evaluation
derives the following monotonically increasing sequence of interpretations by repeatedly
applying the rules to the already derived facts:

I0 = ∅,
I1 = { arc(a, b), arc(b, c), arc(c, d) },
I2 = I1 ∪ { tc(a, b), tc(b, c), tc(c, d) },
I3 = I2 ∪ { tc(a, c), tc(b, d) },
In = I3 ∪ { tc(a, d) }, for all n ≥ 4.

For n ∈ IN0, the interpretation In = T n
P is obtained by the repeated application of TP ,

starting with I0 = T 0
P = ∅, i.e. T n+1

P = TP(T n
P ). The least fixpoint of the consequence

operator – here I4 – is also the unique minimal model of the logic program. Observe, that
the least fixpoint is Iω = T ω

P = ∪ω
n=0T n

P . In theory, it can be infinite, if the Herbrand base
is infinte since P contains function symbols. In practice, the rules have to ensure that the
iteration terminates after finitely many steps with a finite fixpoint. The consequence operator
and its iteration provide one proof–theoretic (operational) semantics of a logic program
without default negation, i.e., an evaluation method.

Semantics

In general, the semantics of a logic program with default negation is given by its answer sets,
cf. [14]. For our purposes, however, it is sufficient to consider logic programs with a limited
use of default negation, so–called stratified programs, where there is no recursion through
default negation. The evaluation of stratified programs can be based on logic programs
without default negation at all. These programs – the transitive closure program above is an
example – can be evaluated bottom–up using hyperresolution in an efficient bottom–up style.
Then, declarativity is given by the fact that without default negation, three semantics coincide:
model, proof, and fixpoint theory. In general, the answer set semantics of logic programs
with unlimited default negation is defined by a fixpoint theory. This can also be extended
to handle literals with classical negation (¬), rather than just atoms. In non–monotonic
reasoning with answer sets, we distiguish between true literals in an answer set and literals
derived by the inference process. Intuitively, a default negated literal notA is considered true
in an answer set, if the atom A cannot be derived, whereas a classically negated literal ¬A is
considered true, if the negated atom ¬A can be derived.

During the first phase of the case study in change management, we needed only basic
semantic concepts, since the main focus had been on the language and the structural analysis
and visualisation of the rule base. For the future, it will be important that the semantics of
the target language is precisely defined, a characteristic we inherit from logic programming
and Datalog.

Renaissance of Datalog
For several years, we can observe what is sometimes called a renaissance of Datalog [1].
Zaniolo started with Ldl at Austin; subsequently, many DDBs have been developed. New
Datalog applications have been developed, e.g., at Berkeley, where Boom and Bloom
handle distributed computing, parallelism, and concurrency. New Datalog companies have
been created and became successful: the company LogicBlox provides a unified database
foundation for the next generation of smart analytical and transactional applications; the
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Figure 1 Architecture of DDbase.

company Lixto on declarative web data extraction and annotation exists since the beginning
of the millennium, and Gottlob’s database group has recent publications with Oracle. SAP
uses Swi–Prolog [22] in its Cloud Platform HANA (configuration with source repository
git/gerrit), just to name a few.

3.3 The Deductive Database System DDbase
The deductive database system DDbase uses the extension Datalog∗ with function sym-
bols [16, 17]. Rule bodies can contain embedded Prolog calls and default negation. In
DDbase, it is possible to have bottom–up and top–down evaluation in one system. Dat-
alog∗ can evaluate logic programs with Prolog syntax (extended Datalog programs)
in a bottom–up style. Thus, the main evaluation method of Datalog∗ is bottom–up; but
Datalog∗ is designed to evaluate embedded Prolog calls in a top–down manner. In
DDbase, a logic program can be abstracted by a predicate dependency or a rule predicate
graph, and a derivation can be visualised by its proof tree, cf. [4].

The architecture of DDbase is given in Figure 1, which also shows that DDbase can
access hybrid data sources.

DDbase is part of the Ddk, the DisLog developers’ kit, a collection of Prolog
libraries written in Swi–Prolog [22] including features from data and knowledge engineering,
databases (relational, Xml, and deductive), ontologies, and non–monotonic reasoning. It can
be obtained from http://www.ddbase.de.

4 A Domain Specific Language for Rules

For expressing rules, we chose to follow the general form:

if Condition then Consequence.

Notwithstanding the previous schematic statement form, every rule is required to end with a
dot. The dot allows the language to behave as an embedded DSL for Prolog. With minor
changes, it could be embedded into other host languages such as Python or Javascript.

SLATE’16
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7:8 Declarative Rules for Annotated Expert Knowledge in Change Management

The DSL has been conveniently defined in Prolog by a collection of suitable operator
precedences. After the keywords if and then, a Condition and Consequence, respectively, is
expected. Both are so–called junctions of findings. If Condition is empty, the rule is also
called a fact. A finding always has the form: Feature = Value, where Feature and Value
should generally be included in quotation marks. Only in strings that neither contain spaces
nor start with a capital letter, the quotes can be omitted. The values are not limited to yes
and no, for instance other literal descriptions as in the finding ’Acceptance’ = increases
or numerical information, which can assume significant practical importance, are possible.
Besides equality, additional comparators may be used.

4.1 Syntax of Formulas

Several findings in Condition and Consequence can be linked to formulas by connectives.
For this, the keywords and, or, and neg are available. If F and G be formulas, then the
following are also allowed formulas: neg F , F and G, F or G. Note that conjunction
binds stronger than disjunction, and classical negation neg binds the most strongly. An
extension would be to allow for default negation (not) to occur in Condition, but not in
Consequence. For representing arbitrary formulas, subformulæ can be included in brackets.

Our domain–specific rule language could be described by a context–free grammar, which
we could also implement using the following definite clause grammar (DCG) in Prolog.

rule --> "if ", formula, " then ", conjunction.
formula --> conjunction | disjunction | classical_negation.
conjunction --> literal | literal, " and ", formula.
disjunction --> literal | literal, " or ", formula.
classical_negation --> "-", formula.
literal --> finding | "not(", finding, ")".
finding --> feature, "=", value.

By further rules, we can define that features and values are certains strings without the
character “=”. This DCG can be used for verifying that a rule is in the language. The grammar
formalism can help to clarify the syntax for people who are not experts in logic programming
or Prolog. At the moment, however, we are not using the DCG. Instead, we have embedded
the rule DSL internally into Prolog by providing suitable operator defintions for the junctors
if, then, and, or, neg, etc. Thechnically, the rules if Formula then Conjunction can
be parsed by Prolog into Prolog structures then(if(Formula), Conjunction). From
these structures, the rule base of our system can be derived easily and analyzed by our tool.
In future work, we might need a more powerful rule language that cannot be an internal
DSL in Prolog. In that case, will try to use refinements and extensions of the given DCG
formalism to define a suitable external DSL.

W.r.t. the syntax given in Section 3.2, the findings A=V are the atoms in the rules; they
have the binary predicate symbol “=”. More general findings A�V can use other comparator
predicate symbols “�”, which could be, e.g., one of =,<,>,=<,>=. Moreover, also other atoms
are possible in Datalog∗, e.g. for embedded calls with built–in predicates. In Datalog∗,
the rules are evaluated bottom–up, and the embedded calls are evaluated in a top–down style,
as it is common in logic programming approaches, cf. Section 3.3. Within a formula not F
with default negation “not”, no other default negation is allowed, but classical negation “¬”
is allowed; i.e., F can only be built using the classcical junctors ∧, ∨, and ¬.
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An Example from Change Management
As a more complex example, consider the following statement:

In small business, work processes are comprehensible without frequent team meetings,
and no abundance of information arises.

The same applies to large companies with frequent meetings. In natural language, this may
be formulated as follows:

If either the size of the company is small or the meetings are frequent, then the
transparency of the work processes increases and there is no information overload.

The syntax of the rules must follow the form if Condition then Consequence. The
statement above is only true in the case of exclusive ors: either the company is small – then
no meetings are needed – or it is so large that team meetings are needed to track work
processes without an excess of information. If both premises are met (i.e., there would
be frequent business meetings in a small business), then the consequence ’information
overload’ = no would not be true.

The given example illustrates that the formal recording of statements by predicate logic
formulas can sharpen the uniqueness of the resulting statements. In the case of the more
general F or G instead of either F or G, the application of the rule along with other
statements might lead to inconsistencies. The detection of such situations is part of the
functionality of our tool.

The syntax for the rule storage allows the basic conjunction and and disjunction or.
Moreover, classical negation is supported, which is denoted by neg in rules. The exclusive or,
F ⊕G (either F or G), can be expressed as (F ∧¬G)∨ (¬F ∧G) using elementary connectives.
Thus, the statement sketched in the example above can be modeled using elementary
connectives as follows:

if neg ’Company Size’ = small and ’Meeting’ = often
or ’Company Size’ = small and neg ’Meeting’ = often

then ’Traceability of Work Processes’ = rises
and ’Information Overload’ = no.

In this case, we do not need any brackets. The precedences ensure that and binds before or
and if and then, that or binds before if and then, and finally that if binds before then.
In Prolog, we can declare this more compactly by assigning increasing precedences to the
operators in the sequence =, and, or, if, then. In general, using brackets we can express a
formula where or should bind before and.

Variants of Rules and the DSL
The proposed notation for rules complies with the syntax of Prolog, which facilitates its
usage as an embedded DSL. With the definition of if, then, neg, and and or as operators,
the established rules become valid Prolog structures. Thus, it is possible to create an
externally–backed rule base file including all known statements. As it conforms to user–
readable syntax, the rule base may even be updated with a text editor. It may be gradually
expanded by adding new rules. The end result is an incremental rule storage containing all
statements found from research results to be analysed later.

We allow for formulas linking findings by the connectives and and or. If Consequences
is a conjunction, then the rule can be normalized to several rules using macro expansion

SLATE’16



7:10 Declarative Rules for Annotated Expert Knowledge in Change Management

techniques in Prolog. More general rules over the junctors and and or can be transformed
to several rules with disjunctive Consequences. So far, the domain experts have not used
disjunctive Consequences in applications; at the moment, they are not accustomed to
use disjunctions in rule heads. In the future, we will try to introduce that new feature
into applications. Especially the handling of confidence values together with disjunctive
Consequences will be an interesting research field.

4.2 The Integrated Development Environment (IDE)
The current tool will allow sloppy input that gets normalized. More powerful rule editors are
planned for the future, so as to avoid having to directly alter the rule file. These advanced
editors will facilitate the insertion of rules, to embody the intention that rules should look
like natural language statements. Additionally, the editing tool will try to correct frequently
occurring syntactic errors, for example, forgetting the dot at the end of the rule or the wrong
notation and use of the junctors; these are potential sources of easy–to–correct errors.

Having a graphical integrated development environment will also facilitate the reuse of
previously existing features and values. It is clear that conclusions from the given statements
are only possible if the same names are consistently used for the same features.

At present, the tool implements a text–based approach for the handling and a declarative
approach for the analysis and the visualisation of the rule base.

5 Design Analysis of the Rule Base

The individual records of the rule memory are usually stored in the memory of DDbase and
analysed with our tool. It is possible to read rules as Prolog source code, to inspect the
rules and even directly query them.

5.1 Declarative Queries
Using this deductive knowledge base, it is possible to answer the following exemplary questions
with our tool:

Which factors affect the acceptance of the new ERP system?
Which constellation of findings is necessary to derive another finding?
Are there findings, which are a particularly common cause of a change?
Are there any killer findings, that block many developments?
What are the necessary conditions for a finding? Which ones are optional?
If a different value is assigned to a single feature, how does this affect the overall structure?
Are there any redundant rules?
Can some individual rules be expressed by more accurate rules?
Where do some findings form opposite or even contradictory relationships?

The questions above underline the diversity of queries than can be asked. The current
prototype is already supporting queries for conditions and consequences of individual findings.
For example, by means of the predicate depends_on, the following query can be formulated
in DDbase (we do not show the encoding here); we can iterate through all answers. 1 The
predicate depends_on is built to work also for pairs of features instead of just findings.

1 This can be done by entering a semicolon “;” after each answer, standard procedure in a Prolog
top–level interpreter.



D. Seipel, R. von der Weth, S. Abreu, F. Nogatz, and A. Werner 7:11

?- F1 = finding:Consequence, F2 = finding:Condition,
depends_on(F1, F2).

Consequence = (’Emergence of ERP Knowledge in Employees’ = yes),
Condition = (’Existence of ERP Knowledge in Employees’ = yes) ;
Consequence = (’Emergence of ERP Knowledge in Employees’ = yes),
Condition = (’Cooperation/Communication between Employees

and Employees with ERP Knowledge’ = yes) ;
...

Here, not only the contents of individual rules is returned, but also derived knowledge gets
computed. If the consequence ‘Emergence of Knowledge about ERP System in Employees’ =
yes is a prerequisite for a further consequence, then the existence of an employee with
knowledge about the ERP System is output as being a prerequisite. Since we use the system
DDbase, is it also possible to immediately determine all causes of an individual finding. For
doing this, the consequence can be an argument in the following predicate, as this happens
to determine the causes of a conflict:

?- F1 = finding:’Emergence of Conflicts’ = yes,
F2 = finding:Precondition,
depends_on(F1, F2).

Precondition =
(’Acceptance of ERP System at the Beginning’ = partly) ;

Precondition =
(’Feedback’ = no).

For simple values, the tool can also handle classical negations, i.e., in the example above the
two findings neg ‘Feedback’ = no and ‘Feedback’ = yes are equivalent.

5.2 Visualisation of Dependency Graphs

We have already indicated the advantages of an interactive rule editor. Besides facilitating
the entry of rules and the dynamic formulation of queries, the rule editor should be used for
visualising the statements stored in the rule base.

In a similar form, this had been implemented with the tool Visur, cf. [18]. The tool
visualises a given rule base and thus allows for a graphical interpretation of the rule base.
It had been developed for and used by AI people for the analysis and visualisation of rules
in medical diagnosis. Thus findings, which are a prerequisite for a variety of consequences,
can also been rendered visually. Visur has, among other applications, been used for the
visualisation of medical diagnoses, whose rules assign symptoms to a diagnosis. We are
extending the tool for visualising change management rules from studies in organisational
psychology. This provides a schematic representation of the findings: from the features
(grey circles), consequences can be visualised depending on the values (which are not shown
here). An example application is given in Figure 2, which illustrates the features and the
relevant rules on which the feature ’acceptance of ERP system by employee’ depends
transitively. The other nodes (shown by grey circles) are features, which can themselves be
influenced by further features.

SLATE’16
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Figure 2 A dependency graph for the schematic representation of the transitive preconditions
and the relevant rules (shown by the blue triangles labelled by 2, 17–20, 22–24) for deriving the
feature ’acceptance of ERP system by employee’.

6 Extensions of the Knowledge Base

As already suggested, besides the pure features, the rules should be annotated by contextual
information, such as their source, the method of achieving the rules, the time period of the
investigation, and the confidence. The annotations can be used to deduce further constraints
and implications from the rule base; the resulting statements about findings can be annotated
with confidence values. For reasoning about the queries, provenance information is very
important and can influence the usage of the interactive rule editor; for instance, unexpected
interaction with other parts of the knowledge base can resort to provenance information
to influence whether and how we accept or reject the new knowledge. The extensions can
be expressed in Datalog∗, and thus DDbase can integrate them with the evaluation in a
consistent reasoning system.

6.1 Provenance Information in Ontologies

Provenance is information about entities, activities, and people involved in producing a
piece of data, which can be used to assess its quality, reliability or trustworthiness. For
collaborations across disciplines, hybrid information systems using data and techniques from
many different sources with no preexisting agreement about the semantics of the processes
or data, it is important to be able to express provenance. The infrastructure must provide
general purpose mechanisms for annotating (i.e., making assertions about), discovering, and
reasoning about processes and data.
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The Open Provenance Model (OPM)
Some of the inferences require additional reasoning beyond that supported by Owl and
Swrl. We assume that the reader is familiar with the basic concepts from ontologies; we do
not get formal in this section; a general description of the semantic web rule language Swrl
can, e.g., be found in [15, 2]. Also, structures such as the provenance graph are very useful
for representing causal relationships. The Open Provenance Model (OPM) defines logical
constraints on the provenance graph [15]. Some constraints cannot be expressed in Owl, but
can be expressed based on Swrl rules. The Open Provenance Model provides a way to use
semantic web technology and rules to implement semantic metadata. [15] discusses a binding
of the OPM written in Owl with rules written in Swrl. This allows for the development
of hybrid systems that use Owl, Swrl, and other semantic web software, interoperating
through a shared space of RDF triples. PROV is a specification that provides a vocabulary
to interchange provenance information. It defines a core data model for the interchange
of provenance on the web; it allows for building representations of the entities, people and
processes involved in producing a piece of data in the domain. The provenance of digital
objects represents their origins; the records of a PROV specification can describe the entities
and activities involved in producing and delivering or otherwise influencing a given object.
Provenance can be used for many purposes, such as understanding how data was collected
so it can be used meaningfully, determining ownership and rights over an object, making
judgements about information to determine whether to trust it, verifying that the process
and steps used to obtain a result complies with some given requirements, and reproducing
how something was generated.

Example in Turtle Syntax
For example, the provenance of a conference paper could be described as follows: The paper
was written by author abc. The final version of the paper is based on an earlier draft. Some
professors made comments on the draft. The author cites prior work from a book. The paper
includes a table that was generated by a program. This may be expressed in the so–called
turtle syntax, which is a special language that could also be considered as a DSL. Note that
the property “a” means “is a”.

ex:draft
a prov:Entity ;
a abc:Manuscript ;
dcterms:title "Latest results" .

ex:article a prov:Entity ;
a abc:ConferencePaper ;
dcterms:title "Results from case study" .

ex:dataset a prov:Entity ;
a abc:Dataset .

ex:book
a prov:Entity ;
a abc:Thesis .

ex:result a prov:Entity ;
a abc:Table .

ex:comment a prov:Entity ;
a abc:Review .
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Evaluation in Datalog∗

Several of the key constraints and inferences of the OPM cannot be expressed in Owl and
Swrl, due to fundamental limitations of the semantics of these languages. E.g., it is not
possible to modify the value of an asserted property, or to write a rule to determine the
number of times an artifact is used, or to detect a cycle in the provenance graph. Storing
the OPM records in triples makes it possible to use other reasoning engines or languages
such as Prolog or Datalog to implement queries or inferences. Owl and Swrl’s Rdf
representations provide a simple and well–understood means of exchanging provenance
information with other tools, such as Rdf databases or declarative programming languages.

The hybrid system DDbase shows that semantic web technologies are not only useful for
provenance information but also provide a base level of interoperability that can enable loosely–
coupled tools with varying levels of capability and expressiveness. We do not need specialized
reasoners for different knowledge bases. Instead, the rules are encoded in Datalog∗ and the
provenance information is given in ontologies. Further Datalog∗ rules can encode the profile
of the ontology. E.g., [10] study the controlled query evaluation for Datalog and Owl 2
profile ontologies. Then, we obtain a Datalog∗ knowledge base that can be evaluated in
DDbase. Observe, that standard Datalog rules would not be sufficient here, since we need
function symbols and embedded calls to Prolog.

6.2 Annotation of the Rule Base
The infrastructure must provide universal mechanisms for the annotation of rules for ar-
gumenting about processes and data. Similarly, the treatment of confidence values can be
achieved. Frequently, collected values can be ambiguous. In the example above, our rule
base contains the value partly in addition to yes and no. A more precise value in the form
of relative frequencies could derive a more accurate form of knowledge.

Annotated Findings
The following simple example is a general annotated rule, where findings are annotated by
values in the form X:A=V; the higher precedence of “=” in our domain–specifc language binds
the finding A=V before it is annotated with the confidence value X by “:”:

if A:’Existence of other Software’ = yes
and B:’Functionality of other Software’ = increasing
and C:’Acceptance of other Software’ = increasing
and accumulate(conjunction_independence, [A,B,C], D)
then D:’Acceptance of ERP System’ = decreasing .

The symbols A, B, C, and D in the rule represent logical variables, which always begin with
a capital letter – which is common in the logic programming language Prolog. They are
distinguishable from normal character strings, since they are included in quotation marks
as ‘emergence conflicts’. The variables in the rule body are universally quantified; i.e., the
statement is assumed to hold for all suitable findings. The variables are in this case attached
to the actual values, so that the unconditional probability can be calculated. Thus, our
domain–specific language makes use of logical variables, and follows the syntax and semantics
of predicate logic and its refinements in answer set programming.

In the case of stochastic independence, the predicate accumulate can be implemented as
follows:
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accumulate(conjunction_independence, Xs, X) :-
multiply(Xs, X).

Annotated Datalog Rules
In general, the handling of annotated Datalog rules has also been investigated by Laksh-
manan, Subrahmanian, Kifer, et. al. [13, 11]. We have implemented the rules of Subrahmanian
in DDbase. Observe, that the implementation of accumulate above works for arbitrary lists
Xs of values to obtain the product. In DDbase, multiply is implemented using Prolog
meta–predicates. We have also implemented other forms of accumulating lists Xs of values,
such as, e.g., positive and negative correlation. They can be used within the same knowledge
base in Datalog∗.

Our approach is specified in terms of declarative rules that are given in domain–specifc
languages. Rather than changing the inference engine in various forms, we keep the inference
engine of DDbase and change the declarative knowledge base of rules. We are thinking of
adding a mode for specifying how to interpret variables as matching or evaluate. By analysing
the individual rules, their dependencies, and the number of occurrences of individual features
or findings, it is possible to determine the approximate impact of a single features, findings,
or rules.

In short, having a good match with the underlying general purpose language while
retaining a convenient user–friendly syntax and clear semantics is useful for an application–
oriented DSL. This is clearly the case with DDbase and Prolog.

7 Final Remarks

Deductive databases allow for declaratively defining the semantics of the expert knowledge
with rules. For representing the syntax of the rules, we use concepts from domain–specific
languages – trying to remain usable within an adequate host language. In a case study for
change management in organisational psychology, we have demonstrated the usefulness of
the proposed approach in a practical situation. The analysis and visualisation of rules is also
used successfully by AI people for medical diagnosis.

In the future, we are planning to apply knowledege engineering techniques, such as
refactoring approaches [8], to the deductive rule bases. We will also incorporate further
aspects of hybrid information sources and contextual annotations by, e.g., uncertainty and
provenance information. Regarding the latter, it could be useful to model confidence and
uncertainty with concepts from annotated logic programming [13, 11] and probabilistic–
enabled logic programming languages, such as ProbLog [6], and to analyse and support the
knowledge engineering and reasoning process for hybrid knowledge bases including these
concepts.

Other extensions might deal with uncertain knowledge in the form of disjunction in the
rule heads (conclusions), as described in, e.g., [14]. We expect that, especially, the combined
handling of confidence values and disjunctive rules will be an interesting research field.
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