
Fine-grained Language Composition:
A Case Study∗

Edd Barrett1, Carl Friedrich Bolz2, Lukas Diekmann3, and
Laurence Tratt4

1 Software Development Team, Department of Informatics, King’s College
London. http://soft-dev.org/ http://eddbarrett.co.uk/

2 Software Development Team, Department of Informatics, King’s College
London. http://soft-dev.org/ http://cfbolz.de/

3 Software Development Team, Department of Informatics, King’s College
London. http://soft-dev.org/ http://lukasdiekmann.com/

4 Software Development Team, Department of Informatics, King’s College
London. http://soft-dev.org/ http://tratt.net/laurie/

Abstract
Although run-time language composition is common, it normally takes the form of a crude
Foreign Function Interface (FFI). While useful, such compositions tend to be coarse-grained and
slow. In this paper we introduce a novel fine-grained syntactic composition of PHP and Python
which allows users to embed each language inside the other, including referencing variables across
languages. This composition raises novel design and implementation challenges. We show that
good solutions can be found to the design challenges; and that the resulting implementation
imposes an acceptable performance overhead of, at most, 2.6x.

1998 ACM Subject Classification D.3.4 Processors

Keywords and phrases JIT, tracing, language composition

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2016.3

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.2.1.1

1 Introduction

Language composition allows programmers to create systems written in a mix of program-
ming languages. Most commonly, a Foreign Function Interface (FFI) to C is provided so
that programs can interact with external libraries. However, other instances of language
composition are rare, as crossing the barrier between arbitrary languages is difficult. In
many cases, the only way to do so is by having different languages run their parts of the
system in separate processes that communicate using (slow) inter-process communication
mechanisms. The most common alternative is to use a single Virtual Machine (VM) (e.g. a
Java VM), and translate all languages into that VM’s bytecode format. This enables finer-
grained compositions, but their performance is still generally underwhelming [3].

We believe that there are two different types of friction which make good language
compositions difficult: semantic friction occurs when an aspect of one language has no

∗ This research was funded by the EPSRC COOLER (EP/K01790X/1) and LECTURE (EP/L02344X/1)
grants.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Edd Barrett, Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt;
licensed under Creative Commons License CC-BY

30th European Conference on Object-Oriented Programming (ECOOP 2016).
Editors: Shriram Krishnamurthi and Benjamin S. Lerner; Article No. 3; pp. 3:1–3:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://soft-dev.org/
http://eddbarrett.co.uk/
http://soft-dev.org/
http://cfbolz.de/
http://soft-dev.org/
http://lukasdiekmann.com/
http://soft-dev.org/
http://tratt.net/laurie/
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.3
http://dx.doi.org/10.4230/DARTS.2.1.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Fine-grained Language Composition: A Case Study

¶

·

¸

Figure 1 A PCG8 pseudo-random number generator [25] PyHyp program, written in the Eco
language composition editor. In this case, the composed PHP and Python program will be exported
to PyHyp compatible source code. The outer (white background) parts of the file are written in
PHP, the inner (grey background) parts of the file in Python. ¶ A Python language box is used
to add a generator method written in Python to the PHP class RNG. · A Python language box is
used to embed a Python expression inside PHP, including a cross-language variable reference for
rng (defined in line 19 in PHP and referenced in line 20 in Python). In this case, a Python list
comprehension builds a list of random numbers. When the list is passed to PHP, it is ‘adapted’ as
a PHP array. ¸ Running the program pretty-prints the adapted Python list as a PHP array.

equivalent in the other; and performance friction occurs when the implementation of one
language’s behaviour forces the other to execute slowly.

Our hypothesis is that it is possible to reduce the currently accepted levels of friction in
language compositions. We believe that the only way to test this hypothesis is through a
concrete case study, since friction manifests in different ways in each language composition.
We therefore composed together two real-world, widely used languages, Python and PHP,
to make a new language composition called PyHyp. At a low-level, PyHyp defines a (some-
what traditional) FFI between PHP and Python that allows cross-language calls and the
exchange of data. Building on the FFI, PyHyp then provides the basis for a novel syntactic
composition. As shown in Figure 1, a single file can contain multiple fragments of PHP
and Python code, and variables can be referenced across different language fragments (e.g.
Python code can ‘see’ PHP variables and vice versa). Unlike approaches which translate
one language into another, PyHyp does not alter existing language semantics, nor does it
limit users to a subset of either language.

Depending on how one chooses to classify programming languages, Python and PHP
can appear similar—most obviously, both are dynamically typed. From our perspective,
however, there are a number of tricky differences: PHP has multiple global namespaces
which can span multiple files, whereas Python uses one global namespace per file (semantic
friction); most of PHP’s core data-structures are immutable, whereas many of Python’s
are mutable (semantic and performance friction); and PHP’s sole collection data type is a
mapping, whereas Python separates the notion of mappings from that of sequences (semantic
and performance friction). As this may suggest, this combination of languages presents a
number of design and implementation challenges which have no obvious precedent. We show
that PyHyp’s solutions to these challenges allow interesting case studies to be implemented.

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:3

The practicality of our work rests on two recent developments. First, and most important,
is the concept of interpreter composition. The basic idea is to make use of systems which
can generate Just-In-Time (JIT) compiled VMs solely from the description of an interpreter
(e.g. RPython [6] or Truffle [32]). There are three existing compositions in this style: Prolog
and Python [3]; C and Ruby [16]; and C, Ruby, and JavaScript [17]. In essence, each of
these systems implements a traditional FFI between its constituent interpreters. All of the
systems have good peak performance, but implement simple FFIs. PyHyp defines a much
finer-grained FFI between its two languages and also enables syntactic composition between
the two languages. The second concept we make use of is language boxes as found in the Eco
editor [11], which allow users to naturally write fragments of different languages alongside
each other. Note that PyHyp neither extends, nor requires, Eco; however, Eco does hide
several tedious details from users.

Although universal answers to our hypothesis are impossible, PyHyp shows that it is
possible to create compositions which validate our hypothesis. To summarise, we show that:

1. PyHyp’s FFI addresses a number of challenging semantic friction points.
2. Syntactic composition is possible and that practical designs can be found for novel cross-

language features.
3. PyHyp’s fine-grained language composition has, in the worst case, a performance over-

head of 2.6x over its mono-language constituents.

A VirtualBox VM containing repeatable experiments, data and case studies is available
at http://dx.doi.org/10.4230/DARTS.2.1.1.

2 Background

We assume a basic knowledge of Python syntax and semantics, but not of meta-tracing,
interpreter composition, or PHP. In this section we provide overviews of the latter three.

2.1 Meta-tracing
Tracing JIT compilers record hot loops (‘traces’) in an interpreted program, optimise those
traces, and then compile them into machine code [2, 13]. An individual trace is thus a record
of one particular path through a program’s control flow graph. Subsequent executions which
follow that same path can use the machine code generated from the trace instead of the
(slow) interpreter. To ensure that the path followed really is the same, ‘guards’ are left
in the machine code at every possible point of divergence. If a guard fails, execution then
reverts back to the interpreter.

Meta-tracing JITs have the same basic model, but replace the manually written tracer
and machine code generator with equivalents automatically generated from the interpreter
itself [24, 29, 33, 4, 6]. The key to good meta-tracing performance is heavily optimised traces.
Language implementers can annotate the interpreter provide ‘hints’ to the meta-tracer to
improve the quality of compiled traces. For example, hints can be used to mark parts of the
interpreter constant, allowing the trace optimiser to apply constant folding. Similarly, hints
can mark a function in the interpreter as ‘elidable’: given the same inputs, it always returns
the same outputs.1 The optimiser can then replace calls to (slow) elidable functions with

1 Unlike pure functions, elidable functions can have idempotent side-effects (e.g. caching). The user is
responsible for guaranteeing that the relationship between inputs and outputs is maintained.

ECOOP 2016

http://dx.doi.org/10.4230/DARTS.2.1.1

3:4 Fine-grained Language Composition: A Case Study

(fast) checks on input values, substituting the output values in place of the function call.
Identifying parts of an interpreter amenable to such hints requires the author’s knowledge
of both the semantics of the language being implemented and common idioms of use.

In this paper we use RPython, the main extant meta-tracing language. RPython is a
statically typed subset of Python with a type system similar to Java’s. Unlike seemingly
similar languages (e.g. Slang [18] or PreScheme [22]), RPython is more than just a thin
layer over C: it is, for example, fully garbage collected and has several high-level data types
(e.g. lists and dictionaries). Despite this, VMs written in RPython have performance levels
which far exceed traditional interpreters [6]. The specific details of RPython are generally
unimportant in most of this paper, and we do not dwell on them: we believe that one could
substitute any reasonable meta-tracing language (or its cousin approach, self-optimising
interpreters with dynamic partial evaluation [32]) and achieve similar results.

2.2 Interpreter Composition
Interpreter composition involves ‘glueing’ together two or more existing interpreters such
that each can utilise the other. Assuming that both interpreters are written in the same
language, a basic composition is simple: interpreter A needs to import interpreter B and then
call appropriate functionality in B. A more sophisticated composition will define matters
such as data type conversion, and how and when execution passes between its constituent
interpreters. Achieving the desired composition can require adding entirely new glue code,
and/or invasively modifying the constituent interpreters.

Since, traditionally, interpreters are slow, composing them tends to worsen
performance [3]. Fortunately, composed interpreters are as amenable to meta-tracing –
and its close cousin dynamic partial evaluation [32] – as their constituent interpreters.
Existing examples of such compositions include Python and Prolog [3] and Ruby, C and
JavaScript [17]. Both systems have good peak performance.

In the rest of this paper, we use ‘interpreter’ to mean the source-code of the system that
is used to produce an executable binary ‘VM’. In practice, most readers can consider the
terms ‘interpreter’ and ‘VM’ to be interchangeable with only a small loss of precision.

2.3 PHP
PHP is a language used widely for server-side webpage creation. Originally intended as a
language to glue together CGI programs written in C, it gradually evolved into a complete
programming language. Largely due to this gradual evolution, PHP features a number of
design decisions that appear unusual when viewed from the perspective of other imperative
languages such as Python or Ruby. As one example that appears later in the paper shows,
many of PHP’s primitive data types, including arrays, are immutable. We give further
details on such features as needed.

PHP’s syntax is Perl-esque, taking influence from the Unix shell (e.g. variables start with
a ‘$’) and C (e.g. basic control structures). The following (contrived) example shows most
of the syntax needed to understand this paper’s examples:

1 $i =1; // Assign 1 to variable $i
2 $j =& $i; // Create a reference to var $i
3 $a= array (3, 4, 5); // Create a list -like array
4 $b= array (" bob "= >45); // Create a dictionary -like array
5 foreach ($a as $c) { // Iterate over the array
6 echo $c . " "; // Print out (in order) 3 4 5
7 }
8 $o=new C(); // Create a new object
9 $o ->m($i); // Call method m

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:5

10 $s = <<<EOD // Start multiline string
11 A string
12 with multiple lines
13 EOD; // End multiline string

3 PyHyp

PyHyp is a language composition of PHP and Python, implemented by composing two
existing RPython interpreters: HippyVM (for PHP) and PyPy (for Python). PyPy is
an industrial-strength Python interpreter which can be used as a drop-in replacement for
CPython 2.7.8; HippyVM is a partially complete PHP 5.4 interpreter. PyHyp is a ‘semantics
preserving’ composition in the sense that it adds behaviour to both Python and PHP, but
does not alter or remove existing behaviour.

PyHyp programs currently start by executing PHP code. There is no deep reason for this
choice, and one could easily allow it to start by executing Python code instead. Since they
start as normal PHP programs, ‘raw’ PyHyp programs require <?php ... ?> tags around
the entire file. In the interests of brevity, we omit these in all code listings.

We stage our explanation of PyHyp as follows: the design and implementation of its FFI
(Section 4); its support for syntactic composition (Section 5); and finally cross-language
variable scoping (Section 6).

4 PyHyp FFI

PyHyp defines an FFI which is the core upon which advanced functionality is later built. A
simple example of PHP code using the FFI to interact with Python is as follows:

1 $random = import_py_mod (" random ");
2 $num = $random -> randrange (10 , 20);
3 echo $num . "\n";

The code first imports Python’s random module into PHP (line 1) before calling the Python
randrange(x, y) function to obtain a random integer between 10 and 20 (line 2) which
is then printed (line 3). The only explicit use of the FFI in this example is the call to
import_py_mod. However, the FFI is implicitly used elsewhere: the PHP integers passed as
arguments to randrange are converted to Python integers, and the result of the function is
converted from a Python integer to a PHP integer. As this may suggest, the FFI is two-way
and Python code can also call PHP.

4.1 FFI Design
Many parts of PyHyp’s FFI are fairly traditional, while some are unusual due to the semantic
friction between Python and PHP. To the best of our knowledge there has not previously
been an FFI between Python and PHP, so our solutions are necessarily novel.

4.1.1 Data Type Conversions
All FFIs have to define data type conversions between their constituents. Since primitive
data types in both PHP and Python are immutable, PyHyp directly maps them from one
language to the other (e.g. a PHP integer is transformed into a Python integer). Arbitrary
user objects cannot be directly mapped and are instead wrapped in an adapter which allows
the other interpreter to work transparently with the underlying foreign instance. A PHP
object, for example, appears to Python code as a normal Python object, whose attributes

ECOOP 2016

3:6 Fine-grained Language Composition: A Case Study

and methods can be accessed, introspected etc. Passing an adapter back to the language
from which it was created simply removes the adapter. Adapters are immutable, only ever
pointing to single object in their lifetime; the trace optimiser is then extremely effective at
removing the overhead of repeated adaptations.

Collection data types are more involved. Python separates the notion of a list (i.e. re-
sizeable array) from that of a dictionary (i.e. hashmap). In contrast, PHP has a single
dictionary type called, somewhat confusingly, an array. PHP arrays are therefore also used
wherever ‘lists’ are required. This presents an interesting case of semantic friction. Python
lists and dictionaries can both be sensibly adapted in PHP as arrays. PHP arrays passed
to Python, in contrast, are ambiguous: should they be adapted as lists or dictionaries? It
is easy to design schemes which can be dangerously subverted. For example, a PHP array
which ‘looks like’ a list might seem best adapted as a Python list, but later mutation to its
keys (e.g. adding a string key) can turn it into something which is clearly not a list.

The only consistent design is therefore to default to adapting PHP arrays as Python
dictionaries. However, users often know that a given PHP array is, and always will be,
equivalent to a list. Therefore, PHP arrays adapted as Python dictionaries have an addi-
tional method as_list, which re-adapts the underlying array as a Python list. Whenever
operations on the list adapter are called, a check is made to see whether the underlying
PHP array is still list-like; if it is not (e.g. because a non-integer key has been added) an
exception is raised.

In general, converting an adapted object to its ‘host’ language simply requires removing
the adapter. The one exception is a Python list which has been passed to PHP, adapted as a
PHP array, and which is subsequently returned back to Python. Since our data-conversion
rules dictate that PHP arrays are adapted as Python dictionaries, Python code expecting a
PHP array would get a surprising result if the PHP array returned was unwrapped directly
to a Python list (rather than a dictionary). Thus a Python list adapted as a PHP array
and then returned to Python has a special Python dictionary adapter. Only if as_list is
called on that adapter is the underlying Python list returned.

4.1.2 Mutability

PHP data types are immutable except for objects (which are mutable in the same way as
objects in Python) and references. Immutable data types often use copy-on-write semantics.
For example, appending to an array creates a copy with an additional element at the end.
Operations on references – mutable cells which typically point to immutable data – are
passed onto the underlying datum, which may be replaced. For example, appending to a
reference which points to an array mutates the reference to point to the newly copied array.

Since it is common to wrap PHP arrays in a PHP reference, and since Python’s ex-
pectations are that such data types are mutable, PyHyp does not directly adapt arrays:
instead, arrays are replaced by references to arrays, which are then adapted. Put another
way, PHP arrays always appear to Python as mutable collections, whether adapted as lists
or dictionaries, and those mutations are visible to PHP code as well.

4.1.3 Cross-language Calls

Both Python and PHP functions can be adapted and passed to the other language where
they can be called naturally. There are, however, two cases of semantic friction: Python
functions with keyword arguments; and PHP’s pass-by-reference mechanism.

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:7

Simplifying slightly, Python functions accept zero or more mandatory, ordered argu-
ments, and zero or more unordered, keyword arguments, each of which has a default value.
Function calls must pass parameters for each ordered argument and then zero or more
keyword arguments. The following example shows such a function and an example call:

1 def fmturi (host , path , scheme =" http", frag ="" , query =""):
2 uri = "%s://%s%s" % (scheme , host , path)
3 if query : uri += "?%s" % query
4 if frag: uri += "#%s" % frag
5 return uri
6 fmturi (" google .com", "/" , frag ="q= ecoop ")

While PHP allows parameters to have default values, arguments must be passed in order,
and there is no notion of keyword arguments. To enable PHP to call Python functions
such as fmturi, PyHyp adds a global PHP function call_py_func(f, a, k) where f is an
adapted Python function, a is an array of regular arguments, and k is an array of keyword
arguments. From PHP, one can thus emulate the function call from line 6 as follows:

1 call_py_func ($fmturi , array (" google .com", "/") , array (" frag" => "q= ecoop ")).

By default, PHP parameters are pass-by-value but function signatures can mark their ar-
guments as being pass-by-reference by prepending the parameter name with &. When a
function with such a parameter is called, a reference is created which points to the argu-
ment passed (if it is not already a reference). Thus one can write a PHP function which
swaps the contents of the variables passed to it:

1 function php_swap (&$x , &$y) {
2 $tmp = $y;
3 $y = $x;
4 $x = $tmp;
5 }
6 $a = 10; $b = 20;
7 php_swap ($a , $b);
8 echo "$a $b\n"; // prints "20 10"

As this example shows, the code calling php_swap has no control over whether it is pass-
ing arguments with pass-by-value or pass-by-reference semantics—indeed, calling php_swap
updates $a and $b so that they point to the newly created references. Since PyHyp needs
to allow Python functions to be used as drop-in replacements for PHP functions, we need a
notion of pass-by-reference for Python function arguments. This is tricky since Python has
no explicit notion of a reference.

PyHyp takes a two-stage approach to reducing this case of semantic friction. First, we
introduce an explicit PHPRef adapter into Python which represents a mutable PHP reference.
PHPRefs support two explicit operations: deref() returns the value inside the reference; and
store(x) mutates the reference to point to x. Second, we add a Python decorator php_decor
which takes a keyword argument refs which specifies (as a sequence of argument indices)
which arguments are pass-by-reference. With this, we can write a Python swap function as
follows:

1 @php_decor (refs =(0 , 1))
2 def py_swap (a, b):
3 tmp = a. deref ()
4 a. store (b. deref ())
5 b. store (tmp)

Although it may be tempting to think that PHPRefs should be transparent in Python, as
they are in PHP, we found such a scheme to be impractical: it would require changing every
possible part of the Python language and implementation where one can read or write to
variables. Explaining the effects to users would be extremely challenging, as would changing

ECOOP 2016

3:8 Fine-grained Language Composition: A Case Study

the implementation. In PyPy, for example, we estimate that this would involve changing
around 100 separate locations.

Because PHPRefs are explicit, calling a PHP function with pass-by-reference arguments
from Python is possible but, inevitably, somewhat clunky. Pass-by-reference arguments
must be explicitly passed a PHPRef object; other object types lead to a run-time exception.
Thus Python can call php_swap as follows:

1 xref , yref = PHPRef (x), PHPRef (y)
2 php_swap (xref , yref)
3 x, y = xref. deref (), yref. deref ()

4.2 PyHyp FFI Internals
Until now, we have detailed the language PyHyp presents to the user. We now consider
PyHyp’s internal implementation details. PyHyp required modifying both HippyVM and
PyPy. We added modules to both HippyVM (pypy_bridge) and PyPy (hippy_bridge),
which encapsulate most of PyHyp’s behaviour. Most of the common behaviour resides in
the pypy_bridge module, though it could just as easily reside in hippy_bridge. Some
behaviour is implemented by invasively modifying existing HippyVM or PyPy code.

4.2.1 Data Type Conversion
Viewed from a suitable level of abstraction, both HippyVM and PyPy implement their
respective languages using broadly similar data type hierarchies: a root data type class
– not entirely coincidentally, called W_Root in both interpreters – from which all objects
inherit. Generally PyHyp adapters extend, directly or via a subclass, one of the W_Roots.

We added methods to both root data type classes: a to_py method to every PHP data
type; and a to_php method to every Python data type. Calling to_py on a PHP datum
creates a Python adapter (and vice versa for to_php). The default implementations of
to_py and to_php return generic adapters, but other data types override them to return
specialised adapters. Calling to_py / to_php on an adapter simply returns the adapted
datum. The only exception is calling to_py on a Python list which has been adapted as a
PHP array; rather than returning the Python list itself, PyHyp is forced to return a special
(new) variant of a Python dictionary (see Section 4.1.1).

The generic adapters – one each in HippyVM and PyPy– simply forward attribute
lookups, method calls, and the like onto the adapted object. PyHyp then defines a number of
specialised adapters: 10 additional Python adapters and 8 additional PHP adapters. Some
of the special adapters expose different behaviour to the user (e.g. collection data types),
whereas some deal with low-level differences between data types in the VM (e.g. PyPy’s lay-
out requires separate adapters to be defined for functions and methods). As PyPy uses stor-
age strategies to optimise collection data types [5], adapted PHP collections create Python
collection instances that use PyHyp-specific strategies rather than subclassing W_Root.

The code for adapters is self-contained and relatively simple. Together, the PHP and
Python adapters are just under 1400LoC, of which 400LoC implements new storage strate-
gies.

4.2.2 Mutability
In order to make PHP arrays mutable from Python, PyHyp requires PHP arrays passed to
Python to be wrapped in a reference. However, simply adding a reference when an adapter

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:9

is created would lead to mutations from Python not being seen by PHP. PyHyp therefore
handles arrays specially: the following two examples give a flavour of this.

The ARG_BY_PTR PHP opcode organises function arguments prior to a function call, and
is where arrays passed to a call-by-reference function argument have their storage in the
PHP frame replaced by a reference. PyHyp adds a special case to this opcode: every PHP
array passed to a Python function is treated as if it was being passed to a call-by-reference
function argument. This ensures that the PHP frame observes mutations from Python.

Similarly, when Python loads an array from an adapted PHP object’s attribute, PyHyp
must replace the attribute with a reference. This ensures that the parent object observes
mutations from Python. Implementing this is fairly simple, as we reuse an existing function
in HippyVM which can lookup an attribute and turn non-references into references (used to
implement PHP’s standard x=&$y->z behaviour). We add a new flag to this function, since
we only want to turn arrays (and not other data types) into references.

4.2.3 Cross-language Calls
For the most part, cross-language calls are simple to implement. PyHyp is careful to ensure
that the necessary glue code is optimised and does not obstruct meta-tracing’s natural
cross-language inlining. Most importantly, this requires annotating the relevant RPython
functions as being unrollable, so that they dynamically specialise themselves to the number
of parameters passed by the user.

The php_decor decorator is implemented as a normal Python (not RPython) class.
When the decorator is applied with the refs keyword argument, the argument indices are
stored in a normal, user visible attribute of the function object. When the function is
adapted for PHP, the adapter loads the indices, which are later used by the PHP interpreter
to determine which parameters are to be passed by reference.

4.2.4 Transparency
Ensuring that adapters are as transparent as possible inevitably requires invasive modifica-
tions of HippyVM and PyPy. We were helped by the fact that both interpreters centralise
all the behaviour we wished to modify. For example, implementing identity transparency
in PyPy is easy, as identity checks are not handled directly but handed over to an object’s
is_w method which compares the current object with another for identity equality. PyHyp
adapters override this method so that if the objects being compared are both adapters of
the same type, the identity check is forwarded on to the underlying adapted objects. The
is_w method of W_PHPGenericAdapter (the class representing an adapted PHP object in
PyPy) shows this idiom:

1 def is_w(self , other):
2 if isinstance (other , W_PHPGenericAdapter):
3 return self. w_php_obj is other . w_php_obj
4 return False

5 Syntactic Composition

Traditionally, FFIs have made the implicit assumption that the source code of each language
involved is kept in different files. In this section, we show how PyHyp allows PHP and
Python code to be used within a single file. To avoid tedious duplication of explanation,
we concentrate our explanation on embedding Python into PHP, though PyHyp also allows
PHP to be embedded into Python.

ECOOP 2016

3:10 Fine-grained Language Composition: A Case Study

5.1 Functions
At a low-level, PyHyp provides simple support for embedding Python inside PHP (and vice
versa) as strings. For example, the compile_py_func function takes a string containing a
single Python function and returns a Python function object that is adapted as a callable
PHP instance. The following example embeds a Python function inside PHP and calls it to
produce a random number between 0 and 10:

1 $src = <<<EOD
2 def randnum (n):
3 import random
4 return random . randrange (n)
5 EOD;
6 $randnum = compile_py_func ($src);
7 echo $randnum (10) . "\n";

In this paper we mostly use compile_py_func, though compile_py_func_global can be
used to compile a Python function and put it in PHP’s global function namespace.

Although the compile_* functions are called at run-time, they are surprisingly fast.
First, due to PHP and Python being simple languages to compile, both HippyVM and
PyPy have efficient compiler implementations. Second, when JIT compiled, PyHyp caches
the bytecode output of compile_* calls. Re-evaluating a function thus produces a new
(cheap) function object while reusing the (expensive) bytecode object which underlies it.

5.2 Methods
PyHyp supports inserting Python methods into PHP classes via the compile_py_meth(c,
f) function, where the Python method source f is compiled and inserted into the class named
by the string c. However, this feature must be used carefully because HippyVM’s implemen-
tation takes advantage of the fact that PHP’s classes can be statically compiled. This means
that, by the time a program has started running, normal PHP classes cannot be altered.
This poses a problem for PyHyp because its syntactic embedding is currently performed at
run-time. We work around this by enclosing a PHP class inside curly braces, which delays
its compilation until run-time. We also require that all calls to compile_py_meth(c, ...)
immediately follow the definition of c and that the class and all such calls be surrounded
by curly brackets. This also affects sub-classes of c, whose execution must also be delayed
by curly brackets (though not necessarily at the same point in the source code).

PHP supports a Java-like public/private/protected method access scheme, but Python
has no concept of private or protected methods.2 To model this, PyHyp extends the
php_decor decorator (see Section 4.1.3) with an optional extra argument access which
accepts a string access value ("public", "private", or "protected"). Similarly, the option
static boolean argument allows static methods to be denoted. These arguments can be
combined to specify that a Python method is e.g. protected and static.

5.3 Using Eco to Express Embeddings
For simple uses, the compile functions are tolerable as-is, but they tend to obfuscate em-
bedded code, especially in multi-level embeddings (e.g. PHP inside Python inside PHP),
where string escaping becomes onerous.

2 Python attributes prefixed by two underscores have their names mangled, but are otherwise publicly
accessible.

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:11

1 # Create PHP grammar referencing Python (and vice versa)
2 python = Grammar (" python .eco ")
3 php = Grammar (" PHP+ Python ", "php.eco ")
4 python . add_alternative (" atom", php)
5 php. add_alternative (" top_statement ", python)
6 php. add_alternative (" class_statement ", python)
7 php. add_alternative (" expr", python)
8 # Create Python expressions -only grammar
9 python_expr = Grammar (" Python expressions ", " python .eco ")

10 python_expr . change_start (" simple_stmt ")
11 php. add_alternative (" expr", python_expr)

Listing 1 Composing PHP and Python grammars in Eco. Grammar(n, p) loads a
grammar named n from path p. change_start changes the start rule of a grammar.
g1.add_alternative(r, g2) adds a new alternative to the rule r in grammar g1 to the
start rule of grammar g2.

In order to make PyHyp’s syntactic composition more palatable, we make use of the Eco
editor [11]. Eco allows users to compose grammars and to write composed programs. In
essence, one takes a context-free grammar X and adds a reference from a rule R ∈ X to
another grammar Y . When entering language X into Eco, the user can switch to entering
language Y by creating a language box. Language boxes delineate when one language ends
and another starts, but do not introduce ambiguity or complexity into a parser. Eco parses
as the user type, and thus always has access to parse trees for all languages involved in a
composition. However, from the user’s perspective, editing in Eco feels like a normal text
editor, except when creating a language box or moving between nested language boxes (a
fairly rare occurrence).

We first had to enable users to write PyHyp programs. Since Eco comes with a Python
grammar, we only had to add a PHP grammar (which we adapted, with minor modifica-
tions, from Zend PHP) and a PHP lexer. We then used Eco’s Python interface to express
the join points between the two grammars (see Listing 1). Simplifying slightly, in PHP
one can add Python language boxes wherever PHP statements or expressions are valid;
and in Python one can add PHP language boxes wherever a Python expression is valid.
From the users perspective, this means that when using Eco for PyHyp, they create a new
PHP+Python file and start typing PHP. When they want to insert a Python function they
insert a Python+PHP language box; when they want to insert a Python expression they insert
a Python expression language box.

We then had to implement an exporter from parse trees relative to the composed
PHP+Python composed grammar to PyHyp-compatible input. The exporter automatically
inserts compile_* functions, follows compile_py_meth’s restrictions, and escapes arbitrarily
deeply nested language boxes. For example, the gen Python language box in the RNG class
in Figure 1 is exported as follows:

1 {
2 class RNG { ... }
3 compile_py_meth (" RNG", "def gen(self , amount):\n \\
4 while amount > 0:\n \\
5 amount -= 1\n \\
6 yield self. pcg8_random ()");
7 }

Figure 1’s second language box (line 20) is more interesting. PyHyp has no explicit interface
for embedding Python expressions. Instead, the expression is encoded as a callable PHP
instance which is compiled and immediately called:

1 $l = call_py_func (compile_py_func ("f = lambda : [x % 64 for x in rng.gen (25)];"));

ECOOP 2016

3:12 Fine-grained Language Composition: A Case Study

Figure 2 Cross-language exception handling in PyHyp, showing that the stacktrace presents
entries from within language boxes correctly. As an example, the first line of the stacktrace should
be read as follows: “The 0th entry in the stacktrace relates to the exceptions.eco file, line 2, within
the h function”.

In the rest of the paper we use the term ‘language box’ to refer to an embedded language
fragment irrespective of whether Eco is used or not.

5.3.1 Exceptions
When a native exception crosses the language boundary, PyHyp adapts it, before re-raising
the exception. For example, if PHP calls Python code which raises the Python exception
ZeroDivisionError, then the exception will appear to PHP as a generic PyException. As
with all other adapters, an adapted exception crossing back to its native language (e.g. a
PyException which percolates back to Python) simply has its adapter removed.

However, adapters on their own do not solve a crucial problem: cross-language stack-
traces. By default, both HippyVM and PyPy can only print out their own frames in stack-
traces, which makes cross-language exceptions seem to appear out of thin air. Equally
frustratingly, frames which represent inner language boxes report incorrect line numbers, as
each language box’s frame assumes it starts at line 1.

PyHyp fixes both problems. First, we altered HippyVM and PyPy’s stacktrace functions
to call each other for their appropriate frames. Second, we added two arguments to PyHyp’s
compilation functions (e.g. compile_py_func) to allow Eco to pass the file and line offset the
compiled text is relative to. The stacktrace routines then use this information to adjust the
reported locations. The end result is that cross-language stacktraces are just as informative
as mono-language stacktraces, as can be seen in Figure 2.

6 Cross-language Scoping

For syntactic composition to be useful, we believe that users must be able to reference
variables across language boxes. PyHyp therefore allows both Python and PHP to reference
variables in the other language, making syntactic composition significantly more powerful
and usable. This raises a novel design challenge: what are sensible cross-language scoping
rules? The major challenge is to deal with both language’s expectations surrounding global

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:13

Figure 3 Cross-language scoping with nested language boxes: each language expects to see its
own global scope. Lexical scoping suggests that x referenced on lines 3 and 4 should bind to the
definition on line 2. Since PHP and Python’s range functions are incompatible, the PHP language
box on line 3 must reference a different range function to that on line 4. However, both the PHP
and Python language boxes wish to use PHP’s print_r function on lines 3 and 4. PyHyp’s scoping
rules respect these desires and this example prints out 0, 1, 2, 0, 1.

namespaces. We eventually settled upon scoping rules that are relatively easily explained,
and which impose a mostly lexical system. This is no small matter, as PHP and Python
have significantly different scoping rules.

In this section, we first define a simplified version of the scoping rules in each language
(since PHP and Python share neither common semantics nor terminology, we do our best to
homogenise the description). We then define PyHyp’s additional rules for PHP referencing
Python and vice versa, before explaining how these rules are implemented.

6.1 PHP and Python’s Namespace Semantics

PHP has separate global namespaces for functions, classes, constants, and variables. Any
given name can appear in multiple namespaces, as syntactic context uniquely identifies which
namespace is being used (e.g. new x() references a class, whereas x() references a function).
PHP has no concept of modules, textually ‘including’ files in similar fashion to C headers.
Thus the global namespaces span all PHP files.3 The namespaces for functions, classes,
and constants can have new names added to them dynamically, but existing names cannot
be removed or changed. In contrast, names can be added or removed to the namespace for
variables at will. Each function then defines a local scope; variable lookups within a function
first search the local scope before searching the global variable namespace.

Python modules each have a single ‘global’ namespace, to which names can be added and
removed. Functions define their own local namespace. Lexical lookups (for names defined
in the current or parent function’s scope) are determined statically (the set of local names
cannot be modified); global lookups are performed dynamically.

Neither PHP nor Python has Scheme-esque closures4: nested functions can read a parent
function’s variables but writes are not shared between the two. In the interests of brevity,
we consider PHP and Python’s variable scoping rules to be local and global, but not lexical.

3 Although PHP 5.3 introduced a mechanism for defining non-global namespaces, this does not effect
our explanation.

4 For our purposes, we consider what PHP calls a ‘closure’ to be a first-class anonymous function.

ECOOP 2016

3:14 Fine-grained Language Composition: A Case Study

6.2 PyHyp’s Cross-language Scoping Rules
The use of cross-language scoping in Figure 1 may suggest that cross-language scoping
design is a matter of applying traditional language design principles. Figure 3 shows a
more challenging example, where modern expectations about lexical scoping and PHP and
Python’s global namespaces appear to clash.

PyHyp resolves this issue with the following simple design. First, PHP and Python’s
local scoping rules remain unchanged. Second, we split the search for variables which are
not bound in the current language box into two distinct phases: the ‘recursive’ phase, and
the ‘global’ phase. The recursive phase searches language boxes (from inner to outer) for a
matching variable definition. Failing this, the global phase searches the global namespace(s)
of the current language box’s language; if no match is found, it then searches the global
namespace(s) of the other language.

The recursive phases for PHP and Python are conceptually identical. Python’s global
phase is simple, but PHP’s is complicated by its multiple global namespaces. If the search
originated from PHP, then only the appropriate namespace for the syntactic context is used
(e.g. if, syntactically, a function was looked up, only the function namespace is searched); if
the search originated in Python the namespaces are searched in the following order: global
functions, classes, then constants.

Performance reasons led us to make one small adjustment to the PHP global phase search.
PHP has the ability to lazily load classes; every failed class lookup triggers a (fairly slow)
check for user-defined lazy loading mechanisms. In mono-PHP this is a sensible mechanism,
as in practice either a class is found in the namespace, or it is lazily loaded, or an error is
raised. However, since cross-language scoping frequently checks for the existence of names
that do not, and will never, exist, the cumulative performance effect can be frustrating. Since
disabling lazy loading would break many existing PHP applications, we tweaked PyHyp’s
scoping rules. The search for a Python name in PHP’s global namespaces is ‘sticky’: if a
name x was found to be (say) a class on the first search in a given scope, it will only ever
return a class on subsequent searches (i.e. if a function x is later added to the functions
namespaces, it will not be returned as a match in that scope). This small loss of dynamicity
increases performance in some benchmarks by around 50%.

Using Figure 3 as a concrete example, we can see how these rules apply in practice.
First, consider the PHP variable reference $x on line 3. There is no binding of x in the PHP
language box so when the code is executed a recursive phase search commences: the parent
(Python) language box is inspected and a binding found on line 2. The range function
reference on line 3 starts with the same pattern: a recursive phase search looks in the
Python language box for a binding but fails. A PHP global phase search then commences;
since range was syntactically referenced as a function, only the global function namespace
is searched, where a match is then found. The print_r function reference on line 3 follows
the same pattern. The reference to a range function in the Python language box at line
4 starts with a recursive phase search which looks into the parent PHP language box’s for
a suitable binding (i.e. a name starting with a ‘$’) but fails. It then does a global phase
search in Python’s global namespace, finding Python’s built-in range function. The print_r
reference on line 4 is more interesting. A recursive phase search fails to find a match. A
global phase search then searches in Python’s global namespace and fails before trying PHP’s
global namespaces, starting with functions, where a match is found.

PyHyp’s scoping rules also work well in corner-cases (e.g. PyHyp deals with PHP’s
superglobals sensibly). Note that the scoping rules of both languages are partly or wholly
dynamic: that is, in some situations, bindings can be changed at run-time. PyHyp’s scoping

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:15

rules maintain PHP’s and Python’s dynamic lookup properties since some programming
idioms (particularly in PHP, but also in Python) rely on adding or removing bindings.

6.2.1 Implementation
To add PyHyp’s scoping rules to HippyVM and PyPy, we first needed to connect language
box scopes together at run-time, and then intercept the locations where PHP and Python
global variables are read and written to.

Connecting language box scopes is made relatively simple by the fact that each is con-
structed by a compile_* function (see Section 5.1). The outer part of any PyHyp program
is, by definition, a PHP language box and every other language box is nested inside that.
Thus any call to compile_py_* implicitly receives a reference to the PHP frame from which
it was called. The reference is then stored in a PHPScope object, which PyHyp attaches
to the Python function object being created; nested Python functions inherit a PHPScope
object from their parent function, so that multiply nested functions can still access outer
language boxes. Similarly, when a PHP language box is nested inside Python, a PyScope
object is created and placed inside a PHP function’s bytecode object. This simple scheme
means that, from any PHP or Python frame, one can walk a chain from the current to the
outermost language box.

To actually search outer language box’s scopes, we have to modify those parts of Hip-
pyVM and PyPy which perform global lookups. In HippyVM, we modify the 3 separate
functions on the main interpreter object which perform searches of functions, classes, and
constants, as well as the lookup_deref function on frames which lookups up variables. An
elided version of the locate_function function – which searches for a PHP function n –
shows the small scale of such modifications:

1 def locate_function (n):
2 py_scope = self. topframeref (). bytecode . py_scope
3 if py_scope is not None:
4 ph_v = py_scope . ph_lookup_local_recurse (name)
5 if ph_v is not None: return ph_v
6 ph_v = self. lookup_function (name)
7 if ph_v is not None: return ph_v
8 ph_v = py_scope . ph_lookup_global (name)
9 if ph_v is not None: return ph_v

10 else:
11 func = self. lookup_function (name)
12 if func is not None: return func
13 self. fatal (" Call to undefined function %s()" % name)

In essence, the original function consisted of lines 11 and 12; PyHyp adds lines 1–9. When
a PHP function performs a global function lookup, and that PHP function is nested inside
a Python language box (lines 1 and 2) then a local phase search is performed (lines 4 and
5). If unsuccessful, the global phase search then commences: first the PHP global function
namespace is searched (lines 6 and 7) before Python’s global namespace is searched (lines 8
and 9). The modifications made to PyPy are identical in idiom, modifying the two opcodes
(LOAD_GLOBAL and STORE_GLOBAL) which read and write global variables.

Since PyHyp’s rules are highly dynamic, we rely heavily on use of Self-style maps (see [9])
to turn most name lookups from (slow) dictionary lookups of names into (fast) constant
lookups. HippyVM originally made only limited use of maps in its global namespaces: we
altered it to use maps extensively.5 We also used maps for the sticky namespace search.
Looking up a variable in a global phase search in a PHP scope returns an integer representing

5 This optimisation also helps plain HippyVM, as it significantly improves the performance of programs
such as MediaWiki and phpBB that use the $GLOBALS superglobal.

ECOOP 2016

3:16 Fine-grained Language Composition: A Case Study

unknown (i.e. this name has not previously been searched for in this context), class, function,
constant, or not found (i.e. a search was previously done and no match was found). After
tracing, virtually all global lookups turn into a small number of (quick) attribute guards,
avoiding (slow) dictionary lookups.

7 Experiment

To understand PyHyp’s performance characteristics, we define three classes of benchmarks:
small microbenchmarks, large microbenchmarks, and permutation benchmarks. Bench-
marks come in four variants: mono-language PHP (henceforth ‘mono-PHP’); mono-language
Python (‘mono-Python’); composed PHP and Python where PHP is the ‘outer’ language
(‘composed-PHP’) and where Python is the ‘outer’ language (‘composed-Python’). We run
these benchmarks on several PHP and Python implementations.

7.1 Benchmarks

Our small microbenchmarks, focus on single language features in isolation, and are useful for
identifying low-level pinch points. Each of our small microbenchmarks consist of two parts.
In most, an outer loop repeatedly calls an inner function (e.g. the total_list benchmark’s
inner function takes a list of integers and sums them). In the remainder, an outer function
generates elements, and an inner function consumes them. In the composed variants, the
inner and outer components are implemented in different languages.

Some small microbenchmarks cannot be implemented in all variants. The ref_swap
benchmark measures the performance of operations on PHP references and PHPRefs (see
Section 4.1.3) and thus has no mono-Python variant. Benchmarks which require putting
PHP methods into Python classes are currently not supported by PyHyp. The complete list
of small microbenchmarks can be found in Appendix A.

Our large microbenchmarks aim to measure performance more broadly. We use four ‘clas-
sic’ benchmarks: Fannkuch counts permutations by continually flipping elements in a list [1];
Mandel plots an ASCII representation of the Mandelbrot set into a string buffer6; Richards
models an operating system task dispatcher7; and DeltaBlue is a constraint solver [27]. To
create composed variants of these benchmarks, we took the mono-language variants and
replaced each function with an implementation in the other language. The composed-PHP
variants of Richards and DeltaBlue are thus PHP ‘shell’ classes containing many Python
methods (33 and 75 respectively), with variables referenced between languages and data
repeatedly crossing from PHP to Python (Figure 4 shows the mono and composed-PHP
variants of Richards alongside each other). In other words, Richards and DeltaBlue are
designed to heavily test PyHyp’s cross-language performance. In contrast, Fannkuch is a
single function, and so the composed variant consists of a single Python function embedded
in PHP. This serves as a rough baseline, since we would expect that the composed variant
has roughly the same performance as PyPy. Mandel also started off life as a single function,
but we made modifications to make a more interesting benchmark: we split the innermost
loop into a separate function; made the function’s parameters pass-by-reference; and made
the function modify these references during execution. Since Mandel uses references, there

6 Zend/bench.php in the Zend distribution of PHP.
7 http://www.cl.cam.ac.uk/~mr10/Bench.html

http://www.cl.cam.ac.uk/~mr10/Bench.html

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:17

Figure 4 The mono-PHP and composed-PHP variants of Richards side by side. The composed-
PHP variant of the benchmark contains a ‘shell’ PHP program with PHP classes whose methods
are Python language boxes. Global variables remain defined in PHP, so that the benchmarks also
include an element of cross-language scoping.

is no mono-Python variant. There is no composed-Python variant of either Richards or
DeltaBlue, since PHP methods cannot yet appear inside Python classes.

The permutation benchmarks are designed to uncover whether some parts of a program
are faster in one or other language. Using the mono-PHP DeltaBlue benchmark as a base,
we created 79 permutations, each with one PHP function replaced by a Python equivalent.
We then compare the timings of each permutation to the original mono-PHP benchmark.
For brevity, we henceforth refer to permutation number x as px.

7.2 Methodology
Each benchmark was run on the following VMs (in alphabetical order): CPython, the stan-
dard interpreter for Python; HHVM, a JIT compiling VM for PHP; HippyVM; PyHypPHP,
which is PyHyp running composed-PHP variants; PyHypPy, which is PyHyp running com-
posed-Python variants; PyHypmono, which is PyHyp running mono-PHP variants; PyPy;
and Zend, the standard interpreter for PHP. The versions used for each of these VMs is
shown in Table 1. Note that PyHypPHP, PyHypPy and PyHypmono are all the save VM,
and we use the terms to be clear about which benchmarks PyHyp is running.

For each benchmark and VM pair, we ran 5 fresh processes, with each process running
50 iterations of the benchmark. We then used the bootstrapping technique described in
[21] to derive means and 99% confidence intervals for each pairing. Since we could not
always determine when a given VM had warmed up, we made no attempt to remove any
iterations from the process: thus our timings include warmup. All timings are wall-clock
with a sub-microsecond resolution.

All experiments were run on an otherwise idle 4GHz Core i7-4790 CPU and 32GiB RAM
machine, running Debian 8. We disabled turbo mode and hyper-threading in the BIOS. We

ECOOP 2016

3:18 Fine-grained Language Composition: A Case Study

Table 1 The VM versions used in this paper.

Interpreter Version(s)

CPython 2.7.10
HHVM 3.4.0
HippyVM git #2ae35b80
PyPy 2.6.0
Zend 5.5.13
PyHyp Based on above HippyVM/PyPy versions.

used a tickless Linux kernel, disabled Intel p-states, and ensured that the CPU governor was
set to maximum performance mode. All VMs were built with the system GCC (4.9.2). We
did not interfere with the garbage collection of any of the VMs, which run as normal.

7.3 Results
Table 2 shows the results of our microbenchmarks relative to the composed PyHyp variant.
Absolute timings are shown in Table 4 in the Appendix. Starting with the simplest obser-
vations, we can see that Zend and CPython (C-based interpreters) are slower than HHVM,
HippyVM, and PyPy (JIT-based VMs). Small to medium benchmarks tend to flatter meta-
tracing, and so HippyVM and PyPy outperform HHVM. PyPy is nearly always faster than
HippyVM, reflecting the greater level of engineering PyPy has received.

PyHypmono’s results are very similar to HippyVM’s, though a few cases run slightly
slower on PyHyp. For walk_list and DeltaBlue, some missing optimisations in PyHyp’s
scoping lookups cause undue bloat in the optimised traces. instchain and sum_meth_attr
in contrast have identical traces except for a small portion of their headers: this seemingly
small difference has a surprisingly large run-time effect which we do not fully understand.

PyHyp is generally faster than HippyVM on the composed-PHP benchmarks. This is
largely due to moving code from PHP (slower HippyVM) to Python (faster PyPy) and the
ability that meta-tracing has to naturally inline code across both languages. PyHyp is in
most cases slower than PyPy, as we would expect, because of the additional overhead of
adapters and cross-language scoping. Although meta-tracing naturally optimises the vast
majority of these operations away, a few inevitably remain, and their cumulative effect is
often noticeable, even though it is not severe. On the geometric mean PyHypPHP is only
around 20% slower on average than PyPy, and no individual PyHypPHP benchmark is more
than 2.2x slower. The composed-Python benchmarks have a similar overall average to the
composed-PHP benchmarks, though several benchmarks are slower. By comparing traces
from the composed-PHP and composed-Python benchmarks, we were able to identify several
missing optimisations in HippyVM that are likely to account for most such slowdowns:
redundant comparisons in logical operators; many more allocations in PHP iterators; and
more allocations when appending to PHP lists.

In some cases, the timings for composed variants running on PyHyp are virtually iden-
tical to the mono-language variants running on PyHyp’s constituents (e.g. smallfunc on
HippyVM, PyHypPHP and PyPy are all roughly 1x). For small benchmarks, we would
expect any well-written RPython VM to compile virtually identical traces, and such bench-

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:19

Table 2 Microbenchmark timings relative to PyHypPHP. Note that PyHypPHP and PyHypPy are
the same VM, but running composed-PHP and composed-Python benchmark variants respectively.

Benchmark CPython HHVM HippyVM PyHypPHP PyHypPy PyHypmono PyPy Zend
instchain 33.451

±0.0679
9.547

±0.0096
0.912

±0.0011
1.000 1.116

±0.0012
0.675

±0.0007
36.471

±0.1577

l1a0r 86.017
±0.0179

4.052
±0.0020

1.368
±0.0004

1.000 1.360
±0.0003

1.359
±0.0003

1.340
±0.0106

38.778
±0.0078

l1a1r 83.803
±0.1407

2.980
±0.0038

1.306
±0.0017

1.000 1.303
±0.0016

1.303
±0.0016

1.140
±0.0022

39.111
±0.1272

lists 8.047
±0.0139

0.931
±0.0036

0.975
±0.0020

1.000 0.560
±0.0012

0.978
±0.0021

0.497
±0.0010

14.626
±0.0377

ref_swap 8.393
±0.0006

1.000
±0.0002

1.000 0.700
±0.0001

1.000
±0.0001

53.320
±0.0040

return_simple 110.409
±0.1104

7.049
±0.0019

1.000
±0.0001

1.000 0.778
±0.0001

1.000
±0.0001

0.889
±0.0001

84.724
±0.0645

scopes 133.487
±0.0493

15.023
±0.0018

4.511
±0.0025

1.000 0.929
±0.0005

4.495
±0.0013

1.000
±0.0001

152.608
±0.0131

smallfunc 187.132
±0.1488

13.078
±0.0010

1.000
±0.0001

1.000 0.750
±0.0000

1.000
±0.0001

1.000
±0.0001

230.818
±0.0145

sum 317.479
±0.2718

19.362
±0.0014

0.999
±0.0001

1.000 0.750
±0.0001

1.000
±0.0003

0.874
±0.0001

418.485
±0.0921

sum_meth 341.850
±1.3274

24.106
±0.0280

0.999
±0.0001

1.000 1.000
±0.0001

0.874
±0.0002

447.472
±0.4913

sum_meth_attr 131.469
±0.7392

17.915
±0.1052

0.999
±0.0061

1.000 1.131
±0.0065

0.904
±0.0057

145.365
±0.8321

total_list 19.230
±0.0145

2.245
±0.0008

0.864
±0.0002

1.000 1.508
±0.0004

0.858
±0.0005

0.587
±0.0003

33.667
±0.0633

walk_list 5.060
±0.0071

0.406
±0.0005

0.779
±0.0011

1.000 1.601
±0.0026

1.010
±0.0018

1.080
±0.0015

10.647
±0.0677

deltablue 16.528
±0.0707

671.482
±2.9041

4.325
±0.0212

1.000 4.507
±0.0214

0.457
±0.0026

144.149
±2.6843

fannkuch 20.582
±0.0226

3.342
±0.0025

1.848
±0.0007

1.000 1.891
±0.0005

1.878
±0.0005

1.005
±0.0004

14.387
±0.0128

mandel 0.791
±0.0056

0.921
±0.0005

1.000 0.493
±0.0001

0.999
±0.0003

7.241
±0.0188

richards 26.902
±0.0189

11.897
±0.0088

0.853
±0.0010

1.000 0.887
±0.0007

0.488
±0.0005

24.207
±0.0236

Geometric Mean 52.743
±0.0341

6.940
±0.0047

1.222
±0.0006

1.000 0.963
±0.0003

1.277
±0.0006

0.813
±0.0007

55.549
±0.0692

marks show this effect. However, in some cases where we expected identical performance for
both PyHyp and its constituents, the composed variant is faster: lla0r, l1a1r, and smallfunc.
Indeed, the crucial parts of the traces were identical between the two VMs in all these cases.
Further exploration showed that RPython’s machine code generator occasionally emits less
than optimal code (in this case unnecessary x86-64 MOVs) that account for the difference.
We do not understand the precise reason for this, but it seems plausible it is a limitation of
the current register allocator. We have reported our findings to the RPython developers.

Table 3 shows the results from the permutations experiment. The majority of permu-
tations are statistically indistinguishable from mono-PHP; most of the remainder are close
enough in performance to be of little interest. Four permutations, however, show substantial
differences: p2, p5, p6 and p7 all perform much better than in mono-PHP. We now describe
the reasons for these cases.

p2 swaps the OrderedCollection class’s constructor which performs a single action,
assigning an array (in PHP) or list (in Python) to the elms attribute. The seemingly
innocuous change of moving from a PHP array to a Python list has a big impact on perfor-
mance simply because PyPy’s lists are are far more extensively optimised than HippyVM’s
(see [5]). This provides indirect evidence of the importance of making adapters immutable
(see Section 4.1.1): even though p2 operates extensively on adapters, their costs after trace
optimisation are extremely small.

p5, p6, and p7 are all similar in nature. Ultimately, and perhaps surprisingly, the slow-
down is due to Hippy using a tracing garbage collector. Because of PHP’s copy-on-write
semantics, arrays are conceptually copied on every mutation. Zend (the traditional PHP
implementation) is able to optimise away many of these writes by making use of its reference
counting garbage collector. When a mutation operation occurs on an array with a reference

ECOOP 2016

3:20 Fine-grained Language Composition: A Case Study

Table 3 DeltaBlue permutations in PyHyp, with absolute times (in seconds) and relative timings
(to mono-PHP DeltaBlue run on PyHyp). Greyed-out cells indicate that the confidence intervals
overlap. Bold entries indicate that there is more than a 25% relative performance difference.

p1:
0.246s

±0.0005
1.000×

±0.0029 p17:
0.246s

±0.0004
1.000×

±0.0028 p33:
0.246s

±0.0005
0.999×

±0.0028 p49:
0.246s

±0.0005
1.002×

±0.0028 p65:
0.246s

±0.0005
1.001×

±0.0029

p2:
0.120s

±0.0003
0.490×

±0.0015 p18:
0.250s

±0.0005
1.015×

±0.0029 p34:
0.246s

±0.0004
1.000×

±0.0026 p50:
0.246s

±0.0006
1.001×

±0.0032 p66:
0.247s

±0.0004
1.006×

±0.0026

p3:
0.240s

±0.0004
0.978×

±0.0026 p19:
0.245s

±0.0004
0.999×

±0.0026 p35:
0.246s

±0.0006
1.000×

±0.0031 p51:
0.246s

±0.0004
1.000×

±0.0027 p67:
0.246s

±0.0005
1.001×

±0.0027

p4:
0.249s

±0.0005
1.015×

±0.0030 p20:
0.245s

±0.0004
0.998×

±0.0026 p36:
0.246s

±0.0005
1.002×

±0.0030 p52:
0.246s

±0.0004
1.000×

±0.0026 p68:
0.246s

±0.0005
1.000×

±0.0030

p5:
0.132s

±0.0002
0.538×

±0.0014 p21:
0.246s

±0.0004
1.001×

±0.0027 p37:
0.246s

±0.0005
1.001×

±0.0028 p53:
0.248s

±0.0004
1.008×

±0.0027 p69:
0.251s

±0.0004
1.021×

±0.0028

p6:
0.131s

±0.0002
0.533×

±0.0013 p22:
0.247s

±0.0005
1.005×

±0.0029 p38:
0.246s

±0.0005
1.000×

±0.0028 p54:
0.246s

±0.0005
0.999×

±0.0028 p70:
0.248s

±0.0005
1.008×

±0.0028

p7:
0.175s

±0.0003
0.710×

±0.0020 p23:
0.244s

±0.0005
0.993×

±0.0027 p39:
0.246s

±0.0005
0.999×

±0.0027 p55:
0.247s

±0.0005
1.004×

±0.0028 p71:
0.242s

±0.0004
0.986×

±0.0025

p8:
0.246s

±0.0006
1.002×

±0.0032 p24:
0.246s

±0.0005
1.000×

±0.0029 p40:
0.246s

±0.0005
1.000×

±0.0030 p56:
0.247s

±0.0006
1.005×

±0.0031 p72:
0.246s

±0.0005
1.001×

±0.0028

p9:
0.246s

±0.0005
1.000×

±0.0029 p25:
0.246s

±0.0005
1.002×

±0.0029 p41:
0.245s

±0.0005
0.995×

±0.0028 p57:
0.245s

±0.0005
0.999×

±0.0028 p73:
0.246s

±0.0005
1.000×

±0.0027

p10:
0.246s

±0.0004
1.000×

±0.0026 p26:
0.246s

±0.0004
1.001×

±0.0027 p42:
0.248s

±0.0004
1.011×

±0.0027 p58:
0.245s

±0.0004
0.999×

±0.0026 p74:
0.248s

±0.0004
1.011×

±0.0027

p11:
0.246s

±0.0005
1.000×

±0.0027 p27:
0.247s

±0.0006
1.006×

±0.0031 p43:
0.247s

±0.0005
1.005×

±0.0029 p59:
0.248s

±0.0006
1.011×

±0.0032 p75:
0.251s

±0.0004
1.021×

±0.0027

p12:
0.246s

±0.0004
1.001×

±0.0027 p28:
0.247s

±0.0005
1.004×

±0.0029 p44:
0.248s

±0.0005
1.011×

±0.0031 p60:
0.247s

±0.0005
1.005×

±0.0030 p76:
0.246s

±0.0004
1.002×

±0.0025

p13:
0.246s

±0.0005
1.000×

±0.0029 p29:
0.246s

±0.0006
1.000×

±0.0032 p45:
0.248s

±0.0005
1.011×

±0.0027 p61:
0.248s

±0.0005
1.009×

±0.0028 p77:
0.244s

±0.0005
0.992×

±0.0027

p14:
0.248s

±0.0005
1.009×

±0.0029 p30:
0.246s

±0.0006
1.000×

±0.0031 p46:
0.270s

±0.0005
1.100×

±0.0029 p62:
0.246s

±0.0005
1.000×

±0.0027 p78:
0.246s

±0.0003
0.999×

±0.0025

p15:
0.246s

±0.0004
0.999×

±0.0026 p31:
0.246s

±0.0004
1.000×

±0.0027 p47:
0.267s

±0.0004
1.085×

±0.0027 p63:
0.245s

±0.0004
0.999×

±0.0026 p79:
0.246s

±0.0004
0.999×

±0.0026

p16:
0.246s

±0.0004
1.000×

±0.0026 p32:
0.246s

±0.0005
1.000×

±0.0028 p48:
0.247s

±0.0005
1.003×

±0.0030 p64:
0.245s

±0.0005
0.998×

±0.0028

count of 1, the array is mutated in place, as the change cannot be observed elsewhere. Hip-
pyVM in contrast does not use reference counting, and does not know exactly how many
pointers to an array exist at any given point. Checking every pointer in the run-time system
would be prohibitively expensive, so HippyVM approximates Zend’s optimisation with a
‘unique’ flag on array references. Various operations can remove uniqueness, but arrays in
unique references can be optimised in the same manner as Zend arrays with a reference count
of 1. Taking p5 as a concrete example, we can see the subtle effects of this optimisation in
HippyVM. p5 swaps the OrderedCollection class’s size method, which simply calls count
(in PHP) or len (in Python) on a PHP array stored in an attribute. Since the count function
is call-by-value, HippyVM optimises the copy that of the array that should occur by simply
dropping its unique flag; later mutations thus must therefore copy the array. However, this
is not directly why PyHyp is faster than HippyVM in p5. When the OrderedCollection
class’s size method is moved to Python, PyHyp’s mutability semantics (see Section 4.1.2)
cause size to be a pass-by-reference function, thus meaning that the PHP reference does
not lose uniqueness, and less copying is then required.

7.4 Threats to Validity

Benchmarks are only ever a snapshot of certain performance characteristics of a system,
and we do not pretend that they necessarily tell us about program performance in a more
general setting. Our experiments also make no attempt to account for JIT warmup (for
reasons explained in Section 7.2). Removing JIT warmup would thus ‘improve’ the perceived
timings of VMs such as PyHyp which perform JIT compilation. Since it is also known that
RPython VMs have relatively poor warmup [6], the likely effect of our decision is to make
PyHyp look worse relative to other VMs. We consider this a better trade-off than trying to
make other VMs look worse relative to PyHyp.

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:21

Figure 5 Example mails sent with our extended version of SquirrelMail. We extended this PHP
mail client such that it can visualise mathematical formulae using the SymPy Python library. A
portion of the plug-in code is shown in the right.

8 Case Studies

8.1 Using CFFI in PHP
PHP does not have a built-in C FFI, whereas Python does via the cffi module. PHP code
can thus use PyHyp to access cffi, acquiring a C FFI by default. For example the following
elided example shows PHP using cffi to call the Unix clock_gettime function:

1 $cffi = import_py_mod (" cffi ");
2 $ffi = new $cffi ->FFI ();
3 $ffi ->cdef (" double _clock_gettime_monotonic ();");
4 $csrc = <<<EOD
5 double _clock_gettime_monotonic (){
6 struct timespec ts;
7 if ((clock_gettime (CLOCK_MONOTONIC , &ts)) == -1)
8 err (1, " clock_gettime error ");
9 return ts. tv_sec + ts. tv_nsec * pow (10 , -9);

10 }
11 EOD;
12 $ffi -> set_source (" _example ", $csrc);
13 $C = $ffi -> dlopen (null);
14 echo " Monotonic time: " . $C -> _clock_gettime_monotonic () . "\n";

8.2 A SquirrelMail Plugin
SquirrelMail is a venerable PHP web mail client. We used PyHyp to add a SquirrelMail
plug-in that uses the Python SymPy library. This is intended to show that PyHyp can
be used to add Python modules to relatively large existing systems. In essence, the plug-
in recognises mathematical formulae between triple backticks, and uses SymPy to render
them in traditional mathematical notation. Formulae in incoming emails are automatically
rendered; users sending emails with such formulae can preview the rendering before sending.
Figure 5 shows the plug-in in use, and the core parts of the code within Eco.

The sympy_changebody_do function is called by SquirrelMail’s message_body hook
(which is also called upon viewing a message), receiving the content of the email as an
argument. A regular expression finds all occurrences of formulae between backticks (line 53)

ECOOP 2016

3:22 Fine-grained Language Composition: A Case Study

and passes them to the Python formulae_to_images function. This then uses SymPy to
convert the formulae to images (numbered by their offset in the array/list) into the direc-
tory pointed to by the PHP constant SM_PATH (lines 61–68), and uses the URL of the image
in-place of the textual formula (line 56).

8.3 System Language Migration
We expect that one of the key uses of syntactic language composition is system language
migration, where systems are slowly migrated from language A to B in small stages. Instead
of having to rewrite whole modules or sub-systems, syntactic language composition offers
the possibility of migrating one function at a time. A full case study is far beyond the
scope of this paper, but we implicitly modelled this technique when creating the DeltaBlue
and Richards benchmarks, where we translated each PHP method into Python, leaving
only ‘shell’ PHP classes, global functions and variables. As Section 7.3 clearly shows, the
resulting performance is at worst 2x of its mono-language variant, which we believe makes
system language migration plausible for the first time.

9 Discussion

To give an approximate idea of PyHyp’s size, some rough metrics are useful. The pypy_-
bridge module – in which the majority of PyHyp is implemented – adds around 2KLoC.
Aside from this we added around 0.25KLoC and 0.2KLoC to the existing HippyVM and
PyPy interpreter code respectively. 5KLoC of new unit tests were added. On a fast build
machine (4GHz Core i7) PyHyp takes about 45 minutes to build. We estimate that imple-
menting PyHyp took around 7 person months.

A succinct summary of our experiences of creating PyHyp is: implementing what we
wanted was fairly easy; making what we implemented run fast was somewhat easy; but
working out what we wanted to implement was often hard. The latter point may surprise
readers as much as it has surprised us. There are two main reasons for this.

First, there is little precedent for fine-grained syntactic language composition. Most
existing language compositions are either extremely crude (per process compositions) or have
design decisions implicitly imposed upon them (translating into another VM’s bytecode).
We therefore faced a number of novel language design issues, and used gradually larger case
studies to help us iterate our way to good solutions, sometimes exhausting what felt like
every possible alternative. Cross-language scoping is a good example of this: we tried many
possibilities before settling on the scheme described in Section 6.

Second, it is difficult, and probably impossible, for any single person to be truly expert
in every language and implementation involved in a composition. We sometimes had to base
initial designs on (hopefully) intelligent guesses about one or the other languages’ semantics
or implementations. We then tried as hard as we could to break the resulting design. It
rapidly became clear to us that in large languages such as PHP and Python, there are many
corner-cases, sometimes little used, which need to be considered. PHP references caused
us more headaches than any other language feature. At first we ignored them, and then
we failed to appreciate their pervasive nature. It took us considerable effort to understand
them well enough to make sense of their place within PyHyp. While we do not pretend to
be experts in every aspect of either PHP or Python, we can recommend this route to anyone
who wishes to understand the nooks and crannies of a language and its implementation.

Once we had settled upon a good design, we rarely had substantial difficulty in modifying
HippyVM or PyPy to implement it. The relatively small size of the additional / changed code

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:23

in the composition is a reasonable proxy for this. Similarly, the very nature of meta-tracing
meant that most cross-language optimisations came without any extra work on our part.
Cross-language variable scoping was the only feature that required substantial optimisation
effort on our part, including to HippyVM itself.

9.1 Generalising from the Case Study

PyHyp is, to the best of our knowledge, the first fine-grained language composition. Al-
though we are cautious about over-generalising our results, we believe that some of the
lessons embodied in PyHyp may be relevant for future fine-grained language compositions.

Most obviously, despite the rather different run-time properties of PHP and Python,
PyHyp’s performance is close enough to HippyVM and PyPy to be usable. While we would
like to claim credit for all of this, most of the benefit comes from meta-tracing: only in a few
places did we have to add PyHyp-specific optimisations. We expect languages even more
disparate than PHP and Python to still achieve fairly good performance using meta-tracing.

Our use of adapters meant that most interactions between PHP and Python required
little or no effort on our part to compose together satisfactorily. We expect this to gener-
alise to most other compositions. Adapters were also the key to resolving seemingly major
semantic data-type incompatibilities between (mostly immutable) PHP and (mostly muta-
ble) Python. The techniques we used are likely to be relevant to compositions involving
languages that are more rigorously immutable than PHP.

Finally, despite the archaic nature of PHP and Python’s scoping rules, we were able to
design good cross-language scoping rules. Most modern languages have embraced lexical
scoping, and compositions involving them will require less contortions than PyHyp.

10 Related Work

There has been a long-standing desire for language composition (see e.g. [10]), and many
flavours have developed since then. Extensible languages (e.g. [19, 20, 8]) aim to grow a
language as required by a user. However, the base language places restrictions on what
extensions are possible (e.g. due to parsing restrictions) and performant [31]. Translating
one language into another (with e.g. Stratego [7]) removes many of the limitations on what
is expressible, but full-scale translations are complex (e.g. [15]) and typically suffer the
same performance issues as extensible languages. However, for small use cases, or where
performance is not important, either approach can work well.

FFIs are the most common approach to composing languages, but their performance is
typically poor due to their inability to inline cross-language calls. The next most common
mechanism is to target an existing high performance VM (typically HotSpot). However,
since such VMs can only optimise those programs they expect to commonly see. Languages
which step even slightly outside this mould perform poorly. For example, Java programs
have often excellent performance on HotSpot, but Python programs on HotSpot generally
run slower than with simple C-based interpreters [28, 6].

Our aim in this paper has been to show that fine-grained syntactic language composition
is possible and performant. We make no claims about the formal properties of the resulting
composition as the practical challenges identified in this paper are already substantial. There
is already a small body of work on formalising language composition, such as an investigation
of the COM architecture [30], and an abstract framework for specifying the operational
semantics of multi-language embeddings [23]. There are also partial formal semantics for

ECOOP 2016

3:24 Fine-grained Language Composition: A Case Study

languages such as Python and PHP (see e.g. [26, 12]). We welcome future work formalising
fine-grained compositions.

As the case studies show, PyHyp is at least somewhat usable, but we are under no
illusions that it is an industrial strength product. There are many interesting directions for
further exploration, such as experimenting with cross-language inheritance [14].

11 Conclusions

In this paper we introduced PyHyp, a fine-grained syntactic composition of PHP and Python
implemented by combining together meta-tracing interpreters. We consider that PyHyp
validates our hypothesis that programming languages can be composed in a finer-grained
manner than previously thought possible or practical. Not only does PyHyp introduce novel
concepts such as cross-language variable scoping, but its performance is close enough to its
mono-language cousins to encourage use of such a system. Inevitably, some of PyHyp’s
details are specific to the particular pair of languages it composes. However, many of the
techniques that PyHyp embodies – the use of interpreter composition with meta-tracing;
some of the design choices surrounding cross-language scoping – are likely to be of use to
future language compositions.

Acknowledgements We thank Armin Rigo for adjusting RPython to cope with some of
PyHyp’s demands, and advice on Hippy; Ronan Lamy and Maciej Fijałkowski for help with
Hippy; Jasper Schulz for help with cross-language exceptions; Alan Mycroft for insightful
thoughts on language composition; and Martin Berger, Darya Kurilova, and Sarah Mount
for comments.

References
1 Kenneth R. Anderson and Duane Rettig. Performing Lisp analysis of the Fannkuch bench-

mark. Lisp Pointers, 7(4):2–12, Oct 1994.
2 Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A transparent dynamic

optimization system. In PLDI, pages 1–12, Jun 2000.
3 Edd Barrett, Carl Friedrich Bolz, and Laurence Tratt. Approaches to interpreter composi-

tion. COMLAN, 44(C), March 2015.
4 Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Logozzo, Wolfram

Schulte, Nikolai Tillmann, and Herman Venter. SPUR: A trace-based JIT compiler for
CIL. In OOPSLA, pages 708–725, Mar 2010.

5 Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. Storage strategies for collections
in dynamically typed languages. In OOPSLA, pages 167–182, Oct 2013.

6 Carl Friedrich Bolz and Laurence Tratt. The impact of meta-tracing on VM design and
implementation. Science of Computer Programming, 98, Part 3:408–421, Feb 2015.

7 Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas, and Eelco Visser. Stratego/XT
0.17. A language and toolset for program transformation. SCICO, 72(1–2):52 – 70, 2008.

8 Luca Cardelli, Florian Matthes, and Martín Abadi. Extensible grammars for language
specialization. In Database Programming Languages, pages 11–31, Aug 1993.

9 Craig Chambers, David Ungar, and Elgin Lee. An efficient implementation of SELF a
dynamically-typed object-oriented language based on prototypes. In OOPSLA, Sep 1989.

10 Thomas E. Cheatham. Motivation for extensible languages. SIGPLAN, 4(8):45–49, Aug
1969.

11 Lukas Diekmann and Laurence Tratt. Eco: A language composition editor. In SLE, pages
82–101, Sep 2014.

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:25

12 Daniele Filaretti and Sergio Maffeis. An executable formal semantics of PHP. In ECOOP,
pages 567–592, 2014.

13 Andreas Gal, Christian W. Probst, and Michael Franz. HotpathVM: an effective JIT
compiler for resource-constrained devices. In VEE, pages 144–153, Jun 2006.

14 Kathryn E. Gray. Safe cross-language inheritance. In ECOOP, pages 52–75, jul 2008.
15 Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. Fine-grained interoperability

through mirrors and contracts. In OOPSLA, pages 231–245, Oct 2005.
16 Mathias Grimmer, Chris Seaton, Thomas Würthinger, and Hanspeter Mössenböck. Dy-

namically composing languages in a modular way: Supporting C extensions for dynamic
languages. In Modularity, March 2015.

17 Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Würthinger, and Hanspeter
Mössenböck. High-performance cross-language interoperability in a multi-language run-
time. In DLS, pages 78–90, 2015.

18 Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the future:
the story of Squeak, a practical Smalltalk written in itself. In OOPSLA, pages 318–326,
Oct 1997.

19 Edgar T. Irons. Experience with an extensible language. CACM, 13(1):31–40, Jan 1970.
20 Gregory F. Johnson and C. N. Fischer. A meta-language and system for nonlocal incre-

mental attribute evaluation in language-based editors. In POPL, pages 141–151, Jan 1985.
21 Tomas Kalibera and Richard Jones. Quantifying performance changes with effect size

confidence intervals. Technical Report 4-12, University of Kent, Jun 2012.
22 Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation. Lisp Symb.

Comput., 7(4):315–335, Dec 1994.
23 Jacob Matthews and Robert Bruce Findler. Operational semantics for multi-language

programs. TOPLAS, 31(3):12:1–12:44, Apr 2009.
24 James George Mitchell. The design and construction of flexible and efficient interactive

programming systems. PhD thesis, Carnegie Mellon University, Jun 1970.
25 Melissa E. O’Neil. PCG: A family of simple fast space-efficient statistically good algorithms

for random number generation, 2015.
26 Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,

Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: The full Monty. In
OOPSLA, pages 217–232, 2013.

27 Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way
versus one-way constraints in user interfaces: Experience with the DeltaBlue algorithm.
SPE, 23(5):529–566, 1993.

28 Aibek Sarimbekov, Andrej Podzimek, Lubomir Bulej, Yudi Zheng, Nathan Ricci, and Wal-
ter Binder. Characteristics of dynamic JVM languages. In VMIL, pages 11–20, Oct 2013.

29 Gregory T. Sullivan, Derek L. Bruening, Iris Baron, Timothy Garnett, and Saman Ama-
rasinghe. Dynamic native optimization of interpreters. In IVME, pages 50–57, Jun 2003.

30 Kevin J. Sullivan, Mark Marchukov, and John Socha. Analysis of a conflict between aggre-
gation and interface negotiation in Microsoft’s component object model. TOSE, 25(4):584–
599, Jul 1999.

31 Laurence Tratt. Domain specific language implementation via compile-time meta-
programming. TOPLAS, 30(6):1–40, Oct 2008.

32 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One VM to rule
them all. In Onward!, pages 187–204, 2013.

33 Alexander Yermolovich, Christian Wimmer, and Michael Franz. Optimization of dynamic
languages using hierarchical layering of virtual machines. In DLS, pages 79–88, Oct 2009.

ECOOP 2016

3:26 Fine-grained Language Composition: A Case Study

A Small Microbenchmarks

Section 7.1 outlined the small microbenchmarks used in our experiment. This appendix lists
and describes each of the small microbenchmarks. The following microbenchmarks consist
of an outer loop calling an inner function:

l1a0r The inner function takes an integer which is decremented to zero in a loop. Nothing
is returned.

l1a1r The inner function takes an integer which is decremented to zero in a loop. After
every decrement, the value is added to a sum total. The sum is returned.

ref_swap The inner function swaps its two arguments using references. Since Python has
no support for references, there is no mono-Python variant of this benchmark.

return_simple The inner function returns a constant integer.
scopes The inner function takes a parameter and adds it to a variable from an outer scope.

In the composed variants, the scope lookup crosses language boxes.
smallfunc The inner function takes three arguments a, b, and c, and returns a + b ∗ c.
sum The inner function takes five arguments, sums them, and returns the result.
sum_meth As sum, except the sum is computed and returned by a method. The method

belongs to an object which is allocated once and re-used.
sum_meth_attr As sum_meth, except that the result is stored to an attribute of the object.
total_list The inner function sums the elements of a list/array passed as an argument.

The following microbenchmarks consist of one function generating elements which another
function consumes:

instchain A nested chain of objects is constructed and consumed in a loop. Each object in
the chain has an attribute storing an integer. One function constructs the chain, another
walks it summing the integers. These functions are called in a loop. In the composed
variants, the outer loop is in one language and the construct and walk functions (including
utility methods) are in the other.

lists One function constructs a list of integers, and another iterates over the list, summing
its elements. These functions are called in a loop to repeatedly construct and sum lists.
In the composed variant, the summing function is written in one language, with all other
parts written in the other.

list_walk One function creates a linked list while the other function walks the list. Each
element in the list is a three element tuple (x, y, n) where x and y are integers and n is
a pointer to the next element, or the string "end" for the final element. As the list is
walked, a counter is incremented by y − x. In the composed variant, the list creation
and walking functions are in a different language from the outer loop.

The l1a0r, l1a1r, lists, smallfunc, and list_walk microbenchmarks are ports of benchmarks
from [3]. All other small microbenchmarks were created specifically to test PyHyp.

E. Barrett, C. F. Bolz, L. Diekmann, and L. Tratt 3:27

Table 4 Absolute microbenchmark timings.

Benchmark CPython HHVM HippyVM PyHypPHP PyHypPy PyHypmono PyPy Zend
instchain 11.323

±0.0208
3.232

±0.0016
0.309

±0.0002
0.338

±0.0003
0.378

±0.0002
0.228

±0.0001
12.345

±0.0519

l1a0r 15.965
±0.0011

0.752
±0.0003

0.254
±0.0000

0.186
±0.0000

0.252
±0.0000

0.252
±0.0000

0.249
±0.0019

7.198
±0.0005

l1a1r 16.473
±0.0162

0.586
±0.0001

0.257
±0.0000

0.197
±0.0002

0.256
±0.0000

0.256
±0.0000

0.224
±0.0003

7.689
±0.0166

lists 3.871
±0.0021

0.448
±0.0015

0.469
±0.0005

0.481
±0.0008

0.269
±0.0003

0.470
±0.0005

0.239
±0.0002

7.036
±0.0136

ref_swap 2.573
±0.0001

0.306
±0.0001

0.306
±0.0000

0.215
±0.0000

0.306
±0.0000

16.343
±0.0008

return_simple 27.678
±0.0273

1.767
±0.0005

0.251
±0.0000

0.251
±0.0000

0.195
±0.0000

0.251
±0.0000

0.223
±0.0000

21.239
±0.0161

scopes 17.854
±0.0065

2.009
±0.0002

0.603
±0.0003

0.134
±0.0000

0.124
±0.0001

0.601
±0.0002

0.134
±0.0000

20.412
±0.0014

smallfunc 46.912
±0.0368

3.278
±0.0002

0.251
±0.0000

0.251
±0.0000

0.188
±0.0000

0.251
±0.0000

0.251
±0.0000

57.862
±0.0025

sum 23.612
±0.0201

1.440
±0.0000

0.074
±0.0000

0.074
±0.0000

0.056
±0.0000

0.074
±0.0000

0.065
±0.0000

31.124
±0.0063

sum_meth 25.428
±0.0994

1.793
±0.0021

0.074
±0.0000

0.074
±0.0000

0.074
±0.0000

0.065
±0.0000

33.283
±0.0360

sum_meth_attr 31.930
±0.0046

4.351
±0.0003

0.243
±0.0003

0.243
±0.0014

0.275
±0.0001

0.220
±0.0003

35.305
±0.0125

total_list 8.076
±0.0058

0.943
±0.0003

0.363
±0.0001

0.420
±0.0001

0.633
±0.0001

0.360
±0.0002

0.246
±0.0001

14.138
±0.0257

walk_list 1.054
±0.0007

0.085
±0.0000

0.162
±0.0001

0.208
±0.0003

0.333
±0.0003

0.210
±0.0003

0.225
±0.0001

2.218
±0.0144

deltablue 0.901
±0.0006

36.609
±0.0320

0.236
±0.0005

0.055
±0.0002

0.246
±0.0005

0.025
±0.0001

7.860
±0.1417

fannkuch 15.273
±0.0168

2.480
±0.0017

1.371
±0.0004

0.742
±0.0002

1.403
±0.0002

1.393
±0.0002

0.746
±0.0002

10.676
±0.0092

mandel 0.460
±0.0033

0.536
±0.0003

0.581
±0.0002

0.287
±0.0000

0.581
±0.0001

4.211
±0.0112

richards 11.901
±0.0055

5.263
±0.0027

0.377
±0.0004

0.442
±0.0002

0.392
±0.0003

0.216
±0.0002

10.709
±0.0091

ECOOP 2016

	Introduction
	Background
	Meta-tracing
	Interpreter Composition
	PHP

	PyHyp
	PyHyp FFI
	FFI Design
	Data Type Conversions
	Mutability
	Cross-language Calls

	PyHyp FFI Internals
	Data Type Conversion
	Mutability
	Cross-language Calls
	Transparency

	Syntactic Composition
	Functions
	Methods
	Using Eco to Express Embeddings
	Exceptions

	Cross-language Scoping
	PHP and Python's Namespace Semantics
	PyHyp's Cross-language Scoping Rules
	Implementation

	Experiment
	Benchmarks
	Methodology
	Results
	Threats to Validity

	Case Studies
	Using CFFI in PHP
	A SquirrelMail Plugin
	System Language Migration

	Discussion
	Generalising from the Case Study

	Related Work
	Conclusions
	Small Microbenchmarks

