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Abstract
Frequent train delays make passenger-oriented train dispatching a task of high practical relevance.
In case of delays, dispatchers have to decide whether trains should wait for one or several delayed
feeder trains or should depart on time. To support dispatchers, we have recently introduced the
train dispatching framework PANDA (CASPT 2015).

In this paper, we present and evaluate two enhancements which are also of general interest.
First, we study the sensitivity of waiting decisions with respect to the accuracy of passenger flow
data. More specifically, we develop an integer linear programming formulation for the following
optimization problem: Given a critical transfer, what is the minimum number of passengers we
have to add or to subtract from the given passenger flow such that the decision would change
from waiting to non-waiting or vice versa? Based on experiments with realistic passenger flows
and delay data from 2015 in Germany, an important empirical finding is that a significant fraction
of all decisions is highly sensitive to small changes in passenger flow composition. Hence, very
accurate passenger flows are needed in these cases.

Second, we investigate the practical value of more sophisticated simulations. A simple strategy
evaluates the effect of a waiting decision of some critical transfer on passenger delay subject to
the assumption that all subsequent decisions are taken according to standard waiting time rules,
as usually employed by railway companies like Deutsche Bahn. Here we analyze the impact of
a higher level of simulation where waiting decisions for a critical transfer are considered jointly
with one or more other decisions for subsequent transfers. We learn that such “coupled decisions”
lead to improved solution in about 6.3% of all considered cases.
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1 Introduction

Public railway passenger transport is a key for greater mobility. Every day millions of
passengers choose to travel by train and rely on the quality of service offered by railway
companies. In daily operations, the quality of service is hindered by the fact that train
delays and disruptions occur frequently. For passengers this often means that they miss
some transfer and arrive delayed at their destination. To improve and to maintain their
quality of service, railway companies employ train dispatchers who monitor delays and
manually decide which trains shall wait for delayed incoming trains in order to maintain
connections for passengers. Since waiting decisions induce further delays which propagate
through the network, train delay management becomes a challenging and highly complex
optimization problem. In this paper, we focus on coping with small and medium-size delays,
while disruption management deals with more severe cases.

Recently, we introduced the decision support tool PANDA (Passenger Aware Novel
Dispatching Assistance) [11] which has been developed together with Deutsche Bahn. The
purpose of this tool is to provide dispatchers with information about which transfers are
critical and require their attention, and the impact of waiting decisions gained from simulation.
The evaluation of estimated arrival delays at the final destinations of all affected passengers
is the basis for a qualified recommendation to wait or not to wait, and where applicable,
how many minutes to wait. The PANDA prototype has been successfully tested in two field
studies. In this paper, we introduce and study two enhancements of PANDA. As additional
features we provide a sensitivity analysis and a more sophisticated simulation.

In practice, train disposition always has to deal with fuzzy and uncertain data. The
current delay scenario and predictions about arrival and departure times change from minute
to minute. Thus, we have to work with incomplete and estimated data. Since real-time
passenger flow data will only be available in the future, our passenger flows are based on
resource planning data, estimated by experts of Deutsche Bahn. This data is likely to be
quite accurate, but for a specific day of operations we have to expect deviations. For example,
it might be that a whole group of people, say a school class, is sitting in a train while we
assume that there is none. Therefore, we want to investigate how stable our recommendations
are with respect to fluctuations in the size and composition of the passenger flow. Simulation
of delay scenarios in PANDA is done for critical transfers. In case of a waiting decision, the
waiting train induces further delays in the network. PANDA’s simulation framework assumes
that all subsequent waiting decisions are derived from a strict application of standard waiting
time rules.1 It is quite obvious that such a simple strategy can be suboptimal. For example,
passengers on a route with several transfers may only take advantage from a kept transfer if
they also reach their subsequent ones. For them, an optimal decision would include “coupled
decisions”, where a specific waiting decision is taken jointly with one or several others (an
example is given in Appendix A). Therefore, a more advanced simulation depth would be
desirable, but appears to be quite challenging in a real-time setting.

Goals and contribution. We study the following questions:
1. How sensitive are waiting decisions in PANDA with respect to the given passenger flow?

To this end, we want to study the following optimization problem: Determine the minimum

1 These rules are of the form that trains of a certain train class have to wait in case of delays up to x
minutes for a train of some other class. For example, an ICE train has to wait for 3 minutes for some
other ICE train.
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number of passengers which we have to add or to subtract from the current passenger
flow such that the current decision would change. If this minimum number is small —in
comparison with the number of affected passengers, then we conclude that the decision is
sensitive to fluctuations. In Section 3, we show how to model this optimization problem
as an integer linear program. Experimental results with realistic passenger flow data and
recorded delay streams within Germany from 2015 indicate that the sensitivity of waiting
decisions has to be taken into account by dispatchers.

2. What do we gain in terms of passenger punctuality by exploring coupled decisions?
Or correspondingly, what do we lose by applying only standard waiting time rules in
subsequent decisions? To answer these questions, we implemented a conflict tree approach
for simulating more complex scenarios. Our main observation is that coupled waiting
decisions improve about 6.3% of all cases.

Related work. Delay management and dispatching has been studied intensively. A first
integer linear programming (ILP) formulation of delay management has been given by
Schöbel [13] and extended in [14]. Several recent approaches integrated passenger rerouting
into ILP formulations for delay management, for example Dollevoet et al. [5], Dollevoet and
Huisman [4], Schmidt [12], and Kanai et al. [6]. Typically, they consider offline versions, where
all delays are known before the optimization process starts. Unfortunately, the integration
of the rerouting part into ILP models leads to a huge blow up of model size. For large and
complex train networks with several thousands of stations and millions of passengers, the
resulting ILP models cannot be solved by state-of-the-art integer programming techniques,
and certainly not within very few minutes as needed in an operational setting. While the
above mentioned approaches model delay management on a macroscopic operational level of
detail (arrival and departure events at stations), Corman et al. [3] present a first attempt
to combine detailed microscopic (i. e., block section level) delay management models with
passenger routing. Dollevoet and Huisman [4] proposed and studied several fast heuristics.
In particular, they introduce an iterative ILP approach which comes close to an exact
ILP solution but is significantly faster. However, it is not known whether the iterative
ILP approach scales well to large-scale networks. For online scenarios, Kliewer and Suhl [7]
evaluate several simple dispatching rules. They work with randomly generated delay scenarios
and randomly generated passenger flows while we use observed delays and more realistic
passenger flows. Moreover, they work only with a subfleet of interregional trains from the
Frankfurt area. Bauer and Schöbel [1] also consider various online strategies. They introduce
a learning strategy based on simulations with many delay scenarios and report promising
results using this strategy in experiments on artificial schedules and generated delay data.

An important aspect of train dispatching is the timing within the decision making process.
Lemnian et al. [9] and Rückert et al. [11] studied the question when to decide. They showed
that early rerouting is beneficial in a significant number of cases in comparison to the
conservative strategy which decides as late as possible.

In this paper we focus on train dispatching for small and medium-size delays. Passenger-
oriented management strategies for major disruptions, where part of the infrastructure is
temporarily unavailable, have been proposed by Kroon et al. [8] and Veelenturf et al. [15].
We are not aware of any previous studies on the sensitivity of dispatching decisions.

Overview. The remainder of this work is structured as follows. In Section 2, we briefly
review the train dispatching framework of PANDA. Afterwards, in Section 3, we describe our
approach for analyzing the sensitivity of waiting decisions with respect to the passenger flow.
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Moreover, we evaluate the results of several thousand test cases. The second theme, the
impact and importance of coupled decisions, is discussed in Section 4. Finally, we conclude
with a short summary and an outlook to future work (Section 5). The Appendix contains an
illustrating example for coupled decisions.

2 Train Dispatching Framework

Event-activity networks and passenger flows. To model the railway schedule and passenger
flow we use an event-activity network N = (V,A), which is a directed acyclic graph with
vertex set V and arc set A. Each vertex represents an arrival or departure event of some
train. Arcs model relations between events. We distinguish between driving arcs, modelling
the driving of a specific train until its next stop, waiting arcs, modelling a train standing on a
platform and transfer arcs, modelling the possibility for passengers to switch between trains.
For more details of the event-activity network see [2] or [9]. In our model, the passenger flow
is represented by directed paths in N . Each passenger route corresponds to a path between
a departure event at its origin and an arrival event at its destination. Since we are dealing
with millions of passengers, we merge passengers with an identical path in the event-activity
network to passenger groups and consider them as a kind of equivalence class. In case of
delays all passengers who belong to the same group are treated in the same fashion. This
approach greatly reduces the computational effort for persistently updating the passenger
flow. In reality not all individual members of a passenger group will necessarily act in the
same way if they have to change their original travel plans due to some kind of disturbance.
Thus, more sophisticated behavioral models might be needed. However, a refinement of
equivalence classes of passengers into smaller groups can easily be implemented.

Delays and critical transfers. Event nodes are equipped with time stamps: the planned
event time according to schedule and the current forecast for its realization (if it lies in the
future) or its realization time (if it lies in the past). In addition to the railway schedule
and passenger flow we obtain delay information from Deutsche Bahn in real-time. Delay
information is used to modify the event-activity network in such a way that its time stamps
represent the real delay status of the railway network. Delay propagation is done as described
in [10]. Therefore, the event-activity network changes its structure over time. Because of
these changes it is necessary to evaluate the feasibility of each transfer. To this end, we
developed a method to classify all future transfers according to the current delay situation in
the event-activity network (for details see [9]). We have two different infeasible states for
transfers, critical and broken. Critical means that the transfer can be maintained by a slight
delay (additional to what is specified in the standard waiting time rule) of the connecting
train. Broken means that the transfer can only be maintained by a large (additional) delay of
the connecting train. The differentiation of the two states is important, because dispatchers
should keep an eye on critical transfers and only in exceptional cases on broken ones.

Basic framework. A schematic sketch of the basic framework for train dispatching is
given in Fig. 1. First, PANDA uses the schedule and passenger flow information to create
an event-activity network. Every 30 seconds, our framework receives the newest delay
information and updates the structure of the event-activity network accordingly. After this
step the program classifies all future transfers. For all passengers affected by broken transfers
PANDA determines a fastest alternative route with minimum number of transfers to their
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Figure 1 Schematic sketch of the train dispatching process.

destinations.2 For all passengers using a critical transfer our software simulates a WAIT and
a NO-WAIT decision and displays the evaluation of both alternatives to the dispatcher.

The chosen criteria to evaluate both decisions are listed below. If the dispatcher decides
not to maintain the transfer, PANDA again determines the fastest alternative routes for all
affected passengers to their destinations. If the decision is to maintain the transfer, then the
dispatcher manually creates a delay for the connecting train and our framework receives this
delay message in the next iteration of its dispatching process. A waiting decision for a specific
transfer, say from train A to train B, may implicitly also resolve other critical transfers of
trains feeding train B. In such cases our evaluation considers all affected passenger groups.

Multi-criteria objectives. We use the following criteria to evaluate the impact of waiting
and non-waiting decisions on passengers. The specific choice of the following criteria is an
outcome of discussions with practitioners, and the given thresholds are somewhat arbitrary.
Clearly, the precise definitions are easily adaptable. Our criteria are
1. the total delay at destination (or, equivalently the average delay) over all passengers
2. number of passengers with a delay at destination < 6 minutes (regarded as “on-time”)
3. number of passengers with a delay at destination ≥ 6 minutes
4. number of passengers with a delay at destination ≥ 30 minutes
5. number of passengers with a delay at destination ≥ 60 minutes
6. number of passengers with a delay at destination ≥ 120 minutes
7. number of passengers without any (acceptable) alternative.3
Objectives 3-6 include passengers without any acceptable alternative. We evaluate all given
criteria for both alternative decisions, but consider only those passenger groups for which
a difference with respect to their arrival time at the destination occurs. To provide a
recommendation to dispatchers, we apply a simple majority rule. We recommend WAIT if
the majority of criteria is in favor of waiting, and NO-WAIT if the majority of criteria is in
favor of non-waiting. Otherwise, there is a tie.

2 We only reroute passengers if necessary, i. e. if their original route has become infeasible. In some cases,
other passengers may have the possibility to switch to some faster route, but such options are not
supported in this context.

3 Here we have either been unable to find any alternative route, or passengers have planned to arrive at
their final destination before 02:00 a.m. on the next day, but by being rerouted to the best available
alternative route they would arrive only after 04:00 a.m. on the next day. We consider an unplanned
over-night trip or an extended stay at some station during night as not acceptable.
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3 Sensitivity Analysis

In this section we are interested in the following optimization problem: Given a critical
transfer, what is the minimum number of passengers we have to add or to subtract from
the given passenger flow such that the decision of PANDA would change from waiting to
non-waiting or vice versa? In our model we consider deviations from the given passenger flow
in both directions. For each passenger group, the actual number of passengers can be larger
or smaller than planned. A restriction of our model is that we do not consider additional
passenger groups with other source-destination relations than the ones given.

Recall, that in our dispatching framework PANDA, dispositions follow a majority decision
with respect to several optimization criteria. Let us assume that n passenger groups
p1, p2, . . . pn are affected by one of the two alternative decisions (a passenger is affected if
his route or his arrival time at the destination differs). We can identify affected passengers
during the simulation by first collecting all arrival events with non-identical timestamps in the
two alternatives. Second, we collect all passenger groups which have their final destination
associated with these events. Moreover, we can easily keep track of rerouted passengers.
Let us denote the set of affected passenger groups by P and let the expected number of
passengers in group pi be ci. For each group pi, our simulation calculates the delay at the
final destination for both possibilities. In the waiting case, this delay in minutes is denoted
by W (pi), whereas in the non-waiting case we write N(pi). For the `-th decision criterion,
let crit`(P) be the function which maps to {−1, 0, 1}, where we identify the function value 1
with the decision WAIT, the value −1 with the decision NO-WAIT, and the value 0 with
a tie (NEUTRAL). For example, we can define for the first criterion (the total amount of
delay at the destination) the function as

crit1(P) =


1 if

∑n
i=1 W (pi)ci <

∑n
i=1 N(pi)ci

−1 if
∑n

i=1 W (pi)ci >
∑n

i=1 N(pi)ci

0 otherwise .

With k different criteria, we decide WAIT if
∑k

`=1 crit`(P) > 0, and NO-WAIT if this
expression is negative. Otherwise, we obtain a tie.

Sensitivity problem.
Given: A critical or broken transfer for which the decision is either WAIT or NO-Wait, and

a set of n affected passenger groups P, and values ci, W (pi), N(pi) for each pi ∈ P.
Task: Determine numbers c̃i ≥ 0 such that the total deviation from the given multiplicities of

passenger groups
∑n

i=1 |c̃i − ci| is as small as possible and the overall decision is reversed
to the opposite one.

The complexity status of the problem is unknown. At first glance, one might think that
a simple greedy approach could solve the sensitivity problem. It seems natural to order the
passenger groups by decreasing difference |W (Pi)−N(Pi)|. However, it is easy to come up
with counter-examples showing that a greedy strategy based on such an order does not work.
While changing the multiplicity of the group maximizing |W (Pi)−N(Pi)| is most beneficial
to revert the criterion total delay at destination from NO-WAIT to WAIT, its influence on
other criteria is more subtle —it may or may not have an effect. A second natural greedy
heuristic would order passenger groups decreasingly by the number of criteria which they
can influence. But again, easy counter-examples demonstrate that a greedy approach based
on this idea does not work either.
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Next we provide an ILP formulation of the sensitivity problem. Its main advantage is the
ease by which we can adapt the formulation to changes in the specific choice of criteria for
evaluating WAIT and NO-Wait decisions. For example, one could easily add further criteria
or integrate a weighting scheme to differentiate the influence of selected criteria.

3.1 ILP Formulation
We sketch the basic idea behind our ILP formulation. Let x+

i and x−i be integral variables,
describing the number of passengers which are added to or subtracted from group pi ∈ P,
respectively. Suppose that we have to deal with k criteria. Let ∆ := |

∑k
j=1 critj(P )|. This

number ∆ represents the absolute value of the difference of criteria in favor or against a WAIT
decision. Hence, in order to change the overall outcome, the net change of the individual
criteria must be at least ∆ + 1. A technical complication for our ILP formulation comes from
the fact that each criterion can assume the three states WAIT, NO-WAIT, and NEUTRAL.
Hence, we have to distinguish the cases that a criterion changes from WAIT to NEUTRAL
or NO-WAIT, from NO-WAIT to NEUTRAL or WAIT, and from NEUTRAL to WAIT or
NO-WAIT. To this end, we introduce the following three {0, 1}-decision variables for each
criterion. For criterion j, variable wj denotes that the j-th criterion will vote for WAIT in
an optimal solution of the sensitivity problem, whereas variable wj means that it is in favor
for NO-WAIT. The third possible outcome, a tie (NEUTRAL), is denoted by ti.

Let K be the set of all criteria. With respect to the situation before solving the ILP,
let W be the subset of criteria in favor of WAIT, NW the subset of criteria in favor of
NO-WAIT, and T the remaining subset of criteria with a tie. Assuming that the current
decision is NO-WAIT, we obtain the following ILP (the opposite case is very similar).

min
∑
i∈P

(x+
i + x−i ) (1)

subject to

wj + wj + tj = 1 for j ∈ K (2)∑
j∈NW

(2wj + tj) +
∑
j∈T

(wj − wj) +
∑
j∈W

(−2wj − tj) ≥ ∆ + 1 (3)

∑
i∈P

aij(x+
i − x−i )− (bj + 1)wj − bjtj + Mwj ≥ 0 for j ∈ NW (4)∑

i∈P
aij(x+

i − x−i )− (bj + 1)wj − bjtj + Mwj ≥ 0 for j ∈ W (5)∑
i∈P

aij(x+
i − x−i ) + M(tj + wj) ≥ 1 for j ∈ T (6)∑

i∈P
aij(x+

i − x−i )−M(tj + wj) ≤ −1 for j ∈ T (7)

2 ·
∑
i∈P

aij(x+
i − x−i )− tj + Mwj ≥ 0 for j ∈ T (8)

−2 ·
∑
i∈P

aij(x+
i − x−i ) + tj + Mwj ≥ 0 for j ∈ T (9)

x−i ≤ ci for i ∈ P (10)
x+

i , x−i ∈ N0 for i ∈ P (11)
wj , wj , tj ∈ {0, 1} for j ∈ K, (12)

ATMOS 2016
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where M is a sufficiently large constant, and the coefficients aij ∈ Z denote the contribution
of passenger group i ∈ P to criterion j ∈ K, and the coefficients bj ∈ Z the amount by which
the current evaluation of criterion j ∈ W ∪ NW has to be changed in order switch this
criterion from WAIT or NO-WAIT to NEUTRAL.

The objective function expresses that we want to minimize the necessary change. In
an optimal solution, at most one of each pair of variables x+

i , x−i can be strictly positive.
Equality (2) in combination with the 0-1-variable bounds in (12) ensures that exactly one
of the three possible states (WAIT, NO-WAIT, NEUTRAL) is chosen for each criterion.
In Inequality (3), the left-hand-side sums up the total change of criteria. To fulfill the
inequality, the sum must be large enough to change the decision from NO-WAIT to WAIT.
Inequalities (4)-(9) link the change in passenger flow to the different criteria. We use
a “big-M” formulation to ensure that we can always fulfill all of these inequalities. The
expression zj =

∑
i∈P aij(x+

i − x−i ) measures the effect of the passenger flow change on
criterion j ∈ K. For j ∈ NW (the j-th criterion is currently in favor of NO-WAIT), we can
fulfill Inequality (4) with wj = 1 (or tj = 1) if zj is large enough to reverse the criterion to
WAIT (or to NEUTRAL, respectively). Otherwise, we can always choose wj = 1. Since
it helps to fulfill Inequality (3), we may safely assume that an optimal solution prefers
setting wj = 1 over tj = 1 and the latter over wj = 1. For j ∈ W, Inequality (5) works
analogously. Inequalities (6)-(9) together model the case that the current state of a criterion
is NEUTRAL. Here, a case analysis shows that zj > 0 implies wj = 1, zj < 0 implies wj = 1,
and zj = 0 implies tj = 0. Inequality (10) ensures for each group that we cannot subtract
more passengers than we currently have.

3.2 Experiments
Experimental Setup. We use the German train schedule of 2015 including all long-distance
and regional trains. Overall, we have about 66000 trains and a million events per day. In
addition to the schedule we obtained realistic passenger flow data from Deutsche Bahn. The
used model contains about 3.3 million passengers on roughly 320 000 different routes per
day. This passenger flow includes only passengers which use at least one long-distance train.
With respect to our flow about 28000 different transfers are used by passengers every day.
For our evaluation we used recorded data for actual delays of eight weekdays in June and
October 2015. Every single test day is simulated by spreading the recorded delays into the
network. For each detected critical or broken transfer we simulate a PANDA decision 15
minutes before the connecting train is scheduled to depart. If the evaluation suggests either
to wait or not to wait we calculate the minimal number of passengers to change the suggested
strategy. We solved the corresponding ILPs by using the non-commercial SCIP Optimization
Suite4 in version 3.2.1 with SoPlex 2.2.1 as the ILP-solver. Overall, we examined 73486 many
PANDA decisions.

Experimental Results. To allow a comparison between different scenarios, we normalize
the necessary total passenger change (i. e., the value of the optimal ILP solution) by the
number of affected passengers (more precisely, by the number of passengers which are affected
differently by the two alternative decisions). This gives us a kind of reliability measure

rel = total passenger change
#affected passengers .

4 http://scip.zib.de

http://scip.zib.de
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Figure 2 Top: sensitivity for all decisions: on average about 40% of the passengers are needed to
change the decision. The median is about 24%. Left: sensitivity of WAIT-decisions: on average
about 45% of the passengers are needed to change the decision. The median is about 30%. Right:
sensitivity of NO-WAIT-decisions: on average about 36% of the passengers are needed to change the
decision. The median is about 19%.

Since the optimal solution will never change the passenger flow by more than removing all
existing passengers, we clearly have 0 ≤ rel ≤ 1. The larger the value of rel, the more robust
is the corresponding decision.

In the top part of Figure 2, a histogram shows the empirical distribution of the reliability
measure rel based on all considered cases. This distribution appears to be U-shaped. A
significant number of cases turns out to be highly sensitive, and another significant portion of
all cases is quite robust. The mean of rel is .4, that is, on average we need about 40% of the
affected passengers to change the suggested decision. Note that the distribution is skewed,
and that the median is only .24. In the lower part of Figure 2, we distinguish between
WAIT (left) and NO-WAIT decisions (right). It is an interesting observation that WAIT
decisions turn out to be more robust than NO-WAIT decisions on average. The median of
the sensitivity measure is .29 in case WAIT, in comparison to .19 in case NO-WAIT.

4 Coupled Decisions

We are now going to study the possible benefit of coupled waiting decisions. For each
potential waiting decision of a critical or broken transfer, we do this evaluation in two steps.
First, we recursively build up a conflict tree structure representing the dependencies of the
given waiting decision with other subsequent decisions. In a second phase, we evaluate the
impact of every choice of coupled waiting decisions by enumerating subtrees of the conflict
tree. Note that this approach is only meant for the purpose of an a posteriori evaluation.
Therefore, running times are neglected.

ATMOS 2016



2:10 Sensitivity Analysis and Coupled Decisions in Train Dispatching

Figure 3 Example scenario of coupled decisions. Upper part: Involved trains and the induced
delay if the transfer from its feeder train is kept. Lower part: the corresponding conflict tree. For
each vertex, we denote the corresponding transfer and waiting decision by the feeder train, the
departing train, the station, and the required artificial delay to keep the transfer.

4.1 The Conflict Tree
Given a critical or broken transfer tr, its associated conflict tree Ttr = (V (Ttr), E(Ttr)) is
defined recursively. Every vertex of Ttr represents a critical or broken transfer in the underly-
ing event-activity network. The root of conflict tree Ttr represents the initial critical/broken
transfer tr. A conflict tree consists of a single vertex if waiting for the feeder train does not
make any other transfers critical or broken. Otherwise, we obtain non-trivial conflict trees.
For each tree vertex v ∈ V (Ttr), its children correspond exactly to all those transfers which
are critical or broken under the condition that the transfers corresponding to v and all its
predecessors in the tree are kept.

Keeping a critical or broken transfer tr′ means, we have to delay the corresponding
departure event such that passengers have enough time to reach the departing train, say
by d(tr′) minutes. Such an artificial delay has to be propagated through the event-activity
network. Propagated delays may influence other transfers in all directions. They may newly
create, worsen or even maintain following critical or broken transfers. Every non-root vertex
of the conflict tree represents a critical or broken transfer induced by a WAIT decision for
some other transfer higher up in the tree. Since NO-WAIT decisions do not alter the delay
scenario, they do not lead to follow-up conflicts. We would like to point out that the same
transfer can be represented several times within a conflict tree. See for example Fig. 3 where
all leave nodes occur twice.

Conflict trees may have a self-similarity or fractal property as shown in Fig. 4. Self-
similarity/fractal means that subtrees and their associated transfers are similar to other
subtrees. In the example presented in Fig. 4 the subtree of vertex v2 is similar to the subtree
of vertex v1 (without v2). However, the necessary delays to maintain the individual transfers
can be different, because of the different delay situation in both subtrees. For instance, v3 and
v4 are critical/broken transfers by spreading the delay d(v1) into the network. Nevertheless,
v3′ and v4′ are the same critical/broken transfers, but by spreading the delays d(v1) and
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Figure 4 An example of a conflict tree with a self-similarity property. The subtree of vertex v2
is similar to the subtree of vertex v1 (without v2). The vertices v3 to v6 and v3′ to v6′ correspond
to the same transfers, but the necessary delays to maintain the transfers might be different.

then d(v2) into the network. For a large-scale network like that of Germany, this property
can lead to very large conflict trees with over several millions of vertices.

Creation of a Conflict Tree. Our algorithm to create a conflict tree is similar to breadth-
first search. We start with an empty queue Q and push the root vertex with the initial
critical/broken transfer into it. As long as there are vertices in the queue, we explore its first
element (and then perform a dequeue operation). The current vertex v has to be maintained
by propagating an artificial delay d(v) in the underlying network N . All thereby induced
critical/broken transfers are collected and then inserted into the tree as well as into the queue.
Let us consider the example given in Figure 4. We start with vertex v1 and spread the delay
d(v1) into the network N . Then, we collect the induced conflicts v2, v3 and v4. Next we
continue with vertex v2 and spread the delay d(v2) into the network. We also collect the
subsequent conflicts v3′ and v4′. Now we would like to process v3, but the current state of
the network is modified by the two delays d(v1) and d(v2). The delay d(v2) is unnecessary
to measure the impact of delay d(v3). Therefore, we have to re-establish a valid state of the
network before spreading the delay of the current vertex. For sake of simplicity, we remove
all artificial delays directly after we inserted the induced subsequent critical/broken transfers
into the queue and re-propagate all artificial delays from the root vertex to the predecessor
of the current vertex v directly before spreading the delay. Thereby, we always ensure that
the current state of the underlying network is valid.

Evaluation of a Conflict Tree. For each vertex in the tree we have a binary decision variable
to model that this transfer will be maintained (one) or not (zero). We can interpret these
|V = V (Ttr)| many binary decision variables as a |V | bit long variable x. This variable x can
theoretically attain 2|V | different values, but not all of these values are feasible. For instance,
if the root vertex is assigned with a zero, then there are no following conflicts, therefore
the remaining |V | − 1 bits have to be set to zero. In general, a |V | bit long variable x is a
feasible configuration for a conflict tree, if and only if for every bit i that is set to one all bits
corresponding to the path from the root to the predecessor of vi in the conflict tree are also
set to one.

The evaluation algorithm has two phases. In the first phase we determine the set of all
affected passenger groups. To do so, we simulate all feasible coupled decisions successively
and collect from all simulated decisions the affected passenger groups. Note that we have
to re-establish the original state of the event-activity network after every simulation step.
Working with the set of affected passengers is necessary to have an unbiased comparison
between the impact of all simulated feasible decisions on the passenger flow. In this phase no

ATMOS 2016



2:12 Sensitivity Analysis and Coupled Decisions in Train Dispatching

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

re
la

tiv
e 

fr
eq

ue
nc

y

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 10 20 30 40 50 60
additional delay minutes of a maintained transfer

●

not maintained vertices
maintained vertices

Figure 5 Cumulative distribution func-
tions of the additional delay minutes for both
maintained and not maintained vertices of all
conflict trees.

0 1 2 3 4 5 6 7
number of following conflicts

0
20

00
60

00
fr

eq
ue

nc
y

not maintained vertices
maintained vertices

Figure 6 Distribution function of the num-
ber of follow-up conflicts for both maintained
and not maintained vertices of all conflict
trees.

passenger flow adjustments are done. In the second phase we again iterate over and simulate
all feasible coupled decisions successively, but in each step we measure and store the impact of
the injected delays on the previously collected passenger groups. The passenger groups may
have to be rerouted at this point if their route is not feasible any more. After these two steps
we can compare all feasible coupled decisions with each other in an unbiased way. Finally,
we are able to evaluate the impact on the passenger flow of all feasible coupled decisions.
For each scenario we compute objective values for all seven PANDA criteria. As before, we
compare two solution vectors by counting the number of criteria where one solution is strictly
better than the other. Hence, scenario A is considered as better as scenario B if the majority
of criteria is in favor of scenario A.

4.2 Experiments
Experimental Setup. We use the same German train schedule for the evaluation of the
benefit of coupled waiting decisions as in the previously described experiment. For every
critical/broken transfer we calculate the conflict tree 15 minutes in advance of the scheduled
event time and evaluate the impact of all feasible coupled decisions on the passenger flow.
Because of the high computational effort to determine all feasible coupled decisions we focus
only on conflict trees with at most 10 vertices/conflicts (at most 1024 different coupled
decisions). Note that the larger the tree becomes the less likely it is that coupling is
preferable. Finally, we collect all evaluations and compare them with pure NO-WAIT and
WAIT decisions. By this process we obtained 20920 different conflict trees.

Experimental Results. For these 20920 conflict trees we have found 4941 cases (about
23.61%) where coupled waiting decisions are better than single WAIT-decisions. Furthermore,
there are 2982 cases (about 14.25%) in which the coupled waiting decisions are better than
NO-WAIT-decisions. However, there are only 1319 cases (about 6.3%) where coupled waiting
decisions are better than both WAIT- and NO-WAIT-decisions.

Next we are interested to understand under which circumstances coupled decisions are
preferable. In the cases where coupled waiting decisions are at least better than WAIT- or
NO-WAIT-decisions we collect all maintained non-root vertices (about 12000). Similarly,
we also collect all not maintained non-root vertices of all remaining scenarios (about 14000
vertices). For both sets of vertices we consider several properties of its members. These
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Table 1 The average change for three criteria by applying coupled waiting decisions in comparison
with standard single WAIT/NO-WAIT decisions.

criteria benefit of coupled waiting decisions
total arrival delay -3.02%

# passengers with ≥ 60 min. delay 2.34%
# passengers with ≥ 120 min. delay .58%

properties are for instance: the number of minutes required to maintain the corresponding
transfer and the number of its children in the conflict tree. Figure 5 shows that it is more
likely to have a maintained transfer if the additional delay minutes are quite small. In
addition, Figure 6 shows that it is more likely for a vertex to become a maintained transfer if
it is a leaf in the decision tree. If a vertex has at least one child it is about 15% more likely to
be a non-maintained transfer. We conclude that a heuristic pruning scheme should preferably
explore vertices which require a small extra delay or those which induce no follow-up conflicts
(that is, leaves in the decision tree).

To measure the benefit of coupled waiting decisions we compare the standard single
WAIT/NO-WAIT decisions with the best solution we can obtain for either WAIT, NO-WAIT,
or a coupled decision according to three different criteria. As shown in Table 1 the coupled
waiting decisions have slightly worsened the total arrival delay by about 3%. Nevertheless,
the number of passengers with an arrival delay of at least 60 or at least 120 minutes could be
reduced by about 2% respectively by .58%. Thus, the overall benefit of coupled decisions is
mixed, but the improvements for passengers with large delays should outweigh their slightly
larger average delay.

5 Summary and Future Work

In this paper we have discussed two enhancements of the dispatching framework provided
by PANDA. First, we showed how to provide sensitivity information for dispatching re-
commendations with respect to fluctuations within the passenger flow. For each critical
transfer, we can tell whether our waiting or non-waiting recommendation is stable under
slight changes of the passenger flow. Our main finding is that the overall distribution of
the sensitivity is U-shaped. That means, we observe a significant fraction of cases that are
either very stable or very unstable. We conclude that the knowledge the specific sensitivity
of a critical WAIT/NO-WAIT decision is highly valuable for the decision making process. If
the sensitivity is low, an automatized decision might be possible, whereas a high sensitivity
indicates that a human dispatcher is required to take a closer look into the pros and cons of
the decision in question. Future work should also study a second dimension of uncertainty in
the given data: How sensitive are waiting decisions with respect to delay predictions?

Second, we explored the value of coupled decision making which extends the analysis of
critical transfers. We learned that the large extra work spent in exploring larger parts of
conflict trees only pays off in relatively rare cases. In most cases, just exploring the root node
and working with standard waiting time rules for all other nodes of the conflict tree already
yields an optimal solution. As a next step, we would like to exploit these observations to
develop heuristic rules for pruning conflict trees. Up to now, the conflict tree part of our
prototype has not been optimized for efficiency. Hence, we will work on speeding it up to
meet the requirements of real-time dispatching.
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A Example: Coupled Decisions

In Figures 7 – 12 we provide a small example to illustrate a typical scenario where coupling
of decisions is reasonable. The first figure shows the planned scenario according to schedule
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Figure 7 Planned scenario. Figure 8 Train IC 1 delayed by 20 minutes.

Figure 9 NON-WAITING case: The trans-
fer from IC 1 to IC 2 breaks. Passengers
on this transfer have to be rerouted to later
trains.

Figure 10 WAITING case: The transfer
from IC 1 to IC 2 is maintained. But as a
side effect the transfer from IC 2 to IC 3 at
station B becomes critical.

Figure 11 The transfer from IC 2 to
IC 3 breaks. Several passenger groups are
rerouted.

Figure 12 Coupled waiting decision: Both
transfers (IC 1 to IC 2 and IC 2 to IC 3)
are kept. All passenger groups stay on their
original route.

with two passenger groups (their travel paths are shown in blue and orange, respectively).
Next, we assume that train IC 1 is delayed by 20 minutes. This makes the transfer from
IC 1 to IC 2 for one passenger group critical. If IC 2 does not wait, passengers on this
transfer have to be rerouted. If, however, the transfer from IC 1 to IC 2 is maintained, the
late departure of IC 2 causes another critical transfer from IC 2 to IC 3. If this transfer is
not maintained, the situation becomes even worse, since both passenger groups have to be
rerouted. Here we see a prototypal use-case for coupled decisions: if both transfers are kept,
all passengers can stay on their original route and their total delay is minimized.
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