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Abstract
This paper describes QL, a language for querying complex, potentially recursive data struc-
tures. QL compiles to Datalog and runs on a standard relational database, yet it provides
familiar-looking object-oriented features such as classes and methods, reinterpreted in logical
terms: classes are logical properties describing sets of values, subclassing is implication, and
virtual calls are dispatched dynamically by considering the most specific classes containing the
receiver. Furthermore, types in QL are prescriptive and actively influence program evaluation
rather than just describing it. In combination, these features enable the development of concise
queries based on reusable libraries, which are written in a purely declarative style, yet can be
efficiently executed even on very large data sets. In particular, we have used QL to implement
static analyses for various programming languages, which scale to millions of lines of code.
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1 Introduction

QL is a declarative, object-oriented logic programming language for querying complex,
potentially recursive data structures encoded in a relational data model. It is a general-
purpose query language, but its strong support for recursion and aggregates makes it
particularly well suited for implementing static analyses, code queries and software metrics.
Although this paper is not about static analysis per se, it is in this area that QL, being the
technical basis of Semmle’s engineering analytics platform, has seen most use so far, so we
will use it as our main source of motivating examples.

A static analysis implemented in QL is simply a query run on a special database: the
database contains a representation of the program to analyse (encoding, say, its abstract
syntax tree or control flow graph), from which the query computes a set of result tuples. A
bug finding analysis, for instance, could return pairs of source locations and error messages.
Since the database describes the program as it was at one particular point in time, we refer
to it as a snapshot database. A snapshot database is created by a language-specific extractor.
We have built extractors for various different languages based on existing compiler frontends.

As our first example of a QL query, let us consider an analysis for finding useless
expressions in JavaScript programs, i.e., pure (that is, side effect-free) expressions appearing
in a void context where their value is immediately discarded. Typically, this indicates a typo,
for instance mistyping an assignment “x = 42;” as an equality check “x == 42;”.
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Listing 1 QL query for finding useless expressions in JavaScript.
import javascript

predicate inVoidContext(Expr e) {
exists (ExprStmt s | e = s.getExpr()) or
exists (SeqExpr seq, int i | e = seq.getOperand(i) and

(i < count(Expr op | op = seq.getOperand(_))-1 or inVoidContext(seq)))
}

from Expr e
where e.isPure() and inVoidContext(e) and not (e instanceof VoidExpr)
select e, "This expression has no effect."

To identify such expressions we need to implement a purity analysis and a check to
determine whether an expression appears in a void context. Fortunately, the former is already
implemented in our standard QL library for JavaScript, so we can concentrate on the latter.

A simple query for finding useless expressions is shown in Listing 1. At a very high level,
it breaks down into three sections:

An import statement pulls in the existing QL library javascript, which, as its name
suggests, provides general support for working with JavaScript snapshot databases.
A predicate inVoidContext is defined to identify expressions in void context.
The main from-where-select clause defines the analysis itself:

the from part declares a variable e ranging over all expressions in the analysed program;
the where part imposes three conditions on e: it must be pure, appear in a void context,
and not be a void expression, which explicitly discards the value of its operand;
the select part specifies the results to return for values of the from variables that pass
the where conditions; in this case, e itself is returned with an explanatory message.

Taking a closer look at the definition of inVoidContext, it is declared as a unary predicate
with a single parameter e of type Expr. Expr and its subtypes model JavaScript expression
ASTs: for instance, BinaryExpr is a subclass of Expr representing all binary expressions,
which in turn has a subclass AddExpr representing additions; another subclass of Expr is
SeqExpr, representing sequence (or “comma”) expressions with two or more operands.

The body of the predicate is a first-order formula with two disjuncts. Its first disjunct
says that e is in void context if it is the toplevel expression in an expression statement (as
in our example above). The second disjunct handles the case where e is an operand of a
sequence expression: e is in void context if it is not the last operand, or if the entire sequence
is in void context, as determined by a recursive call to inVoidContext.

Judging from this example, QL looks like a domain-specific language for querying Java-
Script ASTs, but this not the case: the classes used in this example and the navigation
operations available on them are defined entirely in QL, not built into the language. In fact,
there is nothing about QL that is specific to dealing with ASTs, or even for writing static
analyses, but its object-oriented features allow the development of reusable domain-specific
libraries (such as the javascript library and its cousins for other languages), providing a
rich and convenient API for query writers.

Perhaps more surprisingly, there are not even any objects in the traditional sense of
structured records with fields and methods. QL programs only work with atomic values;
structured data is encoded as relational tables. For example, it is natural at first to think of
the formula e = seq.getOperand(i) as an operation on an object seq, perhaps involving
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reading the i-th element of one of its fields holding an array of references to other objects, and
then storing the result in variable e. In fact, though, all three variables e, seq and i range
over atomic values: the latter is an integer, and the former two are entity values, that is,
opaque identifiers representing entities modelled in the database (in this case, expressions).

In JavaScript snapshot databases, the expression AST structure of the program is encoded
in a relation exprs containing 4-tuples (c, k, p, i), for entity values c and p and integers k and
i, stating that expression c is the the i-th child of p in the AST, and has kind k. Class Expr
and its subclasses define an object-oriented view of this relation; for example, getOperand
is defined such that e = seq.getOperand(i) is compiled to ∃k.exprs(e, k, seq, i): no field
reads, no assignments, just logic.

In particular, e is not an output computed from inputs seq and i: all three variables are
on an equal footing, and there is not even any requirement that e is functionally determined
by seq and i (though in this particular case it is). This becomes obvious in our use of the
count aggregate to determine the number of operands to seq: op = seq.getOperand(_)
holds for any value of op that is an operand of seq (where “_” is the special don’t-care
variable familiar from other logic languages), so seq.getOperand(_) behaves like a multi-
valued expression. We use the aggregate to count how many of those values there are to
obtain the number of operands of seq.

In spite of their unusual semantic underpinnings, QL classes offer very similar features to
their more traditional counterparts. In particular, classes can have member predicates, such
as the isPure predicate on Expr, which is defined in the standard QL library for JavaScript
and overridden with different implementations for various subclasses of Expr. Calls such as
e.isPure() are dispatched virtually, looking up the most specific applicable definitions of
isPure based on the (runtime) value of e.

Like in Java and many other languages, all variables in QL have statically declared types,
offering the usual benefits of enabling smart IDEs.1 However, type declarations in QL are
not just assertions to be checked by the compiler, but do, in fact, affect program semantics
at runtime: the values that a variable can take during execution are restricted to those that
conform to the declared type. In particular, the declared types of predicate parameters and
quantified variables restrict the set of values they may range over.

As mentioned above, our example query makes use of (a small part of) the standard QL
libraries for JavaScript. Just like the query, the libraries are implemented in an entirely
declarative style, specifying what should be computed rather than how. In fact, QL exposes
no details at all of the underlying database system on which the queries are run, and it is up
to the optimiser to translate the high-level QL code into an efficiently executable query plan.

In this paper, we present the core features of QL:

We explain the semantics of classes, member predicates and virtual dispatch, first
informally (Section 2) and then more formally via a translation from a subset of the
language, Core QL, to plain Datalog (Section 3).
We discuss practical usage of QL in Section 4, and report on a case study in using QL to
implement static checks for Java in Section 5.
We put QL into context in Section 6, exploring in detail how far it matches the principles
of object orientation laid down in the literature, and briefly survey related work.

1 In fact, this is the main motivation for choosing the from-where-select query syntax instead of SQL’s
select-from-where: variables are declared upfront, so code completion is available in the select part.
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2 Overview of QL

The fundamental semantic model of QL is that of Datalog: programs define a set of intensional
predicates, one of which is a distinguished query predicate. They are evaluated on top of an
extensional database (EDB), which defines a set of extensional predicates. While intensional
predicates are defined by formulas of first-order logic (possibly involving recursion between
predicates), extensional predicates are defined as explicit sets of tuples stored in the database.
Unlike Prolog, Datalog does not allow the use of complex terms, so intensional predicates
can only refer to values already contained in the database and cannot build up new data
structures, such as lists. Like many Datalog dialects, QL somewhat relaxes this restriction
by providing support for arithmetic and string operations.

The semantics of a program is the least fixpoint of its intensional predicates, that is,
intensional predicates are assigned the smallest sets of tuples that satisfy their recursive
definitions. Since such a fixpoint need not exist in general, QL imposes the restriction that
(mutual) recursion is only allowed under an even number of negations, which is a variant
of the stratified negation restriction used in many Datalog systems [32]. Once a fixpoint
solution has been found, the set of tuples assigned to the query predicate is returned as the
overall result of the program.

The grounding of QL’s semantics in Datalog is not just an expository device: as explained
in Section 4, our implementation compiles QL to plain Datalog, and we shall provide a
precise semantics for a core calculus of QL in the next section by formalising the essential
parts of that translation.

2.1 Classes
A type in QL represents a set of values, which we will call the extent of the type. Classes
are types whose extent is defined by a unary intensional predicate called the characteristic
predicate (or character for short) of the class.

There are also two kinds of base types, that is, types which are not themselves defined in
QL: primitive types such as int or string are built into the language; entity types are defined
by unary extensional predicates, whose names by convention start with an “@” character.
Primitive types always have the same extent, regardless of the content of the EDB, while the
extent of entity types and classes may depend on the EDB. For example, snapshot databases
representing JavaScript programs defines entity types @expr and @seqexpr whose extent is,
respectively, the set of all expressions and the set of sequence expressions in the represented
program.

Subtyping can be thought of as set inclusion of extents: if A is a subtype of B, then the
extent of A is a (not necessarily proper) subset of the extent of B.2 For entity types the
subtyping relation is given by the database schema: for instance, the schema for JavaScript
snapshot databases declares @seqexpr to be a subtype of @expr, and it is up to the database
system to ensure that this constraint is met at runtime. For classes, direct supertypes are
specified as part of their declaration using a Java-like extends clause.

While entity types can only be subtypes of other entity types, classes can also extend
base types. For instance, we can define a class Digit with the extent {0, 1, 2, . . . , 9}:
class Digit extends int { Digit() { (int)this in [0..9] } }

2 The reverse direction cannot, in general, hold: since characters are arbitrary predicates, inclusion of
extents is undecidable, while our subtyping relation needs to be kept decidable.
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The extends clause makes Digit a subtype of the built-in int type, and the character
(which syntactically looks like a constructor in Java) further restricts the extent of Digit.
The x in [a..b] notation is a convenience for defining ranges (note that an explicit cast is
necessary when using variables with a class type in numeric operations).

Characteristic predicates can contain arbitrary QL code. For instance, we can define
the class of even digits and the class of prime digits by subclassing Digit and performing
arithmetic checks on this.
class Even extends Digit { Even() { (int)this % 2 = 0 } }
class PrimeDigit extends Digit {

PrimeDigit() { count(Digit divisor | (int)this % (int)divisor = 0) = 2 } }

Observe that the extents of the two classes overlap, yet neither is a subset of the other.
This is a natural consequence of defining types by arbitrary characteristic predicates, but it
means that not every value has a unique tightest type.

Like Java, QL has an instanceof operator, which in QL is really just syntactic sugar for
calling the character of a class. For instance, the class of odd digits can be defined like this:
class Odd extends Digit { Odd() { not this instanceof Even } }

Being intensional predicates, characters can be recursive. For instance, we could define:
class Even extends Digit { Even() { this = 0 or (int)this-1 instanceof Odd } }
class Odd extends Digit { Odd() { (int)this-1 instanceof Even } }

However, recursion has to be stratified: simply defining Even and Odd as mutual comple-
ments is not acceptable, since this definition has no least fixpoint.

A class may extend multiple supertypes, which simply means that it is a subtype of the
their intersection. The (potentially trivial) intersection of all supertypes of a class is called
the domain of the class. For instance, the class of even prime digits ({2}) is defined as
class EvenPrime extends Even, PrimeDigit {}

In fact, since EvenPrime imposes no additional constraints on this in its character, its
extent is exactly equal to its domain. In general, the extent of a class consists of all those
values in its domain that satisfy the body of the character; hence, the implicit this variable
in the character ranges over the domain of the class.

It should be emphasised that the constructor-like syntax for characters is purely superficial:
QL has no new expression. Like plain Datalog, QL programs can never construct new values
or objects, they can only work with primitive values and the values present in the EDB.

2.2 Prescriptive typing
Every variable in QL has a declared type. In most statically typed imperative and functional
languages, such declarations are purely compile-time artefacts that describe the set of values
the variable is allowed to take on at runtime; they are checked for consistency by the
compiler but play no role at runtime. In contrast to this descriptive typing discipline, QL
follows a prescriptive model, where the syntactic type declaration corresponds to a semantic
containment check at runtime.

For instance, consider the predicate isSmall that holds for all Digits smaller than five:
predicate isSmall(Digit d) { (int)d < 5 }

We can use it in a query like the following (which will return the numbers 0, . . . , 4):
from int i where isSmall(i) select i
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Note that i is declared to be of type int, but is passed as an argument to isSmall,
whose parameter is declared to be a Digit. Under a descriptive typing discipline, this would
be a compile-time type error, but not so in QL: declaring d to be a Digit simply means that
in order for a value to satisfy the predicate isSmall, it has to both be a Digit and satisfy
the logical conditions imposed by the body of the predicate (namely, being smaller than five).

Another way of looking at it is that type declarations entail an implicit instanceof test
(which is, in fact, made explicit when translating to plain Datalog), and our definition of
isSmall is equivalent to
predicate isSmall(int d) { d instanceof Digit and d < 5 }

The call isSmall(i) thus has a perfectly well-defined semantics, regardless of the declared
type of i, and regardless of what set of values i ranges over at runtime. If none of these
values happen to be in Digit, then isSmall(i) will evaluate to an empty set of tuples, as
in the following query:
from int i where isSmall(i) and i < 0 select i

In practice, a query or formula that never returns any values usually indicates a mistake.
The problem of finding such empty formulas can be reduced to the problem of inferring types
for the generated Datalog [33]; (Datalog) formulas for which we infer the empty type are
mapped back to the (QL) formulas they arise from, and reported. In general, emptiness of
Datalog formulas is undecidable (even without arithmetic or string operations), so we can
never find all empty formulas, but in practice this approach has proved to be quite effective.

Besides type declarations, instanceof tests and casts also restrict the possible values of
variables and expressions: x instanceof A restricts x to only take on values from A, and
similarly (A)x is an expression picking out those values of x that are in A.

2.3 Member predicates
The predicate isSmall really describes a property of Digits, so it thus makes sense to add
it to class Digit as a member predicate:
class Digit extends int {

Digit() { (int)this in [0..9] }
predicate isSmall() { (int)this < 5 } }

Like characteristic predicates, member predicates have an implicit parameter this, and
they are invoked using a method call-like syntax:
from Digit d where d.isSmall() select d

Of course, member predicates can have other parameters besides this. For instance, we
could add a predicate divides to check whether one digit is a divisor of another:
class Digit extends int {

...
predicate divides(Digit that) { (int)that % (int)this = 0 } }

There is one important difference between characters and member predicates: in the
former, this ranges over the domain of the class (that is, the intersection of the extents of its
supertypes), while in the latter this ranges over the extent of the class itself. This is because
the character is what defines the extent of the class in the first place, so by restricting this
to range over the extent of the class in the character, we would introduce a direct recursive
call from the character to itself, which under least fixpoint semantics would mean that the
character (and hence the extent of the class) is always empty.
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2.4 Multi-valued expressions
Taking the analogy between member predicates and methods further, QL allows treating
predicates as multi-valued “functions” with a dedicated result parameter. For instance, the
member predicate divides could instead be written as a multi-valued function returning
any of the divisors of a digit:

Digit getADivisor() { (int)this % (int)result = 0 }

Note that member predicates using the function syntax have an implicitly declared
result variable whose type is the declared result type. The results of the predicate are
precisely those values that the result variable is bound to. Syntactically, calls to predicates
in function syntax are treated like function calls; in particular, they can be chained as in
d.getADivisor().getADivisor(), which evaluates to all divisors of divisors of d.

Semantically, however, such predicates are still relations: there is no requirement that
result has precisely one value for each value of this, or that result is “computed from”
this in some operational sense. In fact, it is quite possible to use getADivisor() in reverse
to compute all values of this yielding a given result value, as shown in the following query:
from Digit d where d.getADivisor() = 2 select d // selects 0, 2, 4, 6, 8

When translating to Datalog, predicates using the function syntax are desugared into
normal predicates by making the result parameter explicit and introducing temporary
variables as necessary. For instance, d.getADivisor()=2 is translated into code of this form:
exists (Digit tmp | d.getADivisor(tmp) and tmp = 2)

Thus, multi-valued expressions are a purely syntactic, if practically very useful, feature.

2.5 Overriding and virtual dispatch
Given that we have classes that contain member predicates and that may extend each other,
it is natural to ask whether there is a notion of overriding and virtual dispatch, and indeed
there is: intuitively, at runtime a call x.p(...) is dispatched to the definition of p belonging
to the tightest class containing x, i.e., the most specific applicable definition of p.

There are two sources of ambiguity: first, x may, in general, have multiple values; this
is solved by dispatching the call separately for each individual value. Second, classes may
overlap, so even for a single value of x there can be multiple most specific definitions of p;
this is solved by dispatching to each definition separately and unioning the results.

More formally, let us represent member predicates by relation specifiers of the form C.p/n,
where C is the name of the class in which the predicate is declared, p is the name of the
predicate itself, and n is the predicate’s arity, not including the result parameter.3 We say
that a predicate C.p/n overrides a predicate C ′.p/n if C is a transitive subtype of C ′; in this
case, we also say that C.p/n is more specific than C ′.p/n.

A member predicate is a root definition (or rootdef for short) if it does not override any
other predicate. The set of rootdefs of a predicate is the set of all rootdefs that it overrides,
or the predicate itself if it is already a rootdef. Note that due to multiple inheritance a
predicate can have more than one rootdef, but every predicate has at least one.

3 QL allows overloading, so there may in fact be multiple member predicates with the same arity as long
as they have different parameter types. Like in Java, overloading is resolved entirely statically based on
declared types, and hence plays no role in virtual dispatch, and we shall ignore it for simplicity.
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The static target of a member predicate call x.p(...), where the declared type of x is a
class C, is the most specific predicate D.p/n such that C is a reflexive, transitive subtype of
D and n is the number of arguments in the call. In a valid QL program, every predicate call
must have a unique static target. The dispatch candidates of x.p(...) are all the rootdefs
of the static target, as well as any predicates that override at least one of the rootdefs.

At runtime, for every value v of x, the applicable targets of the call are those dispatch
candidates D.p/n for which v is in the extent of D, and the actual targets are the most
specific applicable targets. The call is dispatched to all actual targets for each value of x.

In summary, dispatch for a call x.p(...) occurs in two stages, one static and one dynamic.
At compile-time we compute the set of dispatch candidates, which contains all rootdefs of p
above the declared type of x (that is, member predicates with the same signature that do
not themselves override another definition) and all methods that override them. At runtime,
each of these candidates applies only if the value of x is contained in the corresponding class,
and there is no more specific class that also contains x.

For example, assume we add a member predicate kind to class Digit like this:
class Digit extends int { ... string kind() { result = "digit" } }

We override kind in the subclasses of Digit to result in "even" for Even, "odd" for Odd
and "even prime" for EvenPrime. Now consider this query:
from Even e select e, e.kind()

The static target of the call e.kind() is Even.kind/0, whose (unique) root definition
is Digit.kind/0. The dispatch candidates are Digit.kind/0, Even.kind/0, Odd.kind/0 and
EvenPrime.kind/0. Since e is declared to be an Even, it ranges over the set {0, 2, 4, 6, 8}.
For the runtime values 0, 4, 6 and 8, the applicable targets of e.kind() are Digit.kind/0
and Even.kind/0, and the (unique) actual target is Even.kind/0. For the value 2, the
applicable targets are Digit.kind/0, Even.kind/0 and EvenPrime.kind/0, and the actual
target is EvenPrime.kind/0. Hence, the query evaluates to {(0, "even"), (2, "even prime"),
(4, "even"), (6, "even"), (8, "even")}.

Now consider what happens if we add a new class
class Two extends Digit { Two() { this = 2 } string kind() { result = "two" } }

Two.kind/0 has Digit.kind/0 as its root definition, so it is now also a dispatch candidate
for e.kind(), and it is an applicable target for e = 2. We now have two applicable targets
in this case, neither of which is more specific than the other. Hence they will both be called,
so the query additionally returns the tuple (2, "two").

If, on the other hand, we define Two to extend int instead of Digit, its extent does not
change, but Digit.kind/0 is no longer a root definition of Two.kind/0, which hence is no
longer a dispatch candidate for e.kind().

Discussion

Support for multiple actual targets is perhaps the most unusual feature of virtual dispatch
in QL and can be confusing to novice QL programmers. Its main motivations are:

Naturality Virtual dispatch selects the most specific implementation; with overlapping classes
there may be more than one, so in a logic language it is natural to take their disjunction.

Simplicity Outlawing multiple actual targets is difficult, since it is undecidable whether two
classes overlap (by undecidability of emptiness in Datalog with negation). Requiring
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characteristic predicates to be decidable would rule out many practically interesting cases,
while checking ambiguity at runtime and aborting with an error seems undesirable.

Usefulness Some common idioms use this feature. For example, a flow analysis could be
implemented as a member predicate on data flow nodes; different overriding definitions
handle different kinds of flow, and hence naturally overlap. For instance, one definition
could model intra-procedural def-use chains, while another models inter-procedural
argument passing; both definitions overlap for parameters that are reassigned.

In particular, the last example above rules out a simpler approach where each predicate is
considered its own rootdef, which would make dispatch depend very strongly on static types.
As another extreme, one could consider all predicates of the right name and arity as dispatch
candidates, ignoring static types altogether. This seems undesirable in practice, since it can
cause dispatch to completely unrelated predicates that just happen to have the same name.
Instead, QL views a rootdef and all its overriding methods as alternative implementations of
the same operation. For a given call, all operations implemented by the static target are
determined at compile time, and at runtime the most specific implementations are selected.

There is no intrinsic connection between multiple call targets and multiple inheritance: the
former arises without the latter, for example if a class defines a predicate that is overridden
by two overlapping subclasses. Ambiguous inheritance is, in fact, illegal in QL (as we shall
discuss below), and hence does not give rise to multiple call targets.

2.6 Abstract classes
QL classes as we have described them so far lend themselves quite well to top-down modelling:
starting from a general superclass representing a large set of values, we carve out individual
subclasses representing more restricted sets of values. In particular, the extent of a class is
always defined by filtering its domain through the body of its character.

A classic example where this approach is useful is when modelling ASTs: the node types
of an AST form a natural inheritance hierarchy, where, for example, there is a class Expr
representing all expression nodes, with many different subclasses for different categories of
expressions; there might, for instance, be a class ArithmeticExpr representing arithmetic
expressions, which in turn could have classes AddExpr and SubExpr.

In other cases, however, we might prefer to instead think of a class as being the union
of its subclasses. Here, the superclass exists purely as an interface that provides certain
member predicates, with subclasses filling in concrete implementations.

QL supports a notion of abstract classes that allow us to do exactly this: like a concrete
class, an abstract class has one or more superclasses and a characteristic predicate. However,
the extent of an abstract class is not the set of values that satisfies its character, but rather the
union of the extents of all its subclasses. In particular, an abstract class without subclasses
has an empty extent. We will present a practical example of an abstract class in Section 4.

2.7 Miscellanea
QL has various other language features that are important in practice but are either not
semantically fundamental, or have direct counterparts in other Datalog dialects.

As we mentioned at the beginning of this section, QL predicates may be recursive, and
our program analysis queries make heavy use of this feature. A particularly common kind
of recursion is transitive closure, for which QL offers a syntactic shorthand: for a binary
predicate p, p+ denotes its transitive closure, and p* its reflexive transitive closure. Obviously,
this is purely syntactic sugar that is easily translated into plain recursion.
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prog ::= cd pd program
cd ::= abstract? class C extends T {C() {f} pd} class definition
pd ::= predicate p(T x) {f} predicate definition
f, g ::= p(x) | x.p(y) | C.super.p(x) | not f formula

| f and g | f or g | exists(T x | f)
S, T ::= C | @b | C.domain type reference

Figure 1 Syntax of Core QL; · denotes (possibly empty) sequences, ·? optional elements.

In addition to virtual calls, QL also provides statically dispatched super calls of the form
C.super.p(...). Their static target is looked up in C (which must be a superclass of the
enclosing class), and serves as the single actual target.

The import statement makes definitions from one module available in another. For
instance, the QL standard library for JavaScript is split into 40 modules, which are all
imported into a single module javascript.qll. Since imports are transitive, queries can
simply import that module to gain access to the entire library (cf. Listing 1). As in Java,
implementation hiding is facilitated by access modifiers: member predicates may be marked
private, meaning that they cannot be called from outside the enclosing class.

QL supports aggregates to perform arithmetic operations such as sum or average on
(multi-)sets of values. While very useful in practice, aggregates are really a feature of the
Datalog dialect into which QL is compiled, and they do not interact with the language’s
object-oriented features, hence we will not further discuss them.

As a syntactic convenience, casts may be written in a postfix form as x.(A), which is
semantically equivalent to (A)x, but saves parentheses in chained calls.

Finally, member predicates of abstract classes may themselves be abstract, meaning
that they do not have a body, and the QL compiler checks that each subclass provides
an overriding definition of the predicate. Observe that our definition of virtual dispatch
guarantees that an abstract member predicate is never the actual target of a call: since the
extent of the abstract class is the union of the extents of its subclasses and since each of
those subclasses overrides the abstract predicate, there must always be at least one more
specific applicable target. Thus, abstract predicates are not semantically fundamental, and
in particular have no deep semantic connection with abstract classes.

3 Semantics of Core QL

To formally describe the semantics of QL, we concentrate on a subset dubbed Core QL that
captures the object-oriented features of QL, while omitting other features that are either
purely syntactic or are semantically orthogonal. The semantics of Core QL will be described
by a translation to plain Datalog.

3.1 Core QL
Figure 1 presents the syntax of Core QL. Like full QL, Core QL programs consist of toplevel
predicates and (concrete and abstract) classes with a characteristic predicate and member
predicates. We do not model QL’s from-where-select query syntax, but simply consider
queries as special toplevel predicates.
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Predicates can declare parameters, and their bodies are first-order formulas with predicate
calls as atomic formulas. As in full QL, there are calls to toplevel predicates and to member
predicates, and the latter may be either virtual calls or super calls. Unlike full QL, super
calls always have to be explicitly annotated with the class they refer to.

Type references appearing in extends clauses, parameter declarations or existential
quantifiers are either class names C or base type names @b. We assume the latter to be
defined by an underlying database schema. Core QL also has a syntax for domain types of
the form C.domain for a class name C; these cannot appear at the source level but play a
crucial role in the semantics of classes.

Among the QL features omitted from Core QL are overloading, the function syntax
for predicates, expressions, the forall quantifier, casts and instanceof : these can all be
desugared into Core QL features. Other QL features such as primitive types and aggregates
have no counterpart in Core QL, but their semantics is largely orthogonal to the object-
oriented features of the language, which are the focus of our presentation.

3.2 Datalog
The target language for our translation is an untyped variant of Datalog. A Datalog program
consists of a series of intensional predicate definitions of the form p(x)← ϕ., where p is a
predicate name, x is a possibly empty sequence of variable names, and ϕ is a formula of
first-order logic with the usual logical connectives. The free variables of ϕ must be exactly
x. The atoms of ϕ are calls of the form r(y), where r is either the name of an intensional
predicate defined in the same program, or the name of an extensional predicate.

We say that an intensional predicate p calls a predicate q, written p→ q, if the body of p
contains a call to q. As usual, →∗ denotes the reflexive transitive closure of this relation.
p
−→ q means that one of the calls to q in p occurs under an odd number of negations.
We require all Datalog programs to be stratified, that is, recursive call chains of the form

p →∗ q −→ r →∗ p are not allowed. Any stratified Datalog program has a least fixpoint
semantics, that is, given an interpretation of the extensional predicates, each intensional
predicate has a unique minimal interpretation that satisfies the predicate’s definition.

3.3 Valid Core QL
In order to be meaningfully translatable to Datalog, a Core QL program has to fulfil a set of
syntactic requirements and pass some static semantic checks. There is one additional check
that is easiest to perform on the generated Datalog and will be discussed later.

The syntactic requirements are entirely standard and mostly naming related:

I Definition 1 (Syntactic validity). In order for a Core QL program to be syntactically valid,
the following conditions have to be satisfied:

No two classes and no two toplevel predicates with the same arity may have the same
name; no two member predicates of the same class with the same arity, and no two
parameters of the same predicate may have the same name.
Every extends clause must list at least one type.
Every characteristic predicate must have the same name as its enclosing class.
No predicate parameter may have the name this.
For every variable name appearing in a formula, there must either be an enclosing exists
declaring a variable of that name, or the enclosing predicate must have a parameter of
that name, or the variable name is this and it appears in a member predicate or character.
In particular, every variable name can be associated with a declared type.
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Similarly, for every class name appearing in a type reference there must be a class of
the same name, and for every predicate name appearing in a call to a toplevel predicate,
there must be a toplevel predicate of that name with the appropriate arity.
super calls may only appear in member predicates.

To formulate the static semantic checks, we first introduce some terminology.

I Definition 2 (Relation specifiers). A relation specifier C.p/n consists of a class name C
and a pair p/n, where p is a predicate name and n a natural number.

Unless otherwise specified, we require relation specifiers to be valid, that is, C must be
the name of a class defined in the program, and C must declare a member predicate p with n
parameters. We abbreviate C.p/n as C.p where n is not important or obvious from context.

I Definition 3 (Subtyping). The subtyping relation S <: T is the smallest relation such that
for every class C we have C <: C.domain, and if C extends T , then C.domain <: T .

As usual, S <:+ T denotes the transitive closure of this relation.

I Definition 4 (Overriding). C.p/n overrides D.p/n, written C.p/n ≺ D.p/n, if C <:+ D.
We write C.p/n � D.p/n to mean that either C = D or C.p/n ≺ D.p/n. If D.p/n overrides
no other member relation, it is a rootdef. We write ρ(C.p/n) for the set of all rootdefs D.p/n
such that C.p/n � D.p/n.

I Definition 5 (Member predicate lookup). We define a lookup function λ(S, p, n) that looks
up a member predicate in a type given a name and its arity and returns a set of candidates:

λ(S, p, n) =
{
{C.p/n} if S = C and C.p/n is valid⋃
S<:T λ(T, p, n) otherwise

The static semantic checks guarantee that a program can be translated to Datalog:

I Definition 6 (Translatability). A syntactically valid Core QL program is translatable if the
following conditions are met:

It is not the case that T <:+ T for some type T ; that is, the subtyping relation is acyclic.
For every (not necessarily valid) relation specifier C.p/n, we have |λ(C, p, n)| ≤ 1; in
other words, classes must override ambiguously inherited predicates.
For every member predicate call x.p(y) where x has type T we have λ(T, p, |y|) 6= ∅, i.e.,
all calls can be resolved to a static target.
Similarly, for every call D.super.p(x) in a member predicate of a class C, we must have
C <:+ D and λ(D, p, |x|) 6= ∅.

3.4 Translation to Datalog
The translation from (translatable) Core QL to Datalog is presented in Figure 2 as a family
of structurally recursive translation functions:

Tc translates Core QL class definitions into sequences of Datalog predicates, using an
auxiliary function K to generate the extent predicate as explained below;
Tm translates Core QL member predicates into Datalog predicates; it takes the declaring
class of the member predicate as an additional argument;
Tp translates toplevel Core QL predicates into Datalog predicates;
Tb translates Core QL predicate and character bodies into Datalog formulas; it takes a
type environment as an additional argument;
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Translation of a class definition cd ≡ abstract? class C extends T {C() {f} pd}:

Tc(cd) :=

C.domain(this) ←
∧
C<:B

B.B(this) ∧
∧

C<:@b
@b(this).

C.C(this) ← Tb(f, 〈this := C.domain〉).
C(this) ← K(cd).
Tm(pdi, C)

K(cd) :=
∨
D<:C D(this) if cd is abstract

K(cd) := C.C(this) if cd is concrete

Translation of a toplevel predicate definition pd ≡ predicate p(T x) {f}:

Tp(pd) := p(x)← Tb(f, 〈xi := Ti〉).

Translation of a member predicate definition pd ≡ predicate p(T x) {f}:

Tm(pd, C) :=
C.p(this, x) ← Tb(f, 〈this := C, xi := Ti〉).

C.pdisp(this, x) ←
(∧

D.p≺C.p ¬D(this)
)
∧ C.p(this, x).

Translation of a predicate or character body f :

Tb(f,Γ) :=
(∧

(x,S)∈Γ S(x)
)
∧ Tf (f,Γ)

Translation of a predicate call:

Tf (p(x),Γ) := p(x)

Tf (x.p(y),Γ) :=
∨

R.p∈ρ(D.p)

( ∨
B.p�∗R.p

B.pdisp(x, y)
)

where D.p := λ(Γ(x), p, |y|)

Tf (C.super.p(x),Γ) := D.p(this, x) where D.p := λ(C, p, |x|)

Translation of other formulas:

Tf (not f,Γ) := ¬Tf (f,Γ)
Tf (f and g,Γ) := Tf (f,Γ) ∧ Tf (g,Γ)
Tf (f or g,Γ) := Tf (f,Γ) ∨ Tf (g,Γ)
Tf (exists(C x | f),Γ) := ∃x. (C(x) ∧ Tf (f,Γ[x := C]))

Figure 2 Translation from Core QL to Datalog (for readability, we write C <: T to mean
C.domain <: T ).
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Tf translates Core QL formulas into Datalog formulas; it takes a type environment as an
additional argument.

The type environments Γ used by Tb and Tf are partial functions from variable names to
type references. We write 〈x := T 〉 to denote the type environment that maps x to T , and
contains no other mappings. As usual, Γ[x := T ] is a type environment that is identical to Γ
except that it maps x to T .

∨
i∈I ϕi and

∧
i∈I ϕi denote disjunctions and conjunctions of

families of formulas indexed by a set I. For empty index sets we define
∨
i∈∅ ϕi := ⊥ and∧

i∈∅ ϕi := >, i.e., empty disjunctions are false and empty conjunctions are true.
We now discuss the individual translation functions in greater detail.

Classes

For every Core QL class C, we generate a definition for its domain predicate C.domain,
its characteristic predicate C.C, and its extent predicate C. Additionally, each member
predicate pdi is translated recursively using Tm.

The domain predicate is the intersection of the characteristic predicates of all supertypes
of C. The characteristic predicate is generated from its Core QL definition, additionally
enforcing prescriptive typing, which is not a feature of plain Datalog. The extent predicate,
finally, is the Datalog predicate that actually defines the extent of the class. For concrete
classes, this is the same as the characteristic predicate. For abstract classes, however, their
extent is instead defined as the union of the extents of their subclasses.

The distinction between these three predicates is subtle, but crucial. C.domain is mainly
needed to circumscribe the type of this inside the characteristic predicate of C. To see why
it cannot have type C, consider what the definitions of the characteristic predicate and the
extent predicate would look like if it did:

C.C(this) ← C(this) ∧ . . . .
C(this) ← C.C(this).

Note the recursion between C.C and C, which is resolved by computing least fixpoints.
Clearly, both rules are satisfied if C.C and C are empty, and this is also the least fixpoint.
In other words, typing this as C in the character would render every concrete class empty.
Using type C.domain instead breaks the recursion, and both predicates are now interpreted
as the subset of the extent of C.domain that satisfies the body of the character, as expected.

The distinction between the characteristic predicate C.C and the extent predicate C is
only relevant for abstract classes (and the two are indeed equal for concrete classes): the
extent of an abstract class is not the extent of its characteristic predicate, but rather the
union of the extents of its subclasses, and this is precisely how C is defined.

Predicates

Toplevel Core QL predicates are translated directly into Datalog predicates of the same
name, using Tb to translate the body and enforce prescriptive typing for all parameters.

Member predicates C.p are translated into two Datalog predicates: an implementation
predicate of the same name, and a dispatch predicate C.pdisp. The latter is used during
dispatch translation as explained below.

Formulas

Most Core QL formulas are straightforward to translate into their Datalog counterparts,
except that for quantifiers we again enforce prescriptive typing. The two most interesting
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cases are super calls and virtual calls. For the former, we simply use the λ function to look
up the member predicate to invoke, explicitly passing in this as the first argument.

For virtual calls, we need to implement dispatch. Recall that for a call with static target
D.p, the dispatch candidates are all member predicates that override a rootdef for D.p. Hence
the call is translated into two nested disjunctions: the outer disjunction is over all rootdefs
R.p of the static target D.p, while the inner is over all methods overriding the rootdef. For
each dispatch candidate B.p identified in this way, we emit a call to B.pdisp, which in turn
invokes B.p, but only if it is a most specific implementation of p for the given parameter.

The syntactic and static semantic checks ensure that the result of the translation is a
valid Datalog program, except that they do not yet ensure stratification. While it would be
possible to devise a QL-level check for this, it is conceptually simpler to check stratification
of the generated Datalog, and map any violations of this condition back to the QL code it
originated from. This is also how we implement the stratification check in our QL compiler.

3.5 Example
As a concrete example of the translation, we show the Datalog definitions generated for
classes Digit and Even from Section 2, including definitions for the method kind and a
query predicate that computes all even digits e and their kinds k.4

Digit.domain(this)← int(this).
Digit.Digit(this)← Digit.domain(this) ∧ range(this, 0, 9).
Digit(this)← Digit.Digit(this).
Digit.kind(this, result)← Digit(this) ∧ string(result) ∧ result = "digit".
Digit.kinddisp(this, result)← ¬Even(this) ∧ Digit.kind(this, result).
Even.domain(this)← Digit.Digit(this).
Even.Even(this)← Even.domain(this) ∧ mod(this, 2, 0).
Even(this)← Even.Even(this).
Even.kind(this, result)← Even(this) ∧ string(result) ∧ result = "even".
Even.kinddisp(this, result)← Even.kind(this, result).
query(e, k)← Even(e) ∧ string(k) ∧ (Digit.kinddisp(e, k) ∨ Even.kinddisp(e, k)).

4 QL in Practice

The previous two sections have presented the semantics of QL in some detail, using toy
examples for simplicity. We now show how these concepts apply in a more realistic setting.

4.1 Databases and schemata
Recall that QL programs (or rather, the Datalog programs into which they are translated)
are run on a relational database. In practice, we use our own custom database system, but
in principle QL programs could just as well be run on an off-the-shelf system.5

As in any relational database, data is represented in terms of tuples (rows), grouped into
relations (tables) such that all tuples in a relation have the same arity (number of columns).

4 Core QL does not include primitive types or arithmetic operations, so for the purposes of this example we
have treated int and string like entity types, and assumed EDB relations range(a,b,c) and mod(x,y,z)
corresponding to QL’s range operator a in [b..c] and the modulo operator x%y=z, respectively.

5 In fact, early versions of our compiler translated QL to SQL, using a third-party database system as our
backend. Performance was disappointing, since typical QL compiles to very complex SQL with deeply
nested joins and lots of recursion. Most SQL systems are not designed with such queries in mind, and
hence handle them badly. On the other hand, our queries do not make use of complex extra-logical
features such as database updates or transactions, which made it relatively easy to implement our own
engine and saves us some performance overhead.
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A table may have a distinguished primary key column, meaning that no two rows in the
table have the same value in this column; in other words, each value in the primary key
column uniquely identifies a row. A table t1 may also have foreign key columns referring to
the primary key column of a table t2 (t1 = t2 is allowed), meaning that any value occurring
in the foreign key column must also be present in the corresponding primary key column; in
other words, each row of t1 references a unique row of t2.

Keys can be used to model hierarchical data structures using flat tables. Suppose, for
instance, that we want to build a snapshot database representing a JavaScript program.
Among other data, we may want to represent the abstract syntax tree of source files, including,
in particular, all expressions. Simplifying somewhat, we could introduce a table exprs with
four columns: a primary key column id with a unique ID for each expression; a column
kind indicating what kind of expression we are dealing with, encoded as an integer; a foreign
key column parent referencing the ID of the parent expression in the AST; and an integer
column idx recording the ordering among children of the same parent.6 Since id is a primary
key, every expression is guaranteed to have a unique ID, and since parent is a foreign key, it
is a well-defined reference to another expression in the same table.

For example, assume we want to represent a comparison expression x === 1; its two
children are the variable reference x and the integer literal 1. Assume further that we assign
them the IDs 0, 1 and 2, and encode “equality expression” as kind 2, “variable reference”
as kind 1, and “integer literal” as kind 0. The variable reference x thus has id 1, kind 1,
parent 0, and idx 0, corresponding to the tuple exprs(1, 1, 0, 0), while “1” gives rise
to exprs(2, 0, 0, 1). In practice, we would additionally store the name of the referenced
variable and the value of the integer literal in separate tables, which we elide for simplicity.

At the storage level, all four columns of the exprs table look the same: they are just
integers. QL, on the other hand, espouses a strongly typed view where keys are treated as
opaque values and annotated with an entity type. Primary key columns define an entity type
whose extent is the set of values occurring in that column. For instance, the id column of
exprs could be annotated with the entity type @expr, meaning that it defines the extent
of entity type @expr. Foreign key columns are also annotated with entity types, and the
database system ensures that they only contain values drawn from the extent of their type.

This information about tables, the types of their columns, and the entity types they
define is described by a schema, which thus defines the interface between a QL program and
the database on which it is run.

4.2 Data abstraction
Given a snapshot database with a schema, we could write our analyses in plain Datalog,
directly accessing the information stored in the tables. However, this can become quite
cumbersome since we need to remember which column contains which piece of information,
and is not robust against schema changes.

QL classes hide the specifics of how data is stored in tables behind a higher-level interface,
thereby acting like abstract datatypes. For instance, we could implement a QL class Expr to
provide an abstract view of the exprs table discussed above:
class Expr extends @expr {

Expr getParent() { exprs(this, _, result, _) }

6 Alternatively, each expression could keep references to their child expressions, but as different kinds of
expressions have different numbers of children, this would require tuples with different arities, which
would have to be stored in different tables.
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Expr getChildExpr(int i) { exprs(result, _, this, i) }
string toString() { result = "expr" } }

Since Expr should contain all expressions represented in the database, it has a trivial
character, and hence the same extent as @expr. The member predicate getParent provides
access to the parent column of the exprs table, while getChildExpr enables navigation in
the other direction. Note that we do not need to check that the index i is in range: if there
is no i-th child, the predicate will simply fail to hold. QL also requires each class to define
(or inherit) a toString member predicate, for which we provide a dummy implementation.

This interface allows us to navigate the program AST as a graph without being exposed
to the details of its relational representation. For instance, e.getParent+() = f expresses
the property that expression e is nested within expression f (using QL’s “+” syntax for
transitive closure).

If all client analyses use Expr instead of directly accessing the EDB, we can easily change
our data representation later on. For instance, it may not be desirable to record the parent
expression directly in the exprs table, since toplevel expressions do not have a parent
expression. Instead, the parent-child relation could be stored in a separate three-column
table expr_nesting(child,parent,idx). The first two columns are foreign keys, so they
must refer to properly defined @expr values, but there is no requirement that every @expr
value appears in the first column (or, for that matter, the second column), so expressions
without parents can now be modelled.

If we want to switch to this representation, we can simply update the definitions of
getParent and getChildExpr without affecting any client analyses:

class Expr extends @expr {
Expr getParent() { expr_nesting(this, result, _) }
Expr getChildExpr(int i) { expr_nesting(result, this, i) } ...

4.3 Inheritance

Class Expr abstracts away from the details of the relational encoding of the AST and is useful
for implementing generic syntax tree traversal, but if we want a richer semantic interface we
have to implement subclasses of Expr. For instance, we could implement a class EqExpr to
exclusively represent equality checks (and no other expressions):

class EqExpr extends Expr {
EqExpr() { exprs(this, 2, _, _) }
Expr getLeftOperand() { result = this.getChildExpr(0) }
Expr getRightOperand() { result = this.getChildExpr(1) }
string toString() { result = "===" } }

The characteristic predicate filters out those expressions that do not have kind 2 (which,
in our example encoding, represents equality). We provide getter predicates for the two
operands of the equality, further abstracting away from the details of our AST representation,
and we override the toString predicate to provide a more specialised string representation.
Similar classes can be implemented for variable references, literals, and other expressions.

QL classes thus allow us to impose an abstract data type representation on relational
data. Since classes can freely overlap, we can even implement multiple representations for
the same data. For instance, we could overlay a control flow graph structure on top of the
AST by defining a class CFGNode that also extends @expr, but presents it under a different
interface, offering, say, a method getASuccessor() to compute call graph successors.
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4.4 Overriding
As a practical example of overriding, consider implementing Expr.isPure, the member
predicate used in Listing 1. Its default implementation in class Expr is none(), which is
a built-in predicate that always fails. In other words, we conservatively assume that all
expressions are impure, and override it in subclasses:
class Expr extends @expr { predicate isPure() { none() } ...

In class Literal, we override isPure as any(), a built-in predicate that always succeeds:
class Literal extends Expr { predicate isPure() { any() } ...

As another example, equality checks are pure if all of their children are:
class EqExpr extends Expr {

predicate isPure() { forall (Expr c | c = this.getChildExpr(_) | c.isPure()) } ...

4.5 Interface vs Implementation
Abstract classes support decoupling interface and implementation even further: while Expr
implements an interface in terms of one particular set of EDB relations, abstract classes
specify only an interface, which may be implemented in multiple different ways.

As an example, assume we want to implement an analysis for JavaScript to find com-
parisons between expressions with incompatible (dynamic) types, which will always eval-
uate to false at runtime. Assume further that we have implemented a binary predicate
incompatTypes(e, f) that infers possible types of e and f and checks whether they are
compatible. Using class EqExpr defined above, we could implement our analysis as follows:
from EqExpr eq, Expr l, Expr r
where l = eq.getLeftOperand() and r = eq.getRightOperand() and incompatTypes(l, r)
select eq, "Operands have incompatible types."

Other JavaScript language constructs that compare values in the same way include, e.g.,
the switch statement. If we want to consider them in our query, we could add another
disjunct to the where part, but this would make it less readable, and we would need to
keep extending it for any other equality tests we want to support. Instead, we introduce an
abstract class capturing the common interface for all equality tests:
abstract class EqualityTest extends ASTNode {

abstract Expr getALeftOperand(); abstract Expr getARightOperand(); }

Like all classes, EqualityTest needs a superclass: we choose ASTNode, which is a common
superclass of Expr and Stmt defined in the JavaScript QL libraries. The interface defined
by EqualityTest consists of member predicates to access the left and right operands of the
comparison. We allow a single equality test to have multiple left or right operands; e.g., in a
switch, every case is viewed as a right operand of the comparison.

We can implement this interface on EqExpr and SwitchStmt by introducing new classes
that have the same extent as EqExpr and SwitchStmt, respectively, but extend EqualityTest:
class EqExprEqualityTest extends EqExpr, EqualityTest {

Expr getALeftOperand() { result = this.getLeftOperand() }
Expr getARightOperand() { result = this.getRightOperand() } }

class SwitchEqualityTest extends SwitchStmt, EqualityTest {
Expr getALeftOperand() { result = this.getExpr() }
Expr getARightOperand() { result = this.getACase().getExpr() } }
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The extent of EqualityTest now contains all equality expressions and all switch state-
ments, under a convenient interface for our query:
from EqualityTest eq, Expr l, Expr r
where l = eq.getALeftOperand() and r = eq.getARightOperand() and incompatTypes(l, r)
select eq, "Operands have incompatible types."

To add support for other kinds of equality tests, all we need to do is to define new
subclasses of EqualityTest; the query need no longer be changed.

4.6 Optimisation
In practice, the translation shown in Figure 2 can produce very inefficient Datalog, particularly
when translating virtual calls: the disjunction over all candidates can be quite large, and in
many cases the context restricts the receiver variable in such a way that some disjuncts end
up always being false, which would lead to a lot of wasted computation if evaluated naively.
For example, in the translation shown in Section 3.5, the query predicate restricts e to Even,
so the dispatch disjunct Digit.kinddisp(e, k) can never apply. Another source of inefficiency
are superfluous type guards for variables that are already restricted sufficiently by their uses.
For instance, the conjunct string(result) in Even.kind is implied by result="even" and
hence unnecessary.

One could devise a more sophisticated compilation scheme that avoids this, but we choose
to instead perform these optimisations at the Datalog level, keeping the translation as simple
as possible: infeasible dispatch disjuncts are simply a special case of formulas that logically
contradict other formulas in their context and hence are equivalent to false, while unnecessary
type tests are logically implied by other formulas in their context and hence equivalent to
true. Both cases can be detected by a form of type inference [15, 33]. We also apply various
standard optimisations such as inlining, join ordering and the magic sets transformation [7];
the latter two rely on (compile-time) estimation of (run-time) relation sizes [34].

Ultimately, the example from Section 3.5 is simplified by our optimiser to
Even(this) ← range(this, 0, 9) ∧ mod(this, 2, 0).
query(e, k) ← Even(e) ∧ k = "even".

5 Case Study

To demonstrate the benefits of QL in implementing static checks, we reimplemented Error
Prone (http://errorprone.info) in QL. Error Prone is a bug finding tool for Java that
integrates with the compiler and checks for common mistakes, reports them and suggests
possible fixes. As of version 2.0.4, there are 101 checks. We reimplemented the checks (but
not the fix suggestions), ensuring that they pass all the unit tests of the original. This
required about one man-month of effort by an experienced QL programmer.

Error Prone is originally implemented in Java, comprising about 10,500 lines of code, not
including supporting libraries such as the javac Compiler Tree API.7 Our reimplementation,
by contrast, is slightly less than 2,000 lines of code, not including the QL standard library
for Java. However, our implementation only covers the checks themselves, not the suggested
fixes. Manual inspection suggests that the latter account for about 1,100 lines of code in the
Java implementation, leaving 9,400 lines of analysis code.

7 That is, counting only files in the src/main/java/com/google/errorprone/bugpatterns directory.
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Listing 2 QL code for detecting nested null checks in Java.
// a "==" test where one operand is a null literal
class NullCheck extends EQExpr { NullCheck() { getAnOperand() instanceof NullLiteral } }

// "inner" is nested inside the then−branch of "outer", and both check nullness of "v"
predicate nestedNullCheck(IfStmt outer, IfStmt inner, Variable v) {

inner.getParent+() = outer.getThen() and
outer.getCondition().(NullCheck).getAnOperand() = v.getAnAccess() and
inner.getCondition().(NullCheck).getAnOperand() = v.getAnAccess() }

Java is famously verbose, which explains part of the size difference, although QL is overall
syntactically quite similar to Java. If we exclude Java package declarations and @Override
annotations (which have no QL counterparts) and import statements (the number of which
is largely determined by the organisation of the supporting libraries), we can subtract a
further 2,800 lines from Error Prone and 100 lines from our implementation. In other words,
the Java implementation is 3.5x the size of the QL implementation.

This is mostly because AST traversal and filtering, which require lots of boilerplate
code in Java, can be expressed very concisely using recursion and prescriptive typing in QL.
For example, Listing 2 shows part of a query for finding incorrect uses of double-checked
locking: NullCheck picks out comparisons to null, and nestedNullCheck identifies nested
if statements that check the same variable for nullness. Recursion is used to check the
nesting condition. The casts to NullCheck would fail in a descriptive interpretation, since
s.getCondition() is not a NullCheck for most if statements s. In QL, they act as filters,
restricting outer and inner to those if statements that do, in fact, check nullness.

To assess scalability, we ran both the original Error Prone analyses and our reimplement-
ations on a recent snapshot of Apache Hadoop,8 which is about 1.5 MLoC. Four of the Error
Prone checks failed with null pointer exceptions, the remaining 97 finished in 46 seconds.
Our reimplementation is about 4x slower, at 201 seconds for the same 97 analyses.9

The performance difference is not so much due to the use of Java instead of QL, but to a
fundamentally different execution model: while Error Prone checks are performed on a per-file
basis, our queries run on a database representing the entire program, and hence are implicitly
global. This reflects different usage scenarios: Error Prone is normally run during compilation
or as an IDE service, hence instantaneous feedback is important. Our analysis usually runs
offline, often even on a dedicated machine, hence a runtime of several minutes on a large code
base (and memory requirement of a few gigabytes) is entirely acceptable. Ultimately, these
differences are orthogonal to the choice of language, and there is no fundamental obstacle to
running local QL analyses on small databases representing one file each.

In summary, this case study shows that QL allows us to quickly implement static
analysis checks as concise and scalable queries, though the whole-program approach of our
implementation imposes a performance overhead.

As of March 2016, Semmle’s static analysis platform offers about 2500 individual analyses
for eight languages (C/C++/Objective-C, C#, Cobol, Java, JavaScript, PL/SQL, Python,
Scala), all implemented in QL. While some analyses are shallow local checks similar to Error
Prone, many crucially depend on whole-program analysis. This is especially true for the
dynamically typed languages, where global invariants that a statically typed language would

8 Commit SHA 855d529 from https://git-wip-us.apache.org/repos/asf/hadoop.git.
9 As measured on an Intel Core i7-4900MQ laptop, with 1GB of heap allocated to the analysis. Timings
do not include compilation time for Error Prone and database construction time for QL.
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express in the type system instead have to be derived by flow analysis. For instance, our
Python analysis suite includes checks for common mistakes such as using undefined attributes
or hashing unhashable objects, which sit on top of a whole-program points-to analysis also
implemented in QL. As another example, our Java and C++ suites include security analyses
based on inter-procedural taint tracking that identifies vulnerabilities to common attacks such
as cross-site scripting or SQL injection. All these analyses are in daily use by our customers
on multi-million line code bases. A thorough discussion of technical details is out of scope
for this paper, but the advantages of using Datalog for static analysis are well-known [35], to
which QL adds the benefits of object-oriented modularity and reusability.

Besides implementing static checks, we also use QL for structural analysis to determine
dependencies between different parts of a code base that are then visualised in an architectural
design tool. Finally, we use QL as a meta-query language to write queries over static analysis
results, comparing and correlating results across multiple revisions of the same code base in
order to track introductions and fixes of defects over the history of a code base [6].

6 Discussion and Related Work

In this section, we will discuss QL’s object-oriented features in the light of popular definitions
of object orientation in the literature, and then proceed to survey related work.

6.1 Discussion
The deliberately minimalist examples of Section 2 perhaps make the gap between QL classes
and methods and their more traditional counterparts appear wider than it is. Recall that in
practice QL programs rely on an extensional database, and here the parallels become quite
striking: tuples in a table are records with columns as fields; primary keys uniquely identify
tuples, and hence play the role of addresses; foreign keys uniquely reference other tuples,
thus acting like references to other records. Hence, a database can be viewed as a strongly
typed heap containing a collection of objects with fields that may contain primitive values or
references to other objects, where objects with the same layout are collected into tables.

A QL class like Expr whose extent is (a subset of) the primary key column of a table
thus describes a set of records; its member predicates can access record elements, using
the primary key for lookup. Subclasses inherit member definitions and can override them,
allowing different implementations of the same operation for different objects, the appropriate
implementation being chosen at runtime based on the dynamic type of the object.

Of course, QL classes are not restricted to this particular setting, since classes can be
sets of arbitrary values, not just primary keys, and EDB tables can be arbitrary relations,
for which there is no parallel in other object-oriented languages.

QL fits the folklore definition of object orientation as “data abstraction plus inheritance”:
Section 4 shows how QL classes achieve the former by abstracting from the concrete layout
of database tables; inheritance in QL is entirely conventional, and, as usual, can be used
both for implementing an interface and for code reuse.

A more refined characterisation is given by Cook [11] (building on the classic definition
by Wegner [39]), whereby object orientation is support for the dynamic creation and use
of objects. An object, in turn, is a first-class, dynamically dispatched behaviour, where a
behaviour is a collection of named operations, and dynamic dispatch means that different
objects can implement the same operations in different ways.

QL satisfies the second half of this definition: classes associate named operations with
arbitrary values, and subtyping and virtual dispatch allow different implementations of the
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same operations. The first half of Cook’s definition is not satisfied, as QL programs cannot
create new values, which is arguably a natural limitation for a query language. QL also does
not support mutable state, and has no notion of object identity as opposed to value identity,
but Cook, in fact, argues that these features are not essential to object orientation.

Ullman [37] claims that query languages cannot be “seriously logical and seriously object-
oriented at the same time”. His argument is framed in the context of a radical reinterpretation
of the relational model, where tuples and relations are understood as objects with relational
operators as methods. In Ullman’s analysis, this would mean that each tuple computed
during evaluation is distinct from any previously computed tuple, conflicting with the set
semantics of Datalog and its least fixpoint semantics. Furthermore, it is unclear what types
to assign to relational operators such union or join in such a setting. Our approach differs
significantly from this model: QL classes range over values, not tuples, sidestepping his first
point. Relational operators are primitive language constructs, not methods, and hence not
typed. In Ullman’s view, this might disbar QL from being “seriously” object-oriented, but
we have argued that it nevertheless provides the usual benefits of object orientation.

Proposals for integrating object identity and logic programming range from explicitly
exposing object identifiers [42] to sophisticated extensions of the underlying logic [24]. Our
experience with QL suggests that object identity is not a prerequisite for object orientation.

In summary, QL supports data abstraction and inheritance with dynamic dispatch, widely
considered as hallmarks of object orientation. Less conventionally, QL supports overlapping
classes and relational member predicates, which are quite natural for a logic query language,
while object creation and mutation do not fit this paradigm well and hence are not supported.

6.2 Related Work
Encoding hierarchical data in relational form is conceptually quite straightforward, but
querying the encoded data in a traditional relational language is cumbersome. This has been
termed the object-relational impedance mismatch, and led to calls for replacing the relational
model with models directly supporting structured data [5]. We will not discuss the literature
on this topic, since QL is based on a completely conventional relational data model. Our
approach agrees in spirit, if not in detail, with the so-called Third Manifesto [13], which
argues that object orientation should be built on, rather than supplant, the relational model.

Object-oriented extensions of Datalog have been studied in the literature before. Abiteboul
et al. [2] propose a language where individual rules for predicates may be associated with
classes. They consider three variants of overriding, one of which, termed static inheritance, is
somewhat similar to QL’s approach, although they define overriding at the level of individual
rules, not entire predicates. Since their language has no static types they have no concept
of rootdefs, instead considering all methods with the right name and arity as dispatch
candidates; as we have argued, this makes dispatch highly non-local and brittle in the
presence of overlapping classes. They also do not consider multiple inheritance. While for
the most part they assume that classes are defined directly by the EDB, they also briefly
consider “virtual” classes (first proposed in [1]), which, like concrete QL classes, are defined
by a characteristic predicate (though it is unclear whether they can be recursive). Their
proposal never seems to have been implemented, making it hard to gauge its practicality.

Extensions of Prolog with subtyping and inheritance have also been proposed [3, 36].
These approaches focus on types for structured terms and on performing unification modulo
subtyping between term constructors, which are not available in Datalog.

The idea of storing source code in a database and exploring and analysing it using
relational queries goes back at least to Linton [27], who used the INGRES database system.
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To overcome the limited expressiveness of standard database query languages, several authors
have suggested the use of Prolog [23, 14], which, however, tends to suffer from scalability
problems on large code bases. Aiming for a middle ground, Paul et al. [31] propose writing
queries in a relational algebra with transitive closure, while Consens et al. [10] employ a
subset of Datalog just powerful enough to express properties of paths in graphs.

Many new languages specifically designed for code exploration have been proposed; we
discuss just a few examples: ASTLOG [12] focuses on AST traversal, permitting a very
efficient implementation. PQL [22] allows more general queries over graphs, while JQuery [21]
is based on a full-featured, Prolog-like logic language. JTL [9] only supports querying Java
source code, allowing for a very concise and specialised syntax; its expressive power is that
of first order logic with transitive closure. Martin et al. [28] propose a DSL for matching
sequences of events on objects both statically and dynamically, based on the bddbddb Datalog
system [40], which has also been used directly for program analysis.

Our own work in the area started with CodeQuest [20], which compiled Datalog queries to
SQL. An early version of QL, which likewise compiled to SQL and only supported analysing
Java, was described in [17, 16], where it was presented informally through examples. The
present paper provides a more rigorous description of QL including new features such as
abstract classes and recursive characters, presents an experimental case study, and (perhaps
most importantly) gives a formal semantics. Apart from its potential use in exploring the
metatheory of QL, the semantics has already proved useful in clarifying subtle semantic
issues such as the type of this in characters, which was left implicit in previous work.

The benefits of Datalog for specifying and implementing highly scalable flow analyses [8, 35]
have recently been demonstrated on the LogicBlox platform [4], which extends Datalog with
support for database updates and creating fresh values. It would be interesting to investigate
whether these concepts could be fruitfully combined with QL’s object-oriented features.

Graph databases have also been suggested as a basis for source code exploration and
analysis. Ebert et al. [18] use the custom graph query language GreQL, while Urma et al. [38]
show that the Cypher language of Neo4j (http://neo4j.com) allows simple queries to be
expressed concisely and evaluated efficiently even over large code bases. Neither language
appears to provide abstraction mechanisms like user-defined predicates, making them less
well-suited for implementing more complex analyses. Compiling QL to GreQL or Cypher is
not possible in general, since they do not seem to provide native support for recursion (besides
transitive closure), which is heavily used by typical QL analyses. The four example queries
shown by Urma can be written in QL just as concisely (5, 4, 8 and 6 lines, respectively),
and execute efficiently (0.4s, 5s, 0.1s, 4s) on a recent snapshot of OpenJDK (2.5MLoC),
somewhat faster than the runtimes they report on a similar-sized code base.

Another interesting alternative are metaprogramming languages like Rascal [25], which
provide seamless integration of program analyses with code generation and transformation
tools. However, their suitability for deep analyses has not been shown yet.

Virtual dispatch in QL is a form of predicate dispatch [19], with class characters as guards.
While exhaustiveness is ensured (that is, each call has at least one dispatch candidate), we
make no attempt to prevent ambiguity: calls with more than one actual target are fully
supported. Also, our translation from QL to Datalog is non-modular and requires reasoning
about the entire program, unlike more recent work on predicate dispatch [30].

Prescriptive type systems have been studied in the context of Prolog [41, 26]. As pointed
out by Meyer [29], prescriptive type annotations are essentially runtime type checks; hence,
in spite of its static type declarations QL is, in some sense, dynamically typed.
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7 Conclusion

We have presented QL, an object-oriented dialect of Datalog with classes, subtyping and
dynamic dispatch, which we have described both informally and through a translation to
plain Datalog: classes are unary predicates representing sets of values; subtyping is set
inclusion; and dynamic dispatch resolves calls in the smallest class containing the receiver
value. As a typical application of QL, we have shown its use in implementing static checks,
and presented a case study highlighting its advantages in this domain over Java. Finally, we
have discussed QL’s merits as an object-oriented language: while it is missing object creation
and mutable state, QL does offer the twin features of abstraction and dynamic dispatch,
usually considered to be at the heart of object-oriented programming, without relying on
objects in the traditional sense. Apart from QL’s practical usefulness, its model of object
orientation is an interesting contribution in itself, which, we hope, will spur further discussion
of and investigation into the nature of object-oriented programming.
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contained typographical errors in the second source code example in Section 2.1, the third
example in Section 2.3, and the first example in Section 2.4, which are corrected in this revision.
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