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Abstract
Previous work proposed lazy basic block versioning, a technique for just-in-time compilation of
dynamic languages which we believe represents an interesting point in the design space. Basic
block versioning is simple to implement, simple enough that a single developer can build a
complete just-in-time compiler for JavaScript in a year, yet it performs surprisingly well as it
propagates context-sensitive type information to generate type-specialized code on the fly.

In this paper, we demonstrate that lazy basic block versioning can be extended in simple ways
to propagate type information across function call boundaries. This gives some of the benefits
of whole-program analysis, or a tracing compiler, without having to implement the machinery
for either. We have implemented this proposal in the Higgs JavaScript virtual machine and
report on the empirical evaluation of this system on a set of industry standard benchmarks. The
approach eliminates 94.3% of dynamic type tests on average, which we show is more than what
is achievable with any static whole-program type analysis.
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1 Introduction

A production compiler for a widely used dynamic language such as JavaScript is an intricate
piece of software, usually the outcome of 10 to 100 developer-years of effort. The architecture
of such a compiler is one of the first design decisions made during development. This
decision is rarely revisited, as architectural changes tend to be disruptive. In previous work,
Chevalier-Boisvert and Feeley argued for an architecture based on the concept of lazy Basic
Block Versioning (BBV) [14]. They claimed that the technique hits a sweet spot in the
tradeoff between implementation complexity and performance of the generated code. As
evidence they designed and implemented Higgs, a JavaScript virtual machine and Just-In-
Time (JIT) compiler which has performance competitive with other research virtual machines
and can sometimes match the performance of production systems such as V8. Notably, the
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Higgs compiler took about a year of development time. The reduced development time is
particularly important for languages that are maintained by small teams of volunteers. Lazy
BBV occupies a point in the design space of JIT compilers that is between method-based
compilers and tracing JITs such as Mozilla’s TraceMonkey [17], and run-time specialization
of Oracle’s Truffle [36]. The simplicity of BBV is one of its main advantages. It does not
require additional infrastructure such as a static analyzer to approximate program facts, or
an interpreter to record traces.

BBV is a simple and elegant compilation technique to optimize dynamically typed
programs on the fly. The technique uses dynamic type tests which are part of the implicit
semantics of primitive operators in dynamically typed languages to capture and propagate
type information. Type-specialized versions of individual basic blocks are lazily compiled
based on the types encountered during the execution of programs. The technique, as described
in [14], is limited to optimizing type checks on local variables within a single function. The
compiler has no information on the types of arguments, return values, or object properties,
and is thus unable to eliminate some redundant dynamic type checks.

This paper extends basic block versioning with the ability to propagate type information
across function call boundaries and to specialize code based on the type of object properties.
In the framework of basic block versioning, these extensions are easy to implement and seem
to work rather well. This paper makes the following specific contributions:

1. The combination of BBV with a typed object shape mechanism which encodes property
type information including method identity, enabling the compiler to know the identity of
callees at call sites (Section 4.1).

2. The extension of BBV with specialized function entry points, which makes it possible to
pass argument types from callers to callees. This is done efficiently, without dynamic
dispatch, using method identity information provided by typed object shapes (Section 4.2).

3. A speculative technique for call continuation specialization, which enables type information
about return values to be passed from callees back to callers, without dynamic overhead
(Section 4.3).

To validate our claims we implemented these contributions in the Higgs JavaScript
compiler and evaluated its performance on industry standard benchmarks (Section 5).

A word about evaluation is in order. We considered implementing our ideas within an
existing JavaScript compiler, but quickly realized that the architectural changes required
were beyond our resources. Thus we picked Higgs as a vehicle for our experiments. This
choice comes at a cost; comparing performance of a research prototype to a production
system is tricky. A production system has a mature garbage collector, highly tuned libraries,
and performs a massive number of optimizations (many, but not all, of which are orthogonal
to this work). A research prototype is likely to not have any of those. It is thus not surprising
that Higgs runs roughly half as fast as V8. This may be a sign that our approach is inherently
limited, or that we simply lack the resources of major corporations. Cognizant of the inherent
limitations of empirical evaluations, we have chosen the following approach. We measure
the improvement of the techniques presented in this paper by the number of type tests we
are able to eliminate and the performance impact over the previous version of the Higgs
compiler. This gives us a metric of progress. We compare our implementation with two
relevant systems, one is the TraceMonkey tracing compiler. The reason for this comparison
is that basic block versioning has been compared by others to tracing compilation. It is thus
interesting to see how the two perform on the same benchmarks. Then we choose Truffle/JS
as an example of a research prototype, albeit one implemented by a large team of industrial
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researchers. For completeness we include, in Appendix A, performance results comparing
Higgs to leading commercial JavaScript implementations.

2 Influences and Related Work

The literature on just-in-time compilation is rich with, by now, decades of work. The work
presented here was influenced by many results obtained in the Self project and should be
contrasted to work on type analysis and dynamic compilation of dynamic languages.

Shapes. The notion of describing objects with shapes can be traced back to the Self
programming language [11, 22], where so-called maps group objects cloned from the same
prototype. Like shapes, maps reduce memory usage and stored metadata relating to properties
(though not type information). Today, commercial JavaScript implementations such as V8,
SpiderMonkey, Nitro and Truffle/JS have all adopted this idea. Each object contains a pointer
to its shape, which describes the layout of the object and property attribute metadata. Truffle
introduced the notion of specializing shapes based on property types to the literature [35].
This paper builds on that idea and demonstrates how to effectively integrate such a model
with basic block versioning.

Splitting. Basic block versioning bears resemblance to Self’s iterative type analysis and
extended message splitting [13] which combines static analysis with a transformation that
compiles multiple versions of loops and duplicates control flow paths to eliminate type tests.
The analysis works in an iterative fashion, transforming the control flow graph of a function
while performing a type analysis. It integrates a mechanism to generate new versions of loops
when needed, and a message splitting algorithm to try and minimize type information lost
through control flow merges. One key disadvantage is that statically cloning code requires
being conservative, generating potentially more code than necessary, as it is impossible to
statically determine exactly which control flow paths will be taken at run time, and this
must be overapproximated. The approach also has roots in Agesen’s cartesian product
algorithm [2] which avoids the loss of type information at control-flow merges by representing
program state with sets of vectors of concrete types.

Analysis. There have been multiple efforts to devise type analyses for dynamic languages.
Rapid Atomic Type Analysis [27] is an intraprocedural flow-sensitive analysis that assigns
unique types to each variable. Attempts have also been made to define formal semantics for
a subset of dynamic languages such as JavaScript [5], Ruby [16] and Python [4], sidestepping
some of the complexity of these languages and making them more amenable to traditional type
inference techniques. There are also flow-based interprocedural type analyses for JavaScript
based on sophisticated type lattices [23, 24, 25]. Such analyses are too time consuming to
be used in a just-in-time compiler. Kedlaya, Roesch et al. [26] improved the precision of
type analyses by combining them with type feedback and profiling. This shows promise,
but does not deal with object shapes and property types. Work has also been done on a
flow-sensitive alias analysis for dynamic languages [19], but it is still unclear if the analysis
can be used on-line. More recently, Brian Hackett et al. presented an interprocedural hybrid
type analysis for JavaScript suitable for use in a just-in-time compiler [21]. While this is
an important step forward, it remains vulnerable to imprecise type information polluting
analysis results. Basic block versioning can help improve on the results of such an analysis by
hoisting tests out of loops and generating multiple optimized code paths where appropriate.
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Tracing. Trace compilation, introduced by Dynamo [6] and later applied to just-in-time
compilation in HotpathVM [18], aims to record sequences of instructions executed inside
hot loops. Such sequences make optimization simpler. Type information is accumulated
along traces and used to specialize code and remove type tests [17], overflow checks [34]
or unnecessary allocations [8]. Basic block versioning resembles tracing in that context
updating works on essentially linear code fragments and code is optimized similarly to
what may be done in a tracing compiler. Code is also compiled lazily, as needed, without
compiling whole functions at once. Trace compilation [9] and meta-tracing are an active area
of research [10]. The simplicity of basic block versioning is one of its main advantages. It does
not require external infrastructure such as an interpreter to record traces. Trace compiler
implementations must deal with corner cases that do not appear with basic block versioning.
With trace compilation, there is the potential for trace explosion if there are a large number
of control flow paths going through a loop [7]. It is also not obvious how many times a loop
should be recorded or unrolled to maximize the elimination of type checks. This problem is
solved with basic block versioning since versioning is driven by type information and there is
a natural bound to the number of versions that comes from the finite number of types in the
system. Trace compilers must implement parameterizable policies and mechanisms to deal
with recursion, nested loops and potentially very long traces that do not fit in instruction
caches.

Customization. Customization is another technique developed to optimize Self pro-
grams [12]. It compiles multiple copies of methods specialized on the receiver object type.
Similarly, type-directed cloning [28] clones methods based on argument types, producing more
specialized code using richer type information. The work of Chevalier-Boisvert et al. on
just-in-time specialization for MATLAB [15] and similar work done for the MaJIC MATLAB
compiler [3] tries to capture argument types to dynamically compile optimized versions of
whole functions. All of these techniques are forms of type-driven code duplication aimed at
extracting type information. Basic block versioning operates at a lower level of granularity,
allowing it to find optimization opportunities inside of method bodies by duplicating code
paths. There are similarities between the Psyco JIT specialization work and our own. The
Psyco prototype for Python [31] interleaves execution and JIT compilation to gather run time
information about values. It then specializes code on the fly based on types and values. It
also incorporates a scheme where functions can have multiple entry points. We extend upon
this work by combining a similar approach, that of basic block versioning, with typed shapes
and a mechanism for propagating return types from callees to callers with low overhead. The
tracelet-based approach used by Facebook’s HHVM for PHP [1] bears similarities to our own.
HHVM compiles small code regions (tracelets) which are single-entry multiple-exit basic
blocks. Each tracelet is type-specialized based on variable types observed at compilation time.
Guards are inserted at the entry of tracelets to verify at run time that the types observed
are still valid for all future executions. High-level instructions in tracelets are specialized
based on the guarded types. If these guards fail, new versions of tracelets are compiled based
on different type information and chained to the failing guards. One difference with our
work is that HHVM uses an ahead-of-time type analysis pass. Another difference is that
with the approach described in [1], each tracelet re-checks the types of its inputs, whereas
BBV propagates known types to successor blocks and doesn’t usually need to re-check the
types of local variables. Finally, HHVM falls back on an interpreter when too many tracelet
versions are generated. Higgs falls back to generic basic block versions which do not make
type assumptions but are still compiled. Beyond type specialization, recent work by Costa et
al. on just-in-time value specialization has shown that specializing JavaScript functions based
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on specific argument values can lead to performance improvements [33], as many functions
are always called with the same arguments.

3 Background

The work presented in this paper is implemented in a research virtual machine for JavaScript
(ECMAScript 5) known as Higgs 1. The Higgs virtual machine includes a just-in-time
compiler built around lazy basic block versioning. This compiler is intended to be lightweight
with a simple implementation. Code generation and type specialization are performed
in a single pass. Register allocation is done using a greedy allocator. The runtime and
standard libraries are self-hosted, written in an extended dialect of JavaScript with low-level
primitives. These low-level primitives are special instructions which allow expressing type
tests, pointer manipulation, as well as integer and floating point machine instructions in the
source language.

3.1 Value Types and Type Tests
Higgs segregates values into categories based on type tags [20]. These type tags form a
simple type system that is used for versioning. The types are mostly straightforward and
correspond closely to values manipulated by JavaScript programs. The one exception is the
unknown type tag that is used by the compiler to indicate that no information is available
for the corresponding value.

int32 signed 32-bit integers
float64 64-bit floating point numbers
undef the undefined value
null the null value
bool true and false boolean values
string strings
array arrays
closure function objects
object Plain JS objects
unknown type unknown

JS is a dynamically typed and late-bound programming language. There are no static
type annotations, and the types of variables may change during the execution of a program.
As such, there are many implicit type checks hiding in even the simplest JS programs.
Figure 1 shows an iterative function which illustrates this. The sum function contains three
primitive operators: a comparison, a decrementation and an addition. Each of these operators
implicitly checks the types of its operands as part of its semantics.

In all, there are four implicit type checks hiding in the sum function:

1. The > operator checks the type of n before comparing it against the integer zero.
2. The type of s is checked before computing s += i
3. The type of i is also checked before computing s += i
4. The decrementation operator checks the type of i before computing --i

1 https://github.com/higgsjs
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function sum(n) {
var s = 0;
for (var i = n; i > 0; --i)

s += i;
return s;

}

sum (500);

Figure 1 Iterative JS sum function.

A: s = 0, i = 0
if not is_int32(n) goto stub1

B: if not gt_int32(n,0) goto I // if not (n > 0)

C: if not is_int32(s) goto stub2
D: if not is_int32(i) goto stub3
E: s = add_int32(s,i)

if overflow goto stub4

F: if not is_int32(i) goto stub5
G: i = sub_int32(i,1)

if overflow goto stub6
H: goto B

I: return s

Figure 2 Control-flow graph of the sum function before BBV.

A naive JS implementation performs these type checks every time an operator is evaluated.
In Higgs, this is done using primitive instructions which can test the type tags of values.
Figure 2 illustrates the primitive operations and implicit type tag checks executed by Higgs
with basic block versioning disabled when sum(500) is evaluated. When computing sum(500),
only small integer (int32) values are used, and so, much of these type checks are redundant.

The is_int32 primitives act as guards which verify that the type tag associated with
a given variable is int32 before executing a machine instruction specific to integer values.
Should any of these tests fail, execution will flow to a stub that generates new machine code
to handle non-integer values. The overflow test primitives serve to verify that an integer
overflow did not occur, and handle such an occurrence otherwise.

3.2 Lazy Basic Block Versioning
Basic block versioning is a just-in-time code generation technique originally applied to
JavaScript by Chevalier-Boisvert & Feeley [14], and adapted to Scheme by Saleil & Feeley [32].
The technique bears similarities to HHVM’s tracelet-based compilation approach and Psyco’s
just-in-time code specialization system [31].

BBV works at the level of individual basic blocks. We define a basic block as a single-entry
single-exit sequence of instructions. Basic blocks end with one branching instruction which
jumps to other basic blocks. In Higgs, basic blocks are usually short, sometimes just one
instruction in our Intermediate Representation (IR), due to the large number of type tests,
each of which is treated as a branching instruction which terminates the current basic block.

The BBV engine interleaves compilation and execution. It generates machine code for
basic blocks lazily, instantiating them into one or more versions, each type-specialized based
on accumulated type information. BBV propagates type information by maintaining a
context for each block version which stores known type information about live variables.
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A: s = 0, i = 0
if not is_int32(n) goto stub1

B: if not gt_int32(n,0) goto I

// s,i,n are known to be int32
C: // is_int32 (s) check eliminated
D: // is_int32 (i) check eliminated
E: s = add_int32(s,i)

if overflow goto stub2

// s,i,n are known to be int32
F: // is_int32 (i) check eliminated
G: i = sub_int32(i,1)

if overflow goto stub3
H: goto B

I: return s

Figure 3 Control-flow graph of the sum function after BBV.

This context is updated as block versions are compiled.
Type tag tests are used to capture type information and enrich the versioning context.

We know, for instance, that if we branch on the “true” side of an is_int32(n) test, then
n must have tag int32 in the successor block. This fact is exploited by instantiating a
specialized version of the successor block based on the knowledge that n is int32. Because
BBV uses lazy code generation, it never generates block versions for types that do not occur
at run time. It achieves this by delaying the compilation of conditional branch targets using
machine code stubs.

Using BBV, three of the four implicit type checks in the sum function from Figure 1 are
eliminated. The resulting optimized control flow graph is shown in Figure 3. A single type
test remains: the type of n is tested when entering the function. When first executing the
sum(500) call, Higgs takes the following steps to compile and optimize the sum function:

The sum function is entered, block A is executed. The s and i variables are initialized
to 0. The context is updated to indicate both s and i have type tag int32. The type
of n is unknown. The is_int32(n) branch is made to point to machine code stubs and
execution is resumed.
Execution resumes. The is_int32(n) check evaluates to “true”. A stub for block B is
hit. This stub calls back into the compiler.
Compilation resumes, and a version of block B with n known to be int32 is generated.
Stubs are generated for the gt_int32(n,0) branch targets.
Execution resumes. A stub of block C is hit.
Compilation resumes. A version of block C with n known to be int32 is produced. The
variables s and i are already known to be int32, hence the type tag checks in C and D
can be evaluated at compilation time and eliminated. A stub is produced for the integer
overflow check.
Execution resumes. No overflow occurs, a stub for block F is hit.
Compilation resumes. A version of block F with s, i and n as int32 is compiled. The
type check in F is evaluated at compilation time and eliminated. Stubs for the overflow
branch in G are produced.
Execution resumes. No overflow occurs, a stub of block H is hit.
Compilation resumes. Block H produces a jump to the version of B that was already
generated, where s, i and n are all known to be int32.

ECOOP 2016
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function sumList(lst) {
if (lst == null)

return 0
return lst.val + sumList(lst.next)

}

function makeList(len) {
if (len == 0)

return null
return { val: len , next: makeList(len -1) }

}

var lst = makeList (100)
if (sumList(lst) != 5050)

throw Error(’incorrect␣sum’)

Figure 4 JS function to recursively sum the values stored in a linked list.

Execution resumes and continues until the gt_int32(n,0) test in block B fails. Note
that no more type checks are executed.
The loop test fails. A stub for block I is hit. Block I is compiled.
Execution resumes at block I, the sum function returns to the caller.

Because of its JIT nature, BBV has at least two powerful advantages over traditional
static type analyses. The first is that BBV considers only the parts of the control flow graph
that get executed, and it knows precisely which they are, as machine code is only generated
for basic blocks which are executed. The second is that code paths can often be duplicated
and specialized based on different type combinations, making it possible to avoid the loss of
precision caused by control flow merges in traditional type analyses.

3.3 Motivating Example
The example in Figure 1 is one for which plain intraprocedural BBV works particularly
well. In this section, we will provide a motivating example for our work which highlights the
limitations of the unextended BBV approach described in [14]. We will then show how we
have extended BBV to remove these limitations.

Figure 4 shows the sumList function for recursively traversing a linked list and computing
the sum of numerical values stored in each node. While this small program may appear
simplistic, there is much semantic complexity hidden behind the scenes. A correct but naive
implementation of this function contains six implicit dynamic type tag tests, which must be
eliminated to maximize performance:
1. The tag of the lst argument is checked when comparing it against null.
2. The tag of lst is re-checked before reading the lst.val property.
3. The tag of lst is checked a third time before reading the lst.next property.
4. The sumList function is a mutable global variable. Before calling it, there is an implicit

check to make sure that this is in fact a closure.
5. The tag of lst.val is checked before computing lst.val + sumList(lst.next).
6. The tag of sumList(lst.next) is also checked, because functions calls can return values

of any type.

The BBV algorithm described in [14] is limited to an intraprocedural scope, that is, it
deals with local variable types only. It cannot pass type information between callers and
callees. It also assumes that all object properties (including global variables, which are
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A: if is_null(lst) goto I

B: if not is_object(lst) goto stub1
C: val = read_prop(lst , ’val’)

if not is_object(lst) goto stub2

D: next = read_prop(lst , ’next’)
sumfn = read_prop(globalObj , ’sumList ’)
if not is_closure(sumfn) goto stub3

E: t1 = sumfn(next)
if not is_int32(val) goto stub4

F: if not is_int32(t1) goto stub5

G: t2 = add_int32(val , t1)
if overflow goto stub6

H: return t2

I: return 0

Figure 5 Implicit type checks in the sumList function.

properties of the global object) have unknown type. As such, the unextended BBV algorithm
is ill-equipped to optimize the sumList function, or object-oriented JS code in general.

The implicit tests executed by a version of Higgs without BBV are shown in Figure 5.
Once the type tag of the lst parameter has been tested and found to be object,

intraprocedural BBV can eliminate the second is_object test. Unfortunately, it cannot
eliminate any of the other type tag tests. Since nothing is known about object property
types, the type tags of the val and next properties must be tested for each call. The type
tag of sumList is also tested before every call. Lastly, the return type of the sumList call is
checked after each call. Clearly, most of these checks are provably redundant, and it should
be feasible to eliminate them. The next sections will explain the ways in which we have
extended BBV to give it the necessary capabilities.

4 Interprocedural Basic Block Versioning

This section describes the three extensions to basic block versioning that allow us to propagate
type information across procedure calls.

4.1 Typed Object Shapes
BBV, as presented in [14], deals with function parameter and local variable types only. It
has no mechanism for attaching types to object properties. This is particularly problematic
because, in JS, functions are typically stored in objects. This includes object methods and
also global functions (JS stores global functions as properties of the global object). We would
like to attach type tags to object properties, global variables included.

4.1.1 Object Shapes and Shape Tests
Currently, all commercial JS engines have a notion of object shapes, which is similar to
the notion of property maps invented for the Self VM. That is, any given object contains a
pointer to a shape descriptor providing its memory layout: the properties it contains, the

ECOOP 2016
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// Linked list node shape
S: { val: slot 0, next: slot 1 }

// Global object shape
G: {

...,
Error: slot 1,
...,
makeList: slot 30,
sumList: slot 33,
lst: slot 34

}

Figure 6 Linked list node and global object shapes.

A: if is_null(lst) goto I

B: if not is_object(lst) goto stub1
C: if not is_shape(lst , S) call updatePIC // PIC 1

val = read_slot(lst , 0) // PIC 1
if not is_object(lst) goto stub2

D: if not is_shape(lst , S) call updatePIC // PIC 2
next = read_slot(lst , 1) // PIC 2
if not is_shape(globalObj , G) call updatePIC // PIC 3
sumfn = read_slot(globalObj , 33) // PIC 3
if not is_closure(sumfn) goto stub3

E: t1 = sumfn(next)
if not is_int32(val) goto stub4

F: if not is_int32(t1) goto stub5

G: t2 = add_int32(val , t1)
if not overflow goto stub6

H: return t2

I: return 0

Figure 7 Primitive operations in sumList executed by an unextended version of Higgs.

property slot index (memory offset) each property is stored at, as well as attribute flags
(i.e. writable, enumerable, etc.). For instance, linked list nodes and the global object in the
example from Figure 4 have shapes S and G, shown in Figure 6.

Traversing shape data structures on each object property access would be prohibitively
expensive. As such, Higgs and all modern JS engines optimize property accesses using
Polymorphic Inline Caches (PICs) [22]. PICs are lazily updated sequences of inlined machine
instructions which implement property reads and writes. Typically, a cascade of conditional
branch instructions establish the shape of an object in order to determine the memory offset
at which the property to be read or written is stored. A specialized machine instruction is
then executed which accesses the property at the correct offset. PICs are extended as needed
to handle previously unseen object shapes.

In the sumList function, there are three property reads, and therefore three PICs. Linked
list nodes and the global object only have one possible shape, and so there is only one shape
test inside each PIC. The primitive operations and dynamic tests executed by an unextended
implementation of Higgs which uses PICs are illustrated in Figure 7.
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// Linked list node shape
S1: { val: (slot 0, int32), next: (slot 1, null) }
S2: { val: (slot 0, int32), next: (slot 1, object) }

// Global object shape
// Closures have method identity information
G: {

...,
Error: (slot 1, closure/Error),
...,
makeList: (slot 30, closure/makeList),
sumList: (slot 33, closure/sumList),
lst: (slot 34, object)

}

Figure 8 Typed object shapes encode property type information.

4.1.2 Extending Shapes with Types
Work done on the Truffle Object Model (OSM) [35] describes how object shapes can be
straightforwardly extended to also encode type tags for object properties. Property writes
are guarded to update object shapes when a property type changes. Property reads establish
the shape of objects in order to know the memory offset at which to read properties. When
object shapes also encode the type tags of properties, establishing the shape of an object tells
us not only where to read the property, but also what type tag this property has. Hence,
the cost of guarding property writes is easily offset, because typical JS programs have many
more property reads than property writes. A small overhead is paid to guard property writes,
and in exchange, type checks after property reads are effectively eliminated.

We extend upon the original BBV work with a typed object shape system inspired by
the Truffle OSM. This model is a natural fit for the BBV algorithm. Our extended BBV
algorithm not only propagates known type tags associated with values, but also object shapes.
The shape tests which are normally part of PICs allow our JIT compiler to establish and
propagate the shape of an object in the same way that type tag tests enabled BBV to extract
and propagate the type tags of values. Once the shape associated with an object is known to
the BBV engine, then, by extension, the types of all properties read from that object are
also known.

In order to enable interprocedural type propagation, it is useful to know which function is
being called for as many call sites as possible, both for calls to global functions and method
calls. As such, we have gone one step further than the Truffle OSM, and attached not only
type tags to object shapes, but also method identity information. That is, for properties
which have the closure type tag, shapes encode a pointer to the IR node corresponding to
the function the property is a closure of. This enables us to know the identity of callees at
code generation time for the large majority of call sites.

With typed shapes, linked list nodes from the sumList have two possible shapes, one
where the next property is null, and one where it is an object. The global object encodes
not only the offsets of global variables, but also the identity of global functions. This is
illustrated in Figure 8.

In order to allow BBV to take advantage of typed shape information, we break up PICs
into their component parts. PICs, which were previously monolithic sequences of inlined
machine instructions, are now exposed in our compiler IR as separate shape test and memory
access instructions. The result is that the regular BBV mechanisms can be leveraged to
extract shape information from shape tests and propagate it. Propagating shape information
(and the associated property types), allows us to optimize the sumList function as shown in
Figure 9.
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A: if is_null(lst) goto I:

B: if not is_object(lst) goto stub1
C: if not is_shape(lst , S1) goto C2

val = read_slot(lst , 0) // val is known to be int32
next = read_slot(lst , 1) // next is known to be null

D: if not is_shape(globalObj , G) goto stub2
sumfn = read_slot(globalObj , 33) // sumfn is known to be a closure

E: t1 = sumfn(next)
if not is_int32(t1) goto stub3

G: t2 = add_int32(val , t1)
if overflow goto stub4

H: return t2

I: return 0

C2: if not is_shape(lst , S2) goto stub5
val = read_slot(lst , 0) // val is known to be int32
next = read_slot(lst , 1) // next is known to be object

D2: if not is_shape(globalObj , G) goto stub6
sumfn = read_slot(globalObj , 33) // sumfn is known to be a closure

E2: t1 = sumfn(next)
if not is_int32(t1) goto stub7

G2: t2 = add_int32(val , t1)
if overflow goto stub8

H2: return t2

Figure 9 The sumList function optimized with typed shapes.

Two separate code paths are generated inside the sumList function, one for each of the
two possible shapes of the linked list nodes. More code is generated, but on any given code
path, at most three type tag tests are executed instead of five. Since linked list nodes now
have two possible shapes, we may test the shape of linked list nodes twice instead of just once
when reading the lst.val property. However, because we no longer employ monolithic inline
caches, this shape is propagated from the property read of lst.val to that of lst.next.
Hence, as a result, we actually perform less dynamic shape tests on average.

4.2 Entry Point Versioning

Procedure cloning has been shown to be a viable optimization technique, both in ahead of
time and JIT compilation contexts. By specializing function bodies based on argument types
at call sites, it becomes possible to infer the types of a large proportion of local variables,
allowing effective elimination of type checks.

Our first extension to BBV is to allow functions to have multiple type-specialized entry
points. That is, when the identity of a callee at a given call site is known at compilation time,
the JIT compiler requests a specialized version of the entry point block for the callee. This
specialized entry point assumes the argument types known at the call site. Type information
is thus propagated from the caller to the callee.

Inside the callee, BBV proceeds as described in [14], deducing local variable types and
eliminating redundant type checks. Our approach places a hard limit on the number of
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versions that may be created for a given basic block, and so automatically limits the number
of entry points that may be created for any given function. If there are already too many
specialized entry points for a given callee, a generic entry point is obtained instead. This
does not matter to the caller and occurs rarely in practice.

Propagating types from callers to callees allows eliminating redundant type tests in the
callee, but also makes it possible to pass arguments without boxing them, thereby reducing
the overhead incurred by function calls. Note that our approach does not use any dynamic
dispatch to propagate type information from callers to callees. It relies on information
obtained from typed shapes to give us the identity of callees (both global functions and
object methods) for free. When the identity of a callee is unknown, a generic entry point is
used.

In the case of the linked list example from Section 3.3, we can specialize the sumList
function entry point based on the type tag of the lst parameter. As a consequence, we know
whether lst has tag null or object upon entering the function.

With entry point versioning, we can eliminate all type tag checks, except for the check
on the return type of the sumList call. This test seems redundant, considering that, in our
example, the sumList function only ever returns int32 values. The following section will
explain our strategy to optimize this.

4.3 Call Continuation Specialization
Achieving full interprocedural type propagation demands passing the return type information
from callees to callers. While it is fairly straightforward to establish the identity of the callee
a call site will jump to in the majority of cases, establishing where a return statement will
jump to is less straightforward. This is to say, most call sites are monomorphic and jump to
a single function, and hence, a single specialized entry point. Furthermore, versioning code
based on object shapes has the net effect that it will often split polymorphic call sites into
monomorphic ones, which is very convenient for us.

We would like to version call continuations (the code executed when we return from a
call) in accorance with the return types observed during execution. However, one return
statement can potentially jump to several call continuations within a program. This means
we cannot employ the same strategy as with entry point versioning. We cannot simply jump
from one return statement to a specialized call continuation which assumes a known return
type. Type information about return values could be propagated with a dynamic dispatch of
the return address indexed with the result type. However this would incur a run time cost.
We would be trading one form of dynamic overhead (that of type checks) for another (that
of dynamic dispatch).

Instead, we have chosen to extend BBV with an approach that has zero run time cost
(amortized overhead). Call continuations are compiled lazily when the first return to a given
continuation is executed. When a function first executes a return statement, its return type,
if known, is memorized. Call continuations are then speculatively optimized based on this
memorized return type. If later returns from this function turn out to have a different return
type, the optimized call continuations are invalidated (see Section 4.3.1).

Given the small example given in Figure 10 where a function f calls some function g,
where g always returns values of type int32, the call continuation specialization process
continuations takes the following steps:

A call to g is encountered. Assuming the identity of the callee is known from typed
shapes (otherwise this optimization is not performed), f is added to a list of callers of g.

ECOOP 2016
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function f() {
// Call site
var r = g()

// Call continuation
// The addition has an implicit type check
return r + 2

}

function g() {
return 1

}

Figure 10 Function call with a fixed return type.

A stub is generated for the call continuation in f.
Machine code for the call site is generated, it is made to jump directly to a specialized
entry point in g.
Execution resumes in f and jumps to g. Execution continues until g returns.
Compilation resumes. The compiler has determined that g returns an int32 value since
the function g is annotated to indicate that it returns int32 values.
Execution resumes and g returns to the call continuation in f. The call continuation stub
is executed.
The call continuation in f is compiled. The compiler sees that g has been annotated as
returning int32 values. The code in f is optimized using this type information. No type
check is performed at the addition.

The call continuation specialization process presented so far is able to optimize recursive
calls in the sumList example and eliminate the type tag check on the return value. However,
as explained in the next section, this process is speculative and does not work for every
function.

4.3.1 Invalidating Call Continuations
The makeList function from Figure 4 is an example where the speculative call continuation
specialization process fails. This is because makeList can return both objects and null
values. As such, we cannot specialize callers of the function based on a single return type tag.
In this situation, the speculative call continuation specialization process will try to specialize
continuations, fail, and deoptimize them.

The first time that the makeList function returns, it will return a null value. This first
return will then trigger the compilation of a specialized call continuation which assumes the
return type of makeList to be null. When the function later returns a value with type tag
object, this will be detected at code generation time. Callers of the makeList function will
then have their call continuations deoptimized.

The deoptimization is done simply by writing stubs over already compiled call continu-
ations. Should another makeList call return to a deoptimized call continuation, the stub
will trigger the compilation of a new continuation. This time, the return type will not be
specialized, because we know that makeList can return values with multiple type tags.

The speculative optimization and deoptimization process we employ could be seen as
wasteful. We could have employed a static analysis instead. However, it can be difficult
to establish the return type of a JS function simply by analyzing its code. Furthermore,
the speculative approach can be more precise than a static analysis, because it is able to
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take the run time behavior of code into account. The return statements which are never
executed will not be taken into account. A static analysis does not know exactly which
return statements are executed and which are not, but BBV does.

5 Evaluation

This section reports on an empirical evaluation of interprocedural basic block versioning. This
evaluation was carried out based on an implementation of the extensions presented in this
paper, namely typed shapes, entry point specialization, and call continuation specialization,
within the Higgs JavaScript compiler.

A total of 26 industry benchmarks were selected from the SunSpider and V8 suites. The
authors decided not to use the JSBench benchmarks [29] as they are more suited to fast
interpreters (they are short running and have little computation). Benchmarks for which
performance hinges on compiling regular expressions were omitted, as this is not a feature
supported by the Higgs compiler.

To measure steady state execution time separately from compilation time in a manner
compatible with Higgs, V8, SunSpider, TraceMonkey, and Truffle/JS, the benchmarks were
modified so that they could be run in a loop. Warmup iterations are first performed so as
to trigger JIT compilation and optimization of code before timing runs take place. Unless
otherwise specified, 1000 warmup iterations and 100 timing iterations are used.

V8 version 3.29.66, SpiderMonkey version C40.0a1, TraceMonkey version 1.8.5+ and
Truffle/JS v0.9 were used for performance comparisons. Tests were executed on a system
equipped with an Intel Core i7-4771 CPU and 16GB of RAM running Ubuntu Linux 14.04.
Dynamic CPU frequency scaling was disabled to ensure reliable timing measurements.

5.1 Method Identity

The extended version of Higgs tracks object shapes. Without them, the compiler would not
be able to dermine which method is invoked at a call-site. With typed shapes, on average,
the identity of the callee method is known for 90% of calls executed dynamically. When entry
point versioning and call continuation specialization are performed, that number increases to
97.5% of calls. In practice, the identity of callees is known for most call sites. The exceptions
are dominated by implementation limitations of the current version of Higgs, which currently
treats captured closure variables as having unknown type.

5.2 Type Tests

Figure 11 shows the proportion of type tag tests eliminated with different variants of basic
block versioning. These numbers measure actual tests executed at runtime rather than tests
occuring in the program text. The first column (intra BBV) is the baseline, the number of
tests that could be eliminated with plain intraprocedural basic block versioning [14]. The
second column (typed shapes) shows the results obtained by adding support for typed object
shapes. The third column (entry spec) adds entry point specialization, and lastly, the fourth
column (entry+cont spec) adds call continuation specialization. On average, the baseline
eliminates 61% of tests, typed shapes increases this to 79%. Entry point specialization
improves the result to 89%. Finally, the addition of call continuation specialization allows
the elimination of 94.3% of dynamic tests, and, in several cases, nearly 100%.
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Figure 11 Proportion of type tests eliminated (higher is better).

5.3 Type Analysis
An obvious alternative to type propagation with interprocedural basic block versioning would
be to perform a whole-program type analysis. As there are many different analyses in the
literature with different degrees of precision, it is unclear how to evaluate the relative benefits
of this paper’s approach. It is possible to side-step the question by implementing an idealized
static analysis. Each benchmark was run and the result of all tests was recorded. The
benchmarks were then rerun with all type tests that always evaluate to the same result
removed. The second run can be seen as an upper bound for the power of static analysis
by itself. No static analysis can eliminate more tests than one that knows in advance the
outcome of each of them. Figure 12 compares interprocedural basic block versioning and
the idealized type analysis. The fact that basic block versioning outperforms type analysis
should not come as a surprise. An analysis loses precision when control flow merges whereas
basic block versioning creates separate versions to avoid this. The results suggest that no
analysis can eliminate more than an average of 91.4% whereas Higgs can avoid executing
94.3% of tests. On more than half of the benchmarks, the proportion of eliminated tests
exceeds 95%. In all benchmarks at least 80% of tests are removed.

5.4 Execution Time
The execution times of the benchmarks normalized to the unmodified version of the Higgs
compiler [14] appear in Figure 13. With the exception of navier-stokes, nsieve and
nsieve-bits (which are marginally slower), all benchmarks exhibit improvements. The
largest speed up comes from the addition of typed object shapes, they improve execution
time by an average of 26.8%. The addition of entry point specialization further improves
performance, with a combined speedup of 36.3%. Finally, adding call continuation special-
ization brings the total improvement to 37.6%. The performance improvements brought
by continuation specialization are relatively modest compared to those from entry point
specialization. This is to be expected since entry point specialization allow us to eliminate
more type tests (Section 5.2).
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Figure 12 Proportion of type tests eliminated with BBV or a type analysis (higher is better).

5.5 Shape Tests
Our implementation of typed shapes is able to propagate known object shapes from one
property access to another. There are many instances where multiple property reads on the
same object occur within a given function, and shape propagation can allow eliminating
further shape tests after the first property access on an object. Enabling typed shapes
results in an average decrease of 27% in the number of shape tests over an unextended
implementation of Higgs which uses untyped shapes and inline caches.

5.6 Call Continuation Specialization
Call continuation specialization uses a speculative strategy to propagate return type inform-
ation. Call continuations for a given callee may be recompiled and deoptimized if values are
returned which do not match previously encountered return types. Empirically, only 2% of
functions executed cause the invalidation of call continuation code. Dynamically, the type
tag of return values is successfully propagated and known to the caller 72% of the time. In
over half of the benchmarks, the type tag of return values is known over 99% of the time.

5.7 Code Size and Compile Time
Adding entry point and continuation specialization to the unmodified Higgs compiler cause
an increase in generated machine code size of 5.5% in the worst case and just 1.0% on
average. Intuitively, one may have expected a bigger code size increase given that entry
point versioning can generate multiple entry points per function. However, better optimized
machine code tends to be more compact. Compile time increases by 3.7% in the worst case
and just 0.01% on average.

5.8 Tracing Compilation
Tracing compilation bears important similarities to basic block versioning. One could expect
tracing to do better because it can optimize long linear sequences of code. Tracing compilation
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Figure 13 Execution time relative to baseline (lower is better).

was introduced to JavaScript with the TraceMonkey [17, 34] compiler. This compiler was in
production within Mozilla’s browser until 2011. Figure 14 compares the performance of the
two compilers. On average, Higgs is 2.7x faster than TraceMonkey, and performs better on
22 out of 26 benchmarks. The benchmarks TraceMonkey achieves the best performance on
tend to be ones which feature short and predictable loops.

The difference between the two is striking. It should be noted that TraceMonkey was built
by a considerably larger team and implements strictly more optimizations than Higgs. For
instance, it can inline while recording a trace. Even without inlining, Higgs does much better
on the largest benchmarks. The two raytrace benchmarks, for instance, make significant use
of object-oriented polymorphism and feature highly unpredictable conditional branches. The
earley-boyer benchmark is the largest of all and features complex control-flow. The splay
and binary-trees benchmarks apply recursive operations to tree data structures. We note
that Higgs performs much better than TraceMonkey on the recursive microbenchmark
which suggests TraceMonkey handles recursion poorly. While we caution against drawing
definitive conclusions, it does appear that tracing compilation in the form implemented by
TraceMonkey is mostly beneficial for computation with hot and predictable loops. Whereas
Higgs is agnostic to the vagaries of control flow. It is worth mentioning that independent
analysis of the behavior of real-world JavaScript programs suggests that hot and predictable
loops are rare [30] and that TraceMonkey does not speed up real-world JavaScript programs
such as the Google website [29].

5.9 Truffle/JS
Another interesting comparison is to look at the Truffle system from Oracle labs. Truffle/JS
is an implementation of JavaScript written in Java and running on a modified Java virtual
machine. Like Higgs, Truffle is a research prototype, but one being built by a larger team
and with a code base about 6 times larger than Higgs’. It benefits from optimizations that
are lacking in Higgs, such as method inlining and a sophisticated register allocator. For
memory management it can defer to Java’s highly tuned garbage collector.

Figure 15 shows the results of a performance comparison of Higgs against Truffle/JS.
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Figure 14 Speed relative to TraceMonkey (log scale, higher favors Higgs).

After both systems have gone through 1000 warmup iterations, Higgs is on average 69% as
fast as Truffle/JS. The time recorded on the 3bits-byte benchmark is zero, suggesting that
Truffle used side effect analysis to optimize-away the computation.

Higgs and Truffle/JS, being research virtual machines, were not optimized for fast
compilation. As a result, both systems are much slower than other engines when it comes to
compilation times. We cannot directly measure the compilation time taken by Truffle/JS,
but we can use the time it takes to warm up as a rough approximation.

Figure 16 shows the speed of Higgs relative to Truffle/JS when measuring the total
time taken for 1000 iterations of our benchmarks, with no separate warmup iterations. On
average, Higgs is 220% as fast as Truffle/JS on this comparison, indicating that the warmup
and compilation time for Higgs is much shorter. This is not surprising, since Higgs begins
generating type-specialized machine code as soon as program execution begins.

6 Conclusion

Basic block versioning is a compilation strategy for generating type-specialized machine code
on the fly. This paper demonstrates how to extend this technique to propagate information
across method call boundaries, both from callers to callees and from callees to callers, without
requiring dynamic dispatch and without a separate type analysis pass.

Across 26 JavaScript benchmarks, interprocedural basic block versioning eliminates, on
average, 94.3% of type tests. This is more than a static type analysis with access to perfect
information could achieve. The proposed extension provides an average execution time
reduction of 37.6% over an unextended basic block versioning implementation.

There is room for future work. While interprocedural basic block versioning yields
encouraging results, more could be done. Two extensions to basic block versioning are
planned: tracking types of closure variables and tracking array types. The Higgs compiler
itself currently lacks several optimizations used by commercial virtual machines. While
they are orthogonal to this paper, these optimizations may close the performance gap with
commercial systems. The first optimization to add is method inlining. Inlining is likely
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Figure 15 Speed relative to Truffle/JS (log scale, higher favors Higgs).
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Figure 16 Speed relative to Truffle/JS, no warmup iterations (log scale, higher favors Higgs).

synergistic with basic block versioning as it provides more contextual information but it
runs the risk of increasing code size as versions proliferate. Bloat can be mitigated by lazy,
incremental, inlining where basic blocks are only added when needed. This would be faster
than inlining entire control flow graphs without needing recompilation of the entire caller at
inlining-time.

Acknowledgements. Special thanks go to Laurie Hendren, Jan Vitek, Erick Lavoie, Vincent
Foley, Paul Khuong, Molly Everett, Brett Fraley and all those who have contributed to the
development of Higgs.
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Figure 17 Speed of relative to commercial JS engines (log scale, higher favors Higgs).

A Comparison with V8 and SpiderMonkey

Figure 17 compares the speed of Higgs to optimized commercial JavaScript virtual machines.
Higgs is generally slower, sometimes by an order of magnitude. There are a few benchmarks
where it outperforms V8. Notably, bits-in-byte features many function calls, and Higgs
is able to optimize this fairly well. The bitwise-and microbenchmark is also interesting
because it is a loop performing global object property accesses. Higgs outperforms every
JS engine we have tested on this benchmark, suggesting that it has faster global property
accesses, thanks to typed shapes. On the other hand, Higgs is slower everywhere else. This is
probably because Higgs lacks orthogonal optimizations such as: loop-invariant code motion,
global value numbering, bounds check elimination, automatic SIMD vectorization, method
inlining, allocation sinking, floating-point register allocation, etc. In the absence of these
optimizations, BBV is most promising for use in a baseline JIT compiler.
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