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Abstract
Program analysis is fundamental for program optimizations, debugging, and many other tasks.
But developing program analyses has been a challenging and error-prone process for general users.
Declarative program analysis has shown the promise to dramatically improve the productivity in
the development of program analyses. Current declarative program analysis is however subject
to some major limitations in supporting cooperations among analysis tools, guiding program
optimizations, and often requires much effort for repeated program preprocessing.

In this work, we advocate the integration of ontology into declarative program analysis. As a
way to standardize the definitions of concepts in a domain and the representation of the knowledge
in the domain, ontology offers a promising way to address the limitations of current declarative
program analysis. We develop a prototype framework named PATO for conducting program ana-
lysis upon ontology-based program representation. Experiments on six program analyses confirm
the potential of ontology for complementing existing declarative program analysis. It supports
multiple analyses without separate program preprocessing, promotes cooperative Liveness ana-
lysis between two compilers, and effectively guides a data placement optimization for Graphic
Processing Units (GPU).
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1 Introduction

Program analysis [45] is a common way for deriving various properties of a program from
its code. It is fundamental for many aspects of modern computing, including program op-
timizations, vectorization and parallelization, performance or correctness bug identification,
task scheduling, and so on.
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26:2 Towards Ontology-Based Program Analysis

There are mainly two ways to implement a program analysis. A traditional way is
imperative, in which, thousands of lines of code (often in some imperative programming
languages) is developed based on some compiler framework for analyzing program constructs,
types, control or data flows to infer certain properties of the target program. Programmers
typically need to go through some steep learning curve about the structure and internal
details of a complex compiler, while the results are often unsatisfactory: The code is often
difficult to maintain, and bugs are common [63]. The analysis, being specific to a particular
compiler, is hard to extend, to compose, or to reuse for other compilers.

The second approach, declarative program analysis, has been proposed to overcome the
productivity issues [56, 32, 17]. With it, the developers just need to define some abstract
domains and then use some logic programming language (e.g., Datalog [60]) to describe the
analysis rules that govern the relations or properties of interest. Some automatic tools can
then automatically do the inferences over a certain representation of some relations in the
target program to find out the wanted relations or properties of the program. Experiments
have shown that, with this approach, the code size of a program analysis often reduces by
orders of magnitude compared to the imperative approach, and the analyses become easier
to maintain and extend [13]. Moreover, with the substantial improvement in optimizations
of the logic processing engines (e.g., bddbddb [59] and numerous optimizations to inference
engines [62]), the performance and scalability concerns of declarative program analyses have
been largely resolved.

In this work, we aim to further improve this promising paradigm of program analysis,
particularly, to investigate solutions to three most important limitations of the current
declarative program analysis:

Cooperations. By expressing the analysis at a high level, different analysis tools could
potentially reuse an analysis, and different analyses could get composed together into
a more sophisticated analysis. However, in practice, these benefits have been difficult
to achieve in general, due to the differences in the analysis-specific representations of
programs and relations. In one analysis, the domain may be variable names and heap
addresses, and the relation may be “assigning one address to a variable”; in another
analysis, the domain may be expressions and the relation may be “calculated before a
program point”. To compose the two analyses, the variable names and heap addresses
in the first analysis may have to be mapped to the expressions in the second domain,
which would require much code development (likely entwined with the code in the com-
pilers), especially if the two analyses were developed by different users based on different
compilers that use different intermediate representations (IRs).
Optimizations. So far, explorations of declarative program analysis have been focused
on understanding program behaviors (largely for the purpose of debugging), for which,
program-level knowledge has been enough. It is, however, insufficient for another im-
portant purpose of program analysis, guiding program optimizations. For the multi-facet
dependence of performance, program optimizations often need knowledge from various
sources: the program itself, the hardware, the algorithms, the program input datasets,
and various domain-specific or problem-specific knowledge. Consequently, to provide
useful optimization guidance, declarative program analysis must support the represent-
ations of the various kinds of knowledge, and allow easy linkage among them, even if
the various kinds of knowledge may come from different sources. The analysis-specific
nature of the current declarative analysis designs offers poor support to these needs.
Preprocessing. A declarative program analysis typically requires some preprocessing to
extract useful relations from the target programs to build up a relational database. This
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step hurts the productivity benefits of this approach: As it is usually tightly coupled
with some compiler framework, it is tedious and error-prone to develop. What makes
this especially problematic is that different program analyses often use different relations
or ways to define the same or similar relations. As a result, preprocessing needs to be
developed for almost every newly developed program analysis, seriously throttling the
productivity benefits of declarative program analysis.

In this work, we advocate the integration of ontology into declarative program analysis to
address the three limitations all together. Our proposal comes from the observation that all
the three major limitations essentially stem from a single fundamental shortcoming in current
declarative program analysis: the lack of a systematic conceptual framework to govern the
definition, representation, and organization of the various kinds of knowledge (relations in a
program, rules, domains, hardware configurations, etc.) related with program analysis. The
ad-hoc analysis-specific approach used in today’s designs of declarative program analysis is
the fundamental reason for the much effort required for preprocessing, and the barriers for
supporting cooperations and optimizations.

Ontology, a concept originated from Philosophy, refers to the study of the nature of
being, as well as the basic categories of being and their relations [47]. In recent decades, it
has become a branch in Information Science, serving as the primary way to standardize the
concept definitions and knowledge representations for a domain. It includes three concrete
components: A standard vocabulary and definitions of some common concepts and their
relations in a given domain, a standard format (e.g., the Web ontology Language (OWL))
for representing the various instances and concepts in any concrete problems in the domain
and their relations, and a whole set of tools that have been developed in the last several
decades for the development of an ontology and automatic logic inference upon it.

The key idea in our proposal is to leverage ontology to help standardize the definitions
of domains, relations, and other concepts in program analysis, and to establish a single
flexible representation of program constructs as well as other kinds of knowledge related
with program analysis and its usage. With that, knowledge from various sources may be
linked seamlessly as long as they follow the standardized representation. Sharing the same
conceptual framework and set of terminology, different program analyses will be easy to
compose and interoperate together. The standardization will also make it possible to develop
a single comprehensive database of the relations of a program to serve for various program
analyses, removing the needs for the separate development of preprocessing for each analysis.

Ultimately, it would be desirable to establish a standard Program Analysis ontology to
describe programs, analysis, and related concepts—liken how the Semantic Sensor Network
ontology by W3C [15] facilitates the work in the sensor network domains. Reaching that
goal would require the coordinated effort from the community and goes beyond the scope
of this paper.

This work instead focuses on the following four-fold objectives:
To introduce the idea of integrating ontology into program analysis, and explain the
concept of ontology-based program analysis and its potential benefits.
To investigate the feasibility of having a single representation of a program in ontology
to facilitate various program analyses and hence reduce the much effort for developing
program preprocessing as required in current declarative program analysis.
To validate the promise of ontology as the representation of various kinds of knowledge
related to program optimizations, and hence extend existing declarative program analysis
to guide program optimizations.
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26:4 Towards Ontology-Based Program Analysis

To confirm the benefits of ontology for facilitating easy cooperations of different analysis
tools.

To reach the four objectives, we have developed a prototype framework named PATO
(which stands for Program Analysis Through ontology). In this prototype, we explore the
use of several principles to define a concept-proof ontology for C program representations.
Based on it, we have developed five program analyses: canonical loop analysis, pointer ana-
lysis, control flow graph construction, data access pattern analysis, and GPU data place-
ment guidance. These analyses differ in domains, relations, scopes, and intended usage.
Our experiments show that a single ontology-based representation can successfully support
all these analyses (without separate preprocessing per analysis). The analyses inherit the
productivity benefits of declarative program analysis, reducing the lines of code by tens of
times compared to imperative implementations. Using the liveness analysis on two compilers
(ROSE [4] and LLVM [39]), we confirm the benefits of ontology for promoting cooperations
among different analysis tools. And using GPU data placement optimization, we demon-
strate the seamless linkage of various sources of knowledge (programs, domain experts, and
hardware) enabled by ontology, and reveal the potential of ontology-based program analysis
for guiding program optimizations.

We acknowledge that this work is just the first step towards ontology-based program ana-
lysis. The ontology implemented in this work is for only the representations of C programs
(and GPU data placement), and the analysis has not exploited the potential of ontology
much beyond logic programming upon ontology-based program representations. A full de-
velopment of ontology-based program analysis would require also the ontology and formal
definitions of common concepts in program analysis (e.g., dominator, post order, alias), their
relations, and some deep investigations of the opportunities that ontology may bring to pro-
gram analysis. Through this first step, by demonstrating the promise of ontology-based
program analysis, we hope that this work will stimulate further studies by the community
into this promising direction.

2 Background

Ontology is a concept originating in Philosophy, referring to the study of the nature of
being, as well as the basic categories of being and their relations [47]. In recent decades, it
has become a branch in Information Science for representing the knowledge in a particular
domain. In this context, an ontology is a formal explicit description of a domain’s knowledge,
including concepts (or classes), properties of each concept (or relations) and individuals (or
instances of classes) [53]. An ontology is often visualized as a graph in which nodes indicate
concepts and edges indicate relations between concepts. It is often represented in some
standard triple format as we will describe later in this section. Developing an ontology
for a domain has many benefits, including 1) making domain knowledge explicit to expose
what is known and what is unknown, 2) enabling knowledge interoperability by providing
a common taxonomy and vocabulary, 3) providing knowledge reuse since the ontology is
a persistent knowledge base, and 4) facilitating knowledge validation and reasoning using
existing inference engines (or reasoners).

Figure 1 shows an example borrowed from an introductory article of ontology [47]. A class
(e.g., “Winery”) describes concepts in a domain. A class can have subclasses, representing
the “kind of” relations among concepts (e.g., “red wine” may be a subclass of “wine”).
A class can have many individual instances (e.g., “Chateau Lafite Rothschild Pauillac”
is an instance of the class “Pauillac”). A property describes the attribute of a class or
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Figure 1 An example ontology for the domain of winery.

instance. It is usually represented as an edge between classes or instances. For instance, the
“maker” property in Figure 1 shows that the maker of “Chateau Lafite Rothschild Pauillac”
is “Chateau Lafite Rothschild”. A property may have some constraints, which describe the
value type, allowed values, the number of the values (cardinality), and other features of the
values which the property can take.

The theory foundation of ontology is Description Logic (DL) [36], a family of formal
knowledge representation languages for formal reasoning on the concepts of a domain. DL
is expressive enough to build sophisticated knowledge bases while still supporting efficient
inference. It has a popular standardized dialect, Web ontology Language or OWL [44]. DL
allows the use of axioms to describe a knowledge base. For instance, an axiom Person(Alex)
describes that “Alex” is an instance of class “Person”, and Person w Human describes the
subsumption relationship between concept Person and concept Human. DL languages could
use different grammars. Conventionally, a simple yet uniform format to represent axioms
is (subject, property, object) triple. Axioms in DL languages can all be mapped to such a
format. For instance, in Person(Alex), “Alex” is the subject, “instance of” is the property,
and “Person” is the object. Visually, it is an “instance of” edge flowing from the “Alex”
node to the “Person” node in an ontology graph.

Through decades of development, a large body of tools (e.g., Stanford Protégé [25],
SWI-Prolog Semantic Web Library [62], etc.) have been developed for creating ontologies
and automatic reasoning upon an ontology-based knowledge base, which enables automatic
questions-and-answers, consistency check of the knowledge base, derivation of new know-
ledge, and so on.

Like declarative program analysis, most of these tools leverage logic programming lan-
guages (e.g., Prolog) for inferences. In logical programming, a program is composed of a list
of rules written in the form of clauses:

H:-B1, . . . , Bn.

which reads as

H is true if B1 is true and ... Bn is true.

H is called the head of the rule and B1, . . . , Bn is called the body. When the body is
empty, the rule becomes fact; for instance, variable(a) states the fact that a is a variable.

3 Overview

By offering a generic way to represent the knowledge in a domain, ontology simplifies the
accumulation and share of various kinds of knowledge among people or software agents. At
the same time, it allows automatic analysis and utilization of knowledge through high-level
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Figure 2 Overview of using ontology for program analysis.

declarative logic programming, thanks to its description logic foundation. These properties
make it potentially valuable for facilitating program analysis which is essentially about
reasoning about the knowledge related to a program.

Figure 2 illustrates the basic idea of ontology-based program analysis. It centers around
a knowledge base built upon ontology. The knowledge base may consist of the basic know-
ledge about the code of the target program, as well as other knowledge (e.g., architecture
attributes) relevant to the program analysis. An ontology converter, equipped with a parser,
derives the basic program knowledge from the code of the program, expresses the knowledge
in a standard format, and puts it into the knowledge base. This basic knowledge may include
the structures and components (control blocks, data structures, etc.) of the program. In
addition, the knowledge base may include some knowledge that could be imported about
some libraries, or directly input by a domain expert about some properties of the program
or the hardware it executes on (for optimizations).

Built upon description logic, ontology-based program analysis keeps the conveniences
of declarative program analysis. Rather than writing thousands of lines of code inside a
complex compiler, users can simply write some logic queries about the kind of properties
(e.g., which loops are canonical loops) of the program that they want to know. These queries
should follow some ontology query APIs. The APIs will then return the answers that are
automatically obtained from the ontology-based knowledge base. For complex queries, it
can leverage many existing ontology reasoning tools [62, 55]. Users of the ontology-based
knowledge base can be humans or software agents (e.g., tools for program optimizations or
testing.)
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Figure 3 Specification of a canonical loop (derived from OpenMP manual [48]).

Example. We use canonical loop analysis to illustrate how the idea of ontology-based pro-
gram analysis works. A canonical loop is a type of well-structured loop conforming to
specifications as shown in Figure 3. Because of its regular structure, it has been the focus
of many studies on parallelization and loop optimizations [35, 41, 16].

The goal of canonical loop analysis is to recognize whether a loop is in a canonical
form. Traditional implementations of the analysis (e.g., the implementation in the ROSE
compiler [4]) contains hundreds of lines of code for examining the IR of a loop. The code is
tied to a particular internal data structure of the chosen compiler, hard to port to another
compiler or maintain.

In a traditional program analysis development, the task requires an insertion of a sep-
arate pass over some intermediate representation of the whole program, which may need
the development of thousands of lines of code. For example, in the ROSE compiler [4] (a
source-to-source compiler broadly used in High Performance Computing), the pass works
on an Abstract Syntax Tree (AST). To analyze the code at that level, a programmer needs
to implement many lines of code written in procedural languages (C/C++). The canon-
ical loop analysis in the ROSE compiler consists of 380 lines of source code for examining
the representations of the structure of each loop and check them against the conditions in
Figure 3.

In ontology-based program analysis, the process is simpler. The programmer needs to
invoke some provided ontology converter on the code of the target program. An ontology-
based knowledge base is then produced to capture the program constructs, components,
and their relations. The programmer then just needs to use a declarative logic programming
language to describe rules governing the forms that a canonical loop should conform. Treat-
ing those rules as queries on the ontology of the program, existing logic reasoners can then
automatically find all the canonical loops in the target program. For example, a fragment of
C code is shown in Listing 1. The code’s corresponding ontology representation is shown in
Listing 2. Each line is a triple: (subject, predicate, object). The numbers in the subjects or
objects are the line and column numbers of the beginning and ending positions of a language
construct in the source code. (Next section explains the triples in the example in details.)
The different program constructs can be easily extracted by Prolog queries like those in
Listing 3.

Allowing the use of logic programming, ontology-based program analysis inherits the
productivity benefits of declarative program analysis. More importantly, it overcomes the
three aforementioned shortcomings of existing declarative program analysis by leveraging
ontology for standardizing the concept definitions in a domain and the flexible representation
of various sources of knowledge.

CVIT 2016
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Listing 1 Example C code fragment.
0 // s.c
1 int a = 0;
2 int foo () {
3 for (int i = 0; i < 10; i++) {
4 a = a + i;
5 }
6 return 0;
7 }

Listing 2 Sample ontology for C snippet (“x rdf:type y” indicates that y is the type of the code
segment in the range x).

1 ( ’3:1 ,5:1 ’ , rdf:type , ’ForStatement ’)
2 ( ’3:6 ,3:14 ’ , rdf:type , ’VariableDecl ’)
3 ( ’3:6 ,3:10 ’ , rdf:type , Variable ’)
4 ( ’3:1 ,5:1 ’ , ’hasForInit ’, ’3:6 ,3:14 ’)
5 ( ’3:1 ,5:1 ’ , ’hasForTest ’, ’3:17 ,3:22 ’)
6 ( ’3:1 ,5:1 ’ , ’hasForIncr ’, ’3:25 ,3:27 ’)
7 ( ’3:1 ,5:1 ’ , ’hasBody ’, ’3:30 ,5:1 ’)

4 Challenges and Solutions

The challenges for integrating ontology into program analysis exist in each of the four main
steps: the design of an ontology for the domain, the generation of the knowledge, the
utilization of the knowledge base, and the design of the entire framework. In this section,
we discuss each of the challenges and present some principles we use to address them. At
the end, we describe PATO, the prototype framework we have developed to do program
analysis upon ontology-based program representations.

4.1 Ontology Design
Challenges. To create an ontology for any domain, the first primary task is to define
the vocabulary to be used in the domain. That includes the definition of the concepts,
properties, and restrictions in the domain. These definitions establish the conceptual terms
and their relations of the ontology-based knowledge base for the domain. Even though there
are some de facto procedures on designing an ontology [47], program analysis has some
special challenges. Program analysis has a large variety of tasks (e.g., loop analysis, data
access pattern analysis, alias analysis, dependence analysis, liveness analysis, busy expression
analysis, etc.) involving a huge set of diverse concepts and relations. Even a larger variety
exists in the input programs. So the first question to use ontology for program analysis
is how to design an intuitive, efficient and flexible ontology that can facilitate the various
program analyses and input programs.

Solutions. In this work, we focus on the design of ontology for representing programs of
a particular programming language (C). The design of the complete ontology of program
analysis is left to future work.

Through our explorations, we have found the following three principles helpful.
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Listing 3 Sample analysis rules.
1 isForStatement (Loop) :-
2 rdf(Loop , rdf:type , c: ForStatement ).
3 hasForInit (Loop , InitExpr ) :-
4 rdf(Loop , c:hasForInit , InitExpr ).

Figure 4 Top-level ontology for C program analysis.

Language standard-oriented design. When designing the vocabulary of an ontology, it
helps if one starts with reusing language constructs and their categorizations defined in the
standard of the programming language of the target programs. Despite the variety of the
input programs, they are all artifacts following the particular programming language. With
the constructs and their categorizations of the programming language covered, we can easily
express programs using the language in the ontology-based knowledge base. This approach
helps achieve a good coverage of the input programs with a vocabulary familiar to users.
For example, to model C programs in an ontology, we followed the standard of C99 and
enumerate all program constructs and concepts in a top-down fashion. Figure 4 shows a
fraction of the top-level ontology for C programs. The main concepts in the domain include
variables, expressions, statements, and so on. The “construct” on the edges indicate these
vocabularies are the basic constructs in the C program domain.

Being generic in property designs. Besides classes of concepts, an ontology also contains
a vocabulary for properties (or called relations). For example, an Expression instance may
have some Type, an Identifier may refer to some Definition. Because there may be many
properties to express, in our practice, we follow a principle trying to define properties in a
generic way, and encode semantic meanings into concepts whenever possible. That allows
the possible use of a small set of properties and their combinations to express a large number
of possible properties in a program. For example, when describing an identifier has static
storage class, one approach is to define a property hasStaticStorage and use it like (someVar
hasStaticStorage true). Alternatively, we may define the concept Storage as a class and use a
simpler property hasStorage as (someVar hasStorage static), where static is a member of Stor-
age. There are several benefits for this second choice. First, using generic properties makes
the set of property vocabularies small and thus easy to manage. For example, hasStorage
is used to describe all storage classes instead of creating specific properties for each storage
class. Second, stripping semantics from property make writing logic rules more flexible.
For example, the knowledge of (someVar hasStorage static) can be queried by the keyword
hasStorage. Otherwise, users may need to use many specific keywords as hasStaticStorage,
hasExternStorage, and so on.

Continuous enrichment. In our exploration, we find that continuous enrichment of the
ontology vocabulary can be helpful. For instance, in a canonical loop analysis, a user
gives the description of the concept of a canonical loop. If that concept turns out to be
needed frequently (by many users), the concept could then be integrated into the ontology
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framework to save the need for repeated descriptions. Given that the program analysis
ontology is intended to be used by a community, a complexity is that different users may use
different names for a single user-defined relation (e.g., canonical loop), making the detection
of the repeated use of a user-level concept difficult. Ontology-based logic reasoners come
in handy. As the descriptions of user-defined relations all use the vocabulary in the same
ontology, the reasoners can easily do a logic reasoning on the descriptions to decide whether
two user-defined relations are equivalent. After recognizing the frequently needed user-level
concepts, such concepts can be added into the standard ontology for future reuse.

Based on the three principles, we came up with an ontology for C program representations
to facilitate C program analysis. It contains 178 concepts and 68 properties. It is not
intended to be complete (e.g., many program analysis concepts are not yet defined), but
is sufficient for examining the support of a single ontology to multiple different program
analyses as we will show later in this paper.

4.2 Knowledge Generation
Challenges. Building up a knowledge base is essential for any application of ontology. For
program analysis, the knowledge base shall include the important knowledge related with the
to-be-analyzed program. There are three main questions to answer. (1) ontology converter.
How to construct an ontology converter that can automatically convert a given program
into the ontology representation needed by many common program analyses. (2) Naming.
A program may contain functions, statements, expressions, variables, and so on. Any of
them may appear many times in different locations. A challenge is what naming scheme
the ontology should use to reference each reference to avoid ambiguity. (3) Mapping. One
of the objectives of ontology-based program analysis is to facilitate the cooperations among
different compilers and other program analysis tools. A difficulty is that they may have
different internal representations of a program. To make them able to interact based on
the program ontology, the instances of program constructs in the knowledge base should be
possible to map to some common ground meaningful to the different tools. One intuitive
choice of such common ground would be the source code of the program. That will also
make it easy for human to collaborate with program analysis tools. A complexity in using
source code for references is how to make the naming robust to code changes. (4) Space.
The knowledge about a program can be tremendous. Besides the basic knowledge directly
driven from the program, there could be many other kinds of higher-level knowledge such as
canonical loops, data dependences among statements, and so on. The higher-level knowledge
is derivable from the lower-level knowledge. The derivation through reasoning may take non-
trivial time. But if all this knowledge is saved in the knowledge base, the space cost could
be large. How to strike a good balance is important for practical usage of this new program
analysis paradigm.

Solutions. We come up with the following solutions to these challenges.
Ontology converter. Our experience shows that an ontology converter can be easily

created through a translator built on top of a source-to-source compiler such as ROSE [4].
A source-to-source compiler usually produces an abstract syntax tree (AST) representation
which is close to the input code. The translator traverses the AST of the program to
get structural and semantic information, which is then stored into the knowledge base as
ontology. The program constructs are represented as individuals (i.e. instances) of some
of the classes defined in the language ontology. Relations between them are represented by
properties.
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Naming and Mapping. In our naming scheme, we borrow the internationalized re-
source identifiers (IRIs) [28] that OWL uses. It helps avoid name conflicts. For the on-
tology of C program language, names of concepts are built directly from the corresponding
terms used in the C language standard1. For example, the concept type is referenced as
c:Type. An example IRI for the concept of types in a C program domain can look like
“http://example.com/owl/CProgram:Type”. Some aliases can be defined as short names
for the prefix strings of a domain.

More care needs to be taken for designing the naming scheme for representing the in-
stances of a program construct. Named constructs such as types, variables, functions can
use the C++ qualified name concept to uniquely identify them. For an unnamed construct
(e.g., an assignment statement) or a reference to named construct (e.g., variable reference),
a common intuitive approach is to use its location in the source code of the program, such as
file url, start location, end location where the location is a pair of (line number, column num-
ber). For instance, “http://my.com/file1.c, 3:1, 5:1” could refer to a loop that spans from
the beginning of the third line to the beginning of the fifth line of file1.c. The problem with
this scheme is that some minor changes to the original program may invalidate all the names
of the constructs after the modification point.

We find scoped IRI useful to restrict the impact of a code change to the names. In scoped
IRI, a name is composed of some qualified names and some relative locations in the source
code. For constructs like functions, structures, global variables, we add their scopes before
their names. Other constructs within these constructs are named by their locations, while
the line numbers are relative to the start line number of their surrounding constructs rather
than the beginning of the source-code file. Using this method, a global variable declared in
the first line of a file “s.c” (from column 5 to 6) can be named as s.c::1:5,1:6, while a variable
declared on the first line inside a function foo in file “s.c” (from column 6 to 10) can be
named as s.c::foo()::1:6,1:10. Thus, if there is some change of the code, only the names in
the same scope as the changing point is need to be updated.

Space. To address the space challenge of putting everything into a knowledge base,
we split the knowledge base into a core knowledge base and multiple loadable supplemental
knowledge bases. The core knowledge base is always loaded and others are loaded as needed.
We also design a cache-like management mechanism to alleviate the problem. It maintains
a buffer to store derived supplemental knowledge. When the upper limit of the buffer gets
reached, it starts to evict some of the stored knowledge (which would need to be rederived
when needed). For the eviction policy, there can be multiple choices: least-recently-used
(LRU), least-frequently-used (LFU), and their variants.

4.3 Knowledge Utilization
Challenges. Some challenges also exist in the utilization of the knowledge base for program
analysis. (1) Efficiency. In many cases (e.g., analyzing a large program), the runtime
efficiency of conducting a program analysis could be important. A question to answer is
whether the improved productivity of the new paradigm hurts the runtime efficiency and if
so, how to improve the efficiency. (2) Generality. Using declarative programming languages
could be awkward for some usage cases, especially when they involve some mathematical
computations. Such cases however do exist in some program analysis and optimizations, for
instance, when they relate with some performance models (an example is the data placement

1 We follow the naming convention of UpperCamelCase for classes and lowerCamelCase for properties.
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optimizations Section 5 will describe). Effectively overcoming such limitations is important
for the general applicability of ontology-based program analysis.

Solutions. We address these issues by both creating some shortcuts and leveraging the
features of existing ontology tools.

Efficiency. Recent years have seen some significant improvement of the performance
of logic reasoners [55, 9]. Many optimizations have been developed. For instance, in SWI-
Prolog, the ontology is stored as relation triples of (subject property object) with C extensions
and some indices are built for each element in the triples. So a search of a particular element
can be done in constant time. Additional optimizations can be applied to queries. For in-
stance, Prolog provides the cut operator (i.e., the ! symbol) to avoid unwanted backtracking
in search. We find that following some existing guidelines when writing queries [12] can be
quite helpful for quickly narrowing down the reasoner’s search space.

In scenarios where the relevant knowledge base is simple and consists of straightfor-
ward facts in triples (e.g., some memory configurations), one may construct a customized
lightweight parser in high performance languages, which can further help achieve good per-
formance than going through a heavy-weight logic reasoner.

Generality. Ontology-based logic reasoning meets the needs of many typical program
analyses, but is not quite suitable for expressing analyses that involve a lot of mathematical
computations (e.g., a regression-based performance modeling). We find that a mechan-
ism called computable [54] originating in Robotics can help resolve the issue. Computable
is some special ontology entity that can attach procedures to some classes or properties.
When the deduction rule queries the individuals of one of the classes or the properties, the
associated procedures are invoked to compute individuals for the target class or property.
The procedure can be written in a wide range of programming languages (e.g., C, C++,
Python).

Besides allowing the direct input of queries by users written in logic programming lan-
guages, ontology-based program analysis also allows queries coming from a third-party soft-
ware (which could be written in even imperative languages like C, C++ or Java.) For
such cases, the ontology can be processed with libraries for those languages (e.g., the OWL
API [31] or Prolog interface to foreign languages[7]). That offers the conveniences for existing
software tools (e.g., a compiler) to easily leverage ontology for program analysis.

4.4 Framework Design and PATO
The final challenge is how to organize the various components together into a unified frame-
work for program analysis. It includes choosing the DL language and the reasoner that suit
the needs of program analysis, designing and implementing the APIs for both knowledge
base construction and queries, and integrating all the components together into a complete
cohesive framework that offers effective support to various program analyses.
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Figure 5 Structure of PATO.

To answer these questions, we have developed a prototype framework named PATO,
which integrates all the aforementioned solutions to the various challenges, and leverages
the power of existing ontology tools.

Figure 5 outlines the main components of PATO. The knowledge base in PATO can be
in two forms, represented by the two round-corner boxes on the right part of the figure. On
the disk, the knowledge is stored as OWL files. Each entry in the files is in an OWL triple
(subject, property, object). For instance, (var1, hasValue, 0) means a variable has a constant
value of 0. The reason for selecting this form is that OWL triple is one of the standard (and
space-efficient) formats for ontology representations and is accepted by many ontology tools.
Another part of the knowledge base is the computables, which are attached to the concepts
and properties in the triple collection. The cache-like buffering mechanism is used for the
space efficiency of the knowledge base.

Two of the primary ways to add knowledge into the knowledge base are shown at the
bottom of Figure 5. In the first way, there is a parser (based on ROSE [4]) for converting
an input program code into an AST preserving source level information. We have also
developed a translator that translates the basic program knowledge on the AST into OWL
triples and stores them into the knowledge base. During the translation, the translator uses
the scoped IRI as the naming scheme. In the second way, we adopt Stanford Protégé [25],
an interactive tool for ontology creation and manipulation. Through its GUI, a user can
intuitively add entries into the knowledge base. The plugins of Protégé also provide many
other features to the users, such as visualization, validation, and querying.

There are two ways to use the knowledge base. The first is shown at the top of Figure 5.
It is through the SWI-Prolog reasoning engine. To use the knowledge base in this way, at the
beginning, the OWL files are loaded into memory; through it, the OWl files are converted
into an internal knowledge base through the existing Semantic Web Library [62]. The in-
memory organization of the knowledge base features some efficient indexing schemes. When
seeing a query from a user or software agent, the Prolog engine would start working on
the internal knowledge base to provide the answers. Prolog provides a general interface for
input logic rules and queries. We have further developed a higher-level set of API tailored to
represent some common terms used in program analysis tasks (e.g., loops, functions, etc.),
through them, the users may write even more concise descriptions.

The second way to use the knowledge base is shown as the shortcut (the diagonal path)
in Figure 5. Through a direct query interface we have developed in C++, the user or
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software agent may directly work on the OWL file collection (and computables) without
going through Prolog. This shortcut is useful when Prolog is not available to a user or too
costly to use in some special scenarios. For tasks which only need some simple fact search
(without the need for much reasoning), this approach is more efficient than the Prolog-based
approach because it avoids the overhead in Prolog interpretation and other associated cost.
Both the Prolog and the shortcut approach can insert new knowledge (e.g., derived in a
previous program analysis) into the knowledge base.

It is worth noting that the rich set of available tools on ontology proves helpful in our
development and usage of PATO. Besides the aforementioned usage of Protégé [25] for onto-
logy development, we find the FaCT++ reasoner [55] helpful for checking the consistency of
the ontologies, the Prology semweb library [61] useful for loading, parsing, and manipulating
ontology-based knowledge bases, and the Prolog engine [62] a convenient tool for inferences
upon the knowledge bases.

5 Experience

This section describes our experience of using PATO for program analysis. To examine
the feasibility of using a single ontology to support multiple different program analyses
efficiently, we implement five types of program analysis on PATO: canonical loop analysis,
pointer analysis, control flow graph construction, data access pattern analysis, and GPU data
placement guidance. They differ in domains, relations, scopes, and intended uses. Using
GPU data placement optimization, we examine whether ontology can indeed enable seamless
linkage of various sources of knowledge (programs, domain experts, and hardware) and
whether ontology-based program analysis can actually help guide program optimizations.
Using the liveness analysis on two compilers (ROSE [4] and LLVM Clang [39]), we examine
the benefits of ontology for promoting cooperations among different analysis tools.

For the interest of space, our description concentrates on the canonical loop analysis, the
pointer analysis, and the cooperative liveness analysis. We briefly cover the other analyses
and the GPU data placement experiment at the end. Without noting otherwise, each repor-
ted timing result is the average of 10 times of repeated measurements collected on a machine
equipped with Intel Core-i5 CPU of 3.2GHz (8GB DRAM, 500Gb HDD hard drive) running
Ubuntu 14.04. For the results that show large variances, we also report the statistics on the
variances. The Prolog used is SWI Prolog, and the primary compiler is the ROSE compiler
(EDG 4x-Based versoin) [4].

5.1 Canonical Loop Analysis
We first explain the Prolog code for canonical loop analysis. As mentioned earlier, canonical
loop analysis (CLA) checks whether a loop is in a predefined canonical form. Our experiment
uses the canonical loop form defined in the OpenMP specification [48], shown in Figure 3.
The specification of an OpenMP canonical loop can be written as declarative Prolog rules
as shown in Listing 4. We use italic font to distinguish variable from normal symbols.

In the Prolog specification, the head cannonicalLoop(Loop) asks for individuals that sat-
isfy all clauses in the body. The (,) plays the role of logic conjunction (AND operation). Every
clause in the body is deducted by its own rule. In the end, the deduction is backed by queries
on the existing knowledge base. The isForStatement(Loop) is a more readable wrapper of
the ontology query Loop is-a ForStatement, where the variable Loop binds to individuals if
ontology triples (some-loop is-a ForStatement) exist in the knowledge base. Once the Loop is
bound to some individual, clauses like hasForInit(Loop, InitExpr) search the knowledge base
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Listing 4 Prolog specification of an OpenMP canonical loop (italic upper-case for variables,
lower-case for properties).

1 % top level rule to find canonical loop
2 canonicalLoop (Loop ) :-
3 isForStatement (Loop ), !, %’!’ prevents backtracking
4 hasForInit (Loop , InitExpr ), %’,’ means logic AND
5 canonicalInit (InitExpr , LoopVar ),
6 hasForTest (Loop , TestExpr ),
7 canonicalTest (TestExpr , LoopVar ),
8 hasForIncr (Loop , IncrExpr ),
9 canonicalIncr (IncrExpr , LoopVar ),

10 (
11 hasType (LoopVar , ’IntType ’); %’;’ means logic OR
12 hasType (LoopVar , ’PointerType ’)
13 )
14 hasBody (Loop , ForBody ),
15
16 % supportive rules to find canonical init -exp
17 canonicalInit (Init , LoopVar ) :-
18 hasOperator (Init , AssignOperator ), !,
19 hasLeftOperand (AssignOperator , VarRef ),
20 referTo (VarRef , LoopVar ),
21 hasRightOperand (AssignOperator , LB ).
22
23 % rules with same heading : combined using logic OR
24 canonicalInit (Init , LoopVar ) :-
25 hasVarDecl (Init , LoopVar ),
26 hasInitializer (Init , Initializer ),
27 hasValue (Initializer , LB ),
28 % the rest is omitted ...

for (some-loop hasForInit some-init-expr) triples. Then canonicalInit(InitExpr, LoopVar) checks
if the found initial expression individuals conform to the language specification. The query
also returns the loop variable LoopVar if it can find it.

The analysis further checks whether the loop’s init construct conforms to the specifica-
tion. The first rule handles the var = lb style while the second rule deals with other styles.
Different rules with the same head name form the logic disjunction (OR operation). The
cut operator (i.e., the ! symbol) is used to prevent unwanted backtracking. It means that,
as long as the first rule matches the form hasOperator(Init, AssignOperator), there’s no need
to check the second rule of the variable declaration form. Line 11 to 12 are the rules to
do the type checking of loop variables. The (;) means logic disjunction (equivalent to two
separated rules).

Experimental Results. The ontology in PATO successfully supports the analysis. We
compare it with the imperative implementation in the ROSE compiler. The algorithm in
ROSE traverses the AST tree of a program to find for statement nodes and check whether
their sub-tree are in the canonical form. The code is written in C++ and is specific to the
ROSE AST’s internal data structures. The time complexity is O(n), where n is the number
of AST nodes.

The code length of PATO-based analysis is about half of the imperative implementation
in the ROSE compiler (190 versus 380 lines). We use the NAS Parallel Benchmarks (NPB) [8]
for the measurement.

The results are shown in Figure 6. The frontend time corresponds to the parsing time
of the parser in Figure 5. PATO uses the same frontend as the ROSE implementation. The
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Figure 6 Time comparison of the canonical loop analysis. The X-axis shows the benchmark
names and their numbers of source-code lines.

time of program knowledge generation (KB gen) represents the time taken by the ontology
translator in the PATO framework. Finally, the other two bars are the time of the canonical
loop analysis with PATO and ROSE respectively.

For the canonical loop analysis alone, we can see that the PATO declarative approach
even beats the native implementation for most cases. It is slower only when the line number
is small. One reason is that the ROSE’s imperative implementation traverses the whole
AST tree to find all for loops. For PATO’s declarative implementation, the isForStatement
relation information is stored explicitly and can be efficiently accessed by the hash-indexed
keyword implementation of Prolog.

The ontology-based declarative analysis does have an obvious overhead: It needs an extra
step to traverse the AST tree and build the initial knowledge base. However, as shown in
the figure, the overhead is smaller than the frontend time. Besides, for the PATO system,
the generated knowledge base can be reused for different program analyses (e.g., control flow
graph analysis).

Extensibility. An appealing property of using ontology is the good extensibility. The pre-
vious discussion only covers canonical loops in C programs that use primitive loop variable
types, such as pointer and integer types. OpenMP allows C++ canonical loops that use com-
plex iterators as long as the iterator supports random access to the data elements. Examples
of random access iterators include std::vector<T>::iterator and std::deque<T>::iterator. Also,
programmers often define their own random access iterators. A conventional solution to ex-
tend an imperative CLA implementation is to store the known random access iterators,
including the custom-defined ones, into a container for the compiler implementation to look
up. The ad-hoc solution imposes barriers for exchanging the knowledge with other tools or
developers. In PATO, adding such a support is simpler. One can easily add the concept
RandomAccessIterator in the ontology and define it as is-a(Iterator)∧has(RandomAcess). The
knowledge of is-a(Iterator) property can be gained by the knowledge builder while the know-
ledge has(RandomAcess) can be inserted into the knowledge base using the standard OWL
API, either automatically by tools or manually by developers. The analysis rules can then
reason about random access iterators. The resulting ontology can be then shared and reused
by different analyses.
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Table 1 Constraints in Andersen’s pointer analysis.

Constraint type Statement Propagation rule
Base p = &b loc(b) ∈ pts(p)
Simple p = q pts(p) ⊇ pts(q)
Complex p = ∗pp ∀v ∈ pts(pp) · pts(p) ⊇ pts(v)
Complex ∗pp = q ∀v ∈ pts(pp) · pts(v) ⊇ pts(q)

Listing 5 The Prolog rule to match the address-taken instruction.
1 matchAddressTaken (RHS ) :- hasOperator (RHS , AddressOp ),
2 hasOperand (RHS , LocRef ), referTo (LocRef , Var ).

5.2 Pointer Analysis

This part describes our experience in implementing Andersen’s pointer analysis in PATO.
Andersen’s pointer analysis is a well-known inclusion based analysis [5]. The analysis result
is typically represented as the points-to set pts(x) for each pointer variable x. It is flow-
insensitive and does not distinguish different program execution points but computes what
the pointers may refer to at any time of program execution.

The analysis is commonly regarded as solving a set constraint problem. It classifies
assignments involving pointers into several kinds: taking the address of a stack variable or
a heap allocated space, copying a pointer from one variable to another, and assignments
through dereferences or references to a multilevel pointer. It defines a propagation rule (or
called constraint) for each of the cases as illustrated in Table 1 (for C programs).

The analysis consists of two steps. The first step preprocesses the target program to pro-
duce a simplified intermediate representation, which keeps only the statements that involve
pointer manipulations. Each kind of the assignments involving pointers is represented with
a special notation. For example, p = &b is represented as stackLoc(p, b), p = malloc(...) is
represented as heapLoc(p, ...), p = ∗pp becomes load(p, pp), and ∗pp = q turns into load(pp,
q).

The second step propagates the points-to relations based on those constraints and solves
the problem by computing graph transitive closures through an iterative worklist
algorithm [5].

In our implementation on PATO, the preprocessing step is done on the program ontology
representation through some simple pattern matching rules. For example, the address taken
pattern (p = &b) is matched by the following: The implementation breaks complex state-
ments into simple ones by introducing temporary variables. For example, ∗p = ∗q becomes
tmp = ∗q; ∗p = tmp. Structures are analyzed in a field-sensitive manner, while an array is
regarded a single data object as done in most previous studies [5, 27, 13].

For the analysis step, the propagation rules in Table 1 can be directly mapped into logic
rules in Prolog as shown in Listing 6.

However, our experiments show that Prolog inferences based on these rules are not
efficient. It evaluates the rules in a top-down manner with deep recursions and costly search
through a large space. Inspired by previous work [13, 59], we instead implement the classic
worklist algorithm in Prolog as illustrated as follows:

Line 11 in the listing means that as soon as Prolog finds out that there is no edge from
A to P, it stops search and instead add A into the worklist and continue with next A’ in
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Listing 6 The Prolog rules for the points-to computation.
1 % p = &a; p = malloc ()
2 pointsTo (P , Loc ) :- stackLoc (P , Loc ); heapLoc (P , Loc ).
3 % p = q
4 pointsTo (P , X ) :- copy(P , Q ), pointsTo (Q , X ).
5 % p = *pp
6 pointsTo (P , X ) :- load(P , PP ), pointsTo (PP , V ), pointsTo (V , X ).
7 % *pp = q
8 pointsTo (V , X ) :- pointsTo (PP , V ), store(PP , Q ), pointsTo (Q , X ).

Listing 7 The worklist algorithm for pointer analysis in Prolog.
1 andersenPtr :-
2 select (WorkList , V ),
3 propLoad (V ); propStore (V );
4 propFieldLoad (V ); propFieldStore (V );
5 propEdge (V ),
6 andersenPtr . % itratively execute the analysis
7
8 propLoad (V ) :-
9 load(P , V ),

10 pts(V , A ), % for each A in pts(V)
11 (\+ edge(A , P ) -> assertz (edge(A , P )), add(WorkList , A )).
12 % others are omitted

pts(V, A’). The use of→ enables an early stop of useless searches, bringing large performance
benefits.

The entire implementation takes less than 500 lines of code, about 300 lines of which
are for the preprocessing step. When being applied to the NPB benchmarks, the analysis
takes no more than 2 seconds on a program. We have also applied the analysis to three
programs [2] with more pointer operations: bzip2 (7K lines of source code), gzip (8.6K
lines), and oggenc (58K lines). The analysis times are 2.1 sec, 3 sec, and 36 sec respectively.

5.3 Facilitating Cooperations

In the final experiment, we try to examine the potential benefits of leveraging the standard
representation of ontology to promote synergy between different compilers. Particularly, we
use Liveness analysis as an example.

As a may-type data flow analysis, Liveness analysis is conservative—that is, if a variable
belongs to the Liveout set of a basic block, it means that the compiler is uncertain whether
the variable is dead at the end of the basic block. So, for two different Liveness analyses
(both are sound and conservative), if a variable belongs to the result from one analysis but
not that from the other, we can conclude that that variable is not Live at the end of the said
basic block. In another word, the intersection of the results of the two Liveness analyses
gives a more precise result than either of the two analyses.

Both LLVM Clang and ROSE have their own Liveness analysis developed before. By
using the ontology converters we have developed for the two compilers, we convert the
Liveness analysis results from them into our ontology. By writing several lines of Prolog
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Figure 7 Enhancement of Liveness analysis by leveraging ontology to combine the results from
the Liveness analysis in LLVM Clang and ROSE. (Dots show outliers). Left bars: the enhancement
over LLVM Clang results; right bars: the enhancement over ROSE results.

code, the Prolog engine immediately extracts out the intersection of the sets of Live variables
reported by the two compilers for each basic block of a given program.

We define a metric called enhancement rate to characterize the benefits of such a com-
bination. Let A and B stand for two Liveness analyses and RA and RB be their Liveout set
for a given basic block. The enhancement rate over A is defined as

enhancementRate(A) = |RA|
|RA ∩RB |

The enhancement rate over B is defined similarly.
The results are shown in Figure 7. Box plots are used to show the distribution of the

enhancement rates over all the basic blocks in the program. In the plot, the dots are
outliers, and the intervals show the range of the lower 75 percentile of the enhancement in
the observed result. The plot considers only the basic blocks whose Liveout sets are not
empty in the result from at least one of the two compilers. The results indicate that the
synergy improves the average precision of Liveness analysis by over 10% and 20% for LLVM
Clang and ROSE respectively.

It is worth noting that the two compilers use different internal representations for pro-
grams and the Liveness analysis results. It is possible to write some special code to map
their results to enable such a combination without using ontology. However, using the
ontology designed in this work, the benefits come as simple side products of the ontology-
based program analysis (by leveraging the converters and the standardized representation
developed for many other program analyses). The productivity benefits would become even
more prominent when many types of analyses cooperate across compilers.

5.4 Other Experience
For the interest of space, we briefly describe three other experiments.

One of them is an analysis to find out a program’s array access patterns, including the
access expressions to each array, lower and upper bounds of the loops surrounding an array
reference, numbers of reads and writes to an array, and the ranges of its elements that are
accessed. With PATO, each of the types of information can be easily extracted from the code
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through just a few lines of Prolog statements. A previous imperative data access pattern
analysis [14] has more than 2000 lines of source code. PATO, on the other hand, only needs
180 declarative rules to implement that analysis.

The second is to write code for control flow graph construction. It requires the examina-
tion of control flows of the whole program. On PATO, it is done through a set of simple rules
based on the algorithm of inductive graph constructions [23]. We compare our PATO imple-
mentation with the implementations of ROSE and Clang [38], which also use the inductive
construction algorithm but differ in the internal data structures and implementations. The
PATO version uses only 400 lines of code, up to 8.75X shorter than the traditional compiler
implementations (1200 and 3500 lines for ROSE and Clang respectively). The speed of the
PATO analysis is similar to that of the Clang, and is 10-40% faster than that of the ROSE
thanks to its efficient storage and query of the knowledge base.

Finally, we experiment with PATO for guiding data placement on Graphic Processing
Units (GPU). A GPU has multiple types of memory with different performance character-
istics. Prior studies have proposed some rule-based methods [34] and analytic model-based
methods [14] for determine the placements of data that best suit the data access patterns of
a GPU program and showed significant performance benefits. In this experiment, we build
a data placement optimizer based on PATO, and find it much simpler to do than previous
implementations. Because both the program knowledge and the hardware knowledge are
represented in the standard triple format, they can be automatically linked into one single
knowledge base, making automatic reasoning about data placement possible. It also simpli-
fies the integration of heuristic rules and analytic models into a single analysis. Experiments
on NVIDIA K20c GPU show that the PATO-based analysis gives similar placements as prior
methods do [14]. Its analysis time is 5% longer, but it exhibits a better extensibility thanks
to its ontology representation and declarative implementation. For example, in the previous
work [14], to add the knowledge on some new GPUs memory features, one needs to extend
a hardware specification language by adding some new constructs, and revise the code for
parsing and performance modeling. In PATO, the needed changes are simpler: Through the
Prolog GUI, users can easily add or remove a concept, and add queries on the new features
into the analysis rules.

6 Related Work

Ontology has been used to build various knowledge bases in different domains, including
Biology [6], Ambient Intelligence [19, 50, 51], Robotics [54], and others [43, 46, 49]. This
work was enlightened by these studies, but concentrates on the special challenges facing
program analysis.

In the software domain, ontology has been introduced, but mainly for software manage-
ment and teaching of programming concepts, rather than program analysis. Specifically,
Software ontology (SWO) [42] in the domain of software engineering focuses on the meta
information of software (e.g., licenses, publishing processes, data formats). COPS [37] of-
fers a sub-ontology for managing the knowledge related with image processing. Eden and
others [21] have provide some theoretical discussions on the unique aspects in designing
an ontology for programs, but without exploring the use of ontology for program analysis.
There are several ontology designs for teaching some programming languages [52, 24]. This
current work, to our best knowledge, is the first proposal on a systematic integration of
ontology into program analysis.

There are some prior efforts trying to ease the difficulties in the development of program
analysis. We discuss them in two aspects.
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The first aspect is in the construction of a program analysis. Some prior studies have
offered some interfaces for simplifying the construction of a program analysis. OpenAna-
lysis [3], for instance, introduces a set of analysis-specific interfaces (e.g., traverse all state-
ments) as the building blocks for constructing a specific analysis. Other efforts in the same
direction include GENOA [18] and StarTool [33]. These tools focus on imperative program
analysis. There are some efforts that employ declarative program analysis to improve the
productivity of program analysis development. JTransformer [1], for instance, is a tool
integrated into Eclipes that allows the use of Prolog for analyzing and transforming Java
source code. JunGL [57] introduces a scripting language for writing program analyses. It
combines ML and Datalog. SemmleCode [58] is a tool that stores program-related data into
a knowledge base, and allows the use of Datalog to write a program analysis that analyzes
the program by querying the knowledge base. There are some other work [26, 13, 59] falling
into the same category.

The second aspect is in the representation of a program. Some prior work has tried
to develop a common software exchange format (SEF) for representing a program to fa-
cilitate the interoperation of software analysis and refactoring tools. Such a format needs
both a schema (or called metamodel) that describes the objects and relationships, and a
syntax that describes how model elements are to be stored and transmitted. The Dag-
stuhl Middle Metamodel (DMM) [40] is a representative of the former. DMM consists of
a set of models that capture program elements and their relations. It follows some prior
efforts such as Columbus [22] for C++ and the UML metamodel [11]. There are some other
metamodels developed, such as Program Element Fact (PEF) developed in JTransformer [1],
and DIMPLE [10]. Graphs are the most popular format for storing program elements in
memory. TA [29] and TGraphs [20] are two examples, which are both based on typed graphs
(i.e., directed graphs with attributes on both nodes and edges). GXL [30] was introduced as
a generic way to use XML to represent such graphs. JunGL [57] uses some special graphs
along with abstract syntax trees.

This current work shares some similarities with these prior studies, such as the use of
logical programming to simplify the development of program analysis, and the creation of a
common program representation. However, this work differs from the prior studies in several
major aspects. First, it is the first work that points out the potential of ontology for the
program analysis community to standardize the conceptualization for program analysis, and
to promote the reuse and interoperations of analysis tools. It demonstrates the potential be-
nefits through the Liveness analysis by two full-fledged existing compilers. Second, this work
is the first that points out the benefits of ontology as a unified representation for not only
program elements and relations but also knowledge from other sources (e.g., hardware know-
ledge) that are essential for program optimizations. It demonstrates the promise through
GPU data placement optimizations. Third, unlike many of the prior studies that attempt to
create a standalone tool for program analysis (e.g., JTransformer [1], Semmlecode [58]), this
work aims to proposing an approach or a paradigm, which could potentially be employed by
many program analysis tools and compilers, as demonstrated by the expeirments described
in the previous section.

7 Conclusion

This work demonstrates the promise of ontology for overcoming the three major limitations
of today’s declarative program analysis. The five types of data analyses on PATO show
that a single ontology is able to support multiple different program analyses efficiently. The
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GPU data placement experiments indicate the promise of ontology for seamlessly linking
knowledge from different sources, extending declarative program analysis with the capability
to effectively guide program optimizations. The cooperative Liveness analysis demonstrates
that with ontology-based program analysis, cooperations among different compilers or other
program analysis tools become simple, and the synergy turns out to be quite beneficial.
Overall, the study shows some promise of the integration of ontology into program analysis.
Establishing this new way of program analysis, however, requires the development of an
ontology for Program Analysis and some deep investigation of the opportunities that onto-
logy may bring to program analysis and optimizations. We hope that this work will prompt
further investigations by the community into this promising direction2.
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