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Abstract
Music is a ubiquitous and vital part of the lives of billions of people worldwide. Musical creations
and performances are among the most complex and intricate of our cultural artifacts, and the
emotional power of music can touch us in surprising and profound ways. In view of the rapid and
sustained growth of digital music sharing and distribution, the development of computational
methods to help users find and organize music information has become an important field of
research in both industry and academia.

The Dagstuhl Seminar 16092 was devoted to a research area known as music structure analysis,
where the general objective is to uncover patterns and relationships that govern the organization
of notes, events, and sounds in music. Gathering researchers from different fields, we critically
reviewed the state of the art for computational approaches to music structure analysis in order
to identify the main limitations of existing methodologies. This triggered interdisciplinary dis-
cussions that leveraged insights from fields as disparate as psychology, music theory, composition,
signal processing, machine learning, and information sciences to address the specific challenges
of understanding structural information in music. Finally, we explored novel applications of
these technologies in music and multimedia retrieval, content creation, musicology, education,
and human-computer interaction.

In this report, we give an overview of the various contributions and results of the seminar.
We start with an executive summary, which describes the main topics, goals, and group activ-
ities. Then, we present a list of abstracts giving a more detailed overview of the participants’
contributions as well as of the ideas and results discussed in the group meetings of our seminar.
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In this executive summary, we start with a short introduction to computational music
structure analysis and then summarize the main topics and questions raised in this seminar.
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Furthermore, we briefly describe the background of the seminar’s participants, the various
activities, and the overall organization. Finally, we reflect on the most important aspects of
this seminar and conclude with future implications and acknowledgments.

Introduction

One of the attributes distinguishing music from other types of multimedia data and general
sound sources are the rich, intricate, and hierarchical structures inherently organizing notated
and performed music. On the lowest level, one may have sound events such as individual
notes, which are characterized by the way they sound, i.e., their timbre, pitch and duration.
Such events form larger structures such as motives, phrases, and chords, and these elements
again form larger constructs that determine the overall layout of the composition. This
higher structural level is specified in terms of musical parts and their mutual relations. The
general goal of music structure analysis is to segment or decompose music into patterns or
units that possess some semantic relevance and then to group these units into musically
meaningful categories.

While humans often have an intuitive understanding of musical patterns and their relations,
it is generally hard to explicitly describe, quantify, and capture musical structures. Because
of different organizing principles and the existence of temporal hierarchies, musical structures
can be highly complex and ambiguous. First of all, a temporal segmentation of a musical
work may be based on various properties such as homogeneity, repetition, and novelty. While
the musical structure of one piece of music may be explained by repeating melodies, the
structure in other pieces may be characterized by a certain instrumentation or tempo. Then,
one has to account for different musical dimensions, such as melody, harmony, rhythm, or
timbre. For example, in Beethoven’s Fifth Symphony the “fate motive” is repeated in various
ways – sometimes the motive is shifted in pitch, sometimes only the rhythmic pattern is
preserved. Furthermore, the segmentation and structure will depend on the musical context
to be considered; in particular, the threshold of similarity may change depending on the
timescale or hierarchical level of focus. For example, the recapitulation of a sonata may be
considered a kind of repetition of the exposition on a coarse temporal level even though
there may be significant modifications in melody and harmony. In addition, the complexity
of the problem can depend on how the music is represented. For example, while it is often
easy to detect certain structures such as repeating melodies in symbolic music data, it is
often much harder to automatically identify such structures in audio representations. Finally,
certain structures may emerge only in the aural communication of music. For example,
grouping structures may be imposed by accent patterns introduced in performance. Hence,
such structures are the result of a creative or cognitive process of the performer or listener
rather then being an objective, measurable property of the underlying notes of the music.

Main Topics and Questions

In this seminar, we brought together experts from diverse fields including psychology, music
theory, composition, computer science, music technology, and engineering. Through the
resulting interdisciplinary discussions, we aimed to better understand the structures that
emerge in composition, performance, and listening, and how these structures interrelate.
For example, while there are certain structures inherent in the note content of music, the
perception and communication of structure are themselves also creative acts subject to
interpretation. There may be some structures intended by the composer or improviser, which
are not fully communicated by symbolic descriptions such as musical score notation. The
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performer, if different from the composer, then must interpret structures from the score,
and decide on the prosodic means by which to convey them. When a listener then tries
to make sense of the performed piece, that act of sense-making, of constructing structure
and meaning from an auditory stream is also a creative one. As a result, different people
along this communication chain may come up with different solutions, depending on their
experiences, their musical backgrounds, and their current thinking or mood.

Based on our discussions of various principles and aspects that are relevant for defining
musical patterns and structures, the following questions were raised.

How can ambiguity in notions such as repetition, similarity, grouping, and segmentation
be handled and modeled?
In which way do these notions depend on the music style and tradition?
How can one account for the relations within and across different hierarchical levels of
structural patterns?
How can long-term structures be built up from short-term patterns, and, vice versa, how
can the knowledge of global structural information support the analysis of local events?
How can information on rhythm, melody, harmony, timbre, or dynamics be fused within
unifying structural models?
How can the relevance of these aspects be measured?
How do computational models need to be changed to account for human listeners?

By addressing such fundamental questions, we aimed for a better understanding of the
principles and model assumptions on which current computational procedures are based, as
well as the identification of the main challenges ahead.

Another important goal of this seminar was to discuss how computational structure
analysis methods may open up novel ways for users to find and access music information in
large, unstructured, and distributed multimedia collections. Computational music structure
analysis is not just an end in itself; it forms the foundation for many music processing and
retrieval applications. Computational methods for structuring and decomposing digitized
artifacts into semantically meaningful units are of fundamental importance not only for
music content but also for general multimedia content including speech, image, video, and
geometric data. Decomposing a complex object into smaller units often constitutes the first
step for simplifying subsequent processing and analysis tasks, for deriving compact object
descriptions that can be efficiently stored and transmitted, and for opening up novel ways
for users to access, search, navigate, and interact with the content. In the music context,
many of the current commercially available services for music recommendation and playlist
generation employ context-based methods, where textual information (e. g., tags, structured
metadata, user access patterns) surrounding the music object are exploited. However, there
are numerous data mining problems for which context-based analysis is insufficient, as it
tends to be low on specifics and unevenly distributed across artists and styles. In such cases,
one requires content-based methods, where the information is obtained directly from the
analysis of audio signals, scores and other representations of the music. In this context, the
following questions were raised.

How can one represent partial and complex similarity relations within and across music
documents?
What are suitable interfaces that allow users to browse, interact, adapt, and understand
musical structures?
How can musical structures be visualized?
How can structural information help improve the organizing and indexing of music
collections?
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Participants, Interaction, Activities

In our seminar, we had 31 participants, who came from various locations around the world
including North America (8 participants from the U.S.), Asia (2 participants from Japan),
and Europe (21 participants from Austria, France, Germany, Netherlands, Portugal, Spain,
United Kingdom). Many of the participants came to Dagstuhl for the first time and expressed
enthusiasm about the open and retreat-like atmosphere. Besides its international character,
the seminar was also highly interdisciplinary. While most of the participating researchers
are working in the fields of music information retrieval, we have had participants with a
background in musicology, cognition, psychology, signal processing, and other fields. This
led to the seminar having many cross-disciplinary intersections and provoking discussions as
well as numerous social activities including playing music together. One particular highlight
of such social activities was a concert on Thursday evening, where various participant-based
ensembles performed a wide variety of music including popular music, jazz, and classical
music. Some of the performed pieces were original compositions by the seminar’s participants.

Overall Organization and Schedule

Dagstuhl seminars are known for having a high degree of flexibility and interactivity, which
allows participants to discuss ideas and to raise questions rather than to present research
results. Following this tradition, we fixed the schedule during the seminar asking for
spontaneous contributions with future-oriented content, thus avoiding a conference-like
atmosphere, where the focus tends to be on past research achievements. After the organizers
have given an overview of the Dagstuhl concept and the seminar’s overall topic, we started the
first day with self-introductions, where all participants introduced themselves and expressed
their expectations and wishes for the seminar. We then continued with a small number of
ten-minute stimulus talks, where specific participants were asked to address some critical
questions on music structure analysis in a nontechnical fashion. Each of these talks seamlessly
moved towards an open discussion among all participants, where the respective presenters
took over the role of a moderator. These discussions were well received and often lasted
for more than half an hour. The first day closed with a brainstorming session on central
topics covering the participants’ interests while shaping the overall schedule and format
of our seminar. During the next days, we split into small groups, each group discussing a
more specific topic in greater depth. The results and conclusions of these parallel group
sessions, which lasted between 60 to 90 minutes, were then presented to, and discussed
with, the plenum. Furthermore, group discussions were interleaved with additional stimulus
talks spontaneously given by participants. This mixture of presentation elements gave
all participants the opportunity for presenting their ideas to the plenum while avoiding
a monotonous conference-like presentation format. Finally, on the last day, the seminar
concluded with a session we called “self-outroductions” where each participant presented his
or her personal view of the main research challenges and the seminar.

Conclusions and Acknowledgment

Having the Dagstuhl seminar, our aim was to gather researchers from different fields in-
cluding information retrieval, signal processing, musicology and psychology. This allowed
us to approach the problem of music structure analysis by looking at a broad spectrum
of data analysis techniques (including signal processing, machine learning, probabilistic
models, user studies), by considering different domains (including text, symbolic, image,
audio representations), and by drawing inspiration from creative perspectives of the agents
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(composer, performer, listener) involved. As a key result of this seminar, we achieved some
significant progress towards understanding, modeling, representing, extracting, and exploiting
musical structures. In particular, our seminar contributed to further closing the gap between
music theory, cognition, and the computational sciences.

The Dagstuhl seminar gave us the opportunity for having interdisciplinary discussions
in an inspiring and retreat-like atmosphere. The generation of novel, technically oriented
scientific contributions was not the focus of the seminar. Naturally, many of the contributions
and discussions were on a rather abstract level, laying the foundations for future projects and
collaborations. Thus, the main impact of the seminar is likely to take place in the medium to
long term. Some more immediate results, such as plans to share research data and software,
also arose from the discussions. As measurable outputs from the seminar, we expect to see
several joint papers and applications for funding.

Beside the scientific aspect, the social aspect of our seminar was just as important. We
had an interdisciplinary, international, and very interactive group of researchers, consisting
of leaders and future leaders in our field. Many of our participants were visiting Dagstuhl
for the first time and enthusiastically praised the open and inspiring setting. The group
dynamics were excellent with many personal exchanges and common activities. Some
scientists expressed their appreciation for having the opportunity for prolonged discussions
with researchers from neighboring research fields – some thing that which is often impossible
during conference-like events.

In conclusion, our expectations of the seminar were not only met but exceeded, in
particular with respect to networking and community building. We would like to express
our gratitude to the Dagstuhl board for giving us the opportunity to organize this seminar,
the Dagstuhl office for their exceptional support in the organization process, and the entire
Dagstuhl staff for their excellent service during the seminar. In particular, we want to thank
Susanne Bach-Bernhard, Roswitha Bardohl, Marc Herbstritt, and Sascha Daeges for their
assistance during the preparation and organizing of the seminar.
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3 Stimulus Talks

3.1 Computational Music Structure Analysis (or How to Represent the
Group’s Interests and Opinions in a Few Slides)

Juan Pablo Bello (New York University, US)

License Creative Commons BY 3.0 Unported license
© Juan Pablo Bello

In this talk, I have tried to identify areas of commonality and divergence in the abstracts
submitted before the seminar, with the goal of stimulating and seeding the discussions during
the Dagstuhl seminar.

First, I highlighted the wide range of applications of interest to the participants, including
those driven by musicological concerns like the analysis of Jazz improvisations, performances
of Wagner operas, metrical structures in Carnatic music, and notions of flow in Rap music;
music information retrieval applications such as automatic rhythm transcription from recorded
music, optical music recognition and understanding the structure of large music collections to
characterize patterns of originality; and more creative applications in augmenting live music
performances, algorithmic composition, the automatic creation of mashups and remixes, and
improving the workflow of music production. Paraphrasing Serra’s point, it is critical to
understand the differences between the signal’s properties, the application requirements, and
the user context, and design solutions accordingly.

And yet, the abstracts highlighted many common issues that cut across applications.
For example, the complex relational structure of music including multiple, hierarchical
levels of information with strong interdependencies, and the multi-faceted nature of music
information. Also the difficulty of defining notions of similarity and dissimilarity governing
those relationships, and of creating representations of music information that are either
invariant or sensitive to these patterns of similarity. It is generally agreed upon that current
computational methods fail to capture this complexity.

A number of methods and ideas were proposed for addressing this: Markov logic networks,
graph analysis, uncertainty functions, combinatorial optimization, statistical regularities
in annotations, the use of multiple and rich streams of information, the use of domain-
knowledge or the formulation of structural analysis as an information theoretical problem.
More fundamentally, the abstracts emphasized the need to revise core assumptions in past
literature, notably the shortcomings of the widespread ground-truth paradigm in the context
of a task that is ambiguous and thus lends itself to multiple interpretations and disagreements.
In this scenario, what should be the goal of computational approaches? To return all or
multiple interpretations? Or at least one interpretation deemed to be coherent (or reasonable,
plausible, interesting)? How do we define or benchmark coherence? Is this connected to
narrative, flow, grammatical consistency? These are open questions that the community
needs to address to move the field forward.

Finally, there is the question of the role of humans in the different stages of this process:
data collection, computational modeling and benchmarking, and whether the computational
task should be redefined as a way to gain insight on the human processing of musical
structures, and even the modeling of individual responses.

16092
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3.2 What You Hear and What You Must Make Others Hear
Elaine Chew (Queen Mary University of London, GB)

License Creative Commons BY 3.0 Unported license
© Elaine Chew

URL http://elainechew-research.blogspot.com/2016/03/new-thoughts-on-piano-performance-sound.html

Drawing is not form, but a way of seeing form.
Drawing is not what you see, but what you must make others see.

Drawing is not form, it is your understanding of form.
– Edgar Degas (Gammell 1961, p.22)

Music, and the performer or composer, works in much the same way. Alternative
interpretations or hearings of musical form and structure almost always exist. These
differences can be attributed to the listeners’ state of knowledge, prior expectations, attention,
and ontological commitment [1]. Given a particular hearing of musical structure, the
performer can project this structure in performance through musical prosody [2]. The
prosody of a musical communication strongly influences the listeners’ parsing of its structure
and meaning [3, 4]. In this talk, I gave numerous examples to show that structure emerges
from performances, and that performances serve as a rich and largely untapped source of
information about musical structure.

References
1 Smith, J. B. L., I. Schankler, E. Chew (2014). Listening as a Creative Act: Meaningful Dif-

ferences in Structural Annotations in Improvised Performances. Music Theory Online, 20(3).
http://www.mtosmt.org/issues/mto.14.20.3/mto.14.20.3.smith_schankler_chew.html

2 Chew, E. (2012). About Time: Strategies of Performance Revealed in Graphs. Visions
of Research in Music Education 20(1). http://www-usr.rider.edu/~vrme/v20n1/visions/
Chew%20Bamberger%20.pdf

3 Chew, E. (2016). Playing with the Edge: Tipping Points and the Role of Tonality. Music
Perception, 33(3): 344-366. http://mp.ucpress.edu/content/33/3/344

4 Chew, E. (2016). From Sound to Structure: Synchronizing Prosodic and Structural In-
formation to Reveal the Thinking Behind Performance Decisions. In C. Mackie (ed.):
New Thoughts on Piano Performance. http://elainechew-research.blogspot.com/2016/03/
new-thoughts-on-piano-performance-sound.html

3.3 Exposing Hierarchy Through Graph Analysis
Brian McFee (New York University, US)

License Creative Commons BY 3.0 Unported license
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Joint work of Juan Bello, Oriol Nieto, Dan Ellis, Brian McFee

In this talk, I presented a graphical perspective on musical structure analysis. While it is
common to treat the boundary detection and segment labeling problems independently (or at
least sequentially), viewing structure analysis as a graph partitioning problem can provide a
unified formalization of both tasks, and motivate new algorithmic techniques. By varying the
number of elements in the desired partition, it is possible to reveal multi-level or hierarchical
structure in music. I concluded with a discussion of current challenges in both algorithm
design and evaluation for hierarchical structure analysis.
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3.4 Music Structure: Seeking Segmentations or Scenes?
Cynthia C. S. Liem (TU Delft, NL)

License Creative Commons BY 3.0 Unported license
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Joint work of Mark S. Melenhorst, Martha Larson, Alan Hanjalic, Cynthia C. S. Liem

When I was asked to give a Stimulus Talk at this Dagstuhl seminar, I reflected on my own
past involvement with music structure analysis. As for me, this mostly fell into two categories:
first of all, homework assignments for music theory courses back in conservatoire. Secondly,
annotations I made for outcome visualizations of past research, in which developments over
the course of a music performance (e.g. timing [5] and movement [2]) would partially relate
to structure.

However, while I have always read work on automated music structure analysis in the
community with interest, somehow I never felt the urge to work on the problem myself.
Was it something I just took for granted, causing an interest mismatch similar to those
collected within the community after a past Dagstuhl seminar [4]? I came to realize my own
interests were not so much in localizing exact segment boundaries, but rather in the events
happening in between such boundaries – and their contextualization with respect to various
interpretations, at the performer and audience side.

In my talk, I reflected a bit more on this, discussing how notions of structure (even if
ambiguous) can be a means to tackling higher-level, bigger questions on how music is realized
and interpreted. I did this by discussing three topics:

the role of structure in musical interpretation [5];
the importance of narrative and linguistic event structure in music, when moving towards
the connection of music to other media [3];
the role of structure in assisting concert experiences of music audiences through digital
interfaces [1].

In my stimulus talk, I particularly emphasized the second of these topics. Besides, following
up on the third topic, in a separate demo session, I demonstrated the integrated prototype
(see http://www.phenicx.com) of our recently concluded European PHENICX project.
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3.5 Looking Beneath the Musical Surface
Christopher Raphael (Indiana University – Bloomington, US)
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In my talk, I discussed two interrelated music interpretation problems that are both essentially
about musical structure. The first deals with the problem of rhythm recognition. While
people effortlessly understand complex polyphonic rhythm from audio, in many cases it is
nearly impossible for a person or algorithm to correctly perform rhythmic transcription on a
sequence of uninflected taps or clicks. The slightest amount of inaccuracy or tempo change
can render the sequence ambiguous and “lose” the listener. The reason is that the sequence
of times leaves out a great deal of important information that is essential for organizing the
music. An interesting formulation of the problem tries to transcribe rhythm given a sequence
of onset times now labeled with their pitches, much like what one gets from MIDI stream.
The essential human strategy seems to employ a fundamental assumption: when we hear the
“same” thing it usually falls in the same position in the measure, beat or other unit in the
rhythmic hierarchy. This “same” thing could be a long note, a particular pitch configuration,
a short pattern such as a dotted rhythm, etc. This is, of course, the basis for structural
analysis by autocorrelation. While this idea is a powerful heuristic it is hard to formulate
generally. People are good at recognizing many kinds of variations on the “same” thing
though they can involve transformations on many different musical axes, such as leaving
out or adding decorative notes, shifting by an interval or chord inversion, contour inversion,
reharmonization, etc. The musical understanding seems to require that we identify these
variations as a kind of repetition in order to mentally organize the material at an equivalent
rhythmic location in the rhythmic structure (e.g. measure). Perhaps the recognition requires
that we learn these building blocks or motives in addition to the rhythm we seek to identify.
Thus we do not come to each new piece of music we try to understand with a fixed model
for rhythm and pitch, but rather recognize by adapting a flexible model to the data and
recognizing simultaneously. For instance, a possible recognition strategy could model the
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music as a sequence of measures with one of several possible types. Standard HMM parameter
estimation strategies could be employed to learn the pitch/rhythm tendencies of each of these
possible types while parsing the data according to these types. As we seek parsimonious
explanations we penalize our models to favor few types of measures. Aside from any specific
formulation, the essential idea is to recognize and model the music simultaneously.

An interesting and related problem is that of performing structural and motivic analysis
on a simple folk song, carol, anthem, etc, given in score form (rather than performance data).
While there could be many motivations for such analysis, one would be to create algorithms
that compose simple music that “makes sense” – this might avoid the repetitive music in
many computer games, instead providing an inexhaustible supply. As always, there is a
close relationship between analysis and synthesis, so it isn’t too far fetched to suppose that
an analysis engine could form the heart of an algorithmic composition system. Analysis of
even the simplest familiar folk song shows a tight reuse of figures and motives at various
time scales, while allowing for many possible variations. An algorithmic analysis might try
to represent the music in terms of simple building blocks, encoding the music in terms of
these basic figures as well as the necessary transformations that lead to the actual notes and
rhythm. One could view this approach as analysis by compression, where we seek the minimal
number of bits necessary to represent the music. We doubt the power of a strict Lempel-Ziv
compression seeking to represent music in terms of literal repetition, since repetition in music
is often not exact repetition. Rather one must learn the basic musical objects as well as
the transformations applied to them that lead to the musical surface. In formulating the
problem scientifically, it may begin with the familiar parsing through a probabilistic context
free grammar, though, as before, we do not believe in a generic grammar for music. Rather,
as with the previous problem, each piece has its own grammar which must also be learned as
part of the recognition strategy. How could one formulate this problem in a way that is both
musically plausible and tractable?

3.6 Computational Music Structure Analysis: A Computational
Enterprise into Time in Music

Anja Volk (Utrecht University, NL)
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In this talk I addressed the relation between computational music structure analysis and
the study of time in music. Computational music structure analysis requires the modeling
of time processes in music. Structures such as segments, salient patterns, rhythmic-metric
structures, and the like are inferred from either symbolic or audio musical content, taking
temporal information into account. Often it is crucial for the success of a computational
model for solving a specific task within music structure analysis what temporal information
is taken into account, such as whether large scale or local temporal information is considered.
However, even from the perspective of the human information processing in music, we often
know only very little about what temporal information we need to consider in a certain
context. While music has been argued to be the “art of time,” most theories of music have
been concerned predominantly with pitch and not with time, such that we are far from
understanding the different functions of time and temporal information in music [5].

Time is not only a challenging concept in music analysis, but in many disciplines: what
is time, how do we perceive time and how do we successfully employ time in our interactions
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with the world? While we do not have a sensory organ for perceiving time (as we have, for
instance, for colors), studies in cognition demonstrate that the auditory domain is superior
to other domains in processing temporal information [4], backing up that it is worthwhile
to investigate the different relations between music and time. What is the relation between
time as employed in the musical structure and our experience of time when we listen to and
make sense of music?

Understanding this relation would help us to employ temporal information in compu-
tational music structure analysis in such a way as to find meaningful elements of musical
structure, such as temporal building blocks. Current challenges regarding temporal informa-
tion and music structure analysis discussed during the seminar link to the question of what
is the interrelations between different temporal scales in music, such as between temporal
microstructure [3] (as studied in expressive timing), small-to-medium-scale temporal phenom-
ena (as studied in the area of rhythm and meter [6]), and medium-to-large scale temporal
phenomena (as studied in theories of musical form [2])? For instance, as discussed during the
seminar, automatically generating large scale music structures provides an unsolved issue in
automatic composition. In the area of rhythm and meter, we know little about the interaction
between rhythmic structures and other parts of musical structures, such as melodic patterns.
I discussed examples on the role of time for improving music structure analysis for tasks
such as repetition-based finding of segments [7], and the discovery of shared patterns in a
collection of Dutch folk songs [1]. Hence, computational music structure analysis can help to
elucidate the role of time in music for recognizing structure, as well as it will benefit from a
better understanding of the human processing of time in music.
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3.7 Defining the Emcee’s Flow
Mitchell Ohriner (Shenandoah University – Winchester, US)
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In discourse on rap music, the word “flow” takes on several meanings. On the one hand,
the flow of a verse is understood as all the musical features of the emcees rapping that
verse—rhythms, accents, rhyme, articulation, etc. Flow might also refer to less musical
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features such as word choice, topic, or reputation. On the other hand, emcees and critics
alike attest that individual emcees have a distinctive flow that transcends individual verses or
tracks. At the Dagstuhl seminar, using the emcee Black Thought as an example, I presented
a method for locating an emcee in a feature space through a large corpus of his verses in
comparison to another corpus representative of rap music generally.
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3.8 Richard Wagner’s Concept of ‘Poetico-Musical Period’ as a
Hypothesis for Computer-Based Harmonic Analysis

Rainer Kleinertz (Universität des Saarlandes, DE)
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In the third part of his large theoretical work Oper und Drama (Leipzig 1852), Wagner
developed the idea of a ‘poetico-musical period.’ Based on the drama (i.e. text and action),
he tries to motivate modulations: The musician (composer) would receive an incitement
to step outside the once selected key only when an opposite emotion occurs (e.g., “Die
Liebe bringt Lust und Leid.”). When this new, opposite emotion returns to the original
emotion (e.g., “Doch in ihr Weh auch webt sie Wonnen.”), then harmony would return in the
original key. In Wagner’s eyes the most perfect artwork would be that, in which many such
‘poetico-musical periods’ – as he calls them – present themselves “in utmost fulness.”

These pages on his Drama of the Future were applied to Wagner’s musical dramas by
Alfred Lorenz in his highly influential study Das Geheimnis der Form bei Richard Wagner
(4 vols., Berlin 1924–1933). Among others, Lorenz analyzed the entire Ring as a series of
such periods. In the 1960s, Carl Dahlhaus rejected Lorenz’ analyses as being completely
erroneous and against Wagner’s musical ideas. In 2002 Werner Breig postulated that the
concept should be ignored, as Wagner – when he coined it – had not yet composed a single
note of the Ring, and even the texts of Rheingold, Die Walküre, and Siegfried did not yet
exist. My own hypothesis – as published in [2] – is that Wagner had indeed something in
mind which he realized at least partly in his subsequent Ring composition: The concept of
the ‘poetico-musical period’ serves to describe more or less ‘closed’ parts of the Ring in which
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a strong emotional change motivates modulations leaving the original key and returning to
it. As a paradigmatical example for such a ‘poetico-musical period’ may serve Sieglinde’s
narration in the first act of Die Walküre with its two interior modulations out of and back
to the framing tonality of E minor. Consequently, the ‘poetico-musical period’ should not
be regarded as a mere ‘way’ of music between a certain tonality and its return, but as a
harmonic construct around a central modulation.

This musical-philological assumption of what Wagner may have had in mind when he
wrote Oper und Drama may serve as a meaningful hypothesis for computer-based harmonical
analysis. In a current research project of the Deutsche Forschungsgemeinschaft (DFG) – a
cooperation of Meinard Müller’s group in Erlangen and Rainer Kleinertz’ group in Saarbrücken
– harmonic analysis of the entire Ring based on audio data may allow a verification or
falsification of this hypothesis. This approach may become a paradigm for a cooperation
between historical musicology and computer science where the fundamentally different
methods of both disciplines are applied in favour of new objectified results. Hermeneutical-
musicological understanding and computer-based proceedings would allow new insights in
complex musical works.
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3.9 Large-Scale Structures in Computer-Generated Music
Mary Farbood (New York University, US)
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The generation of musical structure is closely related to (and in most cases dependent on)
the analysis of structure. Short-term musical structure has been effectively modeled in many
algorithmic composition systems ranging from those that compose music off-line such as
David Cope’s EMI to improvisatory systems such as François Pachet’s Continuator. These
systems often use Markov models or some type of generative grammar to create longer
sections of music from shorter segments or individual notes. The success of these systems
in composing convincingly human-sounding music is dependent on how well lower-level
generation and assembly of smaller segments make stylistic sense. Implementing a system
that produces convincing computer-generated music formalizes (at least to some extent) how
listeners intuitively perceive style. However, computer-generated music that is coherent and
interesting on a large-scale structural level is very difficult to achieve. No system currently
exists that produces aesthetically compelling music (at least from a structural perspective)
over long time spans. At Dagstuhl, we discussed this problem in the context of cognitive
constraints and aesthetic considerations.
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3.10 A Composer’s Perspective on MIR
Carmine-Emanuele Cella (École normale supérieure, F)

License Creative Commons BY 3.0 Unported license
© Carmine-Emanuele Cella

A sound transformation is, in a general sense, any process that changes or alters a sound
in a significant way. Transformations are closely related to representations: each action is,
indeed, performed on a specific representation level. For example, a time stretch performed
in the time domain by means of granular synthesis gives inferior results (perceptually) to
the same transformation performed in the frequency domain, where one has access to phase
information. In the same way, a pitch shift operated in the frequency domain gives inferior
results to the same operation performed using a spectral envelope representation, where one
has access to dominant regions in the signal.

In the two cases discussed above, we passed from a low-level representation (waveform)
to a middle-level representation (spectral envelope). We could, ideally, iterate this process by
increasing the level of abstraction in a representation, thus giving access to specific properties
of sound that are perceptually relevant; by means of a powerful representation it could
therefore be possible to access a semantic level for transformations.

An example will clarify the ideas outlined: suppose we want to elongate the minor chords
present in a sound by a certain factor, but only if they are located in non-transient regions.
At the same time, we want to pitch shift them by some semitones, but only if they are played
by a piano. Obviously, this kind of textual description is very easy to understand by humans,
but extremely difficult to code in an algorithm. We envision, therefore, the possibility in the
future to have such kind of semantic transformations.

3.11 Evolution and Salience
Geraint A. Wiggins (Goldsmiths, University of London, GB)
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My work is currently focused on a cognitive architecture that is intended to explain the struc-
turing of sequential and semantic information in the mind/brain. Because it is fundamentally
sequential, it is directly applicable to music and language. One aspect of the approach is
that it ought to explain what we mean by “salience” in our musicological discussions, in line
with the paradigmatic analytical approach of Ruwet, and the related psychological theory of
cue abstraction, due to Deliège [1]. There are several ways to look at music, and they can
tell us different things. One way is via evolution. When I consider music this way, in the
context of the information-processing view of mind, I am led to the notion of salience, which
is something we don’t often discuss in MIR.
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3.12 Beat Tracking with Music Structure
Roger B. Dannenberg (Carnegie Mellon University, US)
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I want to encourage more thinking about music structure as the “missing link” in music
understanding. The MIR community has made great progress in using larger datasets,
machine learning, and careful search and optimization to improve the performance of many
music understanding tasks, including beat tracking. However, our algorithms still make
obvious and silly mistakes, at least when viewed from a human perspective. My sense is
that most current algorithms for music understanding tasks are very selective about the
information they use. The information is highly effective for most problems, which is why
systems work at all, but when much of the available information is ignored, algorithms can
never be robust.

I believe that music is intentionally confusing and created in a way that demands attention
to many different aspects of rhythm, melody, and harmony. It is not clear why music works
this way, but it seems natural that music would exercise human intelligence, and the brain
does seem to enjoy making sense out of things, especially when they are not completely
obvious. If this is the way music works, then we must think about integrating many sources
of information in order to get our machines to understand music. Music understanding is
largely a problem of finding patterns and structure in music. For example, if we can identify
the structure of conventional music in terms of phrases and measures, most of the work of
beat tracking is done.

With this premise in mind, let us consider how we might use non-beat information to
help with the beat-tracking problem. This approach is mainly a review of an earlier ISMIR
paper [1], considered here in the context of this seminar on music structure. Nearly all beat
trackers optimize two basic things:

Beats and “beat features” are highly correlated. In other words, something in the signal
(amplitude change, increase in high frequencies, spectral difference) indicates where beats
are likely to occur.
Tempo is fairly steady. In other words, the spacing between nearby beats is about the
same.

These constraints are expressed differently in different beat tracking algorithms, but seem to
be the core principles.

I propose a third principle based on music structure that can provide additional informa-
tion: Where repetitions occur in music, the beats in the two repetitions should correspond.
For example, suppose a beat tracker labels a verse correctly at the beginning of a song and
the verse repeats later. Rather than relabeling the same music (and possibly getting it
wrong), this constraint tells us that the beats in the two sections should correspond; thus, we
have essentially labeled the beats just by identifying the structural repetition. Alternatively,
we can process these two repetitions as one. Then, we have twice as much information to
help us find the beats. Of course, the information may be conflicting, but generally it should
be easier to find one solution than two.

An implementation of this approach uses a self-similarity matrix based on chroma features
to find repetition in music. The result of this step is a set of continuous mappings from
one interval of time to another. There is one mapping for each repetition that is discovered.
Then, each time a beat is proposed at time t, we simply map t to all the places this beat
should be repeated and propose there must be beats at those locations as well. In practice,
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chroma-based alignments do not have high time resolution, so the mappings are not very
useful for placing single beats. However, we can modify the constraint to say that tempo
is consistent in repeated sections. Thus, when we place several measures of beats in one
location, we can use the mappings to assert the tempo in other locations. The tempo may
not be identical due to slight tempo changes during the performance, but the derivatives of
the mappings can be used to estimate the tempo change.

In practice, these constraints have been imposed through a gradient descent algorithm.
Essentially, a few beats are placed according to initial guesses based on the autocorrelation of
beat features. These guesses are replicated according to repetitions in the music. Then, beat
locations are adjusted to optimize the combination of all three constraints: beats correspond
to beat features, tempo is steady, and tempo is consistent across repetitions. The algorithm
continues by alternately proposing a few more beats (based on the steady-tempo principle)
and then optimizing using gradient descent, until the entire piece is covered by beats.

This is only one approach, presented to motivate thinking about ways we can use music
structure in music processing tasks. One of the problems with this approach in general is
that while structure can offer helpful information, the information can also be wrong and
misleading. Building more holistic algorithms does not guarantee improvement over simpler
approaches that benefit from being more tractable and more amenable to training with large
datasets. Another challenge is to jointly estimate structure along with information such as
tempo, beats, rhythm, and harmony.
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3.13 Can We Reach a Consensus on the Minimum Amount of
Originality to Regard a Piece of Music as Original?

Masataka Goto (AIST – Tsukuba, JP)
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In the age of digital music, future musicians may find it more difficult to be truly original in
the face of ever-expanding archives of all past music. The amount of digital musical pieces
that can be accessed by people has been increasing and will continue to do so in the future.
Since the amount of similar musical pieces is monotonically increasing, musicians will be
more concerned that their pieces might invite unwarranted suspicion of plagiarism. All kinds
of musical pieces are influenced by existing pieces, and it is difficult to avoid the unconscious
creation of music partly similar in some way to prior music. The monotonic increase in
musical pieces thus means that there is a growing risk that one’s piece will be denounced as
being similar to someone else’s.

To address this issue, we started a research project called OngaCREST [1] to build an
information environment in which people can know the answers to the questions “What is
similar here?” and “How often does this occur?” Although human ability to detect musical
similarity and commonness (typicality) [2] is limited for a large-scale music collection, future
advanced technologies would enable people to compute musical similarity between any pairs
of musical pieces and musical commonness of a musical piece to a set of pieces.
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Once such technologies could be available to compute musical similarity and commonness
in detail, people could naturally understand that any musical piece has similar pieces with
regard to some aspects. The concept of originality would then be discussed in a more
quantitative way and might be revised. If some (or most) aspects are always similar, how
can we measure the amount of originality? To be regarded as an original musical piece, how
many different aspects or elements should it have? Can we, as a global society, reach a
consensus on the minimum amount of originality to regard a piece of music as original?
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3.14 Let’s Untie Our Hands! Use All the Data You Have and Stop
Making Life Difficult

Mark Sandler (Queen Mary University of London, GB)
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At the Dagstuhl seminar, I said a few words on music structure analysis in the context
of a large project called “Fusing Audio and Semantic Technologies for Intelligent Music
Production and Consumption” (FAST-IMPACt) I am coordinating. Thinking about musical
structure, one needs to ask, who is this for? Is it for the professional in the studio (a
strong focus of FAST-IMPACt) or the consumer, or even for some intermediary needing to
make money somehow from the content – hopefully on behalf of the artists and creators?
The needs of different categories of user are very different. For the producer it is probably
connected with navigation around a particular piece of music in an ongoing project. For the
consumer/listener this could be true, but there is potentially the added need to navigate
within collections. (As I write I realise that the latter is also true for professionals, though
the collections are different!) Taking a step back, we can say that for many musics, what
we need to do to help these participants is analyse the audio signal and extract meaningful,
and above all, useful information from the audio. We need to do this to the best of the
capabilities of the available technologies and algorithms. Everyone would find this hard to
dispute, I think. Yet, why do we all, to my knowledge with zero (or close to) exception,
make use of anything but a monophonic down mix? I would therefore propose that we start
to investigate ways that use the maximum amount of data and information available to us,
and to stop making our investigations overly and unnecessarily difficult. I would start with
stereo signals – which I see some researchers describe as ‘legacy’!
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3.15 Towards an Information-Theoretic Framework for Music Structure
Frédéric Bimbot (CNRS/IRISA, Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Frédéric Bimbot

Music is a communication signal and the estimation of music structure is essentially an
information-theoretic problem. The structure S of a music content M can be understood
as the “proper type” and “right quantity” of latent side information which provides an
economical explanation of M by minimizing Q(M, S), i.e., the quantity of information needed
to jointly describe M and S. Two philosophies can support the definition of Q (see for
instance [4]):

Shannon’s Information (SI), also called lossy source-coding scheme, which relates inform-
ation Q to the distortion of M with respect to a prototypical structure itself derived from
a probabilistic model of all possible structures, and
Kolmogorov’s Complexity (KC), sometimes referred to as algorithmic compressibility,
which considers M as the output of a short, standalone program (within a class of valid
structure generating programs), whose size is related to Q.

Shannon’s approach is fundamentally a knowledge-based (inter-opus) approach, where
statistically typical forms provide templates that guide the recognition of music content
organization (stylistic structure). Kolmogorov’s framework is rather based on a data-driven
(intra-opus) viewpoint and focuses on internal redundancy as a primary criterion for grouping
musical material into consistent structural patterns (“semiotic” structure [1, 2]). Both
conceptions of information are meaningful, but understanding and exploiting their interaction
remains a fundamental scientific bottleneck – in MIR, in Computational Musicology, and also
in many other scientific domains. The duality between SI and KC in music is for instance
illustrated by Schenker’s [10] versus Narmour’s [7, 8] conceptions of music structure, and KC
approaches are becoming increasingly popular in MIR (see for instance [5]).

However, current approaches in Music Structure Analysis [6] fail in explicitly accounting
for both aspects simultaneously, even though they are presumably present with a different
balance across musical genres (this could be one of the causes of ambiguities in human
perception of structure [11]). Note that, even though, neither SI nor KC can actually be
calculated exactly, they can be estimated using models, i.e. family of distributions for SI
such as Hidden Markov Models (see for instance [9]) and classes of programs for KC (as
prefigured by the System & Contrast Model [3]). Approaching the diverse views of music
structure within the common framework of Information Theory appears as a relevant move
towards a better understanding of what music structure is, but also as a key for a more
efficient use of music structure in computational contexts. Though music is not a uniquely
decodable code, it can be assumed that the number of reasonable structural hypothesis is
sufficiently limited so as to be tackled in a relatively unified framework, encompassing the
two main facets of data compression (SI and KC). By understanding the interaction between
the “two sides of a same coin,” music could become a case study that would help bridging a
fundamental gap in Information Sciences.
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3.16 MorpheuS: Constraining Structure in Music Generation
Dorien Herremans, Elaine Chew (Queen Mary University of London, GB)
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A major problem with much of the automatically generated music is that it lacks a structure
and long-term coherence. We have defined the music generation problem as a combinatorial
optimization problem [2, 5]. The advantage of this approach is that it gives us the freedom
to impose both hard and soft constraints. These constraints can be used to define different
types of structure.

One example of a structure that can be imposed by hard constraints is based on repeated
and transposed patterns. The cosiatec pattern detection algorithm [3] was used to find
maximum translatable patterns. These patterns were then used to constrain the output of a
music generation algorithm called MorpheuS (http://dorienherremans.com/software).

A second form of structure, which is soft constrained, is a tension profile. This type
of tension could be relevant to, for instance, automatic generation of game or video music.
We have developed a model [4] that captures aspects of tonal tension based on the spiral
array [1], a three dimensional model for tonality. Our approach first segments a musical
excerpt into equal length subdivisions and maps the notes to clouds of points in the spiral
array. Using vector-based methods, four aspects of tonal tension are identified from these
clouds. First, the cloud diameter measures the dispersion of clusters of notes in tonal space.
Second, the cloud momentum measures the movement of pitch sets in the spiral array. Third,
the tensile strain measures the distance between the local and global tonal context. Finally,
the cosine similarity measures the directional change for movements in tonal space.
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The results of generating polyphonic piano music with constrained patterns and fit to a
tension profile are very promising and sound musically interesting. The reader is invited to
listen to full pieces generated by the algorithm at http://dorienherremans.com/MorpheuS.
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3.17 Using Prior Expectations to Improve Structural Analysis: A
Cautionary Tale

Jordan Smith (AIST – Tsukuba, JP)
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Annotations of musical structure tend to have strong regularities: average segment size is
roughly 20 seconds, the number of segments per annotation is roughly 12, and segments
usually have a uniform size, meaning that the average ratio of segment length to the median
segment length is very close to 1. These regularities are consistent even between different
collections of annotations, but are not often used by algorithms to refine estimates. By
treating these regularities as prior expectations, we can use a committee-based approach
to structural analysis: first, make several estimates using a variety of algorithms; second,
choose the estimate that is likeliest given the prior distributions. Although the method may
seem like ‘cheating’ (even when appropriate leave-one-out training regimes are followed), the
approach is guaranteed to give at least a modest gain in f-measure.

Except, we tried it, and it didn’t work. Why not? We are still trying to decide.
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3.18 Music Segmentation: of what, for what, for who
Xavier Serra (UPF – Barcelona, ES)
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Within the field of Computational Musicology, we study music through its digital traces,
or digital artifacts, that we can process computationally. Ideally we want to start from
data that is as much structured as possible and the goal is to extract musical knowledge
from it. However most current computational research is still focused on trying to increase
the structuring of the existing data by computational means. Music segmentation is a key
structuring element and thus an important task is to do this as automatically as possible.

Most, if not all, music data processing problems, and music segmentation is no exception,
should be approached by taking into consideration the following issues: What signal and
music are we processing? What application are we aiming at? Who is the user and context
being targeted?

Each type of music signal (including audio, symbolic scores, lyrics, etc.) requires different
segmentation methodologies and implies different segmentation concepts. Each musical
facet (including timbre, melody, rhythm, harmony, etc.) also requires a different music
segmentation strategy and can be used for different tasks.

The targeted application of a music segmentation process is also critical. It is very
different wanting to perform music analysis for music understanding or wanting to solve
some engineering task-driven problem. It is nice when a task-driven problem can be based
on a musically grounded concept, but it is not always possible, nor even adequate.

Personal subjectivity, cultural bias, and other contextual issues greatly affect the concept
of music segmentation. The analysis approach has to take that into account and assume that
the results obtained should be different depending on the context being targeted.

In general, the concept of music segmentation means many things, even within the
MIR community. Maybe the most common meaning relates to music structure, which is a
musically grounded concept. But strictly speaking, practically all music processing tasks
have an implicit or explicit segmentation, and this segmentation has a big impact on the
results obtained. We process music signals by first segmenting them into discrete events,
such as audio samples, audio frames, symbolic notes, phrases, songs, and so on. We use a
multiplicity of segments with more or less agreed definitions and standard approaches to be
computed. Clearly any particular piece of music has many possible multilevel segmentations
that might be of use for different applications and different contexts.

As a summary I want to emphasize that we cannot talk about music segmentation without
taking into account

the type of signals we start from,
the targeted application, and
the particular context in which the signal and application is part of.

In the project CompMusic (see http://compmusic.upf.edu), we have worried about these
three issues. Let me go through what has been our approach.

With respect to the issue “of what,” we have focused on the musical repertories of five
music cultures: Hindustani, Carnatic, Turkish-makam, Beijing Opera, and Arab-Andalusian.
The data we have been processing has been mainly audio recordings, scores, and editorial
metadata. We also have extracted audio features from the audio recordings that are then
used as inputs to other processing tasks. Segmenting the audio and the scores in a unified
way has been an important task in some of the music repertories.
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With respect to the issue “for what,” our main goal has been to develop tools and systems
with which to explore the selected musical repertories. Dunya (see http://dunya.compmusic.
upf.edu) is one of the prototypes we have developed in order to evaluate the developed
technologies, a prototype that can be used to explore the music collections we have compiled
and with it you can listen to music pieces while visualizing information that can help the
understanding and enjoyment of the music.

With respect to the issue “for who,” we have aimed at developing tools that can be of
interest to the music lovers of each of the music traditions we have been studying. Thus we
target people with some knowledge of the music they are exploring and listening to.

3.19 Flexible Frameworks for the Analysis of Rhythm and Meter in
Music

Andre Holzapfel (OFAI-Wien, AT)
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In a recent study [1] on metered Turkish makam music performance, we illustrated differences
in the ways notes are distributed in compositions from different cultures. Based on these find-
ings, we are now able to track meters that go beyond simple meters in 4/4 and 3/4. However,
our evaluation measures are tailored towards simple/symmetric meters, our evaluation data is
limited in style, annotations are mostly from one annotator, and in most cases only the beat
is annotated, while other metrical layers are ignored. Recent developments both in Bayesian
Networks and Deep Neural Networks push the state of the art in meter tracking to a new level.
However, how far can we go given the limited amounts of annotated data, and possibly more
importantly, the limited amount of understanding of musics that we engineers have about
the diverse structures we aim to subject to a correct analysis? We developed a Bayesian
framework [2] for meter tracking in music that is able to track meter, given a small amount of
annotated representative samples. A Bayesian framework allows to adapt the model to new
features, and to different types of tempo and meter properties. In a discussion of important
steps to take in future, I would like to emphasize that including a complete set of observables
into account is highly timely; Learning meter in Indian music without looking at performers
seems odd. Furthermore, music performances are shaped by humans who move and breathe
together, and the aspects in which their various biosignals correlate remain widely unknown.
In short, we need methodologies for the sophisticated observation of performance events. But
still, they will not reveal the meanings and mental representations that these structures are
evoke in various contexts. I believe that in this aspect interdisciplinary collaborations between
music psychology, engineering, and ethnomusicology can indicate promising directions that
go beyond observationalism towards a more complete understanding of music, driven by
sophisticated computational analysis.
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3.20 Music Structure: Scale, Homegeneity/Repetition, Musical
Knowledge

Geoffroy Peeters (UMR STMS – Paris, FR)
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In my talk at the Dagstuhl seminar, I discussed three aspects of automatic music structure
estimation.

The first aspect relates to the temporal scale considered when trying to estimate the
structure (i.e., the duration of the segments). This scale is usually a priori unknown. To solve
this issue, we proposed in [1] to use a multi-scale approach in which a set of checkerboard-
kernels of increasing size is used to segment a given self-similarity matrix.

The second aspect relates to the underlying process that creates the structure. Currently
two major assumptions are used: homogeneity/novelty and repetition [3] leading to the
so-called “state” and “sequence” approaches [5]. Also, this underlying process is typically a
priori unknown. To solve this issue, we proposed in [2] a joint estimation based on the two
assumptions leading to a large increase in the estimation results.

Finally, I discussed how musical structure can be estimated exploiting musical knowledge.
As an example, I reviewed our work [4] on the joint estimation of chord, key, and structure,
were the structure arises from the variation of chord perplexity at the end of each segment.
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4 Further Topics and Open Problems

4.1 Musical Structure Analysis for Jazz Recordings
Stefan Balke, Meinard Müller (Universität Erlangen-Nürnberg, DE)
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Analyzing jazz recordings by famous artists is the basis for many tasks in the field of jazz
education and musicology. Although jazz music mainly consists of improvised parts, it follows
common structures and conventions which allow musicians to play and interact with each
other. For example, at jam sessions and in traditional jazz recordings, musicians introduce
a song by playing its main melody based on a characteristic harmonic progression. This
part is also called the head-in. Afterwards, this progression is repeated while the melody
is replaced by improvised solos by the various musicians. After all solos have been played,
the song is concluded with another rendition of the main melody, a part also referred to
as head-out. Based on this musical knowledge, we investigated automated methods for
detecting (approximate) repetitions of the harmonic progression, certain melodic elements,
and transitions between soloists as cues to derive a coarse structure of the jazz recording. The
discussions at the Dagstuhl seminar showed that the integration of specific domain knowledge
is essential for dealing with the possible musical and acoustic variations one encounters in
jazz music.
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4.2 On the Role of Long-Term Structure for the Detection of
Short-Term Music Events
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In MIR it is often assumed that there is a universal “ground truth” to music events such as
beats, downbeats, chords, and melodic lines. This conveniently ignores the fact that music
analysis is an interpretative task, with multiple outcomes possible. But, if there is no single
answer, what should we expect from computational approaches?

One possible objective is to produce at least one valid answer, one that could have
plausibly been produced by a human. I would argue that plausibility is partly a function of
the long-term structural coherence of the system’s output, an aspect that is largely ignored
during the design, training and evaluation of current approaches. As a result, music event
detection is typically performed as a series of short-term, (semi-)independent tasks, with
outputs that are often incoherent and thus implausible.

Take for example chord estimation, where methods are trained on maximum likelihood
objectives derived from windows of information rarely spanning more than a single chord;
dynamic models, whenever used, are almost certain to have short memories; and evaluation
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is based on an aggregation of the accuracy of short-term detections. Earlier work tried to
leverage long-term repetitions to enhance the robustness of feature representations with
promising results [1, 2], but those strategies have not been widely adopted, having next to
no impact on the feature extraction, model training and evaluation methodologies currently
in use.

During the Dagstuhl seminar we have discussed the multiple ways in which the long-term,
hierarchical structure of musical pieces can be used to improve the validity, and thus usability,
of computational music analyses. However, some of these issues were only discussed briefly
and tentatively, and much remains open for future discussion and development within the
community.
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4.3 Mid-level Representations for Rhythmic Patterns
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For music retrieval and similarity search, one important step is to convert the music data
into suitable mid-level features. Ideally, these representations should capture relevant
characteristics of the music while being invariant to aspects irrelevant for the given task.
For example, rhythmic patterns that are played in different tempi may be perceived as
similar by human listeners, while being numerically quite different. In this context, one
requires mid-level representations that capture rhythmic characteristics while being invariant
to tempo changes. During the Dagstuhl seminar we revisited different mid-level features
that have been proposed in earlier works to capture rhythmic information. An established
technique for analyzing rhythmic patterns is based on computing a local version of the
autocorrelation function (ACF) of some onset-related function [1]. Together with Andre
Holzapfel, we discussed open issues related to applying the scale transform [3] to rhythmic
patterns for improving tempo invariance. In a follow-up discussion with Brian McFee, we
highlighted the relation between the scale transform and the Log-lag ACF [2]. Together with
Frank Kurth, we investigated the suitability of shift-ACF [4] for characterizing rhythmic
structures with multiple repetitions.
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4.4 Representation of Musical Structure for a Computationally
Feasible Integration with Audio-Based Methods

Sebastian Ewert (Queen Mary University of London, GB)
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In terms of terminology, “musical structure” has been used in several, different contexts. In
one interpretation, musical structure is essentially equivalent to musical form, which can be
considered as a genre or rather style specific definition of the expectation of how a piece
is composed on a rather global level. Another interpretation of structure is closer to the
corresponding mathematical notion, where structure yields properties and regularity.

Both interpretations lead to various interesting questions. In the context of the first
interpretation, a popular task is to determine the temporal boundaries of elements used to
describe the form, such as the chorus in pop music or the recapitulation in a sonata form.
One group of methods focuses on the detection of boundaries by detecting novelty or sudden
changes in terms of a feature representation. This is essentially equivalent to a local, focused
expectation violation of some sort. In this context, we discussed what this means for various
music and composition styles, and how this could be expressed computationally using audio
recordings as input.

This is directly connected to a question we raised in the context of the second interpretation
of structure. Here, structure can refer to various regularities or expectations about the
harmony, the rhythm, the melody or any other musical concept. In this context, music signal
processing as a field has been criticized for not making enough use of these properties to
obtain better results in specific tasks. While this criticism is valid it often leads to simplifying
conclusions about the underlying reasons for why structure is neglected. In particular, a
major obstacle is that the detection of musical low-level events is still an unsolved problem
(e.g. note transcription). Therefore, good signal processing methods typically avoid making
hard decisions (e.g. “This is a C-major chord”) but preserve uncertainty in a model as long
as possible. This, however, leads to an exponential explosion of the underlying state space
for longer time ranges and, therefore, we simply often cannot represent or integrate complex
expectation models that require long time ranges – at least not using classical, symbolic
Bayesian modelling techniques.

Recently, neural networks, in contrast to attempts modelling expectations explicitly,
express expectations implicitly and thus can be used to build complex language models (i.e.
expectation models) for polyphonic music, even down to a note level. This led to measurable
but small improvements in tasks such as music transcription, and thus can be considered as
a first step. A more recently developed mathematical tool are uncertainty functions, which
avoid an explosion of the state space similar to neural network language models but at the
same time enable the integration of explicit knowledge (to some degree). In this context,
wed discussed approaches and best practices to representing musical structure for specific (!)
cases, where the Bayesian network philosophy fails – in particular with respect to usable,
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practical ways for integrating such representations into audio signal processing methods while
preserving computational feasibility.

4.5 Robust Features for Representing Structured Signal Components
Frank Kurth (Fraunhofer FKIE – Wachtberg, DE)
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In the last years we have developed several features for robustly representing repeating signal
components [1]. A main focus in this was the robust detection of such signal components
in real-world audio recordings. Applications included bioacoustical monitoring [2] (e.g.,
detection of repeating bird calls or sounds of marine mammals) and speech detection [3]. In
the latter, the harmonic structure of voiced signal parts constitute the repeating components.
One of my interests during the Dagstuhl seminar was to discuss possible applications of such
features in music structure analysis.

Generally speaking, repetitions can be seen as building blocks for more complex structure
elements of audio signals, which is particularly obvious for music. Thus, another interesting
thing discussed at the seminar was that of possible generalizations of the repetition-based
features proposed in [2] to represent such complex structures. As a third possible application,
the usability of such features to the extraction and separation of mixtures of repeating
components (e.g, for multipitch extraction [3] or the detection of overlapping rhythmic
components) was discussed.

References
1 Frank Kurth. The shift-ACF: Detecting multiply repeated signal components. In Proc.

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA),
New Paltz, NY, USA, 2013.

2 Paul M. Baggenstoss and Frank Kurth. Comparing Shift-ACF with Cepstrum for Detec-
tion of Burst Pulses in Impulsive Noise, Journal of the Acoustical Society of America
136(4):1574–1582, 2014.

3 Alessia Cornaggia-Urrigshardt and Frank Kurth. Using enhanced F0-trajectories for Mul-
tiple Speaker Detection in Audio Monitoring Scenarios. In Proc. of the European Signal
Processing Conference (EUSIPCO), Nice, France, pages 1093–1097, 2015.

4.6 Reversing the Music Structure Analysis Problem
Meinard Müller (Universität Erlangen-Nürnberg, DE)
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The general goal of music structure analysis is to divide a given music representation
into temporal segments that correspond to musical parts and to group these segments
into musically meaningful categories [1, 2]. In general, there are many different criteria
for segmenting and structuring music. For example, a musical structure may be related
to recurring patterns such as repeating sections. Or a certain musical sections may be
characterized by some homogeneity property such as a consistent timbre, the presence of a
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specific instrument, or the usage of certain harmonies. Furthermore, segment boundaries may
go along with sudden changes in musical properties such as tempo, dynamics, or the musical
key [1]. When recognizing and deriving structural information, humans seem to combine
different segmentation cues in an adaptive and subjective fashion [3]. The listener-dependent
and context-sensitive relevance of different segmentation principles make structure analysis
an extremely challenging task when approached with computer-based systems. During the
Dagstuhl seminar, we discussed a task that may be regarded as a kind of reversal of the
structure analysis problem: Given a structure annotation made by a human listener, find out
possible segmentation cues that support the annotation. A similar task was suggested by
Smith and Chew [4], where a given structure annotation was used to estimate the relevance
of features at certain points in the music recording. During the Dagstuhl seminar, we
extended this discussion by not only considering the relevance of certain feature types (e.g.
representing instrumentation, harmony, rhythm, or tempo), but also the relevance of different
segmentation principles based on repetition, homogeneity, and novelty. What are the musical
cues used for deriving a specific segmentation boundary? Is there an unexpected musical
event or a sudden change in tempo or harmony? Did the listener recognize a repeating
section or a familiar phrase? Finding answers to such questions may help better understand
what one may expect from automated methods and how to make computer-based approaches
adaptive to account for a wide range of different segmentation cues.
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4.7 Approaching the Ambiguity Problem of Computational Structure
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The identification of music segment boundaries has shown to be ambiguous; two subjects
might disagree when annotating the same piece [1, 7]. This exposes a significant problem when
developing computational approaches, which tend to be evaluated against references composed
of a single annotation per track. These inadequately called “ground-truth” annotations will
likely yield spurious results as long as they do not capture the inherent ambiguity of the
given task.

In this seminar we discussed various ideas to approach this ambiguity problem:
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To make use of as many human annotations as possible when evaluating an algorithm’s
estimation for a specific music track. The SALAMI [7] and SPAM [5] datasets already
contain multiple annotations for each piece.
To weight each boundary based on a confidence value. It has been shown that humans
generally agree when stating the per-boundary confidence of their annotations [1].
To produce more than a single estimation. Let the user decide which estimation fits best
her needs.
To design and re-think current evaluation metrics using cognitive studies. Computational
methods should produce estimations that are better aligned to perceptual cues. An
example of this has already been published in [6].
To annotate and estimate hierarchical boundaries. An algorithm can then be tuned to
specific layers in the reference annotations. The depths of these hierarchies might differ
based on the annotator, but some layers might contain a smaller amount of variations,
thus reducing the ambiguity when focusing on them. Recent work towards computational
hierarchical approaches can be found in[2, 3, 4].
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4.8 Multi-Level Temporal Structure in Music
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Human beings process the global musical context in a holistic fashion. Music signals exhibit
a complex relational structure at multiple representation levels. They convey multi-faceted
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and strongly interrelated information (e.g harmony, melody, metric, semantic structure),
which are structured in a hierarchical way. For instance the highest-level expression of
the structure (segmentation into verse/chorus, ‘ABA’ form etc) is dependent on musically
lower-level organization such as beats and bars. Another example is that there is often a
strong similarity between the chord progression of two semantically same segments.

Current computational models in MIR are limited in their capacities of capturing this
complex relational structure. They usually have a relatively simple probabilistic structure
and are constrained by limiting hypotheses that do not reflect the underlying complexity
of music. In particular, during the Dagstuhl seminar, the problem that music analysis is
typically performed only at a short time scale has been discussed. A stimulus talk on the
use of semantic structure to constrain a beat tracking program has highlighted the benefit
of combining longer-term analysis with shorter-term event detection (see also the abstract
of Section 4.2 titled “On the Role of Long-Term Structure for the Detection of Short-Term
Music Events”). How the hierarchical temporal structure of music can be described is a
question that has been briefly evoked, but it remains an open discussion.

The work carried out in the emerging research area of Statistical Relation Learning offers
very interesting ideas for modeling multi-relational and heterogeneous data with complex
dependencies. In particular the framework of Markov logic networks (MLNs), which combines
probability and logic, opens compelling perspectives for music processing. They seem suitable
to design a multi-level description of music structure at various time scales (beat, measures,
phrase, etc.) in which information specific to the various strata interact. In addition to
encompassing most traditional probabilistic models (e.g. HMM), this framework allows
much more flexibility for representing complex relational structure. For instance, earlier
work have used structural repetitions to enhance chord estimation [1]. In a piece of music,
repeated segments are often transformed up to a certain extent and present variations from
one occurrence to another. Although usually strongly related, chord progressions in such
repeated segments may not be exactly the same. Such variations can be accommodated by
MLNs [2].

Also, among other appealing features, MLNs allow building probabilistic models that
incorporate expert knowledge (constraints) in a simple and intuitive way, using logical rules.
Using a language that is intuitive may be a way to make easier collaborations between
musicologists and computer science people (see also the abstract of the working group
“Computation and Musicology” in Section 5.8).
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4.9 The Ceres System for Optical Music Recognition
Christopher Raphael
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We presented our current state of the art in optical music recognition (OMR) with a
demonstration at the Dagstuhl conference.

The core recognition performed by our Ceres system system understands and represents the
grammatical relationships between music notation primitives (note heads, beams, accidentals
etc.) necessary for useful results. Within this context, the various recognition problems are
cast as dynamic programming searches that seek the grammatically-consistent representation
of an object best explaining the pixel data.

In addition to the core recognition technology, Ceres is a human interactive system in
which the user guides the computer in understanding a music document. Within Ceres the
user can choose candidates for symbol recognition (chords, beamed groups, slurs, etc.). After
recognition the user can correct errors in two ways. In the first, the user labels individual
pixels with a symbol or primitive type (beam, open note head, accidental, etc), while the
system then re-recognizes subject to the user-imposed constraint. In the second, the user can
change basic parameters of the recognition models, while the system re-recognizes according
to the new model. For instance, we may allow or disallow augmentation dots, beams that
span grand staves, two-way stems, or other possible model variations. The combination gives
a flexible tool for resolving recognition problems that doesn’t require any understanding of
the inner workings of the system.

Our goal is to create a tool that serves as the foundation for a global effort to create large,
open, symbolic music libraries. Such data are needed for digital music stands, computational
musicology and many other uses. For this goal to be achieved, we must create a system
where high-quality symbolic data can be created efficiently. During the Dagstuhl workshop
we identified a useful partnership with Meinard Müller’s group, who hope to use OMR, and
the resulting symbolic music representations, to relate music scores to audio and allow search
and retrieval. We look forward to pursuing this collaboration.

4.10 Musical Structure Between Music Theory, Cognition and
Computational Modeling

Martin Rohrmeier (TU Dresden, DE)
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The experience of music relies on a rich body of structural knowledge and the interaction of
complex cognitive mechanisms of learning and processing. Even seemingly simple everyday
listening experiences, such as the build up of musical tension, instantaneous recognition of
a “sour” note, recognition of a variation of a familiar tune or the surprise caused by an
unexpected turn of phrase, rely on a body of (largely implicit) structural knowledge. The
understanding of such varieties of musical experiences lies in the interdisciplinary intersection
between music theory, music cognition and computational modeling [5]. Various music-
theoretical approaches proposed formalizations of high-level syntactic relations in music (e.g.
[3, 4, 1]. Some of the theoretical proposals have been evaluated in experimental research (see,
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e.g. [2, 8]), yet the scientific potential in exploring music perception in the overlap of theory,
psychology and computation remains large. During the Dagstuhl seminar, we discussed in
which ways progress in complex high-level computational models of human music listening as
well as in future MIR applications can be achieved by taking into account interdisciplinary
insights developed in the intersection of music theory and music cognition.
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4.11 Accessing Temporal Information in Classical Music Audio
Recordings

Christof Weiß, Meinard Müller (Universität Erlangen-Nürnberg, DE)
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Music collections often comprise documents of various types and formats including text,
symbolic data, audio, image, and video. For example, in one of our projects, we are dealing
with operas by Richard Wagner, where one has different versions of musical scores, libretti,
and audio recordings. When exploring and analyzing the various kinds of information sources,
the identification and establishment of semantic relationships across the different music
representations becomes an important issue. For example, when listening to a performance
given as CD recording, time positions are typically indicated in terms of physical units such
as seconds. On the other hand, when reading a musical score, positions are typically specified
in terms of musical units such as measures. Knowing the measure positions in a given
music recording not only simplifies access and navigation, but also allows for transferring
annotations from the sheet music to the audio domain (and vice versa). In our Wagner
project, we have started to annotate measure positions within various performances for the
opera cycle “Der Ring des Nibelungen” either supplied by human annotators or generated
by automated music synchronization techniques. Surprisingly, even the manually generated
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annotations (not to speak of the annotations obtained by automated methods) often deviate
significantly.

At the Dagstuhl seminar, we presented this scenario and reported typical problems. In
particular, we discussed why and to which extent the task of identifying measure positions in
performed music is ambiguous and what the (musical) reasons for highly deviating measure
annotations are. Furthermore, we raised the question how one should evaluate automated
procedures in the case where human annotators disagree. Over the course of the seminar, we
found similar problems in the work of other participants. In particular, the issue of ambiguity
when determining structural relevant time positions was an ongoing topic throughout the
seminar.
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5 Working Groups

5.1 Human-in-the-Loop for Music Structure Analysis
Participants of Dagstuhl Seminar 16092
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Most of prior research on music structure analysis can be found in the realm of popular
music. Typically, one starts with an audio recording which is then split up into segments
by the system based on principles such as repetition, novelty, and homogeneity [5, 6]. Each
part may then be labeled with a meaningful description such as intro/verse/chorus or a
symbol ‘A’ as shown in the AABA form. Although the perception of structures is highly
subjective, a tremendous amount of work has been proposed on developing segmentation
algorithms for music structure analysis, and more importantly, on the evaluation metrics
for such algorithms [9, 5, 4, 7]. However, tasks such as analyzing formal structure in
tonal music require musically trained experts, who often disagree with each other in their
annotations because of the ambiguity or complexity in music compositions [2]. In such cases,
interactive systems that incorporate humans in the loop [8] or that are based on active
learning approaches seem promising.

In this working group discussion, we shared best practices for collecting data from
participants [3, 1]. We also discussed the importance of asking suitable questions to obtain
meaningful answers relevant for the desired structure analysis task. Obtaining a large amount
of high-quality annotated data from trained and motivated participants remains a challenge
for all disciplines. However, such data, enhanced by multiple structure annotations, is
especially important for MIR due to structural ambiguities (i.e., natural variations) in music.
Also, multiple annotations allow for eliminating incorrect or clarifying flawed annotations. In
summary, framing a question from the perspective of musicology and music cognition with
quantifiable measures is one key for music structure analysis. Also, targeting an application
and understanding its users may render the difficult evaluation task more feasible.
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5.2 Computational Methods
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This working group discussion began by examining the performance gap between human
annotators of musical structure and computational models. One key question was how to
close this gap primarily by leveraging what is in the signal while recognizing that some
important information used by human annotators may not be there. To this end, two different
approaches were discussed in detail – one which already exists and the other which was more
abstract.

The deep neural network approach of Grill and Schlüter at OFAI [1]. The group questioned
whether this highly effective system was being optimized according to the best evaluation
metric, and posed a secondary hypothetical question: Could such a deep architecture
learn wrongly-labeled structural boundaries?
Theoretical large scale graphical model that extracts “everything.” This theoretical
approach was discussed based on evidence that some tasks which are trained across two

16092

http://www.dagstuhl.de/dagpub/978-3-939897-37-8
http://www.dagstuhl.de/dagpub/978-3-939897-37-8
http://www.terasoft.com.tw/conf/ismir2014/tutorialschedule.html
http://www.terasoft.com.tw/conf/ismir2014/tutorialschedule.html
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


184 16092 – Computational Music Structure Analysis

simultaneous (but related) tasks can outperform those trained only on one. However, the
importance of defining precisely which tasks should be estimated in parallel (e.g., key,
structure, chords, beats, downbeats, onsets, and so on) was considered essential.

The working group recognized the extremely high computationally demands required to
run such a model, and the unresolved issue of how to train it – in particular whether all the
different layers really would interact with each other equally. The group considered how key
and beat information are not strongly related, but that keys are linked with chords, and
beats can be associated with chord changes. A further issue concerned how to account for
the fact that not all dimensions of interest might be present in the signal being analyzed.
Hence, such a system would be ineffective without a measure of confidence or salience in
relation to the presence or absence of such dimensions.

In summary, the group determined that it was not fruitful to attempt to build a huge
model of everything musical (in this sense, it could be considered an anti-grand challenge for
computational music structure analysis). Instead, the most promising next step in relation to
computational models should be to identify cases where there is a meaningful and well-defined
interaction between different sources of information, such as the approaches by Holzapfel
et al. [2] (jointly considering beat, tempo, and rhythm), Dannenberg [3] (combining beat
tracking and structural alignment), or Papadopoulos et al. [4] (jointly estimating chords
and downbeats). Finally, the group revisited the issue of evaluation and how the calculated
accuracy scores could be revisited in order to optimize new computational methods to the
most perceptually valid measures of performance.
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5.3 Applications of Music Structure Analysis
Participants of Dagstuhl Seminar 16092
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This working group focused on discussing application scenarios for music structure analysis.
We began with an attempt to categorize existing applications into more scientifically and
practically oriented ones. The group identified a number of applications of practical relevance
in areas such as music appreciation and interaction, automatic music generation, music
education and teaching, music repurposing, video production, as well as toys and games.
Further examples of commercial applications using music structure analysis are, for example,
Adobe Premiere Clip and Jukedeck. As for the scientific applications, the group concluded
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that music structure analysis is essential to reduce the complexity of music, test theories
of perception, music generation, and musicology in general. The idea was brought up that,
instead of struggling to reveal structural elements derived from existing music theory, music
structure analysis could be applied to infer propositions for a music theory in contexts where
such a theory has not yet been developed. Especially for oral music traditions this might be
a promising direction for future research. Diverse findings from practical experiences were
brought up throughout the discussion. For example, in the automatic creation of mash-ups,
downbeats are the most important kind of structural information. The problem of recruiting
and keeping users interested in the evaluation of music structure analysis results expanded
upon for the case of the PHENICX project, see [1].
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5.4 Rhythm in Music Structure Analysis
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This working group discussed issues that relate rhythm analysis to music structure analysis.
On the one hand, there is a multitude of MIR tasks that involve rhythm such as beat,
downbeat and tempo tracking, microtiming analysis, onset detection, and time signature
estimation. On the other hand, conventional approaches to music structure analysis are
often based solely on timbre and harmony, but neglect aspects related to rhythm. Recently,
significant performance improvements have been achieved in tempo and meter tracking even
for difficult music with soft onsets and varying tempo [2]. However, from a musicological
point of view, rhythm has too often been studied in isolation from related concepts. The
group discussed and identified a number of grand challenges and open issues related to
rhythm analysis.

The importance of microtiming for groove styles and short-term temporal structure [3, 1].
Interaction between rhythm and other musical properties relevant for musical structures.
Tracking of structures above the measure level (supra-metrical levels).
Robust downbeat tracking.
Exploiting larger scale repetitions for analyzing rhythmic patterns.
Discrimination of expressive timing from bad timing.
Visualization of conducting styles and gestures that shape the tempo.
Identification of metrical levels that go into body movement in dance music.
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5.5 Similarity in Music Structure Analysis
Participants of Dagstuhl Seminar 16092
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In this working group, we discussed the importance of music similarity. Early on, we agreed
that the measurement of music similarity by computational means is the key ingredient for
music structure analysis. Unfortunately, there is no general definition of similarity readily
available, as the concept depends on the signal’s properties, the application context, and
the user background. Usually, corpora need to be defined that reflect similarity ratings.
Under the assumption that there is a common understanding of similarity among composers,
performers and listeners, one then tries to measure similarity in a linear continuum. Besides
the fact that measuring similarity of symbolic music representations is still an open issue,
even more intricate problems arise from other music traditions that are strongly based on
learning music by imitation. This was made clear by some examples from the Dunya Makam
corpus [1]. While for this Turkish music tradition, similarity based on discrete pitches is
reasonable, in Chinese and Indian music traditions the performance characteristics (such as
inflections and vibrato) are much more important. Moreover, even though music segments
may be similar from a semantic viewpoint, they often exhibit significant spatial or temporal
differences. Therefore, we pointed out the importance of the design of musically meaningful
mid-level features so that the subsequent similarity rating can be handled very efficiently
using simple metrics (basically inner products and correlation measures).
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5.6 Structure in Music Composition
Participants of Dagstuhl Seminar 16092
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Nobody really listens to generated music. We believe this is due to the fact that computer-
generated music typically lacks long-term structure. Systems employing Markov models
usually only look at transition probabilities on a very local level. Context-free grammars
offer a step-up, but have not been very successful in constraining global structure. These
days, many believe in deep learning and speak of the potential of convolutional neural nets
for generating music with structure; we have not yet seen convincing results.

Since music generation can be viewed as the flip side of music analysis (as stated by one
of the participants), we can use the information retrieved from the structural analysis to
facilitate the music generation process. We therefore believe that generation should be a
two-step process: generate the structure first (i.e., a narrative that the music follows), then
generate the music based on that structure. A possible approach could be to use a tension
profile model to capture structure. Such models [1, 2] can capture a lot more than people
realize and listeners recognize it. This approach could potentially be combined with structure
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captured by information content. These two types of structure are closely related, but do not
always have a linear relationship. In the approach followed by Herremans in the MorpheuS
project (http://dorienherremans.com/MorpheuS), generating music that fits a tonal tension
profile is combined with enforcing a higher level, top-down structure defined by a pattern
detection algorithm. In conclusion, generating music into a structure allows us to overcome
the problem that we have long been facing in the field of automated composition. We propose
that tension and information content might be suitable structural profiles, especially when
combined with a larger top-down structure.
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For the discussion in this session two different directions were proposed. First, the question
was posed as to what aspects of the cognitive sciences and music psychology can be helpful
for computational approaches to structure analysis. Second, the question on how cognitive
and psychological studies can be advanced with the help of computational analysis of musical
structure was raised. David Temperley, in his keynote talk at the CogMIR Conference 2013,
outlined some thoughts about the relation between music cognition and music information
retrieval (MIR). He stated that, for well-defined problems, MIR can work alone; for many
ill-defined problems, however, MIR can profit from collaborations with the cognitive sciences.
Examples that were discussed in the working group session were:

In MIR, one rarely encounters the concept of reduction as it has been proposed in theories
such as the Generative Theory for Tonal Music (GTTM) by Lerdahl and Jackendoff [1].
Learned signal representations derived from deep learning could profit from incorporating
perceptually motivated low-level features.
Mechanisms that help humans to predict music events and shape their expectations about
what is going to happen next [2] should be better exploited.

In summary, most participants of our working group agreed that MIR approaches to
structure analysis should incorporate findings from the cognitive sciences related to the
aspects that help human listeners chunk a piece of music into memorable segments. These
processes are mainly those of expectation, reduction, and tension. However, an important
problem that such an interdisciplinary exchange will face is the fact that most models for these
processes have been derived and documented using notated representations of music. Making
these models work with audio recordings is a major challenge that impedes straightforward
incorporation of the models into MIR approaches.
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At the Dagstuhl Seminar, participants representing musicology and the computer/engineering
sciences identified the hurdles that prevent more widespread collaboration between these
two disciplines. In addition to their different philosophical orientations, the two fields have
very different cultures. Musicological research privileges sole-authored, narrowly focused,
hermeneutical, score-centered, and (sometimes) strongly opinionated writings. Computa-
tional research is multi-authored, broadly focused, descriptive, audio-centered, and leaves
interpretation to the reader. Still, we also identified connecting points such as our shared
interest in normal practices of musicians as well as our shared interest in analytical reduction
and classification.

5.9 Music Structure Annotation
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In this working group, we discussed various aspects regarding the generation, the usage, and
the availability of structure annotations for music recordings. The following list summarizes
the main points of our discussion.

Several systems and methodologies have been proposed to annotate the music structure
of an audio soundtrack. This is not a problem in itself but should be kept in mind when
analyzing the results of an algorithm on a given test-set, since the evaluation results may
significantly depend on the system and methodology used to create the annotations of
the test-set.
For a single system and methodology, the annotation may also vary from one annotator
to another. We therefore need to collect the information on why an annotator did his or
her annotation.
Various kinds of (known and unknown) ambiguities as well as subjectivity are sources of
annotation variations.
There seem to be a tendency for annotators to agree on large-scale structures, but not
necessarily on small-scale structures.
Annotations should be considered as a sparse graph (lattice of hypotheses), rather than a
sequence of segmentation boundaries.
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The ambiguity as well as the various annotation systems and methodologies should be
handled explicitly rather than being “swept under the carpet.” The best solution is to
collect several annotations representing the ambiguities.
The following corpora of annotations have been identified and discussed.

Public: SALAMI (1400), IRISA (380), RWC (200), Isophonics (360)
Private (audio non-public): IRCAM (300), TUT-Paulus (600), Billboard (1000),
CompMusic, ACM-Multimedia

We should produce a document listing the various corpora and explaining their correspond-
ing annotation systems and guidelines. It would be interesting to compare annotations of
the same track resulting from the various systems.
It is easier to detect the beginning of a segment than its end. We need a format that
would easily allow for the representing of fuzzy endings. Maybe the JAMS (JSON-based
music annotation) format could be used for storage [3].
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