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Abstract
We study networks obeying time-dependent min-cost path metrics, and present novel oracles
for them which provably achieve two unique features: (i) subquadratic preprocessing time and
space, independent of the metric’s amount of disconcavity; (ii) sublinear query time, in either
the network size or the actual Dijkstra-Rank of the query at hand.
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1 Introduction

Concurrent technological infrastructures (e.g., road networks, social networks, e-commerce
platforms, energy-management systems) are typically of very large scale and impose as a
routine task the computation of min-cost paths in real-time, while their characteristics usually
evolve with time. The large-scale and real-time response challenges have been addressed in
the last 15 years by means of a new algorithmic trend: the provision of oracles. That is,
data structures created by appropriately selecting precomputed information (summaries)
and which subsequently support query algorithms with real-time responses. The quality of
an oracle is assessed by its preprocessing space and time requirements, the time-complexity
of the query algorithm and the approximation guarantee (stretch). Numerous oracles have
been proposed and analyzed (see e.g., [1, 21, 22, 24, 25, 27, 28, 29] and references therein) for
large-scale, mostly undirected networks, accompanied by a static arc-cost metric. In tandem
with oracles, an equally important effort (with similar characteristics) has also emerged in the
last 15 years under the tag of speedup techniques, for approaches tailored to work extremely
well in real-life instances (see e.g., [3] and references therein).

The temporality of the network characteristics is often depicted by some kind of pre-
determined dependence of the metric on the actual time that each resource is used (e.g.,
traversal speed in road networks, packet-loss rate in IT networks, arc availability in social
networks, etc). Perhaps the most typical application scenario, motivating also our work, is
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47:2 Hierarchical Time-Dependent Oracles

route planning in road networks where the travel-time for traversing an arc a = uv (modeling
a road segment) depends on the temporal traffic conditions while traversing uv, and thus
on the departure-time from its tail u. This gives rise to time-varying network models and
to computing min-cost (a.k.a. shortest) paths in such networks. Several variants of this
problem try to model time-variation of the underlying graph and/or the arc-cost metric
(e.g., dynamic shortest paths, parametric shortest paths, stochastic shortest paths, temporal
networks, etc). In this work we assume that the cost variation of each arc a is determined
by a continuous, piecewise linear (pwl) and periodic function D[a] of the time at which a is
actually being traversed1, as in [7, 8, 12, 20]. When providing route plans in time-dependent
road networks, arc-costs are considered as arc-travel-times, and time-dependent shortest paths
as minimum-travel-time paths. The goal is then to determine the cost (minimum-travel-time)
of a shortest path from an origin o to a destination d, as a function of the departure-time to
from o. Due to the time-dependence of the arc-cost metric, the actual arc-cost value of an
arc a = uv is unknown until the exact time tu ≥ to at which uv starts being traversed.

Problem setting and related work. Two variants of the time-dependent shortest path
problem have been considered in the literature: TDSP (o, d, to) (resp. TDSP (o, ?, to)) focuses
on the one-to-one (resp. one-to-all) determination of the scalar cost of a minimum-travel-
time path to d (resp. for all d), when departing from the origin o at time to. TDSP (o, d)
(resp. TDSP (o, ?)) focuses on the one-to-one (resp., one-to-all) succinct representation of
the time-dependent minimum-travel-time path function(s) D[o, d] from o to d (resp. towards
all reachable d), and all departure-times from o. TDSP (o, d, to) has been studied as early
as [5]. The first work on TDSP (o, d, to) for continuous time-axis was [11] where it was
proved that, if waiting-at-nodes is allowed unconditionally, then TDSP (o, d, to) is solvable
in quasilinear time via a time-dependent variant of Dijkstra’s algorithm (we call it TDD),
which relaxes arcs by computing the arc costs “on the fly”, upon settling their tails. A
more complete treatment of the continuous-time case, considering various limitations in the
waiting-times at nodes of the network, was provided in [13]; an algorithm was also given for
TDSP (o, d, to), whose complexity cannot be bounded by a function of the network topology.
An excellent overview of the problem is provided in [20]. Among other results, it was proved
that for affine arc-cost functions possessing the FIFO property (according to which all the
arc-cost functions have slopes at least −1), in addition to TDD, a time-dependent variant
of the label-correcting Bellman-Ford algorithm also works. Moreover, if waiting-at-nodes
is forbidden and the arc-costs do not preserve the FIFO property, then subpath-optimality
of shortest paths is not necessarily preserved. In that case, many variants of the problem
become NP-hard [23]. Additionally, when shortest path costs are well defined and optimal
waiting-times at nodes always exist, a non-FIFO arc with unrestricted-waiting-at-tail policy
is equivalent to a FIFO arc in which waiting at the tail is not beneficial [20]. For these
reasons, we focus here on instances for which the FIFO property holds, as indeed is the case
with most of past and recent works on TDSP (o, d, to). The complexity of TDSP (o, d) was
first questioned in [6, 7] and remained open until recently, when it was proved in [12] that,
even for FIFO-abiding pwl arc-cost functions and a single origin-destination pair (o, d), the
number of breakpoints for succinctly representing D[o, d] is (1 + K) · nΘ(logn), where n is

1 Major car navigator vendors provide real-time estimations of travel-time values by periodically sampling
the average speed of road segments, using the cars connected to the service as sampling devices. The
most customary way to represent this historic traffic data, is to consider the continuous pwl interpolants
of the sample points as arc-travel-time functions of the corresponding instance.
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the number of vertices and K is the number of breakpoints in all the arc-cost functions.
Note that K can be substituted by the number K∗ of concavity-spoiling breakpoints (at
which the slopes increase) of the arc-cost functions. Several output-sensitive algorithms for
the construction of D[o, d] have appeared [7, 8, 12, 20], the most efficient being the ones
in [8, 12]. Due to the hardness of TDSP (o, d), and also since the arc-cost functions are
typically only (e.g., pwl) approximations of the actual costs, it is quite natural to seek for
succinct representations of approximations to D[o, d], which aim at trading-off accuracy for
computational effort. Several one-to-one (1 + ε)-approximation algorithms for TDSP (o, d)
have appeared in the literature [8, 12, 19], the most successful being those provided in [19].
The first one-to-all (1 + ε)-approximation algorithm for TDSP (o, ?), called bisection (BIS),
was given in [17]. It is based on bisecting the (common to all functions) axis of departure-
times from o and considers slightly stricter assumptions than just the FIFO property for the
arc-cost metric. BIS requires O

(
K∗

ε · log2 (n
ε

))
calls to TDSP (o, ?, to), assuming that the

travel-time diameter is upper-bounded by the period T = nα, for some tuning parameter
α ∈ (0, 1). Note that all one-to-one approximation algorithms for TDSP (o, d) [8, 12, 19]
demand, in worst-case, a comparable amount of calls to TDSP (o, ?, to), just for one od-pair.

Minimum-travel-time oracles for time-dependent networks (TD-oracles henceforth) had
received no attention until recently [17]. A TD-oracle is an offline-precomputed data structure
that allows the efficient evaluation of an upper-approximation ∆[o, d](to) of D[o, d](to), for
any possible query (o, d, to) ∈ V ×V ×R≥ 0 that may appear in an online fashion. One trivial
solution would be to provide a succinct representation of ∆[o, d] for all (o, d) ∈ V ×V , for the
sake of rapid evaluations in the future but at the expense of superquadratic space. Another
trivial solution would be to execute TDD “on-the-fly” per query (o, d, to), at the expense
of superlinear query-time. A non-trivial TD-oracle should aim to trade-off preprocessing
requirements with query-times and approximation guarantees. In particular, it should
precompute a data structure in subquadratic time and space, and also provide a query
algorithm which evaluates efficiently (i.e., faster than TDD) ∆[o, d](to), where ∆[o, d] must be
a provably good approximation of D[o, d]. Note that there exists important applied work
(speedup heuristics) for computing time-dependent shortest paths (e.g., [4, 9, 10, 18]), which
however provide mainly empirical evidence on the success of the adopted approaches.

The TD-oracles in [17] require O
(
n2−β(K∗ + 1)

)
preprocessing space and time, for

constant β ∈ (0, 1), and can answer queries (under certain conditions) in time O
(
nδ
)
, for

constant δ ∈ (0, 1). When K∗ ∈ o(n), the oracles can be fine-tuned to assure query-time
o(n) and preprocessing requirements o

(
n2). An extensive experimental evaluation of those

oracles on a real-world road network is provided in [14], demonstrating their practicality, at
the expense, however, of large memory consumption due to the linear dependence of the
preprocessing space on K∗ which can be Ω(n). The main challenge addressed here is to
provide TD-oracles that achieve: (i) subquadratic preprocessing requirements, independently
of K∗; and (ii) query-times sublinear, not just in the network size n, but in the number
Γ[o, d](to) (a.k.a. Dijkstra-Rank) of settled vertices when executing TDD(o, ?, to) until d is
settled.

Our contributions and roadmap. We address positively the aforementioned challenge by
providing: (i) A novel and remarkably simple algorithm (TRAP) (cf. Section 3) for constructing
one-to-many (1 + ε)-upper-approximations ∆[o, d] (summaries) of minimum-travel-time
functions D[o, d], for all “sufficiently distant” destinations d from the origin o. TRAP requires
o(n) calls to TDSP (o, ?, to), which is independent of the degree of concavity K∗. Its novelty
is that it does not demand the concavity of the unknown function to approximate. (ii) The

ISAAC 2016
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Table 1 Achievements of oracles for TD-instances with period T = nα, for α ∈ (0, 1). The stretch
of all query algorithms is 1 + σ(r) = 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 . For all but the first oracle, we assume
that β ↓ 0.

preprocessing space/time query time recursion budget (depth) r
[17] K∗ · n2−β+o(1) nδ+o(1) r ∈ O(1)

TRAPONLY n2−β+o(1) nδ+o(1) r ≈ δ
α − 1

FLAT n2−β+o(1) nδ+o(1) r ≈ 2δ
α − 1

HORN n2−β+o(1) ≈ Γ[o, d](to)δ+o(1) r ≈ 2δ
α − 1

TRAPONLY and FLAT oracles (cf. Section 4) which exploit TRAP and BIS to construct minimum-
travel-time summaries from randomly selected landmarks to all reachable destinations. The
preprocessed data structures require subquadratic space and time, independently of K∗.
FLAT uses the query algorithms of [17]. TRAPONLY needs to extend them in order to recover
missing summaries for local neighborhoods around each landmark. In both cases sublinear
query-times are achieved. (iii) The HORN oracle (cf. Section 5) which organizes a hierarchy of
landmarks, from many local landmarks possessing summaries only for small neighborhoods
of destinations around them, up to a few global landmarks possessing summaries for all
reachable destinations. HORN’s preprocessing requirements are again subquadratic. We then
devise and analyze a novel query algorithm (HQA) to exploit this hierarchy, with query-time
sublinear in the Dijkstra-Rank of the query at hand. Except for the choice of landmarks,
our algorithms are deterministic. An experimental study [15] demonstrates the excellent
performance of our oracles in practice, achieving considerable memory savings and query-
times about three orders of magnitude faster than TDD, and more than 70% faster than those
in [14]. Table 1 summarizes the achievements of the TD-oracles presented here and their
comparison with the oracles in [17]. Due to lack of space, all missing proofs are provided in
the full version of the paper [16].

2 Preliminaries

Notation and terminology. For any integer k ≥ 1, let [k] = {1, 2, . . . , k}. A time-dependent
network instance (TD-instance henceforth) consists of a directed graph G = (V,A) with |V | =
n vertices and |A| = m ∈ O(n) arcs, where each arc a ∈ A is accompanied with a continuous,
pwl arc-cost function D[a] : R≥ 0 7→ R>0. We assume that all these functions are periodic
with period T > 0 and are defined as follows: ∀k ∈ N,∀t ∈ [0, T ), D[a](kT + t) = d[a](t),
where d[a] : [0, T )→ (0,Ma] is such that limt↑T d[a](t) = d[a](0), for some fixed integer Ma

denoting the maximum possible cost ever seen for arc a. Let alsoM = maxa∈AMa denote the
maximum arc-cost ever seen in the entire network. Since D[a] is periodic, continuous and pwl,
it can be represented succinctly by a sequence of Ka breakpoints (i.e., pairs of departure-times
and arc-cost values) defining d[a]. K =

∑
a∈AKa is the number of breakpoints representing

all arc-cost functions, Kmax = maxa∈AKa, and K∗ is the number of concavity-spoiling
breakpoints (the ones at which the arc-cost slopes increase). Clearly, K∗ ≤ K, and K∗ = 0
for concave arc-cost functions. To ease the exposition and also for the sake of compliance
with terminology in previous works (inspired by the primary application scenario of route
planning in time-dependent road networks), we consider arc-costs as arc-travel-times and
time-dependent shortest paths as minimum-travel-time paths. This terminology facilitates
the following definitions. The arc-arrival-time function of a ∈ A is Arr[a](t) = t+D[a](t),
∀t ∈ [0,∞). The path-arrival-time function of a path p = 〈a1, . . . , ak〉 in G (represented as a
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sequence of arcs) is the composition Arr[p](t) = Arr[ak](Arr[ak−1](· · · (Arr[a1](t)) · · · )) of
the arc-arrival-time functions for the constituent arcs. The path-travel-time function is then
D[p](t) = Arr[p](t)− t.

For any (o, d) ∈ V × V , Po,d denotes the set of od-paths. For any p ∈ Po,x and q ∈ Px,d,
s = p • q ∈ Po,d is the concatenation of p and q at x. The earliest-arrival-time function
is Arr[o, d](to) = minp∈Po,d {Arr[p](to)}, ∀to ≥ 0, while the minimum-travel-time function
is defined as D[o, d](to) = minp∈Po,d {D[p](to)} = Arr[o, d](to) − to. For a given query
(o, d, to), SP [o, d](to) = {p ∈ Po,d : Arr[p](to) = Arr[o, d](to)} is the set of earliest-arrival-
time (equivalently, minimum-travel-time) paths. ASP [o, d](to) is the set of od-paths whose
travel-time values are (1 + ε)-approximations of the minimum-travel-time among all od-paths.

When we say that we “grow a TDD ball from (o, to)”, we refer to the execution of TDD
from o ∈ V at departure-time to ∈ [0, T ) for solving TDSP (o, ?, to) (resp. TDSP (o, d, to),
for a specific destination d). Such a call, denoted as TDD(o, ?, to) (resp. TDD(o, d, to)), takes
time O(m+ n log(n)[1 + log log(1 +Kmax)]) = O(n log(n) log log(Kmax)]), using predecessor
search for evaluating continuous pwl functions [17]. The Dijkstra-Rank Γ[o, d](to) of (o, d, to)
is the number of settled vertices up to d, when executing TDD(o, d, to).
∀a = uv ∈ A and [ts, tf ) ⊆ [0, T ), we define upper- and lower-bounding travel-time

metrics: the minimally-congested travel-time D[uv](ts, tf ) := mintu∈[ts,tf ){D[uv](tu)} and
the maximally-congested travel-time D[uv](ts, tf ) := maxtu∈[ts,tf ){D[uv](tu)}. If [ts, tf ) =
[0, T ), we refer to the static free-flow and full-congestion metrics D,D : A → [1,M ],
respectively. Each arc a ∈ A is also equipped with scalars D[a] and D[a] in these static
metrics. For any arc-cost metric D, diam(G,D) is the diameter (largest possible vertex-
to-vertex distance) of the graph. For example, diam(G,D) is the free-flow diameter of
G.

In our TD-instance, we assume that T ≥ diam(G,D). If not, we take the minimum
number c of copies of each d[a] as a single arc-travel-time function d′[a] : [0, cT ) 7→ R>0 and
D′[a](t + kT ′) = d′[a](t), ∀t ∈ [0, T ′) such that T ′ = cT ≥ diam(G,D′). In addition, we
can guarantee that T = nα for a constant α ∈ (0, 1) of our control. If T 6= nα, we scale the
travel-time metric by setting D′′ = nα

T ·D (e.g., we change the unit by which we measure time
from milliseconds to seconds) and use the period T ′′ = nα, without affecting the structure of
the instance at all. From now on we assume w.l.o.g. that T = nα ≥ diam(G,D).

For any v ∈ V , departure-time tv ∈ R≥ 0, integer F ∈ [n] and R > 0, B[v;F ](tv)
(B[v;R](tv)) is a ball of size F (of radius R) grown by TDD from (v, tv), in the time-dependent
metric. Analogously, B[v;F ] (B[v;R]) and B[v;F ] (B[v;R]) are, respectively, the size-F
(radius-R) balls from v in the free-flow and fully-congested travel-time metrics.

A pair of continuous, pwl, periodic functions ∆[o, d] and ∆[o, d]), with a (hopefully) small
number of breakpoints, are (1 + ε)-upper-approximation and (1 + ε)-lower-approximation of
D[o, d], if ∀to ≥ 0, D[o,d](to)

1+ε ≤ ∆[o, d](to) ≤ D[o, d](to) ≤ ∆[o, d](to) ≤ (1 + ε) ·D[o, d](to) .

Assumptions on the arc-cost metric. The directedness and time-dependence of the TD-
instance imply an asymmetric arc-cost metric, which also evolves with time. To achieve a
smooth transition from static and undirected graphs towards time-dependent and directed
graphs, we need a quantification of the degrees of asymmetry and evolution of our metric over
time. These are captured via a set of parameters depicting the steepness of the minimum-
travel-time functions, the ratio of minimum-travel-times in opposite directions, and the
relation between graph expansion and travel-times. We make some assumptions on the
values of these parameters, which seem quite natural for our main application scenario (route
planning in road networks). We only present a qualitative interpretation of them. Their

ISAAC 2016
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exact statements, along with their validation on real-world road networks, are presented in
[16]. It is noted that Assumptions 1 and 2 were exploited also in the analyses in [17].

I Assumption 1 (Bounded Travel-Time Slopes). All the minimum-travel-time slopes are
bounded in a given interval [−Λmin,Λmax], for given constants Λmin ∈ [0, 1) and Λmax ≥ 0.

I Assumption 2 (Bounded Opposite Trips). The ratio of minimum-travel-times in opposite
directions between two vertices, for any specific departure-time but not necessarily via the
same path, is upper bounded by a given constant ζ ≥ 1.

I Assumption 3 (Growth of Free-Flow Dijkstra Balls). ∀F ∈ [n], the free-flow ball B[v;F ]
blows-up by at most a polylogarithmic factor, when expanding its (free-flow) radius up to the
value of the full-congestion radius within B[v;F ].

Finally, we need to quantify the correlation between the arc-cost metric and the Dijkstra-
Rank metric induced by it. For this reason, inspired by the notion of the doubling dimension
(e.g., [2] and references therein), we consider some scalar λ ≥ 1 and functions f, g : N 7→ [1,∞),
such that the following hold: ∀(o, d, to) ∈ V ×V × [0, T ), (i) Γ[o, d](to) ≤ f(n) · (D[o, d](to))λ,
and (ii) D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ. This property trivially holds, e.g., for λ = 1,
f(n) = n, and g(n) = maxa∈A

{
D[a]

}
. Of course, our interest is for the smallest possible

values of λ and at the same time the slowest-growing functions f(n), g(n). Our last assumption
quantifies the boundedness of this correlation by restricting λ, f(n) and g(n).

I Assumption 4. There exist λ ∈ o
(

log(n)
log log(n)

)
and f(n), g(n) ∈ polylog(n) s.t. the following

hold: (i) Γ[o, d](to) ≤ f(n) · (D[o, d](to))λ, and (ii) D[o, d](to) ≤ g(n) · (Γ[o, d](to))1/λ.
Analogous inequalities hold for the free-flow and the full-congestion metrics D and D.

Note that static oracles based on the doubling dimension (e.g., [2]) demand a constant
value for λ. We relax this by allowing λ to be even a (sufficiently slowly) growing function of n.
We also introduce some additional slackness, by allowing divergence from the corresponding
powers by polylogarithmic factors. In the rest of the paper we consider sparse TD-instances
(i.e., m ∈ O(n)), compliant with Assumptions 1, 2, 3, and 4.

3 The TRAP approximation method

The trapezoidal (TRAP) method is a novel algorithm for computing one-to-many (1 +ε)-upper-
approximations ∆[`, v] : [0, T ) 7→ R>0 of D[`, v], from a (landmark) vertex ` towards all
sufficiently distant destinations v. TRAP is remarkably simple and works as follows. First, [0, T )
is split into

⌈
T
τ

⌉
consecutive length-τ subintervals, where τ is a tuning parameter to be fixed

later. Then, for each interval [ts, tf = ts + τ) ⊆ [0, T ), a (1 + ε)-upper-approximation of the
projection D[`, v] : [ts, tf ) 7→ R>0 is constructed. Finally, the concatenation of all these (1+ε)-
upper-approximations per subinterval constitutes the requested (1 + ε)-upper-approximation
∆[`, v] of D[o, d] : [0, T ) 7→ R>0. Note that, contrary to BIS, no assumption is made on the
shapes of the min-cost functions to approximate within each subinterval; in particular, no
assumption is made on them being concave. TRAP only exploits the fact that τ is small, along
with Assumption 1 on the boundedness of travel-time slopes. We now describe the upper- and
lower-approximations of D[o, d] that we construct in a subinterval Ik = [ts = (k − 1)τ, tf =
kτ) ⊂ [0, T ), k ∈

[⌈
T
τ

⌉]
, from a vertex ` ∈ V towards some destination v ∈ V . The quality of

the upper-approximation depends on the value of τ and the delay values at the endpoints of Ik,
as we shall explain shortly. TRAP computes the following two functions of D[`, v] (cf. Fig. 1):
∀t ∈ Ik, δk[`, v](t) = min

{
D[`, v](tf ) + Λmintf − Λmint , D[`, v](ts)− Λmaxts + Λmaxt

}
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Figure 1 The upper-approximation δk[`, v] (thick orange, upper pwl line), and lower-
approximation δk[`, v] (thick green, lower pwl line), of the unknown function D[`, v] (blue pwl
line) within Ik = [ts = (k − 1)τ, tf = kτ).

and δk[`, v](t) = max
{
D[`, v](tf )− Λmaxtf + Λmaxt , D[`, v](ts) + Λmints − Λmint

}
and

considers them as the upper- and lower-approximating functions of D[`, v] within Ik. The
correctness of this choice is proved in the next lemma, which follows by Assumption 1.

I Lemma 5. δk[`, v](t) and δk[`, v](t) upper- and lower-approximate D[`, v](t) within Ik.

Let (tm, Dm) and (tm, Dm) be the intersections of the legs in the definitions of δk[`, v] and
δk[`, v], respectively. The maximum additive error in Ik (c.f. Figure 1) is MAE(Ik) :=
maxt∈Ik

{
δk[`, v](t)− δk[`, v](t)

}
= δk[`, v](tm)− δk[`, v](tm) . The following lemma proves

that, for τ sufficiently small, MAE(Ik) cannot be large. It also provides a sufficient condition
for the value of τ so that δk[`, v] is a (1 + ε)-upper-approximation of D[`, v] in Ik.

I Lemma 6. ∀(`, v) ∈ L× V , ∀k ∈
[⌈
T
τ

⌉]
and Ik = [(k − 1)τ, kτ), the following hold: (1)

MAE[`, v](Ik) ≤ Λmax · τ ; (2) δk[`, v] is a (1 + ε)-upper-approximation of D[`, v] within Ik,
if
[
D[`, v](ts) ≥

(
Λmin + Λmax

ε

)
· τ
]
∨
[
D[`, v](tf ) ≥

(
1 + 1

ε

)
Λmax · τ

]
For given τ > 0 and ` ∈ L, the set of faraway destinations from ` is V [`](τ) = {v ∈

V : τ [`, v] > τ} . τ [`, v] = D[`,v]
(1+1/ε)Λmax

is a sufficient τ -value for δk[`, v] being (1 + ε)-upper-
approximation of D[`, v] within Ik = [(k−1)τ [`, v], kτ [`, v]) (cf. Lemma 6). The next theorem
proves that TRAP provides a (1 + ε)-upper-approximation ∆[`, v] for all faraway destinations
from `, and also estimates the preprocessing requirements of the algorithm.

I Theorem 7. Fix ` ∈ L, F > f(n), and τ ∈ (0, T ) s.t. |V [`](τ)| = n − F . Let τ∗ =
minv∈V [`](τ)

{
D[`,v]

(1+1/ε)Λmax

}
. ∀v ∈ V [`](τ), ∆[`, v] is the concatenation of all the upper-

approximating functions δk[`, v] that TRAP returns per subinterval Ik = [ tsk = (k−1)τ∗ , tfk =
min{kτ∗, T} ) : k ∈

[⌈
T
τ∗

⌉]
. Then, ∀v ∈ V [`](τ), ∆[`, v] is a (1 + ε)-upper-approximation of

D[`, v] in [0, T ), requiring PRE SPACE... at most 2
⌈
T
τ∗

⌉
breakpoints. PRE TIME... The

number of calls to TDSP (`, ?, t) for their construction is
⌈
T
τ∗

⌉
≤ 1 + T (1+1/ε)Λmax

minv∈V [`](τ){D[`,v]} ∈
O(nα) .

Proof of Theorem 7. τ∗ is the appropriate length for the subintervals which assures that
TRAP returns (1 + ε)-upper-approximations for all faraway destinations from `. By definition
it holds that τ∗ ≥ τ . Since F > f(n), it holds that TRAP does not consider destinations at
free-flow distance less than 1. To see this, fix v ∈ V s.t. D[`, v] ≤ 1. By Assumption 4,
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Γ[`, v] ≤ f(n) ·D[`, v]λ ≤ f(n) < F . Thus, we can be sure that v /∈ V [`](τ). Since T = nα,
we conclude that T

τ∗ = T (1+1/ε)Λmax
minv∈V [`](τ) D[`,v] ∈ O(nα). We proceed now with the analysis of TRAP.

[0, T ) is split into
⌈
T
τ∗

⌉
consecutive length-τ∗ subintervals. Lemma 5 assures that for each

Ik = [kτ∗, (k+1)τ∗) an upper-approximating function δk[`, v] ofD[`, v] is determined, for each
v ∈ V [`](τ). The concatenation of all these functions constitutes the upper-approximating
function ∆[`, v] for D[`, v] within [0, T ). Since τ [`, v] ≥ τ∗ ⇒ D[`, v] ≥

(
1 + 1

ε

)
Λmaxτ

∗, we
deduce (cf. Lemma 6) that, for all v ∈ V [`](τ), the produced upper-approximations within
the consecutive length-τ∗ intervals are (1 + ε)-approximations of D[`, v]. TRAP preprocesses
` ∈ L by making

⌈
T
τ∗

⌉
∈ O(nα) calls to TDSP (`, ?, t), to sample the endpoints of all the⌈

T
τ∗

⌉
length-τ∗ subintervals. For storing ∆[`, v], it needs 2

⌈
T
τ∗

⌉
breakpoints (at most one

intermediate breakpoint (tm, Dm) per subinterval). J

4 Oracles with fully-informed landmarks

We now describe two novel oracles with landmarks possessing summaries for all reachable
destinations, excluding possibly a small neighborhood around them. We start with a random
landmark set L ⊂uar(ρ) V , i.e., we decide independently and uniformly at random whether
each vertex is a landmark, with probability ρ = n−ω for a constant ω ∈ (0, 1). We consider as
faraway vertices from ` ∈ L, all the vertices at free-flow distance at most R = T θ from it, for
a constant θ ∈ (0, 1) to be determined later. F = max`∈L {|B[`;R]|} is the maximum number
of faraway vertices from a landmark. The next lemma shows that the main parameters we
should consider w.r.t. a TD-instance are λ (cf. Assumption 4) and α ∈ (0, 1) s.t. T = nα.
All the other parameters essentially adjust their values to them.

I Lemma 8. For ν ∈ (0, 1) s.t. T = diam(G,D)1/ν , θ ∈ (0, 1) s.t. ν
θ ∈ O(1) and λ, f, g

defined as in Assumption 4, the following hold: (i) 1
λν = α± o(1), and (ii) F ∈ n[1±o(1)]θ/ν .

The TRAPONLY oracle. A first attempt towards avoiding the dependency of the preprocessing
requirements on K∗ is to develop an oracle, called TRAPONLY, whose preprocessing is based
solely on TRAP.TRAPONLY PREPROCESSING... The preprocessing of TRAPONLY first
considers as subinterval length the value τ = R

(1+1/ε)Λmax
> 0. It then calls TRAP for

each landmark ` ∈ L, which guarantees (1 + ε)-upper-approximations for all the faraway
destinations v ∈ V [`](τ) (cf. Theorem 7).RQA+... The distances of nearby destinations
from ` are left to be computed by the query algorithm of TRAPONLY, which is an appropriate
variant of RQA (we call it RQA+) which additionally grows a small TDD ball of size F polylog(F )
(cf. Assumption 3) from each newly settled landmark. TRAPONLY COMPLEXITY... The
following theorem analyzes the performance of TRAPONLY.

I Theorem 9. The expected time of RQA+ and the preprocessing requirements of TRAPONLY
are: E {QRQA+} ∈ O

(
nωr+max{ω, θν }+o(1)

)
and STRAPONLY, PTRAPONLY ∈ O

(
n2+α·(1−θ)−ω+o(1)).

Proof of Theorem 9. During the preprocessing, TRAPONLY makes
⌈
T
τ∗

⌉
≤ 1+ T (1+1/ε)Λmax

R =
1 + T 1−θ(1 + 1/ε)Λmax calls of TDD(`, t), for departure-times t ∈

{
0, τ∗, 2τ∗, . . . ,

⌈
T
τ∗

⌉
−1
}

and landmarks ` ∈ L, where the equality comes from Lemma 8. Therefore, the preprocessing-
time is dominated by the aggregate time for all these TDD probes. Taking into account
that each TDD probe takes time O(n log(n) log log(Kmax)) and that |L| = ρn = n1−ω

landmarks, by using Lemma 8 we get the following: PTRAPONLY = n1−ω · n 1−θ
νλ [1+o(1)] ·

n log(n) log log(n) ∈ n2−ω+ 1−θ
νλ [1+o(1)]+ log log(n)+log log log(n)

log(n) = n2−ω+α·(1−θ)+o(1) . The calcu-
lations are analogous for the required preprocessing space: For all landmarks ` ∈ L
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and all their faraway destinations v ∈ V [`](τ), the total number of breakpoints to store
is at most STRAPONLY = 2

⌈
T
τ∗

⌉
ρn2 ∈ n2−ω+ 1−θ

νλ [1+o(1)]+o(1) = n2−ω+α·(1−θ)+o(1) . As for
the query-time complexity of RQA+, recall that the expected number of TDD balls that
it grows is (1/ρ)r. Additionally, RQA+ grows (1/ρ)r TDD balls from the corresponding
closest landmarks. Each ball from a new center costs O((1/ρ) log(1/ρ)). Each ball from
a landmark costs O(F polylog(F )) ∈ n[1±o(1)]θ/ν . Thus, the expected query-time is upper-
bounded as follows: E {QRQA+} ∈ O((1/ρ)r[(1/ρ) log(1/ρ) + F polylog(F )] log log(Kmax)) =
O
(
nωr+max{ω,[1+o(1)]θ/ν}) . J

The next corollaries are parameter-tuning examples showcasing the trade-offs among the
sublinearity of query-time, the subquadratic preprocessing requirements and the stretch.

I Corollary 10. For δ ∈ (α, 1), β ∈ (0, α2ν], ω = δ
r+1 , θ = δν

r+1 and r =
⌊
δ·(1+αν)
α+β

⌋
−1,

STRAPONLY, PTRAPONLY ∈ n2−β+o(1), E {QRQA+} ∈ nδ+o(1) and the stretch is 1 + σ(r) = 1 + ε ·
(1+ε/ψ)r+1

(1+ε/ψ)r+1−1 .

I Corollary 11. For any integer k ≥ 2, let η(k) =
⌈

log(k/(k−1))
log(1+ε/ψ)

⌉
−1, δ ∈ (0, 1) and β ∈(

0, δ
η(k)+2

)
. Then TRAPONLY achieves stretch 1 + k · ε with STRAPONLY, PTRAPONLY ∈ n2−β+o(1)

and E {QRQA+} ∈ nδ+o(1), by scaling the TD-instance so that T = nα, for α = δ−[η(k)+2]·β
η(k)+2−δν .

The FLAT oracle. Our second attempt, the FLAT oracle, provides preprocessed information
for all reachable destinations per landmark, and uses the query algorithm RQA [17]. PRE:
BIS+TRAP... FLAT considers again as subinterval length the value τ = R

(1+1/ε)Λmax
> 0. Then,

it constructs summaries for all reachable destinations per landmark ` ∈ L exploiting both
BIS and TRAP: BIS handles all the (at most F = max`∈L {|B[`;R]|}) nearby destinations
in B[`;R], whereas TRAP handles all the faraway destinations of V \ B[`;R]. The space
requirements for the summaries created by TRAP are exactly the same as in TRAPONLY. As for
the summaries computed by BIS, we avoid the linear dependence of BIS on K∗ by assuring
that F is sufficiently small (but not too small) and exploiting Assumption 3 which guarantees
that the involved subgraph B′[`;F ] in the preprocessing phase of BIS on behalf of ` has size
O(F polylog(F )). The next lemma shows that BIS is affected only by the concavity-spoiling
breakpoints of arc-travel-time functions in B′[`;F ], rather than the entire graph.

I Lemma 12. ∀(`, v) ∈ L×B[`;F ],∀u ∈ V \B′[`;F ],∀t ∈ [0, T ), D[`, v](t) < D[`, u](t) .

Proof of Lemma 12. From the definitions of the involved free-flow and full-congestion
Dijkstra balls, the following holds: D[`, v](t) ≤ D[`, v] ≤ R[`] < D[`, u] ≤ D[`, u](t) . J

The following theorem summarizes the complexities of the FLAT oracle.

I Theorem 13. The query-time QRQA and the preprocessing time PFLAT and space SFLAT of FLAT
are: E {QRQA} ∈ O

(
nω(r+1)+o(1)) and PFLAT , SFLAT ∈ O

(
n1−ω+o(1) · [n2θ/ν + n1+α·(1−θ)]

)
.

Proof of Theorem 13. BIS requires space at most F 2 polylog(F ), since by Lemma 12 the
involved graph only contains F polylog(F ) vertices and concavity-spoiling breakpoints at the
arc-travel-time functions. For the faraway vertices of V \B[`;F ], since τ = R

(1+1/ε)Λmax
, TRAP

provides (1 + ε)-approximate summaries for all destinations v ∈ V \B[`;R], because the suffi-
cient condition of Theorem 7 holds: D[`, v] > R = (1 + 1/ε) Λmaxτ . Thus, we conclude that
SFLAT ∈ ρn

[
F 2 polylog(F ) + T (1+1/ε)Λmaxn

R

] /∗ L.8 ∗/

= n1−ω[n(2θ/ν)·[1+o(1)] + n1+α·(1−θ)[1+o(1)]]
= n1−ω+[1+o(1)]·max{ 2θ/ν , 1+α(1−θ) }+o(1) , since f(n), g(n) ∈ polylog(n). J
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The next corollaries are parameter-tuning examples to showcase the effectiveness of FLAT.

I Corollary 14. If δ ∈ (α, 1), β ∈
(

0, α·(1+α)
2/ν+α

]
, ω = δ

r+1 , r =
⌊
δ
α ·

2/ν+α
(β/α)·(2/ν+α)+(2/ν−1)

⌋
−1

and θ = 1+α
2/ν+α , then FLAT has PFLAT, SFLAT ∈ n2−β+o(1), E {QRQA} ∈ nδ+o(1) and stretch

1 + σ(r) = 1 + ε · (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 .

I Corollary 15. For integer k ≥ 2, let η(k) =
⌈

log(k/(k−1))
log(1+ε/ψ)

⌉
−1 and δ ∈ (0, 1). FLAT achieves

a target stretch 1 + k · ε with preprocessing requirements n2−o(1) and expected query-time
nδ+o(1), by scaling the TD-instance so that T = nα for α = 2δ

[η(k)+2]·(2−ν)−δν , as β ↓ 0.

Comparison of TRAPONLY and FLAT. Both TRAPONLY and FLAT depend on the travel-time
metric, but are independent of the degree of disconcavity K∗. On one hand, TRAPONLY is a
simpler oracle, at least w.r.t. its preprocessing phase. On the other hand, FLAT achieves a
better approximation for the same TD-instance and anticipations for sublinear query-time
nδ and subquadratic preprocessing requirements n2−β . This is because, as β ↓ 0, FLAT
guarantees a recursion budget r of (roughly) 2δ

a − 1, whereas TRAPONLY achieves about half
this value and r has an exponential effect on the stretch that the query algorithms achieve.

5 The HORN oracle

We now describe and analyze the Hierarchical ORacle for time-dependent Networks (HORN),
whose query algorithm is highly competitive against TDD, not only for long-range queries (i.e.,
having Dijkstra-Rank proportional to the network size) but also for medium- and short-range
queries, while ensuring subquadratic preprocessing space and time. The main idea of HORN is
to preprocess: many landmarks, each possessing summaries for a few destinations around
them, so that all short-range queries can be answered using only these landmarks; fewer
landmarks possessing summaries for more (but still not all) destinations around them, so
that medium-range queries be answered by them; and so on, up to only a few landmarks
(those required by FLAT) possessing summaries for all reachable destinations. The area of
coverage C[`] ⊂ V of ` is the set of its nearby vertices, for which ` possesses summaries. `
is called informed for each v ∈ C[`], and uninformed for each v ∈ V \ C[`]. The landmarks
are organized in a hierarchy, according to the sizes of their areas of coverage. Each level
Li in the hierarchy is accompanied with a targeted Dijkstra-Rank Ni ∈ [n], and the goal of
HORN is to assure that Li should suffice for RQA to successfully address queries (o, d, to) with
Γ[o, d](to) ≤ Ni, in time o(Ni). The difficulty of this approach lies in the analysis of the
query algorithm. We want to execute a variant of RQA which, based on a minimal subset
of landmarks, would guarantee a (1 + σ(r))-approximate solution for any query (o, d, to)
(as in TRAPONLY and FLAT), but also time-complexity sublinear in Γ[o, d](to). We propose
the Hierarchical Query Algorithm (HQA) which grows an initial TDD ball from (o, to) that
stops only when it settles an informed landmark ` w.r.t. d which is at the “right distance”
from o, given the density of landmarks belonging to the same level with `. HQA essentially
“guesses” as appropriate level-i in the hierarchy the level that contains `, and continues with
the execution of RQA with landmarks having coverage at least equal to that of ` (cf. Fig. 2).

Initialization of HORN. We use the following parameters for the hierarchical construction:
(i) k ∈ O(log log(n)) determines the number of levels (minus one) comprising the hierarchy
of landmarks. (ii) γ > 1 determines the actual values of the targeted Dijkstra-Ranks, one
per level of the hierarchy. For example, as γ gets closer to 1, the targeted Dijkstra-Ranks
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uninformed

informed and in-time

informed but too early

Figure 2 Demonstration of execution of HQA. Dashed circles indicate areas of coverage. Solid
circular stripes indicate the rings of the corresponding levels in the hierarchy. Landmark `1,o is
uninformed and `3,o, although informed, comes too early. `2,o is both informed and within the ring
of its own level, leading HQA to deduce that the appropriate level is i = 2.

accumulate closer to small- and medium-rank queries. (iii) δ ∈ (0, 1) is the parameter
that quantifies the sublinearity of the query algorithm (HQA), in each level of the hierarchy,
compared to the targeted Dijkstra-Rank of this level. In particular, if Ni is the targeted
Dijkstra-Rank corresponding to level-i in the hierarchy, then HQA should be executed in time
O
(
(Ni)δ

)
, if only the landmarks in this level (or in higher levels) are allowed to be used.

Preprocessing of HORN. ∀i ∈ [k], we set the targeted Dijkstra-Rank for level-i to Ni =
n(γi−1)/γi . Then, we construct a randomly chosen level-i landmark set Li ⊂uar(ρi) V , where
ρi = N

−δ/(r+1)
i = n−δ(γ

i−1)/[(r+1)γi]. Each `i ∈ Li acquires summaries for all (and only
those) v ∈ C[`i], where C[`i] is the smallest free-flow ball centered at `i containing ci =
Ni ·nξi = n(γi−1)/γi+ξi vertices, for a sufficiently small constant ξi > 0. The summaries to the
Fi = cχi nearby vertices around `i are constructed with BIS; the summaries to the remaining
ci − Fi faraway vertices of `i are constructed with TRAP, where χ = θ

ν = 1+α
2+αν ∈

[
1
2 ,

2
2+ν

]
is

an appropriate value determined to assure the correctness of FLAT w.r.t. the level-i of the
hierarchy. An ultimate level Lk+1 ⊂uar(ρk+1) V of landmarks, with ρk+1 = n−

δ
r+1 , assures

that HORN is also competitive against queries with Dijkstra-Rank greater than n(γk−1)/γk .
We choose in this case ck+1 = Nk+1 = n, Fk+1 = nχ and C[`k+1] = V , ∀`k+1 ∈ Lk+1.

Description of HQA. A TDD ball from (o, to) is grown until d is settled, or the (ESC)-criterion
or the (ALH)-criterion is fulfilled (whichever occurs first):

Early Stopping Criterion (ESC): `o ∈ L = ∪i∈[k+1]Li is settled, which is informed
(d ∈ C[`o]) and, for ϕ ≥ 1, ∆[`o,d](to+D[o,`o](to))

D[o,`o](to) ≥ (1 + ε) · ϕ · (r + 1) + ψ − 1 .
Appropriate Level of Hierarchy (ALH): For some level i ∈ [k] of the hierarchy, the
first landmark `i,o ∈ Li is settled such that: (i) d ∈ C[`i,o] (`i,o is “informed”); and
(ii) N

δ/(r+1)
i

ln(n) ≤ Γ[o, `i,o](to) ≤ ln(n) · Nδ/(r+1)
i (`i,o is at the “right distance”). In that

case, HQA concludes that i is the “appropriate level” of the hierarchy to consider. Observe
that the level-(k + 1) landmarks are always informed. Thus, if no level-(≤ k) informed
landmark is discovered at the right distance, then the first level-(k + 1) landmark that
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will be found at distance larger than ln(n) ·Nδ/(r+1)
k will be considered to be at the right

distance, and then HQA concludes that the appropriate level is k + 1.

If d is settled, an exact solution is returned. If (ESC) causes termination of HQA, the value
D[o, `o](to) + ∆[`o, d](to +D[o, `o](to)) is reported. Otherwise, HQA stops the initial ball due
to the (ALH)-criterion, considering i ∈ [k + 1] as the appropriate level, and then continues
executing the variant of RQA, call it RQAi, which uses as its landmark set Mi = ∪k+1

j=i Lj .
Observe that RQAi may fail constructing approximate solutions via certain landmarks in Mi

that it settles, since they may not be informed about d. Eventually, HQA returns the best
od-path (w.r.t. the approximate travel-times) among the ones discovered by RQAi via all
settled and informed landmarks `. Theorem 16 summarizes the performance of HORN.

I Theorem 16. Consider any TD-instance with λ ∈ o
(√

log(n)
log log(n)

)
and g(n), f(n) ∈

polylog(n) (cf. Assumption 4). For ϕ = ε·(r+1)
ψ·(1+ε/ψ)r+1−1 and k ∈ O(log log(n)), let ξi ∈([

(1 + λ) · log log(n) + λ log
(

1 + ζ
1−Λmin

)]
/ log(n) , 1− γ−i

)
, for all i ∈ [k]. Then, for

any query (o, d, to) s.t. Ni∗−1 < Γ[o, d](to) ≤ Ni∗ for some i∗ ∈ [k+ 1], any δ ∈ (α, 1), β > 0,
and r =

⌊
δ
α ·

(2/ν+α)(1−γ)
β·(2/(αν)+1)+2/ν−1

⌋
−1, HORN achieves E {QHQA} ∈ (Ni∗)δ+o(1), PHORN , SHORN ∈

n2−β+o(1) and stretch 1 + ε (1+ε/ψ)r+1

(1+ε/ψ)r+1−1 , with probability at least 1−O
( 1
n

)
.
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