Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH scholarly article en Arvind, Vikraman; Fuhlbrück, Frank; Köbler, Johannes; Kuhnert, Sebastian; Rattan, Gaurav http://www.dagstuhl.de/lipics License
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-64294
URL:

; ; ; ;

The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs

pdf-format:


Abstract

In this paper we study the complexity of the following problems: 1. Given a colored graph X=(V,E,c), compute a minimum cardinality set of vertices S (subset of V) such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G <= S_n given by generators, i.e., a minimum cardinality subset S of [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k=n-|S| is the parameter, we give FPT~algorithms. 2. A notion closely related to fixing is called individualization. Individualization combined with the Weisfeiler-Leman procedure is a fundamental technique in algorithms for Graph Isomorphism. Motivated by the power of individualization, in the present paper we explore the complexity of individualization: what is the minimum number of vertices we need to individualize in a given graph such that color refinement "succeeds" on it. Here "succeeds" could have different interpretations, and we consider the following: It could mean the individualized graph becomes: (a) discrete, (b) amenable, (c)compact, or (d) refinable. In particular, we study the parameterized versions of these problems where the parameter is the number of vertices individualized. We show a dichotomy: For graphs with color classes of size at most 3 these problems can be solved in polynomial time, while starting from color class size 4 they become W[P]-hard.

BibTeX - Entry

@InProceedings{arvind_et_al:LIPIcs:2016:6429,
  author =	{Vikraman Arvind and Frank Fuhlbr{\"u}ck and Johannes K{\"o}bler and Sebastian Kuhnert and Gaurav Rattan},
  title =	{{The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs}},
  booktitle =	{41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)},
  pages =	{13:1--13:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-016-3},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{58},
  editor =	{Piotr Faliszewski and Anca Muscholl and Rolf Niedermeier},
  publisher =	{Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{http://drops.dagstuhl.de/opus/volltexte/2016/6429},
  URN =		{urn:nbn:de:0030-drops-64294},
  doi =		{10.4230/LIPIcs.MFCS.2016.13},
  annote =	{Keywords: parameterized complexity, graph automorphism, fixing   number, base size, individualization}
}

Keywords: parameterized complexity, graph automorphism, fixing number, base size, individualization
Seminar: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016)
Issue date: 2016
Date of publication: 2016


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI