Lower Bounds for Approximation Schemes for
Closest String*

Marek Cygan'!, Daniel Lokshtanov?, Marcin Pilipczuk3,
Michatl Pilipczuk?, and Saket Saurabh®

1 Institute of Informatics, University of Warsaw, Warsaw, Poland
cygan@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Bergen, Norway
daniello@ii.uib.no

3 Institute of Informatics, University of Warsaw, Warsaw, Poland
malcin@mimuw.edu.pl

4 Institute of Informatics, University of Warsaw, Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

5 Department of Informatics, University of Bergen, Bergen, Norway; and
Institute of Mathematical Sciences, Chennai, India
saket.saurabh@ii.uib.no, saket@imsc.res.in

—— Abstract

In the CLOSEST STRING problem one is given a family S of equal-length strings over some fixed
alphabet, and the task is to find a string y that minimizes the maximum Hamming distance
between y and a string from S§. While polynomial-time approximation schemes (PTASes) for
this problem are known for a long time [Li et al.; J. ACM’02], no efficient polynomial-time
approximation scheme (EPTAS) has been proposed so far. In this paper, we prove that the
existence of an EPTAS for CLOSEST STRING is in fact unlikely, as it would imply that FPT =
W/1], a highly unexpected collapse in the hierarchy of parameterized complexity classes. Our
proof also shows that the existence of a PTAS for CLOSEST STRING with running time f(g)-n°(1/2),
for any computable function f, would contradict the Exponential Time Hypothesis.

1998 ACM Subject Classification F.2.2 Nonnumerical algorithms and problems
Keywords and phrases closest string, PTAS, efficient PTAS

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.12

1 Introduction

CLOSEST STRING and CLOSEST SUBSTRING are two computational problems motivated by
questions in molecular biology connected to identifying functionally similar regions of DNA
or RNA sequences, as well as by applications in coding theory. In CLOSEST STRING we
are given a family S of strings over some fixed alphabet X, each of length L. The task is
to find one string y € $F for which max,es H(x,y) is minimum possible, where H(z,y) is

* M. Cygan and Ma. Pilipczuk have been supported by Polish National Science Centre grant DEC-
2012/05/D/ST6/03214. Mi. Pilipczuk has been supported by Polish National Science Centre grant DEC-
2013/11/D/ST6,/03073 and by the Foundation for Polish Science via the START stipend programme.
During the work on these results, Mi. Pilipczuk held a post-doc position at Warsaw Center of Mathematics
and Computer Science. D. Lokshtanov is supported by the BeHard grant under the recruitment
programme of the of Bergen Research Foundation. S. Saurabh is supported by PARAPPROX, ERC
starting grant no. 306992.

© Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh;
37 licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).

Editor: Rasmus Pagh; Article No. 12; pp. 12:1-12:10

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2

Lower Bounds for Approximation Schemes for Closest String

the Hamming distance between x and y, that is, the number of positions on which x and y
have different letters. We will consider both the optimization variant of the problem where
the said distance is to be minimized, and the decision variant where an upper bound d is
given on the input, and the algorithm needs to decide whether there exists a string y with
maxzes H(z,y) < d. CLOSEST SUBSTRING is a more general problem where the strings from
the input family S all have length m > L, and we look for a string y € % that minimizes
maXges MiNg substring of = 7 (2, y). In other words, we look for y that can be fit as close as
possible to a substring of length L of each of the input strings from S.

Both CLOSEST STRING and CLOSEST SUBSTRING, as well as numerous variations on
these problems, have been studied extensively from the point of view of approximation
algorithms. Most importantly for us, for both of these problems there are classic results
providing polynomial-time approzimation schemes (PTASes): for every € > 0, it is possible
to approximate in polynomial time the optimum distance within a multiplicative factor of
(1+¢). The first PTASes for these problems were given by Li et al. [9], and they had running
time bounded by n©1/e) | This was later improved by Andoni et al. [1] to no(%), and
then by Ma and Sun [11] to n®1/¢*) | which constitutes the current frontier of knowledge.
We refer to the works [3, 8, 7, 9, 11, 12] for a broad introduction to biological applications
of CLOSEST STRING, CLOSEST SUBSTRING, and related problems, as well as pointers to
relevant literature.

One of the immediate questions stemming from the works of Li et al. [9], Andoni et
al. [1], and Ma and Sun [11], is whether either for CLOSEST STRING or CLOSEST SUBSTRING
one can also give an efficient polynomial-time approzimation scheme (EPTAS), i.e., an
approximation scheme that for every € > 0 gives a (1 + ¢)-approximation algorithm with
running time f(e) - n®M | for some computable function f. In other words, the degree of
the polynomial should be independent of €, whereas the exponential blow-up (inevitable due
to NP-completeness) should happen only in the multiplicative constant standing in front of
the running time. EPTASes are desirable from the point of view of applications, since they
provide approximation algorithms that can be useful in practice already for relatively small
values of £, whereas running times of general PTASes are usually prohibitive.

For the more general CLOSEST SUBSTRING problem, this question was answered negatively
by Marx [12] using the techniques from parameterized complexity. More precisely, Marx
considered various parameterizations of CLOSEST SUBSTRING, and showed that when param-
eterized by d and |S|, the problem remains W[1]-hard even for the binary alphabet. This
means that the existence of a fixed-parameter algorithm with running time f(d, |S]) - n®®),
where n is the total size of the input, would imply that FPT = W[1], a highly unexpected
collapse in the parameterized complexity. This result shows that, under FPT # W][1], also an
EPTAS for CLOSEST SUBSTRING can be excluded. Indeed, if such an EPTAS existed, then by
setting any € < é one could in time f(d) -n®W) distinguish instances with optimum distance
value d from the ones with optimum distance value d 4 1, thus solving the decision variant in
fixed-parameter tractable (FPT) time. Using more precise results about the parameterized
hardness of the CLIQUE problem, Marx [12] showed that, under the assumption of Ezpo-
nential Time Hypothesis (ETH), which states that 3-SAT cannot be solved in time O(2°7)
for some d > 0, one even cannot expect PTASes for CLOSEST SUBSTRING with running
time f(e) - n°(1°8(1/2)) for any computable function f. We refer to a survey of Marx [13] for
more examples of links between parameterized complexity and the design of approximation
schemes.

The methodology used by Marx [12], which is the classic connection between parameterized
complexity and EPTASes that dates back to the work of Bazgan [2] and of Cesati and

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh

Trevisan [4], completely breaks down when applied to CLOSEST STRING. This is because
this problem actually does admit an FPT algorithm when parameterized by d. An algorithm
with running time d% - n®®) was proposed by Gramm et al. [7]. Later, Ma and Sun [11] gave
an algorithm with running time 29(4) . || . n©1) | which is more efficient for constant-size
alphabets. Both the algorithms of Gramm et al. and of Ma and Sun are known to be
essentially optimal under ETH [10], and nowadays they constitute textbook examples of
advanced branching techniques in parameterized complexity [5]. Therefore, in order to settle
the question about the existence of an EPTAS for CLOSEST STRING, one should look for a
substantial refinement of the currently known techniques.

An approach for overcoming this issue was recently used by Boucher et al. [3], who attribute
the original idea to Marx [13]. Boucher et al. considered a problem called CONSENSUS
PATTERNS, which is a variation of CLOSEST SUBSTRING where the goal function is the total
sum of Hamming distances between the center string and best-fitting substrings of the input
strings, instead of the maximum among these distances. The problem admits a PTAS due to
Li et al. [8], and was shown by Marx [12] to be fixed-parameter tractable when parameterized
by the target distance d. Despite the latter result, Boucher et al. [3] managed to prove that
the existence of an EPTAS for CONSENSUS PATTERNS would imply that FPT = W[1]. The
main idea is to provide a reduction from a W[1]-hard problem, such as CLIQUE, where the
output target distance d is not bounded by a function of the input parameter k (indeed,
the existence of such a reduction would prove that FPT = W[1]), but the multiplicative
gap between the optimum distances yielded for yes- and no-instances is 1 + g#k, for some
computable function g. Even though the output parameter is unbounded in terms of k, an
EPTAS for the problem could be still used to distinguish between output instances obtained
from yes- and no-instances of CLIQUE in FPT time, thus proving that FPT = W[1].

Our contribution

In this paper we provide a negative answer to the question about the existence of an EPTAS
for CLOSEST STRING by proving the following theorem.

» Theorem 1.1. The following assertions hold:
Unless FPT = W(1], there is no EPTAS for CLOSEST STRING over binary alphabet.
Unless ETH fails, there is no PTAS for CLOSEST STRING owver binary alphabet with
running time f(e) - n°1/9), for any computable function f.

Thus, one should not expect an EPTAS for CLOSEST STRING, whereas for PTASes there
is still a room for improvement between the running time of n®(/ &) given by Ma and
Sun [11] and the lower bound of Theorem 1.1. Tt is worth noting that our f(g) - n°(/) time
lower bound for (1 + ¢)-approximating CLOSEST STRING also holds for the more general
CLOSEST SUBSTRING problem. This yields a significantly stronger lower bound than the
previous f(¢) - n°1°8(1/¢)) lower bound of Marx [12].

Our proof of Theorem 1.1 follows the methodology proposed Marx [13] and used by
Boucher et al. [3] for CONSENSUS PATTERNS. The following theorem, which is the main
technical contribution of this work, states formally the properties of our reduction.

» Theorem 1.2. There is an integer ¢ and an algorithm that, given an instance (G, k) of
CLIQUE, works in time 2F -n®M) and outputs an instance (S, L, d) of CLOSEST STRING over
alphabet {0,1} with the following properties:
If G contains a clique on k vertices, then there is a string w € {0,1} such that
H(w,z) < d for each x € S.

12:3

SWAT 2016

12:4

Lower Bounds for Approximation Schemes for Closest String

If G does not contain a clique on k vertices, then for each string w € {0,1}F there is
z €8 such that H(w,z) > (1+ L) -d.

The statement of Theorem 1.2 is similar to the core of the hardness proof of Boucher
et al. [3]. However, our reduction is completely different from the reduction of Boucher et
al., because the causes of the computational hardness of CLOSEST STRING and CONSENSUS
PATTERNS are quite orthogonal to each other. In CONSENSUS PATTERNS the difficulty lies
in picking the right substrings of the input strings. Once these substrings are known the
center string is easily computed in polynomial time, since we are minimizing the sum of the
Hamming distances. In CLOSEST STRING there are no substrings to pick, we just have to
find a center string for the given input strings. This is a computationally hard task because
we are minimizing the maximum of the Hamming distances to the center, rather than the
sum.

Theorem 1.1 follows immediately by combining Theorem 1.2 with the known parameterized

1

hardness results for CLIQUE, gathered in the following theorem, and setting e = .

» Theorem 1.3 (cf. Theorem 13.25 and Corollary 14.23 of [5]). The following assertions hold:
Unless FPT = W[1], CLIQUE cannot be solved in time f(k)-n°®) for any computable
function f.

Unless ETH fails, CLIQUE cannot be solved in time f(k) - n°*) for any computable
function f.

The main idea of the proof of Theorem 1.2 is to encode the n vertices of the given graph
G as an “almost orthogonal” family 7~ of strings from {0, 1}*, for some ¢ = O(logn). Strings
from T are used as identifiers of vertices of G, and the fact that they are almost orthogonal
means that the identifiers of two distinct vertices of G differ on approximately ¢/2 positions.
On the other hand ¢ = O(logn), so the whole space of strings into which V(G) is embedded
has size polynomial in n. Using these properties, the reduction promised in Theorem 1.2 is
designed by a careful construction.

Notation

By logp we denote the base-2 logarithm of p. For a positive integer n, we denote [n] =
{1,2,...,n}. The length of a string x is denoted by |z|. For an alphabet ¥ and two
equal-length strings x,y over X, the Hamming distance between z and y, denoted H(z,y),
is the number of positions on which z and y have different letters. If ¥ = {0,1} is the
binary alphabet, then the Hamming weight of a string = over X, denoted H(z), is the
number of 1s in it. The complement of a string x over a binary alphabet, denoted Z, is
obtained from x by replacing all Os with 1s and vice versa. Note that if |z| = |y| = n, then

H($>y) =n- 'H(E, y) =n —H(l',y) = /H(E7y)

2 Selection gadget

For the rest of this paper, we fix the following constants: p = 1/100, a = 1/10, § = 1/20.
Instead of giving a set of constraints for p, a, and 8 which are satisfied by a range or
assignments we decided to use this particular numerical examples to make the proof easier
to follow.

In the proof we will set £ = C - [logn] for some large integer C' divisible by 100; this
will ensure that pf, af, and §¢ are all integers. First, we prove that among binary strings
of logarithmic length one can find a linearly-sized family of “almost orthogonal” strings of

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh

balanced Hamming weight, which will be later used in the reduction to represent vertices of
a CLIQUE instance. The proof is by a simple greedy argument.

» Lemma 2.1. There exist positive integers C and N, where C' is divisible by 100, with the
following property. Let n > N be any integer, and let us denote £ = C - [logn]. Then there
exists a set T C {0,1}¢ with the following properties:

1. |T| =n,

2. H(z) =4/2 for each x € T, and

3. (1/2—=p)t < H(z,y) < (1/24 p) for each distinct x,y € T.

Moreover, given n, T can be constructed in time polynomial in n.

Proof. Let Hs(-) denote the binary entropy, i.e., Ha(p) = —plogp — (1 — p) log(1 — p) for
p € (0,1). Since ¢ is some positive integer divisible by 100. Then it is well known that

k

> () sz)

=0

for all integers k with 0 < k < ¢/2; cf. [6, Lemma 16.19]. Let us denote

SE 020

i=0 i=(1/2+4p)¢
Then from (1) it follows that
A<2.27Y

where o = Hs(1/2 — p) < 1.
Suppose now that ¢ = C - [logn] for some positive integers C' and n > 1, where C is
divisible by 100. Then
n(l+1)-A < 2n-(C[logn] +1)-27CMeen]
< 2-(2C+1)-2°% .nlogn - 20°Closn
< (40 +2)-2°¢ .ot

Since o < 1, we can choose C' to be an integer divisible by 100 so that ¢C 4+ 2 < C. Then,
we can choose N large enough so that

(4C+ 2) . 200 . na‘C+2 S nC

for all integers n > N. Hence,

c
n
nA <

< 2)

We now verify that this choice of C, N satisfies the required properties.
Consider the following greedy procedure performed on {0, 1}. Start with 7 = () and all
strings of {0,1}* marked as unused. In consecutive rounds perform the following:

1. Pick any = € {0,1}¢ with H(x) = £/2 that was not yet marked as used, and add = to 7.

2. Mark every y € {0, 1} with H(x,y) < (1/2 — p)¢ or H(z,y) > (1/2+ p)¢ as used.

It is clear that at each step of the procedure, the constructed family T satisfies properties (2)
and (3) from the lemma statement. Hence, it suffices to prove that the procedure can be
performed for at least n rounds.

12:5

SWAT 2016

12:6

Lower Bounds for Approximation Schemes for Closest String

Note that the number of strings marked as used at each round is at most A. On the other
hand, if D is the set of strings from {0, 1} that have Hamming weight exactly /2, then

|D‘ - ‘{071}€| _ 2C[10g‘n—\ - nC
T oU+1 (+1 —0+1

From (2) we infer that |D| > nA. This means that the algorithm will be able to find an
unmarked x € D for at least n rounds, and hence to construct the family 7 with |7T| =n. It
is easy to implement the algorithm in polynomial time using the fact that the size of {0,1}*
is polynomial in n. |

From now on, we adopt the constants C, N given by Lemma 2.1 to the notation. Let us
also fix n > N; then let £ = C'- [logn] and T be the set of strings given by Lemma 2.1, which
we shall call selection strings. We define the set of forbidden strings F = F(T) as follows:

F={y:y€{0,1}* and H(z,y) < (1 —)l for all z € T}.

In other words, F comprises all the strings that are not almost diametrically opposite to
some string from 7. The following lemma asserts the properties of 7 and F that we shall
need later on.

» Lemma 2.2. Suppose u € {0,1}°. Then the following assertions hold:
1. IfueT, then H(u,y) < (1 —)l for each y € F.
2. If H(z,u) > B for all x € T, then there exists y € F such that H(u,y) > (1 — B)L.

Proof. Property (1) follows directly from the definition of F, so we proceed to the proof
of (2).

Suppose H(u,z) > B¢ for all x € T. If w € F, then we could take y = u, so suppose that
u ¢ F. This means that there exists 2o € T, for which H(zo,u) > (1 — a)¢; equivalently,
H(Zo,u) < af. On the other hand, we have that H(xg,u) > B¢, so also H(Tg,u) > SL.
Construct y from @ by taking any set of positions X of size 8¢ on which @ and zg have
the same letters, and flipping the letters on these positions (replacing Os with 1s and vice
versa). Such a set of positions always exists because « + f < 1. Then we have that
H(Zo,y) = H(Tg,u) + B¢, which implies that

al = pl+ Bl < H(Zo,y) < (a+ B)L.

We claim that y € F; suppose otherwise. Since H(Tg,y) > «af, then also H(zo,y) <
(1 —a)l. As y ¢ F, there must exist some z1 € T, xg # 1, such that H(z1,y) > (1 — a)¥;
equivalently H(Z71,y) < af. Hence, from the triangle inequality we infer that

H(zo,x1) = H(To, Z1) < H(To,y) + H(y,T1) < (20 + B)L.

This is a contradiction with the assumption that H(zg,21) > (1/2 — p)¢, which is implied by
o, x1 € T. Indeed, we have that 2o+ 8 = i < 14% =1/2—p.

Hence y € F. By definition we have that H(u,y) = ¢, which implies that H(u,y) =
(1 — B)¢. Thus, y satisfies the required properties. <

3 Main construction

In this section we provide the proof of Theorem 1.2. Let (G, k) be the input instance of
CLIQUE, let n = |V(G)|, and without loss of generality assume k& < n. Let C, N be the

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh

constants given by Lemma 2.1. We can assume that n > N, because otherwise the instance
(G, k) can be solved in constant time. Let ¢ = C[logn]. We run the polynomial-time
algorithm given by Lemma 2.1 that computes the set 7 C {0, 1}* of selection strings. Let
F = F(T) be the set of forbidden strings, as defined in Section 2. Note that F can be
computed in polynomial time directly from the definition, due to |{0, 1}¢| = n®™).

We now present the construction of the output instance (S, L, d) of CLOSEST STRING.

Set L =kl + 4, where y=p+a = %, and partition the set [L] of positions in strings of
length L into k + 1 blocks:

k blocks B; for i € [k] of length ¢ each, where B; = {(i — 1)+ 1, (i — 1)+ 2,...,il};

special balancing block T' of length ¢, where I' = {k{ + 1,k(+ 2,..., L}.

For w € {0,1}* and a contiguous subset of positions X, by w[X] we denote the substring of
w formed by positions from X.

Let us first discuss the intuition. The choice the solution string makes on consecutive
blocks B; will encode a selection of a k-tuple of vertices in G. Vertices of G will be mapped
one-to-one to strings from 7. The family of constraint strings S will consist of two subfamilies
Seel and S,qj with the following roles:

Strings from S ensure that on each block B;, the solution picks a substring that is close

to some element of 7. The selection of this element encodes the choice of the ith vertex

from the k-tuple.

Strings from Saqj verify that vertices of the chosen k-tuple are pairwise different and

adjacent, and hence they form a clique.

A small technical caveat is that for strings from S and from S,g;, the intended Hamming
distance from the solution string will be slightly different. The role of the balancing block I"
is to equalize this distance by a simple additional construction.

We proceed to the formal description. Since |V(G)| = |T|, let ¢: V(G) — T be an
arbitrary bijection.

The family Sso consists of strings a(i,y, @, 2), for all i € [k], y € F, ¢ being a function
from [k] \ {¢} to {0,1}, and z being a binary string of length ~¢. String a(i,y, ¢, z) is
constructed as follows:

On block B; put the string y.

For each j € [k] \ {i}, on block B; put a string consisting of ¢ zeroes if ¢(j) = 0, and a

string consisting of ¢ ones if ¢(j) = 1.

On balancing block I' put the string z.

Thus, [Seal| = k - |F| - 2871278 < 28 .0 here and in some later estimates we use that
k < n. Also, S can be constructed in time 25 - n(1) directly from the definition.

The family S,qj consists of strings b(i, 7, (u,v),¥), for all 4, j € [k] with i < j, (u,v) being
an ordered pair of vertices of G that are either equal or non-adjacent, and 1 being a function
from [k] \ {¢,7} to {0,1}. String b(4, j, (u,v),) is constructed as follows:

On block B; put the string ¢(u).

On block B; put the string ¢(v).

On block By, for q € [k] \ {¢,7}, put a string consisting of ¢ zeroes if ¥(¢q) = 0, and a

string consisting of ¢ ones if ¥(q) = 1.

On balancing block I" put a string consisting of ¢ zeroes.
Thus, |Saq;| < (’2“) n? . 2872 < 2k . O Again, S,q; can be constructed in time 2 . n@1)
directly from the definition.

Set S = Sse1 U Saqj and d = (k/2 4 1/2 + p) - €. This concludes the construction. Its
correctness will be verified in two lemmas that mirror the properties listed in Theorem 1.2.

12:7

SWAT 2016

12:8

Lower Bounds for Approximation Schemes for Closest String

» Lemma 3.1. If G contains a clique on k vertices, then there exists a string w € {0, 1}
such that H(w,z) < d for each z € S.

Proof. Let {c1,ca,...,ci} be a k-clique in G. Construct w by putting ¢(c;) on block B;, for
each i € [k], and zeroes on all the positions of the balancing block T'.

First, take any string a = a(i,y, ¢, z) € Sse1. Since ¢(¢;) € T and y € F, by Lemma 2.2(1)
we infer that H(w[B;],a[B;]) = H(u(ei),y) < (1 — a)f. For each j € [k] \ {i}, since
H(u(cj)) = £/2 due to u(cj) € T, we have that H(w[B;],a[B;]) = H(c(c)),a[B;]) = £/2,
regardless of the value of ¢(j). Finally, obviously H(w[I'],a[l']) < |T'| = v¢. Hence

H(w,a) < (1 —a)l+ (k—1)0/2 +~vl =d.

Second, take any string b = b(¢, j, (u,v),1) € Saqj. Since ¢; and ¢; are different and
adjacent, whereas u and v are either equal or non-adjacent, we have (c;,¢;) # (u,v).
Without loss of generality suppose that ¢; # u; the second case will be symmetric. Then
H(w|[B;], b[Bi]) = H(u(cs), t(u)) < (1/2 + p)¢, due to property (3) of Lemma 2.1. Obviously,
H(w[B;],b[B;]) < |B;| < ¢. Finally, for every ¢ € [k] \ {4,j} we have that H(:(cq)) = ¢/2,
and hence H(w[By], b[By]) = H((cq), b[By]) = £/2, regardless of the value of ¢)(g). Strings w
and b match on positions of I', so H(w[['],b[I"]) = 0. Summarizing,

H(w,b) < (1/2+ p)l+ + (k —2)/2 = d. <

» Lemma 3.2. If there is a string w € {0, 1} such that H(w,x) < d + B¢ for each x € S,
then G contains a clique on k wvertices.

Proof. We first prove that on each block B;, w is close to selecting an element of 7.

» Claim 3.3. For each i € [k] there exists a unique x; € T such that H(w[B;], x;) < SL.

Proof. Uniqueness follows directly from property (3) of Lemma 2.1 and the triangle inequality,
so it suffices to prove existence.

Let u = w[B;]. For the sake of contradiction, suppose H(u,x) > ¢ for each x € T. From
Lemma 2.2(2) we infer that there exists y € F such that H(u,y) > (1 — 8)¢. Let us take
¢: [k]\{t} — {0,1} defined as follows: ¢(j) = 0 if in w the majority of positions of B; contain
a one, and ¢(j) = 1 otherwise. Also, define z = w([I']. Consider string a = a(i,y, ¢, z) € Ssel.
Then, it follows that

H(wlBi), alBi)) = H(uy) > (1 - AL

H(w[B;],alBy)) = £/2 for each j € (K] \ {i};

H(w[l], a[l) = H(w[I'],w[l']) = [I] = +£.

Consequently,

H(w,a) > (1 —B)+ (k—1)0/2 4+~ =d+ jL.

This is a contradiction with the assumption that H(w,x) < d + B¢ for each z € S. <
For each i € [k], let ¢; = 71 (x;).

» Claim 3.4. For alli,j € [k] with i < j, vertices ¢; and ¢ are different and adjacent.

Proof. For the sake of contradiction, suppose ¢; and c; are either equal or non-adjacent.
Define 9 [k] \ {¢,7} — {0,1} as follows: 7(g) = 0 if in w the majority of positions of
B, contain a one, and ¢(q) = 1 otherwise. Then, for (¢;,c;) we have constructed string
b="0b(i,7,(ci,c;),1) € Saqj. Observe now that

M. Cygan, D. Lokshtanov, M. Pilipczuk, M. Pilipczuk, and S. Saurabh

H(w[Bi],b[Bi]) = H(w[Bil, T7) > (1 = p)L, since H(w([Bi], ;) < Be;
Similarly, H(w[B,],b[B;]) > (1 — B)¢;
H(w[Byg], b[By]) = €/2 for each q € [k]\ {i,7};
H(w[l'],b[L]) > 0.
Consequently,

H(w,b) >2(1 =)+ (k—2)¢/2 = (k/24+1—-20)¢ > d+ L.
This is a contradiction with the assumption that H(w,x) < d 4+ B¢ for each z € S. <
Claim 3.4 asserts that, indeed, {c1,ca,...,cr} is a k-clique in G. <

Lemmas 3.1 and 3.2 conclude the proof of Theorem 1.2, where ¢ can be taken to be any
constant larger than ﬁ < % = 40.

4 Conclusions

In this paper we have proved that CLOSEST STRING does not have an EPTAS under the
assumption of FPT # W[1]. Moreover, under the stronger assumption of the Exponential
Time Hypothesis, one can also exclude PTASes with running time f(¢) - n°(1/) for any
computable function f. However, the fastest currently known approximation scheme for
CLOSEST STRING has running time n@/e%) [11]. This leaves a significant gap between the
known upper and lower bounds. Despite efforts, we were unable to close this gap, and hence
we leave it as an open problem.

—— References

1 Alexandr Andoni, Piotr Indyk, and Mihai Patragcu. On the optimality of the dimensionality
reduction method. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 449-458.
IEEE Computer Society, 2006.

2 Cristina Bazgan. Schémas d’approximation et complexité paramétrée. PhD thesis, Univer-
sité Paris Sud, 1995. In French.

3 Christina Boucher, Christine Lo, and Daniel Lokshtanov. Consensus Patterns (probably)
has no EPTAS. In Algorithms - ESA 2015 - 23rd Annual European Symposium, Patras,
Greece, September 14-16, 2015, Proceedings, volume 9294 of Lecture Notes in Computer
Science, pages 239-250. Springer, 2015. Full version available at http://www.ii.uib.no/
~daniello/papers/ConsensusPatterns.pdf.

4 Marco Cesati and Luca Trevisan. On the efficiency of polynomial time approximation
schemes. Inf. Process. Lett., 64(4):165-171, 1997.

5 Marek Cygan, Fedor V. Fomin, fukasz Kowalik, Daniel Lokshtanov, Daniel Marx,
Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms.
Springer, 2015. URL: http://dx.doi.org/10.1007/978-3-319-21275-3, doi:10.1007/
978-3-319-21275-3.

6 Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, Berlin, 2006.

7 Jens Gramm, Rolf Niedermeier, and Peter Rossmanith. Fixed-parameter algorithms for
Closest String and related problems. Algorithmica, 37(1):25-42, 2003.

8 Ming Li, Bin Ma, and Lusheng Wang. Finding similar regions in many sequences. J.
Comput. Syst. Sci., 65(1):73-96, 2002.

12:9

SWAT 2016

http://www.ii.uib.no/~daniello/papers/ConsensusPatterns.pdf
http://www.ii.uib.no/~daniello/papers/ConsensusPatterns.pdf
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1007/978-3-319-21275-3

12:10

Lower Bounds for Approximation Schemes for Closest String

10

11

12

13

Ming Li, Bin Ma, and Lusheng Wang. On the Closest String and Substring problems. J.
ACM, 49(2):157-171, 2002.

Daniel Lokshtanov, Déniel Marx, and Saket Saurabh. Slightly superexponential parame-
terized problems. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25, 2011,
pages 760-776. STAM, 2011.

Bin Ma and Xiaoming Sun. More efficient algorithms for Closest String and Substring
problems. STAM J. Comput., 39(4):1432-1443, 20009.

Déniel Marx. Closest substring problems with small distances. SIAM J. Comput.,
38(4):1382-1410, 2008.

Déniel Marx. Parameterized complexity and approximation algorithms. Comput. J.,
51(1):60-78, 2008.

	Introduction
	Selection gadget
	Main construction
	Conclusions

