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Abstract
The homotopy hypothesis was originally stated by Grothendieck [13]: topological spaces should
be “equivalent” to (weak) ∞-groupoids, which give algebraic representatives of homotopy types.
Much later, several authors developed geometrizations of computational models, e.g. for rewrit-
ing, distributed systems, (homotopy) type theory etc. But an essential feature in the work set
up in concurrency theory, is that time should be considered irreversible, giving rise to the field
of directed algebraic topology. Following the path proposed by Porter, we state here a directed
homotopy hypothesis: Grandis’ directed topological spaces should be “equivalent” to a weak
form of topologically enriched categories, still very close to (∞,1)-categories. We develop, as in
ordinary algebraic topology, a directed homotopy equivalence and a weak equivalence, and show
invariance of a form of directed homology.
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1 Introduction

A central motivation in algebraic topology is to be able, through algebraic calculations,
to classify topological spaces, up to homeomorphisms, or up to some shape equivalence
(homotopy equivalence, or equivalence under “elastic deformations”). Similarly, computer
science abounds with notions of equivalences, first and foremost, bisimulation equivalences
between concurrent processes [20]. It has been observed that some of these equivalences
are very geometric in nature: Pratt [23] and van Glabbeek [27], followed by many, among
which [9, 12], advocated for cubical models and topological models of the execution space of
concurrent systems.

Topological spaces naturally give rise to a higher dimensional category: paths, homotopies,
higher homotopies provide the cells of such a structure. Moreover, by nature those cells are
invertible up to higher cells: for example, paths are invertible up to homotopy, etc. Hence it
is natural to ask the following question, which has become known as the homotopy hypothesis
question [13]: “to what extent is the structure of spaces mirrored by that of ∞-groupoids ?”
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9:2 The Directed Homotopy Hypothesis

A modern answer to this question uses the language of Quillen’s model structure: weak
homotopy types are modeled by structures that can be interpreted as being ∞-groupoids.

The equivalences of interest in computer science are directed, instead: there is a direction
of time, and it must be preserved by deformation. Porter [21, 22] proposed to look at a
directed analogue of the homotopy hypothesis. Directed spaces also give a natural structure
of higher categories (dipaths, dihomotopies, higher dihomotopies), but dipaths are not meant
to be invertible up to dihomotopy. The directed homotopy hypothesis should correspond to
some question of the form “To what extent are directed spaces the same as (∞, 1)-
categories ?” and should have an answer in the language of model categories as well, by
comparing directed spaces and simplicial categories, a model of (∞, 1)-categories.

Our goal is to give an answer to that question. We review Porter’s approach in Section 3,
and show some of its limitations. We then design a proposal of directed homotopy equivalence
based on directed deformation retracts along inessential dipaths (Section 4). Finally, we
reformulate the directed homotopy hypothesis, fixing the limitations of Porter’ proposal,
by designing weak equivalences for a weak version of enriched categories, based on partial
enrichment and directed components, for which we prove adequacy with respect to dihomotopy
equivalence (Section 5) – our main result.

2 A lexicon of equivalences

There will be many notions of equivalences in this paper and it will be important that they
are not mixed up, so here is a brief lexicon:

weak equivalence: the generic name for an element of the distinguished class of morphisms
of a model category [24] which are meant to be turned into isomorphisms by the categorical
process of localization.
homotopy equivalence: invertible continuous function up to homotopy. They are the
weak equivalences in the Strøm model structure on topological spaces [26].
weak homotopy equivalence: continuous function that induces isomorphisms of homo-
topy groups in every dimensions [14]. A homotopy equivalence is a weak homotopy
equivalence. They are the weak equivalences in the Quillen-Serre model structure on
topological spaces. All those notions are undirected.
naive dihomotopy equivalence: invertible dmaps (see Section 3) up to dihomotopy.
dihomotopy equivalence: to be defined in Section 4.2. They will be our generalization
of homotopy equivalence in the directed case, and should not be confused with other
notions of (almost) the same name (e.g. [25, 12]).
weak equivalence of partially enriched categories: to be defined in Section 5.3. They
will be a modification of weak equivalences of enriched categories [2].
weak dihomotopy equivalence: to be defined in Section 5.3. They will be our modification
of Porter’s proposal (see Section 2), based on weak equivalences of partially enriched
categories.
strong equivalence of partially enriched categories: to be defined in Section 5.4. They
will be a generalization of equivalence of categories (but not of equivalence of enriched
categories).

3 From homotopy hypothesis to Porter’s directed homotopy
hypothesis

Topological spaces naturally yield a structure of ∞-groupoids i.e. a structure with 0-cells
or objects, 1-cells or morphisms between 0-cells, 2-cells or morphisms between 1-cells, and
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so on, such that every n-cell is invertible up to n + 1-cells for n ≥ 1. From a topological
space X, we can construct an ∞-groupoid by taking as 0-cells, the points of X, 1-cells are
the paths, i.e., continuous functions from the unit segment I = [0, 1] to X, 2-cells are the
homotopies between paths, i.e. continuous functions H : I × I −→ X such that H(_, 0) and
H(_, 1) are constant maps, ..., higher cells are the higher homotopies. This is a ∞-groupoid
since n-homotopies are invertible up to n+ 1-homotopies for all n. For example, a path γ is
invertible up to homotopy since, if we note γ−1 the path t 7→ γ(1− t) and ? the concatenation
of paths, γ ? γ−1 and γ−1 ? γ are homotopic to constant paths, i.e., there is a homotopy
H such that H(0,_) = γ ? γ−1 and H(1,_) is constant (equal to γ(0)), and similarly for
γ−1 ? γ.

There are many ways to model (in the sense of model categories) ∞-groupoids. One
of the simplest ones is Kan complexes, i.e. simplicial sets K for which “every horn has a
filler”. A horn is simply a simplicial map from ∆i[n], the union of the faces of the standard
n-simplex ∆[n], except the i-th one, to K. Having a filler means that this map extends to a
simplicial map from ∆[n] to K. In the language of model categories, they are precisely the
fibrant objects of the Kan-Quillen model structure on simplicial sets.

The singular simplicial complex functor provides a Kan complex from a topological
space X, where the n-cells are the continuous maps from the geometric standard n-simplex
to X. This functor has a left adjoint, the geometric realization that build a topological
space from a simplicial set by glueing simplices together. The homotopy hypothesis can
then be formulated as follows [24]: this adjunction is a Quillen-equivalence between the
Quillen-Serre model structure on topological spaces (whose weak equivalences are the weak
homotopy equivalences) and the Kan-Quillen model structure on simplicial sets (whose weak
equivalences are simplicial maps that induce weak homotopy equivalences on the geometric
realization). This formulation has many consequences: first, weak homotopy types are
modeled by∞-groupoids; secondly, one can compare topological spaces up to weak homotopy
equivalence by comparing Kan complexes.

Based on this, Porter [21, 22] proposed a directed homotopy hypothesis for directed
spaces. Let us first recall a few basic notions from directed topology (as in e.g. [12, 9]). A
directed space (or dspace for short), is a topological space X, together with a subset of
paths PX , called the directed paths (or dipaths), satisfying the following:

every constant path is in PX ;
PX is closed under concatenation;
PX is closed under non-decreasing reparametrization, i.e., if γ ∈ PX and r : I −→ I is a
continuous non-decreasing function, then γ ◦ r ∈ PX .

A dmap f : X −→ Y is a continuous function such that for every γ ∈ PX , f ◦ γ ∈ PY .
We note dTop, the category of dspaces and dmaps. A dihomotopy of dipaths of X is a
homotopy between paths H : I×I −→ X such that for every t ∈ I, H(t,_) is a dipath. More
generally, one can define n-dihomotopies. Contrary to topological spaces, dipaths need not be
invertible up to dihomotopy: define −→I as the dspace I whose dipaths are the non-decreasing
paths. The identity function of I is a dipath going from 0 to 1, but there is no dipath from
1 to 0, and so it cannot have an inverse modulo homotopy. Hence if a topological space
is to be thought of as being “the same as” an ∞-groupoid, then a dspace, whose dipaths
are not invertible up to dihomotopies, should be the same as an (∞, 1)-category, namely, a
∞-groupoid whose 1-cells are not required to be invertible up to 2-cells.

Much as ∞-groupoids, there are many ways to model (∞, 1)-categories. Two are really
close to Kan complexes: quasi-categories [16] (weak Kan complexes in the sense that only
“inner horns”, i.e. i-horns for i 6= 0 and i 6= n are required to have fillers) and enriched
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9:4 The Directed Homotopy Hypothesis

categories over Kan complexes [2]. Porter proposed to follow Quillen’s program, by using the
latter. Given a dspace, one can construct [22] the following simplicial category T(X) (which
is actually enriched in Kan complexes), called the trace category:

its objects are the points of X;
for every pair of points (x, y), the simplicial set T(X)(x, y) is the singular simplicial
complex of the trace space −→T (X)(x, y), which is the space of dipaths up to non-decreasing
reparametrizations with the quotient topology of the compact-open topology [8].

One can then compare dspaces through the lens of the model structure of simplicial categories
[22]. The weak equivalences are those simplicially enriched functors F : C −→ D such that:

for every pair of objects (c, c′) of C, the simplicial map Fc,c′ : C(c, c′) −→ D(F (c), F (c′))
induces a weak homotopy equivalence between geometric realizations (i.e., is a weak
equivalence in the Kan-Quillen model structure);
F induces an equivalence of categories π0(F ) : π0(C) −→ π0(D) where π0(C), the category
of components of C, is obtained from C by replacing C(c, c′) by the set of 0-cells of
C(c, c′) quotient by the 1-cells (or equivalently, the set of path-connected components of
the geometric realization of C(c, c′)).

Even if this program seems natural and foreshadows the existence of a model structure
for dspaces (which is a very enticing perspective), this method has its own limitations. Let
us consider again the directed segment −→I . In every obvious (weak) directed homotopy
equivalence (see also later), −→I should be equivalent to a point space ∗. So, we expect that
they will have the same trace category up to weak equivalence, which is not the case:

T(−→I )(1, 0) is empty while T(∗)(∗, ∗) is not and so cannot be weakly equivalent (in the
Kan-Quillen model structure);
π0(T(−→I )) is isomorphic to the poset (I,≤) and so cannot be equivalent to π0(T(∗)).

We must therefore better understand the meaning of (weak) directed homotopy type to make
the whole dihomotopy hypothesis programme work fine.

4 Directed homotopy equivalences

4.1 A naive directed homotopy equivalence
There are numerous proposals for directed homotopy equivalences [12, 25, 18, 10, 5], but
none has yet gained unequivocal approval in the community. The simplest is the textual
generalization of the classical definition of homotopy equivalence in algebraic topology. A
homotopy is a continuous function H : I ×X −→ Y . We then say that two continuous
functions f, g : X −→ Y are homotopic [14], if there is a homotopy H such that H(0,_) = f

and H(1,_) = g. This is an equivalence relation, compatible with composition. We then
write HoTop for the category of topological spaces and homotopy classes of continuous
functions. We call homotopy equivalence a continuous function f : X −→ Y whose
homotopy class is an isomorphism in HoTop, i.e., such that there is a continuous function
g : Y −→ X such that f ◦ g and g ◦ f are homotopic to identities. We say that two spaces
are homotopy equivalent if there is a homotopy equivalence between them.

Similarly, a dihomotopy [9] is a continuous function H : I ×X −→ Y , such that for
every t ∈ I, H(t,_) is a dmap. We say that two dmaps f, g : X −→ Y are dihomotopic if
there is a dihomotopy H such that H(0,_) = f and H(1,_) = g. This is an equivalence
relation, compatible with composition. We call naive dihomotopy equivalence a dmap
f : X −→ Y which is invertible up to dihomotopy, i.e., such that there is a dmap g : Y −→ X

such that f ◦ g and g ◦ f are dihomotopic to identities. We say that two dspaces are naive
dihomotopy equivalent if there is a naive dihomotopy equivalence between them.
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Figure 1 dspaces SF and HS.

Figure 2 dmap from SF to HS (left) and from HS to SF (right).

I Example 1.

1. The two dspaces in Figure 1 come from the geometric semantics of programs with
semaphores [9], one process is taking locks on shared objects a and b (P actions) before
relinquishing them (V actions), the second process is doing the same, in reverse order on
objects.
Those dspaces are subspaces of R2 whose points are within the white part in the square
(the grey part represents the forbidden states of the program) and whose dipaths are
non decreasing paths for the componentwise ordering on R2. They are naive dihomotopy
equivalent since there are two maps, depicted in Figure 2, that form a naive dihomotopy
equivalence.
The points in light grey are the points which do not belong to the image of those maps.
The problem is that those two programs are quite different: SF has a dead-lock in α and
inaccessible states (depicted in Figure 1, as the hatched upper right concavity), while
HC does not. Topologically, they do not have the same (directed) components in the
sense of [11].

2. Next, let us consider the dspace in Figure 3, which we call the Fahrenberg matchbox [7].
Geometrically, this is an empty cube without bottom face. Its dipaths are the paths
that only go from bottom to top and from front to back. We expect it to be non-
dihomotopically equivalent to a point because it has a non-trivial dihomotopy type
(although it is contractible in the usual sense). Indeed, consider the two dipaths depicted
in Figure 3. They are not dihomotopic because the only way to deform continuously one
into the other is to go through the upper face, and one of the intermediate paths (namely,
any such path that goes through the topmost face) will fail to be a dipath.
However,M is naive dihomotopy equivalent to its upper face (so to a point), a dihomotopy
is depicted in Figure 4.
More precisely, the dmap f , which maps any point of M to the point of T just above of it,
is a naive dihomotopy equivalence, whose inverse modulo dihomotopy is the embedding
g of T into M . Hence, f ◦ g = idT and a dihomotopy from idM to g ◦ f is depicted in
Figure 4.
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9:6 The Directed Homotopy Hypothesis

Figure 3 Fahrenberg’s matchbox M and two non-dihomotopic dipaths.
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α

γ
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Figure 4 Naive equivalence between the Fahrenberg’s matchbox M and its upper face T .

4.2 Deformation retracts and dihomotopy equivalence
There is another way to define homotopy equivalence in classical algebraic topology, which
will prove better for getting the right definition in directed algebraic topology. A homotopy
equivalence can be formalized by the notion of deformation retract [14]. Let X be a space and
A be a subspace of X. We say that A is a deformation retract of X if and only if there
is a homotopy H : I ×X −→ X such that H(0,_) = idX , for every t ∈ I and every a ∈ A,
H(t, a) = a and for all x ∈ X, H(1, x) ∈ A. This definition of deformation retract states
that the embedding of A into X is a homotopy equivalence with inverse modulo homotopy
H(1,_). In fact, deformation retracts characterize homotopy equivalence in the following
sense [14]: two spaces X and Y are homotopy equivalent iff there is a space Z such that X
and Y are deformation retracts of Z.

A homotopy being the same as a continuous function from X to Top(I, Y ), where
Top(I, Y ) is the set of paths in Y equipped with the compact-open topology, one can define
“directed” deformation retracts as continuous functions from X to PX , (equipped with the
subspace topology) satisfying the same kind of axioms as deformation retracts satisfy. But
one must be careful: the dihomotopy depicted in Figure 4 will be a directed deformation
retract in this sense. The main problem is that the dipaths along which we deform (i.e., the
dipaths in the image of the deformation retracts) will not preserve the fact that two dipaths
are not dihomotopic (for example, dipath γ), and more generally the (classical) homotopy
type of space of dipaths, while it is the case in the non-directed setting. Hence, some form of
“components” as in [11] should underly the definition of directed deformation retract. As a
side effect, we will also naturally get to define two notions of deformation retracts, one in the
future, one in the past.

In the following, we write −→P (X)(x, y) for the set of dipaths of X from x to y, namely
dipaths γ of X such that γ(0) = x and γ(1) = y, equipped with the compact-open topology.
Imitating [11], we call a Yoneda system of dipaths of X any subset Λ of PX such that:

Λ is closed under concatenation and dihomotopy;
for every γ : x −→ y ∈ Λ, for every z ∈ X such that −→P (X)(y, z) 6= ∅, the function
γ ?_ : −→P (X)(y, z) −→ −→P (X)(x, z), δ 7−→ γ ? δ is a homotopy equivalence;
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for every γ : x −→ y ∈ Λ, for every w ∈ X such that −→P (X)(w, x) 6= ∅, the function
_ ? γ : −→P (X)(w, x) −→ −→P (X)(w, y), δ 7−→ δ ? γ is a homotopy equivalence;
Λ has the right Ore condition modulo dihomotopy, i.e., for every f : x −→ y ∈ Λ and
every dipath g : z −→ y in X there are f ′ : w −→ z ∈ Λ and a dipath g′ : w −→ x in X
for some w such that g′ ? f and f ′ ? g are dihomotopic;

w x

z y

mod. dihomot.

g′

f ′ ∈ Λ

g

f ∈ Λ

Λ has the left Ore condition modulo dihomotopy, i.e., for every f : x −→ y ∈ Λ and every
dipath g : x −→ z in X there are f ′ : z −→ w ∈ Λ and a dipath g′ : x −→ w in X for
some w such that g ? f ′ and f ? g′ are dihomotopic.

z y

x w

mod. dihomot.

g

f ∈ Λ

g′

f ′ ∈ Λ

I Lemma 2. The set of Yoneda systems of dipaths of X is a complete lattice for inclusion.
We note I(X) the largest such system and call its elements inessential dipaths.

Let X be a dspace and A be a sub-dspace of X, i.e., a sub-topological space A ⊆ X whose
dipaths are the dipaths of X with image in A. We say that A is a future deformation
retract of X if there is a continuous function H : X −→ I(X) (I(X) is equipped with the
subspace topology of Top(I,X)) such that:

for every x ∈ X, H(x)(0) = x;
for every a ∈ A and t ∈ I, H(a)(t) = a;
for every x ∈ X, H(x)(1) ∈ A;
for every t ∈ I, the map Ht : X −→ X, x 7−→ H(x)(t) is a dmap;
for every dipath δ of A from z to H1(x) there is a dipath γ of X from y to x with
H1(y) = z and H1 ◦ γ and δ are dihomotopic.

We stress here the fact that H must be with values in the inessential dipaths I(X). Similarly,
we define past deformation retracts by switching the role of 1 and 0 in the previous
definition. We then say that two dspaces are directed homotopy equivalent if there is a
zigzag of future and past deformation retracts between them.

I Example 3.
1. Observe that past deformation retracts (resp. future deformation retracts) between

topological spaces (i.e. dpsaces whose set of dipaths contains all paths) coincide with non-
directed deformation retracts. In particular, if two topological spaces are homotopically
equivalent then they are dihomotopically equivalent. The converse also holds.

2. {1} is a future deformation retract of −→I . Indeed, the function H : −→I −→ I(−→I ),
s 7−→ (t 7−→ (1 − t)s + t) satisfies the conditions above. Similarly, {0} is a past
deformation retract of −→I . More generally, every past face −→I k × {0} × −→I l (resp. future
face −→I k × {1} × −→I l) is a past (resp. future) deformation retract of the directed cube
−→
I k+l+1.
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9:8 The Directed Homotopy Hypothesis

3. Is the deformation depicted in Figure 4 a future deformation retract from M to its upper
face T ? The answer is no because it is not with values in I(M). Indeed, the dipath γ
from α to 1 does not induce a homotopy equivalence between spaces of dipaths. The
space −→P (M)(0, α) of dipaths from 0 to α is homotopically equivalent to a two point space,
because there are two such dipaths that are not dihomotopic, while the space −→P (M)(0,1)
of dipaths from 0 to 1 is contractible, so they cannot be homotopically equivalent.

4.3 A homological invariant of dihomotopy equivalence: natural
homology

Let us recall the notion of natural homology of [6, 25]. Given a dspace X we form as previously
the fundamental category −→π1(X) whose objects are points of X and whose morphisms from
x to y are classes modulo dihomotopy of dipaths from x to y. Then, we take its category
of factorizations, noted FX whose objects are classes modulo dihomotopy of dipaths and
whose morphisms from the class [γ] with γ a dipath from x to y to the class [γ′] with γ′
a dipath from x′ to y′ are pairs of classes ([α], [β]) with α from x′ to x and β from y to
y′ such that [α ? γ ? β] = [γ′]. Composition is concatenation and identities are pairs of
classes of constant dipaths. We then define the natural dipath functor of X, the functor−→
P (X) : FX −→ HoTop which maps:

every class [γ] with γ from x to y to −→P (X)(x, y);
every extension ([α], [β]) to the class modulo homotopy of the map δ 7−→ (α ? δ) ? β.

We can then form the natural homology of X by composing with the singular homology
functor. The definition of [6] is based on taking the category of factorizations of the trace
category, instead of the fundamental category. This gives a “bisimilar” notion, when X is
a pospace (the setting of [6]) and will be more convenient to work with here. This notion
of bisimilarity of diagrams with values in Abelian groups (or more generally in any fixed
category) is fully defined in [6], based on the framework of open maps [17], and is designed for
comparing directed homology of pospaces. It goes as follows. The context is that of small
diagrams with values in a category M which are functors from any small category C
to the category M. A morphism of diagrams from F : C −→ M to G : D −→ M is a
pair (Φ, σ) of a functor Φ : C −→ D and a natural transformation σ : F −→ G ◦ Φ. We note
Diag(M) the category of small diagrams with values in Abelian groups and morphisms of
diagrams.

A morphism of diagrams (Φ, σ) from F : C −→M to G : D −→M is an open map [6]
if and only if:

σ is a natural isomorphism;
Φ is surjective-on-objects;
for every morphism j : F (c) −→ d of D there is a morphism i : c −→ c′ of C such that
F (i) = j.

Two diagrams F : C −→M and G : D −→M are bisimilar if there is span of open maps
between them, i.e., there are a diagram H : E −→M and two open maps (Φ, σ) : H −→ F

and (Ψ, τ) : H −→ G.
We can then prove that natural dipath functors are invariant modulo dihomotopy equi-

valence when we compare them up to bisimilarity:

I Theorem 4. If two dspaces are dihomotopically equivalent then their natural dipath functors
(and so their natural homology) are bisimilar (in Diag(HoTop)).

Since the Fahrenberg matchbox and a point have non-bisimilar natural homology [6],
they cannot be dihomotopically equivalent.
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5 Weak directed homotopy equivalence

In Section 3, we have seen the limitation of too simple an implementation of Porter’s
programme on the example of the directed segment: empty path spaces are not well handled
because we are requiring a weak homotopy equivalence for each pair of points and because
the (ordinary) component category is somehow too rigid. We fix those two problems in
this section. First, in Section 5.1, we introduce a notion of partially enriched categories,
i.e., enriched categories where only some morphism objects between two objects are defined
(intuitively, the non-empty ones). Secondly, we replace components by directed components
in the style of [11]. Altogether, this defines a weak dihomotopy equivalence which is an
invariant of dihomotopy equivalence (see Section 5.3).

5.1 Partially enriched categories and the dipath category
In the following, V is a monoidal category with ⊗ as tensor product, U as unit, αA,B,C :
(A⊗B)⊗C −→ A⊗(B⊗C) as associator, λA : U⊗A −→ A as left unit and ρA : A⊗U −→ A

as right unit. We will mainly consider the case of Top (the category of topological spaces
and continuous functions), HoTop (category of topological spaces and continuous functions
modulo homotopy) and Ab (category of Abelian groups and morphisms of groups) with their
Cartesian structure.

A (small V-)partially enriched category C consists of the following data:
a set Ob(C) of objects;
a preorder ≤ on Ob(C) called domain;
for every pair c ≤ c′ of objects of C, an object C(c, c′) of V;
for every triple c ≤ c′ ≤ c′′ of objects of C, a composition morphism in V ◦c,c′,c′′ :
C(c, c′)⊗ C(c′, c′′) −→ C(c, c′′);
for every object c of C, a unit morphism in V uc : U −→ C(c, c).

satisfying:
(associativity): for every quadruple c ≤ c′ ≤ c′′ ≤ c′′′ of objects of C, the following
diagram commutes:

(C(c, c′)⊗ C(c′, c′′))⊗ C(c′′, c′′′)

C(c, c′)⊗ (C(c′, c′′)⊗ C(c′′, c′′′))

C(c, c′)⊗ C(c′, c′′′)

C(c, c′′)⊗ C(c′′, c′′′)

C(c, c′′′)

αC(c,c′),C(c′,c′′),C(c,c′′)

id⊗ ◦c′,c′′,c′′′

◦c,c′,c′′ ⊗ id

◦c,c′′,c′′′

◦c,c′,c′′′

(unit): for every pair c ≤ c′ of objects of C, the following diagrams commute:

U ⊗ C(c, c′)

C(c, c)⊗ C(c, c′)

C(c, c′)

C(c, c′)

C(c, c′)⊗ U

C(c, c′)⊗ C(c′, c′)

uc ⊗ id

λC(c,c′)

◦c,c,c′

id id⊗ uc′

ρC(c,c′)

◦c,c′,c′

The axioms are the same as for V-enriched categories [4], except for the fundamental role
played by the domain ≤ in every clause. Trivially, an enriched category is a partially enriched
category whose domain is Ob(C)×Ob(C). One should note that partially enriched categories
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9:10 The Directed Homotopy Hypothesis

in Top, in HoTop and in Simp (category of simplicial sets and simplicial maps) are still very
close to (∞, 1)-categories but also to Gaucher’s flows [10], which were introduced for similar
motivations.

Our main use of partially enriched categories will be the following. Given a dspace
(X,PX), we construct a partially enriched category over HoTop called the dipath category
and written −→P (X):

its objects are points of X;
its domain, called the accessibility preordering is x ≤ y iff there a dipath from x to y;
for x ≤ y, −→P (X)(x, y) is the set of dipaths from x to y equipped with the compact-open
topology, as already defined in Section 4.2;
composition is the class modulo homotopy of the concatenation (γ, δ) 7→ γ ? δ;
for x ∈ X, the unit morphism ux is the class modulo homotopy of the continuous function
{∗} −→

−→
P (X)(x, x), ∗ 7−→ cx.

A partially enriched functor F : C −→ D between partially enriched categories is the
following data:

a monotonic function F : Ob(C) −→ Ob(D);
for every pair c ≤ c′ of objects, a morphism Fc,c′ : C(c, c′) −→ D(F (c), F (c′)) in V;

satisfying that:
for every triple c ≤ c′ ≤ c′′ of objects of C, the following diagram commutes:

C(c, c′)⊗ C(c′, c′′)

D(F (c), F (c′))⊗D(F (c′), F (c′′))

C(c, c′′)

D(F (c), F (c′′))

Fc,c′ ⊗ Fc′,c′′

◦c,c′,c′′

◦F (c),F (c′),F (c′′)

Fc,c′′

for every object c of C, the following diagram commutes:

U C(c, c)

D(F (c), F (c))

uF (c)

uc

Fc,c

The partially enriched functors between enriched categories seen as partially enriched categor-
ies are exactly the enriched functors. We note PeCat(V) the category of small V-partially
enriched categories and partially enriched functors. Note that −→P extends to a functor from
dTop to PeCat(HoTop).

5.2 Category of components
We recover the fundamental category −→π1(X) of a dspace X [12] by applying the ordinary
path-connected components functor π0 to its category of dipaths −→P (X):

its objects are points of X;
the morphisms from x to y are the elements of π0(−→P (X)(x, y)), i.e., the path-connected
components of −→P (X)(x, y) if x ≤ y and ∅ otherwise;
the composition is the function: ◦ : π0(−→P (X)(y, z))×π0(−→P (X)(x, y)) −→ π0(−→P (X)(x, z))
such that [f ] ◦ [g] = [g ? f ];
the identity of x is the path-connected components of the constant dipath, i.e., [cx].
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Morphisms of −→π1(X) are exactly dipaths modulo dihomotopy. More generally, we can define
similarly the fundamental category −→π1(C) of a partially enriched category C on
HoTop which extends to a functor from PeCat(HoTop) to Cat.

From this fundamental category, we can define a category of components as in [11]. The
idea is to define a class of inessential morphisms, which is the largest class of morphisms
whose compositions to the left and to the right are bijections, that has a left and right calculi
of fractions (exactly like in the definition of inessential dipaths in Section 4.2). Then those
morphisms can be inverted to give the category of components −→π0(C) of a category
C and, by extension, of a partially enriched category C on HoTop (resp. a dspace X) by
−→π0(C) = −→π0(−→π1(C)) (resp. −→π0(X) = −→π0(−→π1(X))).

Explicitly, given a small category C, we define a Yoneda system Λ of morphisms of
C as a subset of morphisms of C such that:

Λ is closed under composition;
for every f : c −→ c′ ∈ Λ, for every object c′′ of C such that C(c′, c′′) 6= ∅, the function
_ ◦ f : C(c′, c′′) −→ C(c, c′′) g 7−→ g ◦ f is a bijection;
for every f : c −→ c′ ∈ Λ, for every object c′′ of C such that C(c′′, c) 6= ∅, the function
f ◦_ : C(c′′, c) −→ C(c′′, c′) g 7−→ f ◦ g is a bijection;
Λ has the right Ore condition, i.e., for every f : x −→ y ∈ Λ and every g : z −→ y ∈ C
there are f ′ : w −→ z ∈ Λ and g′ : w −→ x ∈ C for some w such that f ◦ g′ = g ◦ f ′
Λ has the left Ore condition, i.e., for every f : x −→ y ∈ Λ and every g : x −→ z ∈ C
there are f ′ : z −→ w ∈ Λ and g′ : x −→ w ∈ C for some w such that f ′ ◦ g = g′ ◦ f .

In particular, (C,Λ) has left and right calculi of fractions [3]. This is related to the definition
of [11], which additionally requires closure by pullbacks/pushouts in order to obtain a
Van-Kampen theorem.

I Lemma 5. The set of Yoneda systems of morphisms of C is a complete lattice for inclusion.
We note I(C) the largest such system and call its elements inessential morphisms. I(C)
contains all isomorphisms and has the 2-out-3 property, i.e., if two of the three morphisms f ,
g and g ◦f are in I(C), then so is the third. Moreover, {[γ] ∈ −→π1(X) | γ ∈ I(X)} ⊆ I(−→π1(X)).

Now, we define the category of components −→π0(C) of C, as the localization C[I(C)−1]
[3]. One interesting property of this localization is that it is equivalent to the generalized
quotient (in the sense of [1]) C/I(C) when C is loop-free [11]. We stress that this is a
remarkable property, for a localization, of being equivalent to a quotient, and this will be
particularly useful for examples. In fact, this can be generalized when I(C) has a “selection”.
A partial selection of a category C is a subcategory of C which is a preorder. A (total)
selection is a partial selection Σ satisfying moreover that for every pair (c, c′) of objects of
C, if C(c, c′) is non-empty then so is Σ(c, c′).

I Theorem 6. Let Σ be a total selection of I(C). −→π0(C) is equivalent to the generalized
quotient C/Σ.

I Example 7. We show here a few examples of categories of components of dspaces which
are equivalent to quotient of fundamental categories.
1. If X is a pospace (i.e. a topological space equipped with a closed partial-ordering), then

the fundamental category −→π1(X) is loop-free in the sense of [11], and so I(−→π1(X)) is itself
a selection. We then recover the case of [11]. In particular, SF and HS are pospaces and
their category of components are equivalent to the categories depicted in Figure 5 (more
precisely, to the categories generated by those graphs with the relation 	 representing
commutativity). In particular, this shows that SF and HS do not have the same category
of components, as claimed in Example 1.
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Figure 5 Category of components of SF and HS.

2. Let S1 = {eiθ | θ ∈ [0, 2π[} be the topological circle. We call non-directed circle the
dspace S1 whose dipaths are all paths. As all paths are invertible modulo homotopy,
every morphism of −→π1(S1) is an isomorphism and so belongs to I(−→π1(S1)). But, as
they are all isomorphisms, −→π0(S1) = −→π1(S1) which is the fundamental groupoid of the
circle. Moreover, Σ = {[t 7→ ei((1−t)θ+tθ

′)] | θ, θ′ ∈ [0, 2π[} where [.] is the class modulo
homotopy, is a selection of I(S1) and −→π1(S1)/Σ is the category with one object and Z as
set of morphisms. That category is equivalent to −→π1(S1) itself.

3. Let
−→
S1 be the dspace whose underlying topological space is S1 and whose dipaths are

paths of the form t 7→ eiΦ(t) for some non-decreasing function Φ : I −→ R, i.e., paths
that only turn anti-clockwise. In this case, the only Yoneda morphisms of

−→
S1 are the

identities, i.e., dihomotopy class of constant paths. Indeed, they are the only ones that
induces bijections between Hom-sets by composition: if you take any non-constant dipath
γ, say from eiθ to eiθ′ then [γ] ◦_ : −→π1(

−→
S1)(eiθ′

, eiθ) −→ −→π1(
−→
S1)(eiθ, eiθ) is not surjective

since it never reaches the class of the constant path. Hence −→π0(
−→
S1) = −→π1(

−→
S1).

In this section, we could have defined the category of components in different ways. We
have chosen here the classical way, from the fundamental category (just like [2, 11]). But
we could have followed the path initiated in the definition of future and past deformation
retracts, requiring inessential morphisms to induce homotopy equivalences by composition
instead of isomorphisms of path-connected components (cf. conditions 2 and 3). It would
have defined a finer notion of components in the sense that, there would have been less
inessential morphisms and so less dspaces with the same components. The Theorem 9 would
have also hold with this definition, but there would have been some redundancy between
this notion of components and the requirement of homotopy equivalences in the definition of
weak equivalences.

5.3 Weak equivalences
Imitating [22], we will study dihomotopy types of dspaces using a similar notion of weak
equivalences of partially enriched categories. A weak equivalence between two partially
enriched categories C and D in HoTop is a partially enriched functor F : C −→ D
which induces an equivalence of categories between −→π0(C) and −→π0(D), and such that for
every pair c ≤ c′ in C, Fc,c′ is an isomorphism, i.e. the homotopy class of a homotopy
equivalence. We stress the fact that F induces a functor between the categories of components
is not automatic since −→π0 is not a functor. We say that a dmap f : X −→ Y is a weak
dihomotopy equivalence if −→P (f) is a weak equivalence, and we say that X and Y are
weakly dihomotopy equivalent if there is a zig-zag of weak equivalences between X

and Y .
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I Example 8.
1. As we have said earlier, the directed segment is dihomotopically equivalent to a point and

so is weakly equivalent to a point. We have a continuous constant map c : −→I −→ {1},
which is a dmap. Let us prove that this is a weak equivalence. First, for all x ≤ y, −→P (c)x,y
is a homotopy equivalence because it is a constant map and −→P (X)(x, y) is contractible.
Now, it is easy to check that I(−→π1(−→I )) = −→π1(−→I ) and is itself a selection. Therefore −→π0(−→I )
is equivalent to the category with one object and one morphism, namely −→π0({1}). In fact,
c induces an equivalence between those two categories.

2. As we have said earlier, the Fahrenberg matchbox M is not dihomotopically equivalent
to a point. In fact, they also are non-weakly equivalent. We have seen that there are
two dipaths that are not dihomotopic. This implies that −→P (M)(0, α) (with the notation
of Figure 4) is homotopically equivalent to a two point spaces. But if two dspaces are
weak-equivalent then they have the same homotopy types of non-empty spaces of dipaths.
Since the spaces of dipaths of a point are all contractible, the matchbox cannot be weakly
equivalent to a point.

I Theorem 9. If two dspaces are dihomotopically equivalent then they are weakly equivalent.

That is, weak dihomotopy equivalence is well-suited to prove that two dspaces are not
dihomotopy equivalent (like in the case of T andM). In particular, if two dspaces do not have
the same homotopy types of spaces of dipaths then they are not weakly dihomotopy equivalent
and therefore not dihomotopy equivalent. The previous examples show in particular that our
notion of dihomotopy equivalence is different from the one of [12] (because that one does not
distinguish the matchbox from a point) and that the notion of weak equivalence used in [22]
is strictly stronger than that introduced above as it distinguishes the directed segment from
the point.

5.4 Natural homology and weak equivalences
We have proved that natural homology is an invariant of dihomotopy equivalence (Theorem 4).
Is it also an invariant of weak equivalence ? At the time of this article, this is still a conjecture.
But as a step in that direction, we observe that bisimilarity is strongly tied to (strong)
equivalence of partially enriched categories (Theorem 11 below).

Equivalence of enriched categories is usually defined as in the non-enriched case using
(enriched) natural isomorphisms. Using the axiom of choice, this definition is equivalent
to the existence of a fully-faithful essentially surjective functor [19]. Nevertheless, we will
not use these definitions in the partially enriched case : one problem is that there is no
clear non-trivial notion of partially enriched natural transformations. We will rather use the
following:

I Lemma 10. Two categories are equivalent iff there is a span of fully-faithful surjective-on-
objects functors

We say that a partially enriched functor F : E −→ C is:
fully-faithful if for every pair e ≤ e′ in E , Fe,e′ : E(e, e′) −→ C(F (e), F (e′)) is an
isomorphism;
surjective if F : Ob(E) −→ Ob(C) is surjective;
fibrational if for every e ∈ Ob(E) and c ∈ Ob(C) such that F (e) ≤ c there is e′ such that
e ≤ e′ and F (e′) = c.
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We call strong equivalence any partially enriched functor which is fully-faithful, surjective
and fibrational.

We say that two partially enriched categories C and D are strongly equivalent if there
are a partially enriched category E and a span F : E −→ C and G : E −→ D of strong
equivalences.

Without the fibrational condition, this equivalence would be a bit trivial: taking a suitable
E whose domain is equality would make equivalent two partially enriched categories which
have the same endomorphisms. Moreover, the strong equivalences between two enriched
categories are exactly the fully-faithful surjective enriched functors between them.

Let us look at the caseM = Ab, the category of Abelian groups. In [6] we were only
considering diagrams whose domains were pre-orders. Let us call them po-diagrams and
denote by PoDiag(Ab) the full subcategory of those po-diagrams.

Given a diagram F : C −→ Ab, define its unfolding as the diagram Unf(F ) :
Unf(C) −→ Ab such that:

the objects of Unf(C) are non-empty finite sequences (f1, ..., fn) of composable morphisms
of C, i.e. domain of fi = codomain of fi−1;
the set of morphisms of Unf(C) from (f1, ..., fn) to (g1, ..., gp) is {(gn+1, ..., gp)} if n ≤ p
and for all i ≤ n, fi = gi, and is empty otherwise;
composition of Unf(C) is concatenation;
identities of Unf(C) are empty sequences;
Unf(F )(f1, ..., fn) = F (c) where c is the codomain of fn;
Unf(F )(gn+1, ..., gp) = F (gp ◦ . . . ◦ gn+1).

Given a po-diagram F : C −→ Ab, we extend the Grothendieck construction [15] to partially
enriched categories in Ab as follows:

the objects are objects of C;
the domain is C, which we recall is a preorder;
for c ≤ c′, G(F )(c, c′) = F (c′);
for c ≤ c′ ≤ c′′, the composition ◦c,c′,c′′ : F (c′) × F (c′′) −→ F (c′′) is the morphism of
groups that maps (g′, g′′) to g′′ + F (c′ ≤ c′′)(g′), where c ≤ c′ is the unique morphism
from c to c′ in C;
the unit uc : {0} −→ F (c) is the null morphism.

I Theorem 11. Two po-diagrams are bisimilar iff their Grothendieck constructions are
equivalent. Two diagrams are bisimilar iff the Grothendieck construction of their unfoldings
are equivalent.

We see Theorem 11 as a tool that we may use later to prove that if the dipath categories of
X and Y are weakly equivalent, then their natural homologies are bisimilar.

6 Conclusion and future work

Using partially enriched categories allows us to compare dspaces modulo dihomotopy equi-
valence. Are partially enriched categories the right models for dspaces modulo dihomotopy
equivalence ? We hope to have at least conveyed the idea that this should be the case.
Are topologically partially enriched categories a nice model of (∞, 1)-categories ? Can we
conversely understand (∞, 1)-categories using (weak) dihomotopy types of dspaces ? Those
questions are left to future work.

Also, a recurrent and associated question concerns the algebraic structure of directed
homotopy. Ordinary homotopy theories can be described in the framework of Quillen model
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categories, giving axioms linking classes of morphisms (in the category of topological spaces,
or of simplicial sets, for instance) called weak equivalences, fibrations and cofibrations.

In this paper, we have developed a class of weak equivalences, which could be part of
such an axiomatics. More precisely, most of what has been described in Section 5.3 can be
parameterized by the class of weak equivalences on the category of topological spaces that is
consistent with the standard model category theoretic framework. We used the “stronger” one,
Strøm model category where “weak equivalences” are in fact (strong) homotopy equivalences,
but indeed, one would be tempted to use weak homotopy equivalences instead. We only
“lifted’ homotopy equivalences onto the hom-sets of our (partially-enriched) category of
dspaces, and of course, we could as well think of lifting fibrations and cofibrations of any
closed model category structure on topological spaces, to give a reasonable notion of directed
homotopy structure on directed spaces. The resulting classes of morphisms, lifts of weak
equivalences, fibrations and cofibrations should verify some of Quillen axioms at least, maybe
others. The directed topological community is currently undecided with respect to whether
there is a model category of directed spaces which accounts, faithfully, for directed algebraic
topological phenomena.
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