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Abstract
While database management systems (DBMSs) are highly optimized, interactions across the
boundary between the programming language (PL) and the DBMS are costly, even for in-process
embedded DBMSs. In this paper, we show that programs that interact with the popular em-
bedded DBMS SQLite can be significantly optimized – by a factor of 3.4 in our benchmarks
– by inlining across the PL / DBMS boundary. We achieved this speed-up by replacing parts
of SQLite’s C interpreter with RPython code and composing the resulting meta-tracing virtual
machine (VM) – called SQPyte – with the PyPy VM. SQPyte does not compromise stand-alone
SQL performance and is 2.2% faster than SQLite on the widely used TPC-H benchmark suite.
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1 Introduction

Significant effort goes into optimizing database management systems (DBMSs) and pro-
gramming languages (PLs), and both perform well in isolation: we can store and retrieve
huge amounts of complex data; and we can perform complex computations in reasonable
time. However, much less effort has gone into optimizing the interface between DBMSs and
programming languages. In some cases this is not surprising. Many DBMSs run in separate
processes – and often on different computers – to the PL calling them, preventing meaningful
optimisation across the two. However, embedded DBMSs run in the same process as the PL
calling them and are thus potentially amenable to traditional PL optimisations.

In this paper, we aim to improve the performance of PLs that call embedded DBMSs.
Our fundamental hypothesis is the following:

Hypothesis 1 Optimisations that cross the barrier between a programming language
and embedded DBMS significantly reduce the execution time of queries.

∗ This research was funded by the EPSRC Cooler (EP/K01790X/1) grant and Lecture (EP/L02344X/1)
fellowship.

† Work performed on secondment at King’s College London.
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4:2 Making an Embedded DBMS JIT-friendly

In order to test this hypothesis, we composed together PyPy and SQLite. PyPy is a widely
used Python virtual machine (VM). SQLite is the most widely used embedded DBMS,
shipped by default with many operating systems, and used by many applications. This
composition required outfitting SQLite with a Just-In-Time (JIT) compiler, which meant
that we also implicitly tested the following hypothesis:

Hypothesis 2 Replacing the query execution engine of a DBMS with a JIT reduces
execution time of standalone SQL queries.

Thus, we tested Hypothesis 2 before testing Hypothesis 1. Our results strongly validate
Hypothesis 1 but, to our initial surprise, only weakly validate Hypothesis 2.

The fundamental basis of the approach we took is to use meta-tracing JIT compilers,
as implemented by the RPython system. In essence, from a description of an interpreter,
RPython derives a VM with a JIT compiler. PyPy is an existing RPython VM for the
Python language. SQLite, in contrast, is a traditional interpreter implemented in C. We
therefore ported selected parts of SQLite’s core opcode dispatcher from C to RPython,
turning SQLite into a (partially) meta-tracing DBMS. While we left most of the core DBMS
parts of SQLite (e.g. B-tree manipulation, file handling, and sorting) in C, we refer to our
modified research system as SQPyte to simplify our exposition.

Relative to SQLite, SQPyte is 2.2% faster on the industry standard TPC-H benchmark
suite [28]. We added specific optimisations intended to exploit the fact that SQLite is
dynamically typed, but, as this relatively paltry performance improvement suggests, to
little effect. We suspect that much more of SQLite’s C code would need to be ported to
RPython for this figure to significantly improve.

Since TPC-H measures SQL query performance in isolation from a PL, we then created
a series of micro-benchmarks which measure the performance of programs which cross the
PL / DBMS boundary. SQPyte is 3.4× faster than SQLite on these micro-benchmarks,
showing the benefits of being able to inline from PyPy into SQPyte.

The major parts of this paper are as follows. After describing how SQPyte was created
from SQLite (Section 3), we test Hypothesis 2 (Section 5). We then describe how PyPy and
SQLite are composed together (Section 6) allowing us to test Hypothesis 1 (Section 7).

SQPyte’s source code, and all benchmarks used in this paper, can be downloaded from
http://dx.doi.org/10.4230/DARTS.2.1.2.

2 Background

After briefly defining the difference between external and embedded databases, this sec-
tion summarizes the relevant aspects of SQLite and meta-tracing for those readers who
are unfamiliar with them. Note that this paper deals with several different technologies,
each of which uses slightly different terminology. We have deliberately imposed consistent
terminology in our discussions to aid readers of this paper.

2.1 Embedded DBMSs
From the perspective of this paper, DBMSs come in two major variants.

External DBMSs are typically used for large quantities of vital data. They run as sep-
arate processes and interactions with them require inter-process calls (IPCs) or network
communications. The overhead of IPC varies depending on operating system and hardware,
but translating a function that returns a simple integer into an IPC equivalent typically
leads to a slowdown of at least 5 orders of magnitude. Since there is a fixed cost for each

http://dx.doi.org/10.4230/DARTS.2.1.2
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Figure 1 SQLite architecture.

call, unrelated to the quantity of data, small repeated IPC calls are costly. Programmers
thus use various techniques to bunch queries together to lower the fixed cost overhead of
IPC. When bunching is impossible, it is not unusual for IPC costs to dominate interaction
with an external DBMS. This effect is even more pronounced for databases which run over
a network.

Embedded DBMSs are typically used for smaller quantities of data, often as part of a
desktop or mobile application. They run within the same memory space as a user program,
removing IPC costs. However, embedded DBMSs tend to be used as pre-packaged external
libraries, meaning that there is no support for optimising calls from the user application to
the embedded DBMS.

2.2 SQLite
SQLite1 is an embedded DBMS implemented as a C library. It is the most commonly used
embedded DBMS, installed as standard on operating systems such as OS X, and widely
used by desktop and mobile applications (e.g. email clients).

Figure 1 shows SQLite’s high-level architecture: its core provides the user-facing API that
external programs use, as well as an interpreter for running queries; the backend stores and
retrieves data in memory and on disk; and the compiler translates SQL into an instruction
sequence. Instructions consist of an opcode (i.e. the ‘type’ of the instruction) and up to
five operands p1. . . p5 (p1, p2, and p3 are always 32-bit integers; p4 is of variable size;
and p5 is an unsigned character), which are variously used to refer to registers, program
counter offsets, and the like. SQLite is dynamically typed and SQL values are either Unicode
strings, arbitrary binary ‘blobs’, 64-bit numbers (integers or floating point), or null. SQL
values are stored in a single C-level type Mem, which can also store other SQLite internal
values (e.g. row sets). The opcode dispatcher2 contains an arbitrary number of registers
(each of which stores a Mem instance), and zero or more cursors (pointers into a table or
index).

Figure 2 shows an elided version of the Mem struct, which plays a significant role in
SQLite and therefore in much of our work. flags is a bit field that encodes the type(s) of
the values stored in the struct. Most SQL values and all SQLite internal values are stored
in the MemValue union. Strings are stored on the heap with a pointer to them in z. In
some cases, Mem can store two SQL values simultaneously. For example, an integer cast at
run-time to a string will store the integer value in i and the string in z, so that subsequent
casts have zero cost. In such cases, flags records that the value has more than one run-time
type.

1 http://www.sqlite.org/
2 SQLite refers to this as its ‘virtual machine’, but we reserve that term for other uses.
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1 struct Mem {
2 union MemValue {
3 double r;
4 i64 i;
5 ...
6 } u;
7 u16 flags;
8 char *z;
9 ...

10 };

Figure 2 An elided view of SQLite’s Mem struct, used to represent SQL values.

2.3 Meta-tracing
Tracing is a technique for writing JIT compilers that record ‘hot loops’ in a program and
convert them to machine code. Traditionally, tracing requires manually creating both an
interpreter and a trace compiler (see [1, 8]). In contrast, meta-tracing takes an interpreter
as input and from it automatically creates a VM with a tracing JIT compiler [22, 27,
4, 30, 3]. At run-time, user programs begin their execution in the interpreter. When
a hot loop in the user program is encountered, the actions of the interpreter are traced,
optimized, and converted to machine code. Since the initial traces are voluminous, the trace
optimiser is often able to reduce them to a fraction of their original size, before they are
converted to machine code. Subsequent executions of the loop then use the fast machine
code version rather than the slow interpreter. Guards are left behind in the machine code
so that execution paths that stray from the trace revert back to the interpreter.

In this paper we use RPython, the major extant meta-tracing language. RPython is a
statically typeable subset of Python with a type system similar to that of Java, garbage
collection, and high-level data types (e.g. lists and dictionaries). Despite this, VMs written
in RPython have performance levels far exceeding traditional interpreter-only implementa-
tions [5]. The specific details of RPython are generally unimportant in most of this paper,
and we do not concentrate on them: we believe that one could substitute any reasonable
meta-tracing language (or its cousin approach, self-optimizing interpreters with dynamic
partial evaluation [29]) and achieve similar results.

3 SQPyte

In order to test Hypothesis 2, we created a variant of SQLite called SQPyte, where parts
of SQLite’s interpreter are ported from C into RPython. SQPyte is therefore meta-tracing
compatible, meaning that SQL queries which use the RPython parts of SQPyte’s interpreter
are JIT compiled. In the rest of this section we explain the details of our porting.

It is important to note that SQPyte is not a complete, or even a majority, rewrite of
SQLite. Fortunately for us, RPython is compiled into C by default, which makes mixing
RPython and C code simple, with zero overhead for common operations such as function
calls. This means that we were able to leave most of SQLite in C, calling such code as
necessary, and only porting the minimum possible to RPython.

However, only code which is written in RPython can be JIT compiled: calls to C cannot
be inlined by the meta-tracer, reducing the possibilities for optimisations. We therefore
worked incrementally, porting code to RPython only after we had recognized that it was on
the critical performance path and likely to benefit from meta-tracing. Note that we are not
suggesting that SQPyte would not benefit from having more code in RPython, simply that
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1 import sqpyte
2 conn = sqpyte.Connection("tpch.db")
3 sum_qty = 0
4 sum_base_price = 0
5 sum_disc_price = 0
6 iterator = conn.execute("SELECT quantity, extendedprice, discount FROM lineitem")
7 for quantity, extendedprice, discount in iterator:
8 sum_qty += quantity
9 sum_base_price += extendedprice

10 sum_disc_price += extendedprice * (1 - discount)

Figure 3 An example use of the sqpyte module in PyPy. This example program connects to the
tpch.db database and computes the total quantity, the sum of the base price, and the sum of the
discounted price of all items. balance of all accounts.

with our available effort levels, we had to focus our attention on those parts of SQLite that
we believed were most relevant. As a rough indication of size, we ported 1550 lines of C
code and wrote 1300 lines of RPython code to replace it.

In this section, we first introduce this paper’s running example, before explaining how
SQPyte was created from SQLite.

3.1 Running Example
SQPyte adds a module called sqpyte to PyPy. This module exposes a standard Python
DBMS API3 that allows Python programs to directly interact with SQPyte. Although it
is mostly irrelevant from this paper’s perspective, the sqpyte module’s interface is a strict
subset of that exposed by the sqlite3 module, which is shipped as standard with PyPy
and other Python implementations.

Figure 3 shows the running example we use throughout this paper. After connecting to
a database (line 2), the example starts the execution of an SQL query (line 6), receiving an
iterator object in return. As the iterator is pumped for new values in the for loop (line
7), SQPyte lazily computes further values. Each iteration yields 3 SQL values that are
processed by regular Python code (lines 8–10).

3.2 Opcodes
SQLite’s interpreter executes instructions until either a query is complete, a new row of
results is produced, or an error occurs. Each iteration of the interpreter loop loads the
instruction at the current program counter and jumps to an implementation of the instruc-
tion’s opcode.

The first stage of the SQPyte port was to port the opcode dispatcher from C to RPython,
as shown in Figure 4. This can be thought of as having three phases. First, since we
wanted to reuse some of SQLite’s opcode’s implementations, we split them out from the
(rather large) switch statement they were part of into individual functions (one per opcode).
Second, we translated the main opcode dispatcher loop itself. Finally, we added the two
annotations4 required by RPython to make SQPyte’s interpreter meta-tracing compatible.
These annotations inform the meta-tracing system about the current execution point of the

3 The API is defined in https://www.python.org/dev/peps/pep-0249/
4 While these are written using normal function call syntax, they are treated specially by RPython.
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1 SQLITE_PRIVATE int sqlite3VdbeExec(
2 Vdbe *p) {
3 int pc=0;
4 Op *aOp = p->aOp;
5 Op *pOp;
6 int rc = SQLITE_OK;
7 ...
8 for(pc=p->pc; rc==SQLITE_OK; pc++){
9 ...

10 switch( pOp->opcode ){
11 case OP_Goto: {
12 pc = pOp->p2 - 1;
13 ...
14 break;
15 }
16 case OP_Gosub: {
17 ...
18 break;
19 }
20 case ...: { ... }
21 }
22 }
23 }

1 def mainloop(self):
2 rc = CConfig.SQLITE_OK
3 pc = self.p.pc
4 while True:
5 jitdriver.jit_merge_point(pc)
6 if rc != CConfig.SQLITE_OK:
7 break
8 op = self._hlops[pc]
9 opcode = op.get_opcode()

10 oldpc = pc
11 if opcode == CConfig.OP_Goto:
12 pc, rc =
13 self.python_OP_Goto(pc, rc, op)
14 elif opcode == CConfig.OP_Gosub:
15 pc = self.python_OP_Gosub(pc, op)
16 elif ...:
17 ...
18 pc += 1
19 if pc <= oldpc:
20 jitdriver.can_enter_jit(pc)

Figure 4 An elided version of the opcode dispatcher, with the original C on the left and the ported
RPython on the right. The RPython interpreter requires the jit_merge_point and can_enter_jit
annotations to enable the meta-tracing system to identify hot loops.

system (for example, the program counter and the known types of the registers) so that
it can determine if JIT compilation or execution can, or should, occur. can_enter_jit is
called when a loop is encountered: if that happens often enough, then tracing of the loop
occurs (i.e. the loop is, ultimately, converted into machine code). jit_merge_point allows
the meta-tracing system to determine whether there is a machine code version of the current
execution point, or whether the interpreter must be used instead.

Figure 5 shows an example of an opcode in SQLite and its SQPyte port. As this example
suggests, many aspects of the porting process are fairly obvious, though some are slightly
obscured by the greater use of helper functions in RPython (these make the RPython version
easier to understand in isolation, but can make C-to-RPython comparisons a little harder).
To ensure that we are able to make an apples-to-apples performance comparison, we ported
all aspects of SQLite’s C code enabled in the single-threaded default build. This meant that
we did not need to port parts such as the assert and VdbeBranchTaken macros (a complete
list of unported aspects can be found in Appendix A), which are no-ops in the default build
and thus have no run-time effect whatsoever.

SQLite’s opcode dispatcher contains several gotos to deal with exceptional situations, as
can be seen in Figure 6. Since SQPyte breaks opcodes into different functions, this behaviour
is no longer tenable, since we can’t goto across different functions.5 We thus ported labelled
blocks to explicit functions, and goto jumps to function calls, with each followed by a
return. This achieves the same overall program flow at the cost, when interpreting, of
requiring more function calls and, at any given time, an extra stack frame.

Porting all of SQLite’s opcodes to RPython would be a significant task, and not ne-
cessarily a fruitful one—some opcodes are called rarely, and some would benefit little from

5 Not, it should be added, that RPython has a goto construct.
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1 case OP_IfPos: {
2 pIn1 = &aMem[pOp->p1];
3 assert(pIn1->flags&MEM_Int);
4 VdbeBranchTaken(pIn1->u.i > 0, 2);
5 if (pIn1->u.i > 0) {
6 pc = pOp->p2 - 1;
7 }
8 break;
9 }

1 def python_OP_IfPos(hlquery, pc, op):
2 pIn1 = op.mem_of_p(1)
3 if pIn1.get_u_i() > 0:
4 pc = op.p2as_pc()
5 return pc

Figure 5 An example port of an opcode from C to RPython. The IfPos opcode is a conditional
jump: it loads the register specified by its p1 operand (lines 2 in C and RPython) and compares
the resulting value (as an integer) to 0 (line 5 in C; line 3 in RPython). If the value is greater than
zero it jumps to the position specified by the p2 operand (line 6 in C; line 4 in RPython). As this
example shows, the RPython code makes greater use of helper functions and removes functions that
do not appear in the production version of SQLite (both assert and VdbeBranchTaken are no-ops
in production builds).

1 case OP_MakeRecord: {
2 ...
3 if (...)
4 goto no_mem;
5 ...
6 }
7 case OP_Yield: {
8 ...
9 }

10 ...
11 no_mem:
12 ...

1 def OP_MakeRecord(...):
2 ...
3 if ...:
4 return hlquery.gotoNoMem(pc)
5 ...
6 def OP_Yield(...):
7 ...
8 ...
9 def gotoNoMem(hlquery, pc):

10 ...

Figure 6 An example of how we port gotos in an opcode into SQPyte. We ported 4 goto labels,
making each a separate function (e.g. gotoNoMem). Instead of executing a goto, SQPyte calls the
appropriate function, and then immediately returns to the main interpreter loop, thus mimicking
the control flow of SQLite.

meta-tracing. We thus chose to focus our porting efforts on those opcodes which we believed
would see the greatest benefit from meta-tracing (chiefly those which change the program
counter, or manipulate type flags). Of SQLite’s 153 opcodes, we ported 61 into RPython. A
further 42 opcodes were needed by queries we support, but we judged that they were unlikely
to benefit from JIT optimisations (because, for example, they immediately call SQLite’s B-
tree manipulating functions, which remain in C and are thus opaque to the meta-tracer).
We thus copied these opcodes directly from SQLite, leaving them in C. Since we removed the
giant switch statement these C opcodes were originally part of, each was put into its own
function, mirroring those opcodes ported to RPython. Since this is a tedious, mechanical
task, we copied only those opcodes we needed: 50 of SQLite’s opcodes are thus currently
unsupported by SQPyte, and an exception is raised if a query tries to use one of them.

3.3 Optimizing the flags Attribute
Most SQLite opcodes read or write to registers, each of which contains a Mem struct. Typic-
ally, such opcodes must first read the flags attribute of the Mem struct to determine what
type of value is stored within it. Many opcodes also write to this flag when storing a res-
ult. SQLite is completely dynamically typed – different entries in a database column, for
example, may be of different types – and, in essence, the flags attribute is how the dy-

ECOOP 2016
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1 case OP_NotNull: {
2 pIn1 = &aMem[pOp->p1];
3 VdbeBranchTaken((pIn1->flags &
4 MEM_Null) == 0, 2);
5 if( (pIn1->flags & MEM_Null)==0 ){
6 pc = pOp->p2 - 1;
7 }
8 break;
9 }

1 def OP_NotNull(hlquery, pc, op):
2 pIn1, flags1 = op.mem_and_flags_of_p(1)
3 if flags1 & CConfig.MEM_Null == 0:
4 pc = op.p2as_pc()
5 return pc

Figure 7 An example of porting operations on the flags attribute from C to RPython. In this
case, the NotNull opcode jumps to a different pc if the register indexed by the opcode’s p1 operand
is not Null. The op.mem_and_flags_of_p(1) helper function reads the register specified by the p1
argument and returns the appropriate Mem structure and its flags.

1 @cache_safe(mutates="p2")
2 def python_OP_String(self, op):
3 capi.impl_OP_String(...)

Figure 8 An example of the side-effect annotation used to specify which flags attributes a C
opcode can invalidate. In this case, the annotation specifies that the OP_String opcode invalidates
the entry for the register specified by the opcode’s p2 argument.

namic types are encoded. However, dynamically typed languages tend to be surprisingly
type-constant at run-time, which is why JIT compilers are effective on such languages [5]. A
reasonable expectation is thus that, as with other dynamically typed languages, most SQL
queries are fairly type-constant. We thus made the following hypothesis:

Hypothesis 3 Exposing the type information in the flags attribute associated with
registers allows the JIT compiler to speed up query execution.

We addressed this hypothesis by adding a mechanism to SQPyte that allows the trace op-
timiser to reason about the flags attributes in registers’ Mem structs. This is implemented
as a cache storing known flags values (in essence, a close cousin of Self-style maps [7]).
When an opcode reads the flags attribute from a Mem struct in a register, the trace records
the read; SQPyte is annotated such that the trace optimizer can remove all the subsequent
reads of the flags attribute of the same register, using the previously read value. Similarly,
subsequent reads are optimised away after a flags attribute is written to. While the trace
optimiser is normally able to perform redundant load optimisations such as this automatic-
ally, it is unable to reason about the flags attribute, which is stored in a (semi-opaque) C
object, hence our need to manually help the trace optimiser.

Figure 7 shows an example of the NotNull opcode which operates on the flags attribute.
The RPython method mem_and_flags_of_p() is the heart of the flags optimisation. If this
opcode is part of a trace which has earlier read p1’s flags, and there are no intermediate
writes, then the call to mem_and_flags_of_p(1) will be entirely removed by the trace optimizer.

Those opcodes which remain in C have their RPython wrapping function annotated with
side-effect information [19] to specify which registers’ flags may have been changed by the
opcode. After the opcode has been executed, the tracer knows that any previous information
about the flags fields of the relevant registers is now invalid. An example annotation is
shown in Figure 8.

Two opcodes are handled somewhat specially. First is SQLite’s most frequently executed
opcode, Column, which reads one value from a row. This relatively complex opcode analyses
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1 static void sin_sqlite(
2 sqlite3_context *context, int argc,
3 sqlite3_value **argv) {
4 double value =
5 sqlite3_value_double(argv[0]);
6 double result = sin_sqlite(value);
7 sqlite3_result_double(context, result);
8 }
9 ...

10 sqlite3_create_function(db, "sin", 1,
11 SQLITE_UTF8, NULL, &sin_sqlite,
12 NULL, NULL)

1 def sin(func, args, result):
2 arg = args[0].sqlite3_value_double()
3 result.sqlite3_result_double(
4 math.sin(arg))
5 ...
6 db.create_function("sin", 1, sin)

Figure 9 An example of registering a sin function with SQLite (C) and SQPyte (RPython).
Note that both APIs require specifying the name of the function, the number of parameters, and a
pointer to its implementation.

the packed B-Tree representing a row, extracts the requested column, and stores it into the
register specified by the p3 operand. Because most of this opcode calls out to DBMS C
code, translating the entire (rather large) opcode to RPython would be a tedious exercise.
Since the opcode can change register p3’s flags, this meant that most calls to this opcode
were followed by a check of p3’s flags—including a read from memory. We removed these
reads by having the Column opcode return both the return code of the opcode and the most
recent value of p3’s flags encoded into one number. The trace optimizer is then able to
use the returned value to determine if its knowledge of p3’s flags is current or not, without
having to read from memory.

We also optimized the MakeRecord opcode to expose flags information to the JIT
compiler. This opcode reads from a specified number of n registers and produces a packed
representation of the content of these registers, used for later storage, and placed in the
register specified by p3. Since n is constant for each specific call of the opcode, we marked
MakeRecord’s inner loop as unrollable, so that the resulting trace contains separate code
for each register read. As well as removing the general loop overhead, this allows the trace
optimizer to reason about the flags operations involved in reading from each of the n
registers.

3.4 SQL Functions and Aggregates
SQLite has both regular functions (henceforth simply ‘functions’) and aggregates.6 Both
take a number of arguments as input. Functions produce a single result per row that they
are applied to, whereas aggregates (e.g. max) reduce many rows to a single value.

SQLite implements functions and aggregates in C, but does not hard-code them into
the interpreter: each is registered via an API to the SQL interpreter. If SQPyte kept these
functions in C, then the meta-tracer would have to treat them as opaque calls, preventing
inlining. Fortunately, we were able to easily add an RPython mirror of SQLite’s C interface
for registering functions and aggregates. Figure 9 shows an example of the two interfaces
alongside each other. Aggregates are implemented in similar manner, albeit in two parts: a
step function (e.g. an acumulator) and a finalizer function (e.g. a divisor). We implemented
a small number of commonly called SQL aggregates in RPython: sum, avg, and count.

To enable inlining, we also had to alter the opcodes which call functions and aggregates.

6 There are also user-defined collation functions which we did not optimize in a special way.
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0|Init|0|12|0||00|
1|OpenRead|0|8|0|7|00|
2|Rewind|0|10|0||00|
3|Column|0|4|1||00|
4|Column|0|5|2||00|
5|RealAffinity|2|0|0||00|
6|Column|0|6|3||00|
7|RealAffinity|3|0|0||00|
8|ResultRow|1|3|0||00|
9|Next|0|3|0||01|
10|Close|0|0|0||00|
11|Halt|0|0|0||00|
12|Transaction|0|0|23|0|01|
13|TableLock|0|8|0|LineItem|00|
14|Goto|0|1|0||00|

1 # SQLite opcode Next
2 ...
3 i168 = call(sqlite3BtreeNext, ...)
4 guard_value(i168, 0)
5 # SQLite opcode Column
6 i173 = call(impl_OP_Column, 3, ...)
7 guard_value(i173, 262144)
8 # SQLite opcode Column
9 i174 = call(impl_OP_Column, 4, ...)

10 guard_value(i174, 524288)
11 # SQLite opcode RealAffinity
12 # SQLite opcode Column
13 i175 = call(impl_OP_Column, 6, ...)
14 guard_value(i175, 524288)
15 # SQLite opcode RealAffinity
16 # SQLite opcode ResultRow
17 ...
18 i178 = call(sqlite3VdbeCloseStatement, ...)
19 i179 = int_is_true(i178)
20 guard_false(i179)
21 ...

Figure 10 On the left, SQLite’s rendering of the opcodes generated for the query SELECT
quantity, extendedprice, discount FROM lineitem. The first column represents the program
counter; the second column the opcode; and the remaining columns the operands to the opcode.
On the right, an elided SQPyte optimized trace for one result row of the query. Note that after
optimisation, some opcodes have no operations in the trace.

The Function opcode is responsible for calling functions and is easily altered to permit
inlining into RPython functions. Calling an aggregate uses two opcodes: AggStep initializes
the aggregator, and calls the step function on each row; and AggFinalize returns the final
aggregate result.

3.5 Overflow checking
An advantage of controlling assembler code generation in a JIT is that one can make use of
machine code features that are hard to express directly in C. RPython uses this to allow for
overflow check’s on arithmetic operations to be performed without checking the operations
concrete result (i.e. it makes use of hardware features which few programming languages
directly expose). We make use of this feature in the implementation of arithmetic opcodes
such as Add, Sub, and Mul. If results overflow an integer, each of these switch to a floating
point representation.

3.6 From Query to Trace
We now recall the SQL query used in the running example of Figure 3: SELECT quantity,
extendedprice, discount FROM lineitem. SQLite’s compiler translates this into a se-
quence of opcodes, which can be seen in Figure 10.

The high-level structure of the query opcode as as follows. The query starts by calling
Init (opcode 0) which sets the program counter to its second operand, in this case 12. This
creates a new transaction (opcode 12), locks the table (opcode 13) before jumping (opcode
14) to the main loop query.

The main loop operates on every row in the database (opcodes 3–9). The Column opcodes
(opcodes 3, 4, and 6) read values from the quantity, extendedprice, and discount columns
in a row respectively. Although SQLite attaches type information to columns, these are, in
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a sense, optional: any given value within a column may be of an arbitrary type. Thus the
RealAffinity opcodes (opcodes 5 and 7) inspect the extendedprice and discount Mem
structs: if they hold floats (which SQLite terms ‘reals’), the result is a no-op; if they hold
integers, then they are cast to floats. The ResultRow opcode (opcode 8) returns n results
(registers p1. . . p1+p2-1 i.e. 1, 2, and 3 in our example) to the caller, suspending query
execution. Upon resumption, the Next opcode (opcode 9) advances the database cursor to
the next row in the table and updates the program counter to its second operand – in this
case 3. If there is no further data in the table, execution continues to the next opcode, which
closes the database connection (opcode 10) before halting query execution (opcode 11).

If the heart of the query opcode is in a hot loop traced by SQPyte’s tracing JIT compiler,
then the result is as in Figure 10. Traces always start with the Next opcode, since the
iteration that triggered the tracing threshold was suspended as part of that opcode and thus
the next iteration starts when the query is resumed. Next calls the sqlite3BtreeNext C
function, which advances the database row (line 3), with a guard ensuring the result is 0,
which indicates success (line 4). The Column opcodes also call a C function, but the return
type is more complex, encoding both the function’s error code and the flags of the register
that Column stored a result into. Assuming the guard holds, the remainder of the trace thus
implicitly knows the type of the register in question (see Section 3.3). This allows the trace
optimizer to remove the dynamic checks of the RealAffinity opcode all together. As this
shows, the trace optimizer is often able to remove a substantial portion of the operations in
an SQPyte trace.

4 Experimental methodology

We have two distinct experimental sections (primarily addressing, in order, Hypotheses 2
and 1), both sharing a common methodology. First we compare SQPyte to SQLite and
to H2, a widely used embedded Java database. H2 is of most interest to Hypothesis 1,
where it allows us to understand how SQPyte and PyPy’s cross-system inlining in RPython
compares to Java and H2’s cross-system inlining on HotSpot. However, to put H2’s cross-
system performance into perspective, it is also useful to see its performance on queries that
address Hypothesis 2. SQPyte is based on SQLite 3.8.8.2. We used PyPy 5.0 and H2 1.4.191.

In both experimental sections, we run a number of queries. Each query is run in 5 fresh
processes; each process runs 50 iterations of the query. We placed a 1 hour timeout on
each process. We report the mean and 99% confidence intervals of all iterations across all
processes (i.e. 250 in total). Note that by including all iterations, we are implicitly including
those where the VMs may be warming up.

As recommended by its documentation, SQLite was configured in single-threaded mode,
as was SQPyte. We used H2 in its default configuration. All benchmarks were run on an
otherwise idle Intel i7-4790 machine, with 32 GiB RAM, and Debian 8.1. We turned off
hyper-threading and turbo boost in the BIOS: hyper-threading is of little use to our single-
threaded benchmarks, and adds noise to measurements; and turbo boost’s benefits disappear
as soon as the CPU gets too hot, ruining benchmarking. The database files were put into a
RAM disk to ensure that possible data caching effects between DBMSs were reduced. We
performed an initial run of our experiment to ensure that it never caused the machine to
swap memory to disk.
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Table 1 SQPyte, SQLite, and H2 performance on the TPC-H benchmark set. For each query,
the first row shows the absolute time in seconds; the second row shows the performance relative to
SQPyte as a factor. Queries where SQLite or H2 are faster than SQPyte are shown in bold. Queries
where SQLite or H2 are, within the confidence interval, equivalent in performance to SQPyte are
shown in grey. Note that Query 19 timed out on H2, hence the lack of data.

Benchmark SQPyte SQLite H2

Query 1 (s) 6.929 ± 0.0352 8.715 ± 0.0083 13.168 ± 0.1584

× 1.258 ± 0.0065 1.901 ± 0.0254

Query 2 (s) 0.298 ± 0.0098 0.305 ± 0.0024 12.890 ± 0.0787

× 1.025 ± 0.0340 43.324 ± 1.4273

Query 3 (s) 2.933 ± 0.0329 3.098 ± 0.0100 10.636 ± 0.0490

× 1.056 ± 0.0122 3.626 ± 0.0452

Query 4 (s) 0.345 ± 0.0038 0.345 ± 0.0014 2.243 ± 0.0265

× 0.998 ± 0.0121 6.494 ± 0.1081

Query 5 (s) 1.111 ± 0.0145 1.116 ± 0.0239 158.297 ± 0.5371

× 1.004 ± 0.0261 142.473 ± 1.9971

Query 6 (s) 0.701 ± 0.0081 0.794 ± 0.0040 9.197 ± 0.0571

× 1.134 ± 0.0147 13.125 ± 0.1741

Query 7 (s) 2.630 ± 0.0070 2.847 ± 0.0318 116.322 ± 0.3302

× 1.083 ± 0.0126 44.236 ± 0.1710

Query 8 (s) 2.510 ± 0.0141 2.519 ± 0.0646 161.185 ± 0.9576

× 1.003 ± 0.0265 64.225 ± 0.5471

Query 9 (s) 10.062 ± 0.0448 10.269 ± 0.0276 121.319 ± 0.9515

× 1.021 ± 0.0055 12.055 ± 0.1137

Query 10 (s) 0.019 ± 0.0056 0.009 ± 0.0006 17.082 ± 0.0660

× 0.499 ± 0.1632 918.900 ± 292.4240

Query 11 (s) 0.604 ± 0.0071 0.647 ± 0.0026 0.494 ± 0.0174

× 1.071 ± 0.0134 0.819 ± 0.0312

Query 12 (s) 0.938 ± 0.0062 1.027 ± 0.0013 20.129 ± 0.0604

× 1.094 ± 0.0073 21.455 ± 0.1571

Query 13 (s) 2.721 ± 0.0135 2.818 ± 0.0123 14.350 ± 0.0840

× 1.036 ± 0.0072 5.274 ± 0.0427

Query 14 (s) 0.792 ± 0.0102 0.863 ± 0.0043 65.708 ± 0.3407

× 1.090 ± 0.0156 82.944 ± 1.1772

Query 15 (s) 20.636 ± 0.2254 20.881 ± 0.5542 0.009 ± 0.0036

× 1.011 ± 0.0300 0.000 ± 0.0002

Query 16 (s) 0.410 ± 0.0074 0.447 ± 0.0013 0.583 ± 0.0155

× 1.089 ± 0.0199 1.420 ± 0.0459

Query 17 (s) 0.107 ± 0.0008 0.114 ± 0.0001 0.516 ± 0.0141

× 1.067 ± 0.0082 4.805 ± 0.1354

Query 18 (s) 2.449 ± 0.0144 2.822 ± 0.0351 15.210 ± 0.0745

× 1.152 ± 0.0164 6.211 ± 0.0492

Query 19 (s) 8.140 ± 0.1333 8.114 ± 0.0397 —
× 0.997 ± 0.0169 —
Query 20 (s) 80.386 ± 0.2692 81.378 ± 0.2668 10.210 ± 0.0450

× 1.012 ± 0.0049 0.127 ± 0.0007

Query 21 (s) 8.661 ± 0.0347 9.066 ± 0.1017 8.146 ± 0.0651

× 1.047 ± 0.0124 0.941 ± 0.0086

Query 22 (s) 0.087 ± 0.0036 0.087 ± 0.0003 1.728 ± 0.0215

× 1.003 ± 0.0408 19.830 ± 0.8475

Geometric mean × 1.022 ± 0.0151 6.172 ± 0.1484
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5 Testing Hypothesis 2: SQPyte using TPC-H

To evaluate Hypothesis 2 – in essence, does SQPyte have better performance than SQLite
when both are used standalone? – we measure SQPyte’s performance on the widely used
TPC-H benchmark set [28]. TPC-H’s 22 queries utilise 8 tables, which can be populated
with different quantities of data: we chose the 1.5GiB variant, which contains 8.7 million
rows. Table 1 shows the resulting comparison of the 3 DBMSs.

Overall, SQLite is 2.2 ± 1.53% slower than SQPyte. This validates Hypothesis 2, though
only weakly. A more detailed look at the data reveals a slightly muddy story. All but
1 query is faster in SQPyte than SQLite, with a maximum improvement over SQLite of
25.8 ± 0.65% faster (query 1). Query 10 is the outlier, with SQPyte a little over 100%
slower than SQLite. This is simply because the query executes two orders of magnitude
more quickly than all but one other query (0.0093 ± 0.00061s). SQPyte’s performance
is thus dominated by the time the JIT takes to produce machine code while in the first
iteration of the benchmark. However, even if query 10 were removed from the results, the
overall speedup would only be 5.8 ± 0.45% — substantially better, but still somewhat weak
validation of Hypothesis 2. These results strongly suggest that for benchmarks such as TPC-
H, SQLite and SQPyte’s overall performance is dominated not by the interpreter but by the
core DBMS (e.g. operations on B-trees). Porting more of SQLite to RPython may improve
performance further, but it is hard to estimate the likely gains, and the effort involved would
be significant.

H2 is, on average, 6.172 ± 0.1476× significantly slower than both SQPyte and SQLite.
Query 19 exceeded our one hour timeout. Query 15, on the other hand, is almost 3 orders
of magnitude faster than SQLite and SQPyte. The reason for that is that Query 15 uses
an SQL view, which H2 is able to cache, but which SQLite continually, and unnecessarily,
recomputes (a well known SQLite issue).

6 Composing SQPyte and PyPy

As with most embedded DBMSs, SQLite is rarely used standalone. Instead, a user program
interacts with SQLite through a language-specific library, as shown in Figure 3. Thus the
overall performance experienced by the user is dictated by 3 factors: the performance of
the programming language the user program is implemented in; the performance of the
embedded DBMS; and the performance of interactions across the PL / DBMS boundary.
Hypothesis 1 captures our intuition that substantial optimisations are possible if one can
optimize across the PL / DBMS boundary.

In order to test Hypothesis 1, we composed together SQPyte and PyPy. PyPy is an
industrial strength meta-tracing Python VM, which can be used as a drop-in replacement
for the standard Python interpreter. Since PyPy is written in RPython, we were able to
extend SQPyte and PyPy so that tracing can bridge across the PL / DBMS boundary. Put
another way, database calls from PyPy inline code in SQPyte’s RPython interpreter.

The major part of the composition is the sqpyte module added to PyPy, which allows
programs run under PyPy to execute queries in SQPyte (see Section 3.1 for the user-facing
details about this module). Since it is written in RPython, sqpyte simply imports SQPyte as
another RPython module. Simple queries thus inline across the interface without significant
effort, with all the normal benefits of trace optimisation. The optimisation of SQPyte’s
flags attribute (see Section 3.3) means that in many cases data moved between SQPyte
and PyPy requires neither an explicit conversion nor even a guard. Some queries can’t be
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1 label(i144, f147, f154, i55, f57, f59, ...)
2 # for quantity, extendedprice, discount in iterator:
3 ...
4 i161 = <MemValue 87403720>.u.i
5 f162 = <MemValue 87403776>.u.r
6 f163 = <MemValue 87403832>.u.r
7 ...
8 # At this point, there is a copy of the trace from Figure 10
9 ...

10 # sum_qty += quantity
11 i186 = int_add_ovf(i144, i161)
12 guard_no_overflow()
13

14 # sum_base_price += extendedprice
15 f188 = float_add(f147, f162)
16

17 # sum_disc_price += extendedprice * (1 - discount)
18 f189 = float_sub(1.000000, f163)
19 f190 = float_mul(f162, f189)
20 f191 = float_add(f154, f190)
21 ...
22 jump(i186, f188, f191, i161, f162, f163, ...)

Figure 11 An elided version of the optimized trace of the Python program and SQL query from
Figure 3, annotated to explain which parts relate to which parts of the input program. Notice
that we have removed a significant part of the trace at line 8, since it is identical to that found in
Figure 10. As a rough gauge, the complete unoptimized trace contains 375 operations; the optimized
trace contains 137 operations.

sensibly inlined, notably those which induce a loop in SQPyte’s interpreter such as SQL
joins. In such cases, PyPy and SQLite optimize their traces independently of each other.

Using the running example from Figure 3, the resulting trace in our composition can
be seen in Figure 11. The optimized trace starts by reading the integer and two float
values (quantity, discount, and lineitem respectively) from the Mem structures of the
most recently read row (lines 4–6). Next is a structurally identical clone (with only α-
renamed SSA variables) of the trace from Figure 10 (see the explanation in Section 3.6),
which establishes the datatypes of the three fetched values. The remainder of the trace
(lines 10–22) correspond to the Python for loop in Figure 3. Since the low-level integer and
float datatypes used by SQPyte and PyPy are the same, there is no need to convert between
the two, and, for example, the SQPyte integer (line 5) can be used as-is in the PyPy part
of the trace (line 11). Indeed, with the exception of the overflow guard imposed by Python
(line 12), the optimized trace melds SQPyte and PyPy together such that it is difficult to
distinguish the two.

6.1 Calling back from SQPyte to Python
SQLite allows callbacks during an SQL query to functions in the calling PL. For example, an
end user can register a new aggregate, which consumes a sequence of SQL rows and returns
a value as shown in Figure 12. In our context, Python can call SQLite, which calls Python,
which returns to SQLite, and which finally returns to Python. Since SQLite is reentrant,
this pattern of nesting can be arbitrarily deep.

While the ability to register such callbacks is powerful, it means that data and control
flow pass over the programming language / DBMS boundary much more frequently than
normal. The sqpyte module not only supports callback of regular functions and aggregates,
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1 class MySum(object):
2 def __init__(self):
3 self.sum = 0
4

5 def step(self, x):
6 self.sum += x
7

8 def finalize(self):
9 return self.sum

10 conn.create_aggregate("mysum", 1, MySum)

Figure 12 A pure Python implementation of a sum aggregate, registered using sqpyte’s public
API (line 10). Put another way, this example is not part of SQPyte’s RPython system, and is
normal end-user code. For every row of the query, the step method is called. The aggregation’s
result is computed by calling the finalize method.

1 d = {}
2 for key, suppkey in conn.execute("""SELECT PartSupp.PartKey, PartSupp.SuppKey
3 FROM PartSupp;"""):
4 cursor = conn.execute("SELECT Part.name FROM Part WHERE part.PartKey = ?;", [key])
5 partname, = cursor.next()
6 cursor = conn.execute("""SELECT Supplier.name FROM Supplier
7 WHERE Supplier.SuppKey = ?;""", [suppkey])
8 suppname, = cursor.next()
9 d[partname] = suppname

10 return d

Figure 13 The core of the pythonjoin micro-benchmark.

but enables inlining whenever possible. Enabling this meant that we had to convert a few
more parts of SQLite into RPython, so that the full path from Python to SQPyte back to
Python is in RPython. Much as we did when calling SQPyte from Python, we make use of
tracings natural tendency to inline; though, as before, Python callbacks which have loops
lead to separate traces on either side.

7 Evaluation of Hypothesis 1: SQPyte and PyPy

In this section we evaluate Hypothesis 1 – in essence, does optimizing across the boundary
between PyPy and SQPyte lead to a significant performance increase? – and Hypothesis 3
– in essence, does exposing type information in the flags attribute increase performance?
As well as benchmarking SQLite, SQPyte, and H2 (as in Section 5), we also benchmark
two SQPyte variants: SQPyteno−inline turns off inlining between SQPyte and PyPy and
SQPyteno−flags turns off the type flags optimisations of Section 3.3.

7.1 Micro-benchmarks for PyPy Integration
The TPC-H benchmarks measure SQL performance in isolation, but tell us nothing about
the performance of a PL calling a DBMS. Indeed, to the best of our knowledge, there are no
relevant benchmarks in this style. In order to test Hypothesis 1, we were therefore forced
to create 6 micro-benchmarks, each designed to pass large quantities of data across the
PL / DBMS boundary. While they are not necessarily completely realistic programs, they
exemplify common idioms in larger programs (see Figures 3 and 13). The micro-benchmarks
are as follows:
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Table 2 How often the micro-benchmarks cross the boundary between Python and the database,
and how many values are converted across the boundary in total. In most cases, the ‘values
converted’ is a whole-number multiple of ‘crossings’. pyfunction crosses the PL / DBMS boundary
twice per iteration, with one crossing returning one value, the other two. pythonjoin has a similar,
though more complex, pattern of crossings to pyfunction.

Benchmark Crossings Values converted

select 6 001 217 18 003 645
innerjoin 800 002 1 600 000
pythonjoin 4 000 002 4 800 000
pyfunction 12 002 434 18 003 645
pyaggregate 6 001 218 12 002 431
filltable 200 004 400 000

select is the running example of Figure 3. The DBMS query iterates over three columns of
a table, returning them to Python, which performs arithmetic operations on the results.

innerjoin joins 3 tables with an inner join and returns the resulting tuples to Python, which
are then stored into a hashmap.

pythonjoin implements a semantically equivalent join to the innerjoin benchmark, but does
so in Python rather than using the DBMS. The Python code iterates over 1 of the tables,
on each iteration executing 2 sub-queries for the other 2 tables. On the Python side the
tuples are stored into a hashmap. The core part of this micro-benchmark can be seen in
Figure 13.

pyfunction models calling back to a Python function from SQL. An abs function is defined
in pure Python. The SQL query then iterates over all rows in a table, calling abs on one
column, and returning that column’s value to Python, which then sums all the elements.

pyaggregate models calling an aggregate defined in Python. A sum aggregate is defined in
pure Python (as in Figure 12) and used to sum one column of a table.

filltable first adds 100,000 rows to a two-column table, with each row being added in a single
SQL query. A single SQL query then reads all of the added rows back out again.

Each benchmark has a Java equivalent such that we can run it with H2. All micro-
benchmarks use the TPC-H dataset from Section 5, with the exception of the filltable
micro-benchmark which creates, writes, and reads from its own tables. Table 2 shows how
often each micro-benchmark crosses between DBMS and PL, and how many values are
converted between the DBMS and PL.

7.2 Results and Evaluation
The results of the micro-benchmarks are shown in Figure 3. They show that on these
conversion-heavy queries SQPyte outperforms SQLite by a factor of 3.367 ± 0.0637× on
average. Table 2 shows how often each micro-benchmark crosses the DBMS / PL boundary.
As predicted by Hypothesis 1, the more often a micro-benchmark crosses the boundary (as
shown in Table 2), the greater SQPyte’s advantage.

H2, in contrast, is significantly slower on these benchmarks – 30.285 ± 0.3515× – than
on the TPC-H benchmarks. We believe that this is because HotSpot is unable to optimize
effectively across the PL / DBMS boundary. Unfortunately, definitively verifying that this
is the cause is impossible, as we cannot selectively turn on and off the relevant HotSpot
optimisations. However, the magnitude of the effect strongly suggests that simply having
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Table 3 Results of the micro-benchmark set. The table shows absolute times in seconds, as well
as the relative factor of each VM normalized to SQPyte. The last row contains the geometric mean
of the normalized factors. Micro-benchmarks where SQLite or H2 are faster than SQPyte are shown
in bold. Micro-benchmarks where SQLite or H2 are, within the confidence interval, equivalent in
performance to SQPyte are shown in grey.

Benchmark SQPyte SQLite H2

select (s) 0.772 ± 0.0081 3.382 ± 0.0114 73.095 ± 0.9489

× 4.382 ± 0.0515 94.662 ± 1.6645

innerjoin (s) 0.578 ± 0.0030 0.913 ± 0.0032 20.957 ± 0.1636

× 1.579 ± 0.0102 36.268 ± 0.3472

pythonjoin (s) 1.397 ± 0.0061 3.332 ± 0.0862 9.292 ± 0.0776

× 2.385 ± 0.0585 6.651 ± 0.0628

pyfunction (s) 0.580 ± 0.0027 3.861 ± 0.0930 55.298 ± 0.3916

× 6.661 ± 0.1678 95.402 ± 0.8443

pyaggregate (s) 0.542 ± 0.0289 2.558 ± 0.0712 8.218 ± 0.0387

× 4.730 ± 0.2893 15.167 ± 0.7735

filltable (s) 0.067 ± 0.0013 0.188 ± 0.0149 1.565 ± 0.0443

× 2.805 ± 0.2336 23.342 ± 0.8382

Geometric mean × 3.367 ± 0.0648 30.283 ± 0.3563

both PL and DBMS running on the same VM is not sufficient to optimize across the PL /
DBMS boundary effectively.

In order to understand the cause of SQPyte’s good performance on the micro-bench-
marks, we created SQPyteno−inline, a simple variant of SQPyte which disables all inlining
between SQPyte and PyPy. Note that although no inlining occurs, traces in SQPyteno−inline
are still created on both sides of the PL / DBMS boundary, so we are able to make a sensible
comparison between SQPyte and SQPyteno−inline.

The resulting figures are shown in the second columns of Tables 4 and 5. As expected,
there is no statistical difference in the performance of SQPyte and SQPyteno−inline on the
TPC-H benchmarks (0.3 ± 1.99%)—the only Python code in these benchmarks is that used
to consume the results of a query, ensuring that the database definitely produces the results.

The micro-benchmarks are rather different, with SQPyteno−inline being 2.388 ± 0.0350×
slower than SQPyte. This shows that inlining is the single biggest part of the speed benefit
of SQPyte relative to SQLite. The only micro-benchmark that is relatively little affected
is innerjoin, which is 1.266 ± 0.0079× slower than SQPyte. This is because most of the
work in the benchmark is involved in the table joins, which happen entirely in the DBMS.
In contrast, pyfunction, which crosses the boundary twice per iteration (once from Python
to the DBMS, and then from the query calling back to Python) sees a large slowdown in
SQPyteno−inline of 3.501 ± 0.0555×.

In summary, not only does SQPyte give a significant performance increase when the
DBMS / PL boundary is crossed regularly, but we can see that inlining is the major factor
in this. This strongly validates Hypothesis 1.
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Table 4 Results of the micro-benchmark set. SQPyteno−inline disables inlining across the
database-programming language boundary, SQPyteno−flags disables the optimisation that reasons
about the flags attribute of the Mem structures. The table shows average absolute times in seconds,
as well as the factor of SQPyte normalized to each of the other VMs. The last row contains the
geometric mean of the normalized factors. Micro-benchmarks where SQLite or H2 are faster than
SQPyte are shown in bold. Micro-benchmarks where SQLite or H2 are, within the confidence
interval, equivalent in performance to SQPyte are shown in grey.

Benchmark SQPyte SQPyteno−inline SQPyteno−flags

select (s) 0.772 ± 0.0081 1.948 ± 0.0190 0.795 ± 0.0029

× 2.524 ± 0.0383 1.030 ± 0.0119

innerjoin (s) 0.578 ± 0.0030 0.732 ± 0.0025 0.579 ± 0.0017

× 1.266 ± 0.0079 1.003 ± 0.0060

pythonjoin (s) 1.397 ± 0.0061 2.961 ± 0.0796 1.423 ± 0.0117

× 2.117 ± 0.0605 1.019 ± 0.0099

pyfunction (s) 0.580 ± 0.0027 2.029 ± 0.0302 0.605 ± 0.0021

× 3.501 ± 0.0551 1.044 ± 0.0062

pyaggregate (s) 0.542 ± 0.0289 1.380 ± 0.0619 0.529 ± 0.0023

× 2.547 ± 0.1862 0.976 ± 0.0498

filltable (s) 0.067 ± 0.0013 0.206 ± 0.0017 0.069 ± 0.0016

× 3.072 ± 0.0670 1.032 ± 0.0327

Geometric mean × 2.388 ± 0.0346 1.017 ± 0.0113

8 Evaluation of Hypothesis 3: The Effect of Optimizing the flags
Attribute

In order to see how much the optimisation of the flags attribute of the Mem struct described
in Section 3.3 helps, we created a version SQPyteno−flags of SQPyte that disables this op-
timisation completely and reran all benchmarks. The results are shown in the last columns
of Tables 4 and 5.

We expected that turning off the flags optimisations would slow execution down, and
that it would account for much of the performance benefit not accounted for by inlining
in Section 7.2. On the TPC-H benchmarks, there is no statistically observable effect (a
slowdown 1.0 ± 2.41%). On the micro-benchmarks, the slowdown is statistically significant
(1.7 ± 1.112%), but only very marginally.

These results were not what we expected, and lead us to reject Hypothesis 3.

9 Threats to Validity

Benchmarks can only provide a partial view of a system’s overall performance, and thus
don’t necessarily reflect the behaviour of more realistic settings and workloads. The TPC-H
benchmarks are widely used, though the micro-benchmarks are our own creations, and we
may unintentionally have created micro-benchmarks which unduly flatter SQPyte.

When porting SQLite’s interpreter to SQPyte, we only ported those parts enabled in
the default build of SQLite. Since some parts are tangled up in C #ifdefs, we may have
unintentionally misclassified one or more of these parts. Appendix A contains a complete
list of the parts we did not port, so that readers can verify our choices.

There is a subtle difference between PyPy calling SQLite and SQPyte: in the former case,
PyPy uses a C FFI (the cffi module in PyPy) to interface with SQLite; in the latter, PyPy
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Table 5 Further variants of SQPyte running TPC-H. For a description of the columns see Table 4.

Benchmark SQPyte SQPyteno−inline SQPyteno−flags

Query 1 (s) 6.929 ± 0.0352 6.903 ± 0.0137 7.082 ± 0.0239

× 0.996 ± 0.0055 1.022 ± 0.0064

Query 2 (s) 0.298 ± 0.0098 0.296 ± 0.0065 0.283 ± 0.0039

× 0.995 ± 0.0385 0.953 ± 0.0345

Query 3 (s) 2.933 ± 0.0329 2.922 ± 0.0136 2.957 ± 0.0379

× 0.996 ± 0.0124 1.008 ± 0.0184

Query 4 (s) 0.345 ± 0.0038 0.346 ± 0.0038 0.346 ± 0.0041

× 1.002 ± 0.0159 1.001 ± 0.0169

Query 5 (s) 1.111 ± 0.0145 1.114 ± 0.0117 1.097 ± 0.0176

× 1.003 ± 0.0185 0.987 ± 0.0221

Query 6 (s) 0.701 ± 0.0081 0.693 ± 0.0016 0.702 ± 0.0014

× 0.990 ± 0.0118 1.001 ± 0.0117

Query 7 (s) 2.630 ± 0.0070 2.637 ± 0.0178 2.657 ± 0.0105

× 1.003 ± 0.0075 1.010 ± 0.0049

Query 8 (s) 2.510 ± 0.0141 2.494 ± 0.0167 2.499 ± 0.0270

× 0.994 ± 0.0088 0.996 ± 0.0124

Query 9 (s) 10.062 ± 0.0448 10.102 ± 0.0227 10.138 ± 0.0766

× 1.004 ± 0.0051 1.007 ± 0.0090

Query 10 (s) 0.019 ± 0.0056 0.020 ± 0.0057 0.023 ± 0.0089

× 1.079 ± 0.4796 1.237 ± 0.6278

Query 11 (s) 0.604 ± 0.0071 0.602 ± 0.0093 0.600 ± 0.0073

× 0.998 ± 0.0205 0.994 ± 0.0178

Query 12 (s) 0.938 ± 0.0062 0.937 ± 0.0067 0.934 ± 0.0045

× 0.999 ± 0.0099 0.995 ± 0.0083

Query 13 (s) 2.721 ± 0.0135 2.767 ± 0.0420 2.767 ± 0.0461

× 1.017 ± 0.0164 1.017 ± 0.0178

Query 14 (s) 0.792 ± 0.0102 0.785 ± 0.0048 0.793 ± 0.0101

× 0.991 ± 0.0151 1.001 ± 0.0196

Query 15 (s) 20.636 ± 0.2254 20.437 ± 0.1008 20.674 ± 0.3404

× 0.991 ± 0.0120 1.002 ± 0.0210

Query 16 (s) 0.410 ± 0.0074 0.416 ± 0.0088 0.443 ± 0.0380

× 1.014 ± 0.0295 1.079 ± 0.0972

Query 17 (s) 0.107 ± 0.0008 0.107 ± 0.0007 0.108 ± 0.0008

× 1.001 ± 0.0102 1.009 ± 0.0112

Query 18 (s) 2.449 ± 0.0144 2.441 ± 0.0043 2.485 ± 0.0145

× 0.997 ± 0.0062 1.015 ± 0.0091

Query 19 (s) 8.140 ± 0.1333 8.082 ± 0.0744 7.883 ± 0.0611

× 0.993 ± 0.0191 0.968 ± 0.0182

Query 20 (s) 80.386 ± 0.2692 80.801 ± 0.3028 80.542 ± 0.3804

× 1.005 ± 0.0054 1.002 ± 0.0061

Query 21 (s) 8.661 ± 0.0347 8.684 ± 0.0782 8.572 ± 0.0340

× 1.003 ± 0.0101 0.990 ± 0.0059

Query 22 (s) 0.087 ± 0.0036 0.087 ± 0.0037 0.084 ± 0.0020

× 0.998 ± 0.0601 0.959 ± 0.0465

Geometric mean × 1.003 ± 0.0197 1.010 ± 0.0237
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simply imports the SQPyte system as an RPython module. There is thus the potential
of additional overhead when PyPy calls SQLite compared to when it calls SQPyte. We
examined the PyPy traces for the case when it calls SQLite, and verified that the overhead
is extremely small (a small handful of machine code instructions), and insignificant relative
to the difference to the two systems.

10 Related Work

We split our discussion of related work into two sections: optimizing SQL with code gener-
ation; and optimizing the interactions between PLs and DBMSs.

10.1 Optimizing Execution SQL with Code Generation

Many databases use the iterator model for query execution [20, 11] which, in essence, is
equivalent to an AST interpreter in PL implementation. There have been many attempts
to generate code from query plans to reduce the overheads of the iterator model. This
started with very early databases such as System R [6]. Most of these approaches require
code generators to be written by hand. In contrast, SQPyte’s meta-tracing JIT compiler
implicitly implements the semantics of the system by tracing the RPython interpreter.

Rao et al. [24] describe a relational, Java-based, in-memory database that, for each
query, dynamically generates new query-specific code. They created two versions of the
query planner: an interpreted one using the iterator model and a compiled one. They
demonstrated that using the compiled version removed the overhead of virtual functions in
the interpreted version. In addition, the Java JIT compiler was much better at optimizing
the generated code for each query than the interpreted version. On average, the compiled
queries in their benchmark ran twice as fast as the interpreter.

Krikellas et al. [17] generate C code from queries and load the compiled shared libraries
to execute them. Their compilation process dynamically instantiates carefully handwritten
templates to create source code specific for a given query and hardware. The performance
of their dynamically generated evaluation plans are comparable to hard-coded equivalents.

Neumann [23] describes an approach where the query is compiled to machine code using
the LLVM compiler [18]. When generating code, the approach attempts to keep data in
registers for as long as possible. Similar to how SQPyte interacts with the existing SQLite
C code, this system also preserves complex parts of the database in C++ and calls into the
C++ code from the LLVM code as needed. The resulting system is 2 − 4× faster than the
other databases benchmarked.

Klonatos et al. [15, 16, 25] use generative programming techniques in Scala to dynamically
compile queries using a Scala SQL query engine into C. This technique implicitly inlines
parts of the DBMS into the query and shows good performance on the TPC-H benchmark
suite relative to the DBX DBMS. However, because code written in Scala cannot inline the
generated C, there is no equivalent of the PyPy / SQPyte bridge we implemented.

Haensch et al. [14] describe an automatic operator model specialization system. Their
system uses a general LLVM-based specialization component to dynamically optimize the
execution of query plans in the operator model with the help of partial evaluation. Certain
query operator fields are marked as immutable, allowing the specializer to aggressively inline
and optimize the query plan execution. This approach suffers somewhat from having to
perform its optimisations at the (rather low-level) LLVM IR, at which point a lot of useful
high-level information has been lost. Both this approach and SQPyte use interpreters as
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the basis of the run-time code generation, though Haensch et al.’s interpreters are closer in
style to the AST-based partial evaluation system of Truffle [29].

10.2 Optimizing Language-Database Interaction
Grust et al. [13] created the Ferry glue language which serves as an intermediate language to
translate subsets of other languages to SQL. That is various front-end languages can translate
to that intermediate language, which is then lowered into SQL code. The goal is to reduce the
impedance mismatch between languages and database when programming and to improve
the efficiency of the interaction. Ferry influenced several works in other languages: Garcia et
al. [9] developed a Scala plugin that enables programmers to translate Scala-level constructs
to Ferry; Grust et al. [12] introduced Switch which uses Ferry-like translation principles to
allow seamless integration of Ruby and Ruby on Rails with the DBMS; Giorgidze et al. [10]
designed and implemented a Haskell library for database-supported program execution; and
Schreiber et al. [26] created a Ferry-based LINQ-to-SQL provider. Since one of the main
goals of Ferry is to reduce the number of times the PL / DBMS boundary is crossed, the
approach is complementary to the SQPyte approach of reducing the cost of the boundary
crossings.

Mattis et al. [21] describe columnar objects, which is an implementation of an in-memory
column store embedded into Python together with a seamless integration into the Python
object system. With the help of the PyPy JIT compiler they produce efficient machine code
for Python code that queries the data store. Compared to SQPyte their approach offers a
much deeper integration of the database implementation into the host language, at the cost
of having to implement the data store from scratch.

Unipycation by Barrett et al. [2] is a language composition of Prolog and Python that uses
meta-tracing to reduce the overhead of crossing the boundary between the two languages.
It composes together PyPy with Pyrolog, a Prolog interpreter written in RPython. As with
SQPyte, the most effective optimisation is inlining.

11 Conclusion

This paper’s major result is that there are substantial, and previously missed, opportunities
for optimizing across the PL / DBMS boundary. We achieved a significant performance
increase by inlining queries from SQL into PyPy. Furthermore, most of this performance
increase came from tracing’s natural tendency to inline—our attempts to add more complex
dynamic typing optimisations had little effect.

Those who wish to apply our approach to other embedded DBMSs can take heart from
this: a relatively simple conversion of parts of an interpreter implemented in C into a meta-
tracing language is highly effective. We estimate that we spent at least 8 person-months on
the SQPyte implementation, with perhaps half of that spent on the flags optimisation, and
a further 2 person-months on the PyPy / SQPyte bridge. For this relatively moderate effort
– certainly compared to the much greater work put into both SQLite and PyPy – we were
able to substantially improve performance for queries that regularly cross the PL / DBMS
boundary. While we were only able to marginally increase the performance of stand-alone
SQL queries, we did not encounter any examples where SQPyte is slower than SQLite. This
suggests that SQPyte, or a similar system based on SQLite, may be useful to a wider range
of users.

Our approach of incrementally replacing SQLite’s C code with RPython had an inter-
esting trade-off. It made initial development easier, since we always had a running system.
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However, it had disadvantages which became more apparent in later stages of development.
Most obviously, since it necessitated keeping core data-structures in C, we hobbled the trace
optimizer somewhat. The best – or, from our perspective, worst – example of this is the
flags optimisation which, despite significant effort, ended up slightly slowing our system
down. We suspect that porting more of these data-structures, and the code that relies on
them, into RPython would enable further performance increases. Indeed, were we to tackle
SQPyte from scratch, we might place less emphasis on keeping interpreter data-structures
in C—we conjecture that in several places we might have incurred less effort on our part if
we had ported more C data-structures into RPython.

A secondary, and largely implicit result, is that we have shown that it is possible to
take an existing interpreter in C and replace relevant parts of it with RPython, creating a
meta-tracing VM. To the best of our knowledge, the first time this has been done. It may
be possible to apply this technique to other systems (including non-DBMSs), with minor
adjustments.

Acknowledgements. We thank Geoff French for comments.
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A Unported Aspects of SQLite

When porting SQLite C code to RPython, we did not port the following aspects:

Assert statements, which are removed by the C compiler.
Statements related to tests and debugging, which expand to nothing in production builds:

VdbeBranchTaken
REGISTER_TRACE
SQLITE_DEBUG
memAboutToChange
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UPDATE_MAX_BLOBSIZE
Blocks of #ifdef and #ifndef, which are usually not included in default production builds:

SQLITE_DEBUG
SQLITE_OMIT_FLOATING_POINT

We assumed SQLITE_THREADSAFE to be false, which SQLite recommends for best single-
threaded performance.
We decided to compile and port with SQLITE_OMIT_PROGRESS_CALLBACK turned on. Usu-
ally SQLite makes it possible to register a progress callback that is called every n opcodes.
We plan to implement this in the future. Note that in our evaluation, we compared
SQPyte to SQLite with callbacks similarly omitted, thus ensuring an apples-to-apples
comparison.
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