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Abstract
In this paper we consider a problem that arises from a strategic issue in the stable matching
model (with complete preference lists) from the viewpoint of exact-exponential time algorithms.
Specifically, we study the Stable Extension of Partial Matching (SEOPM) problem,
where the input consists of the complete preference lists of men, and a partial matching. The
objective is to find (if one exists) a set of preference lists of women, such that the men-optimal
Gale Shapley algorithm outputs a perfect matching that contains the given partial matching.
Kobayashi and Matsui [Algorithmica, 2010 ] proved this problem is NP-complete. In this article,
we give an exact-exponential algorithm for SEOPM running in time 2O(n), where n denotes
the number of men/women. We complement our algorithmic finding by showing that unless
Exponential Time Hypothesis (ETH) fails, our algorithm is asymptotically optimal. That is,
unless ETH fails, there is no algorithm for SEOPM running in time 2o(n). Our algorithm is a non-
trivial combination of a parameterized algorithm for Subgraph Isomorphism, a relationship
between stable matching and finding an out-branching in an appropriate graph and enumerating
non-isomorphic out-branchings.
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1 Introduction

Stable Matching together with its in numerous variants are among the most well-studied
problems in matching theory, driven by applications to economics, business, engineering, and
more recently medical sciences. In the two-sided Stable Matching problem (also called
the Stable Marriage problem), we are given two sets of agents of equal size, known as
men and women, where each person submits a ranked list of all the members of the opposite
sex. In this setting, a matching is a set of man-woman pairs (called matching partners), no
two of which share a common member. A stable matching is a matching for which there
does not exist a blocking pair : a man and a woman, who are not part of a matching pair,
but prefer each other to their respective matching partners.

Ever since the theoretical framework for Stable Matching was laid down by Gale
and Shapley [9] to study the then current heuristic used to assign medical residents to
hospitals in New England, the topic has received considerable attention from theoreticians
and practitioners alike. In particular, it is one of the foundational problems in social
choice theory, where a matching is viewed as an allocation or assignment of resources to
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relevant agents, whereby the nature of the assignment can vary greatly depending on the
scenario/marketplace they are modelling. We refer the reader to books [10, 18, 14] for an
in-depth introduction to stable matching and its variants.

Gale and Shapley [9] showed that every instance of the Stable Matching problem
admits a stable matching. In other words, given any set of preference lists of men and women
there exists at least one stable matching. In fact, they gave a polynomial time algorithm to
find a stable matching. This algorithm is widely used in both practice and theory, and it
exists in two versions: the men-optimal and the women-optimal, so named to emphasise the
fact that one side prefers one over the other. Both variants are defined analogously. As the
name suggests, the men-optimal stable matching is a stable matching that is no worse than
any other stable matching, in terms of the preferences of the men. In other words, there
does not exist a stable matching such that each man prefers his partner in that matching to
his partner in the men-optimal stable matching. The algorithm that yields the men-optimal
stable matching is called the men-proposing (resp. women-proposing) Gale-Shapley algorithm.
The men-proposing version of the algorithm works as follows. A man who is not yet matched
to a woman, proposes to the woman who is at the top of his current list, which is obtained
by removing from his original preference list, all the women who have rejected him at an
earlier step. On the woman’s side, when a woman w receives a proposal from a man m, she
accepts the proposal if it is her first proposal, or if she prefers m to her current partner. If w
prefers her current partner to m, then w rejects m. If m is rejected by w, then m removes
w from his list. This process continues until there is no unmatched man. The output of
this algorithm is the men-optimal stable matching. For more details, see [10]. It has been
customary to use the men-proposing version of the algorithm, and our analysis here will stick
to that convention. Henceforth, unless explicitly stated otherwise, any mention of a stable
matching should be interpreted by the reader as such. We will use (LM ,LW ) to denote the
set of preference lists of men and women, and the men-optimal matching with respect to
these lists is denoted by GS(LM ,LW ).

1.1 Our problem and motivation
Kobayashi and Matsui [12, 13] studied manipulation in the stable matching model, where
agents are manipulating with the goal of attaining a specific matching target. Formally
speaking, they considered the following class of problems. An input consists of two sets
M and W , (each of size n) of men and women, respectively; along with the preference list
of every man (expressed as a strict ordering on the set of women) (denoted by LM ) and a
matching on (M,W ). The said matching can either be perfect (if it contains n pairs), or
partial (possibly, fewer than n pairs). Furthermore, for a couple of problems, we are given a
set of preference lists of women, LW ′ , where W ′ ⊆W . The goal is to decide if there exists a
set of preference lists of women, LW , containing LW ′ , such that when used in conjunction
with LM with the men-optimal stable matching algorithm, yields a matching that contains
all the pairs in the stated matching. Of these problems, two are directly related to our work
in this paper. Let us consider the following two problems, and compare and contrast their
computational complexity.

Attainable Stable Matching (ASM)
Input: A set of preference lists LM of men over women W , and a perfect matching µ on
(M,W ).
Question: Does there exist a set of preference lists of women LW , such that
GS(LM ,LW ) = µ?
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Kobayashi and Matsui in [12, 13] showed that ASM is polynomial time solvable, and
exhibited an O(n2) algorithm that computes the set LW , if it exists. Or else, reports “none
exists”. The following problem is identical to the above, except in one key aspect: the target
matching need not be perfect. The authors show that this problem is NP-complete.

Stable Extension of Partial Matching (SEOPM)
Input: A set of preference lists LM of men M over women W , and a partial matching µ′
on (M,W ).
Question: Does there exist preferences of women LW , such that µ′ ⊆ GS(LM ,LW )?

These two problems and their differing computational complexities represent a dichotomy
with respect to the size of target matching. Kobayashi and Matsui solve ASM by designing
a novel combinatorial structure called the suitor graph, which encodes enough information
about the men’s preferences and the matching pairs, that it allows an efficient search of the
possible preference lists of women, which are n · n! in number. The same approach falls short
when the stated matching is partial.

Our work in this paper falls thematically within the area of strategic results relating to
the stable matching problem. There is a long history of results centred around the question
as to whether an individual agent, or a coalition of agents can misstate their true preference
lists (either by truncating, or by permuting the list), with the objective of obtaining a better
partner (assessed in terms of the true preferences of the manipulating agents) than would
otherwise be possible under the men-optimal stable matching algorithm. SEOPM is to be
viewed as a manipulation game in which a coalition of agents (in this case the subset of
women who are matched under the partial matching) have decided upon a specific partner.
These agents are colluding, with co-operation from the other women who are not matched,
to produce a perfect matching, which gives each of the manipulating agents their target
partners. There exists a strategy to attain this objective if and only if there exists a set of
preference list of women that yields a perfect matching that contains the partial matching.

Since SEOPM has been shown to be NP-complete, it is natural to study this problem
in computational paradigms that are meant to cope with NP-hardness. We attempt such a
study in the area of exact exponential time algorithms. Manipulation and strategic issues in
voting have been well-studied in the field of exact algorithms and parameterized complexity;
see the survey [3] for an overview. But one can not say the same regarding the strategic issues
in the stable matching model. These problems hold a lot of promise and remain hitherto
unexplored in the light of exact algorithms and parameterized complexity, with exceptions
that are few and far between [15, 16].

To the best of our knowledge, Cseh and Manlove [4] initiated this type of analysis by
studying an NP-hard variant of the stable marriage and stable roommate problems1, where
the input consists of each of the preference lists, as well two subsets of (not necessarily
pairwise disjoint) pairs of agents, representing the forbidden pairs and the forced pairs. The
goal is to find a matching that does not contain any of the forbidden pairs, and contains
each of the forced pairs, while simultaneously minimizing the number of blocking pairs.

1 In the stable roommate problem, the matching market consists of agents of the same type, as opposed
to the market modelled the stable marriage problem that consists of agents of two types, men and
women. Roommate assignments in college housing facilities is a real world application of the stable
roommate problem.
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1.2 Our Contributions
Throughout the article, n is used to denote n = |M | = |W |. The most basic algorithm for
SEOPM would be to guess the permutation of all women (that is, the set of preferences
of women, LW ) and check whether µ′ ⊆ GS(LM ,LW ). However, this algorithm will take
(n!)nn2 = 2O(n2 logn). One can obtain an improvement over this naïve algorithm by using the
polynomial time algorithm for ASM [13]. That is, using the algorithm for ASM, which given a
matching µ can check in polynomial time whether there exists LW such that µ = GS(LM ,LW ).
The faster algorithm for SEOPM, using the algorithm for ASM, tries all possible extensions
of the partial matching µ ⊇ µ′ and checks in polynomial time whether there exists LW such
that µ = GS(LM ,LW ). Thus, if the size of the partial matching is k, this algorithm would
have to try (n− k)! possibilities. In the worst case this can take (n!)nO(1) = 2O(n logn).

In this article we give a 2O(n) algorithm, which not only breaks the naïve bound, but also
uses an idea which connects SEOPM to the problem of Colored Subgraph Isomorphism
(given two graphs G and H, the objective is to test whether H is isomorphic to some subgraph
of G). We establish this connection by introducing a combinatorial tool, the universal suitor
graph that extends the notion of the rooted suitor graph devised by Kobayashi and Matsui
in [12, 13], to solve ASM. It is shown in [13] that an input instance (LM , µ) of ASM is a
Yes-instance if and only if the corresponding rooted suitor graph has an out-branching : a
spanning subgraph in which every vertex has at most one in-coming arc, and is reachable
from the root. The universal suitor graph satisfies the property that (LM , µ′), an instance of
SEOPM is a Yes-instance if and only if the corresponding universal suitor graph contains a
subgraph that is isomorphic to the out-branching corresponding to (LM , µ) where µ is the
perfect matching that “extends” µ′. Thus, the universal suitor graph succinctly encodes
all “possible suitor graphs” and is only polynomially larger than the size of a suitor graph.
That is, the size of universal suitor graph is O(n2). This is our main conceptual contribution
and we believe that the concept of the universal suitor graph is likely to be of independent
interests, useful in characterizing existence of strategies in other manipulation games.

Using ideas from exact exponential algorithms and parameterized complexity; in particular
by using as a subroutine the algorithm that enumerates all non-isomorphic out-branchings
in a (given) rooted directed graph [2, 17], and a parameterized algorithm for Colored
Subgraph Isomorphism [1, 7, 8], we can search for a subgraph in the universal suitor graph
that is isomorphic to an out-branching corresponding to an extension of µ′. We complement
our algorithmic finding by showing that unless Exponential Time Hypothesis (ETH) fails,
our algorithm is asymptotically optimal. That is, unless ETH fails, there is no algorithm for
SEOPM running in time 2o(n). We refer to the following books for further reading regarding
exact algorithms [6] and parameterized complexity [5].

2 Preliminaries

For a positive integer n, we will use [n] to denote the set {1, 2, . . . , n}. As introduced earlier,
M andW denote the set of men and women, respectively, and we assume that |M | = |W | = n.
Each m ∈M has a preference list, denoted by P (m), which is a total ordering of W . The
set of preference lists of all men is denoted by LM . Similarly, each w ∈W has a preference
list, denoted by P (w) which is a total ordering of M . The set of preference lists of all
women is denoted by LW . It is helpful to view (M,W ) as the bipartitions of a complete
bipartite graph, and a perfect matching in (M,W ) as a set of vertex disjoint edges that
matches every vertex in M ∪W . Similarly, a partial matching in (M,W ) can be viewed
as a set of vertex disjoint edges that does not necessarily match every vertex in M ∪W .
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Given a matching µ (perfect or partial), and a vertex v ∈M ∪W , µ(v) denotes the matched
partner of the man/woman v. We note that for a perfect matching µ: m ∈M if and only
if µ(m) ∈ W , and similarly w ∈ W if and only if µ(w) ∈ M . But, when we have a partial
matching, µ, it may be that some vertices (male or female) are not matched under it, we
denote that symbolically as µ(v) = v for any man/woman v ∈M ∪W who is not matched
in µ. A matching µ is said to be an extension of a matching µ′ if µ′ ⊆ µ, that is µ
contains the set of edges in µ′. For any matching µ, and a man m matched in µ, we define
δ+(m) = {w ∈ W |m strictly prefers w to µ(m)}, and conversely for any woman w ∈ W

(not necessarily matched in µ) we define δ−(w) = {m ∈ M |m strictly prefers w to µ(m)};
all preferences are in terms of lists in LM .

Throughout the paper, we use the standard notations about directed graphs. Given a
directed graph D, and a vertex v ∈ V (D), we use N−(v) to denote the set of vertices that
are in-neighbors of v: N−(v) = {u | (u, v) ∈ E(D)}. Similarly, we use N+(v) to denote the
set of vertices that are out-neighbors of v: N+(v) = {u | (v, u) ∈ E(D)}. Following the usual
notations, a source is a vertex v such that N−(v) = ∅ and a sink is a vertex v such that
N+(v) = ∅. An out-branching is a directed graph with a special vertex, called the root,
where each vertex is reachable from the root by exactly one directed path. Essentially, this
is a rooted tree with all arcs oriented away from the root. For any directed edge or an arc,
tail is the vertex from where the arc originates and the head is the vertex at which it ends.

3 Generalization of Suitor Graph

The main tool we use to obtain our exact exponential time algorithm is the notion of a
universal suitor graph – a generalization of the suitor graph introduced by Kobayashi and
Matsui [13]. We start the section by introducing the definition of a suitor graph, followed by
the definition of a universal suitor graph.

Suitor Graph and Rooted Suitor Graph. Given a set of preference lists LM of men over set
of women W and a partial matching µ′, G(LM , µ′) denotes a directed bipartite graph, called
a suitor graph, where V (G) = M ∪W and a set of directed arcs E(G) defined as follows,

E(G) =
{

(w, µ′(w)) ∈W ×M | w is matched in µ′
}

∪
{

(m,w) ∈M ×W | m is matched in µ′, w ∈ δ+(m)
}
.

Observe that the arcs for which a woman is the tail are the (only) arcs that correspond to
the matched pairs in µ′.

For a given suitor graph G(LM , µ′), the associated rooted suitor graph is a directed graph
G(LM , µ′) defined as follows. We introduce an artificial vertex r, called the root, to G(LM , µ′)
and add arcs (r, w) for every vertex w ∈W that has no incoming arcs in G(LM , µ′). That is,
we add arcs from r to all the vertices that are sources in G(LM , µ′). We give an example of a
suitor graph and a rooted suitor graph. Figure 1 shows the suitor graph and the rooted suitor
graph for the preference lists given in Table 1 and the partial matching {(A, 1), (B, 2), (C, 3)}.
The vertex marked as r is the root vertex.

Our main motivation for suitor graph and its generalization is the following result proved
in [13, Theorem 2].

I Proposition 1 ([13]). Let LM be a set of preference lists for M , and µ be a perfect matching
between (M,W ), then the following holds. There exists LW , a set of preference lists for

FSTTCS 2016
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Table 1 Example: Preference List of Men over Women.

Man Preference over women
A 3 7 6 5 1 9 8 4 2
B 1 2 4 3 9 5 8 7 6
C 2 7 6 8 3 4 9 1 5
D 2 7 6 8 3 4 9 1 5
E 3 7 6 5 1 9 8 4 2
F 1 2 4 3 9 5 8 7 6
G 3 7 6 5 1 9 8 4 2
H 1 2 4 3 9 5 8 7 6
I 2 7 6 8 3 4 9 1 5

A
B
C
D
E
F
G
H
I

1
2
3
4
5
6
7
8
9

(a)

A
B
C
D
E
F
G
H
I

1
2
3
4
5
6
7
8
9

r

(b)

Figure 1 (a) Suitor Graph, (b) Rooted Suitor Graph.

W such that GS(LM ,LW ) = µ if and only if the rooted suitor graph G
(
LM , µ

)
has an

out-branching.

There exists a polynomial time algorithm that takes as input (LM , µ) and outputs LW (if
one exists) such that GS(LM ,LW ) = µ. Otherwise, it reports “none exists”. We will be using
this as a subroutine in our algorithm which will be presented in a later section.

Universal Suitor Graph. Next we define universal suitor graph (USG). The idea is to
construct a graph that given a set of preference lists LM of men over women captures
all possible suitor graphs succinctly. Then we make use of this to solve our problem.
Formally, given a set of preference lists LM of men over women, universal suitor graph,
U(LM ), is defined as follows. We make n different copies of each man mi ∈ M , denoted
by Mi = {m1

i , . . . ,m
n
i }. Recall that for every mi ∈ M , the preference list P (mi) ∈ LM

is given. We define P (mj
i ) = P (mi), for 1 ≤ j ≤ n. Thus, the vertex set of the graph

is V (U(LM )) =
⊎n
i=1 Mi ∪ W. The arc set, E(U(LM )), is defined as follows. For every

wi ∈W , the graph contains arcs (wi,mi
j) for all 1 ≤ j ≤ n. Additionally, the graph contains

the arc (mj
i , wk) if mi prefers wk to wj in P (mi), wk, wj ∈ W . This condition is depicted

notationally as wk >mi wj . The intuition behind the construction is the following: given any
matching µ, if a man mj is matched with woman wk then we imitate that by matching wk
to the kth copy of mj . Furthermore, using other copies of mj we imitate connections with
women whom he prefers to wk. In particular, the ith copy of every man is “paired” to wi,
i.e., N+(wi) = {mi

1,m
i
2, . . . ,m

i
n}. This idea of pairing is captured by the fact that every

male vertex in USG (consider mi
k) has a unique in-neighbor (the female vertex wi).
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A
B
C

D4

E4

F 4

G4

H4

I4

D9

E9

F 9

G9

H9

I9

1
2
3
4
5
6
7
8
9

(a)

A
B
C

D5

E5

F 5

G5

H5

I5

D9

E9

F 9

G9

H9

I9

1
2
3
5
6
7
8
4
9S

r

(b)

Figure 2 (a) Universal suitor graph, (b) Rooted universal suitor graph [described later in secion
4.2] for the partial matching µ = {(A, 1), (B, 2), (C, 3)} with sources in {4, 9} (shows edges partially).
Black edges represent the matching edges in µ, red edges represent the preferences of men matched
in µ, while the blue edges represent edges from an unmatched woman to her own copies of the
unmatched men. The green ellipse represents the set of source vertices, {4, 9}, that are connected
from the root (not shown).

Universal Suitor Graph for a Partial Matching. For a given partial matching µ on the set
(M,W ), we define the graph, U(LM , µ), as follows. A man m ∈ M is matched under µ if
and only if µ(m) ∈W , and analogously for a woman w ∈W , w is matched under µ if and
only if µ(w) ∈M . We refer to the following set of operations collectively as the pruning of
U(LM ) w.r.t.µ.
Matched Women: Let µ(wi) = mj . Then delete vertices {mi

k | 1 ≤ k ≤ n, k 6= j}, from the
graph. This ensures that every matched female vertex wi, has a unique out-going arc to
the ith copy of the man µ(wi). In other words, only the arc (wi,mi

j), where µ(wi) = mj ,
survives.

Unmatched Women: Let µ(wi) 6∈M . Then delete vertices {mi
k | 1 ≤ k ≤ n, µ(mk) ∈W}.

That is, delete the ith copy of a man who is matched under µ. This ensures that in the
subgraph, every unmatched female vertex wi has out-going arcs to the vertices in the set
{mi

k | mk is unmatched in µ}.
This completes the description of the pruning operations. Thus, to obtain the graph U(LM , µ)
we start with U(LM ) and apply the pruning operations defined above with respect to the
matching µ. Edges in U(LM ) that are not deleted during the above pruning operations,
are said to have survived pruning w.r.t.µ. We give an example of a universal suitor graph
for a partial matching. Figure 2 shows the universal suitor graph and the rooted universal
suitor graph [described later in section 4.2] for the preference lists given in Table 1, and for
the partial matching µ = {(A, 1), (B, 2), (C, 3)}. To keep the figure clear, we only show the
copies of male vertices for women 4 and 9. The edges going out of these copies of the male
vertices are omitted.

FSTTCS 2016
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We conclude this discussion with a useful lemma that will be invoked in several arguments.

I Lemma 2. Let µ denote a partial matching. If a male vertex mi
j survives pruning w.r.t.µ,

then either µ(mj) = wi, or else both mj and wi are unmatched in µ. Furthermore, the
out-going arcs from mi

j are also not deleted during pruning operations.

Proof. We begin by noting that if wi is matched to someone other that mj , then the vertex
mi
j must be deleted during the pruning step; this is a contradiction. Suppose that wi is

unmatched, and µ(mj) = w`. Then, the arc (w`,m`
j) survives, but the vertex mi

j must be
deleted, again a contradiction. Hence, the fact that mi

j survives pruning w.r.t.µ, implies
that either µ(mj) = wi, or both mj , wi are unmatched.

Additionally, we note that if µ(mj) = wi, then mi
j is the sole member of Mj that survives

the pruning steps. Also note that regardless of whether mj is matched or unmatched, the
out-going arcs from mi

j survive the pruning process. J

4 Exact Algorithm for SEOPM

In this section we design a moderately exponential time algorithm for SEOPM. Towards
this we will combine the following three ingredients:

the notion of a universal suitor graph defined in the previous section;
a parameterized algorithm for Subgraph Isomorphism when the pattern graph has
bounded treewidth; and
the fact that the number of non-isomorphic (i.e. unlabelled) trees on n vertices is at most
2.956nnO(1).

We start this section by giving an overview of our algorithms. Towards this we first give
the relevant notions and definitions.

I Definition 3. Two digraphs G1 and G2 are said to be isomorphic if there is a function
f : V (G1)→ V (G2) that satisfies the following properties:
1. f is a bijective function, i.e., f−1 is a function from V (G2) to V (G1);
2. for every edge (u, v) ∈ E(G1), we have (f(u), f(v)) ∈ E(G2).
A function such as f is called an isomorphism function. This function can be extended to
sets of vertices analogously. That is, for all V1 ⊆ V (G1), f(V1) = {f(v) | v ∈ V1} ⊆ V (G2).
We write G1 ' G2 to denote the two graphs are isomorphic.

Now we are ready to define the Colored Subgraph Isomorphism problem. The
Colored Subgraph Isomorphism problem is formally defined as follows.

Colored Subgraph Isomorphism (Col-Sub-Iso) Parameter: |V (H)|
Input: A host graph G, a pattern graph H, and a coloring χ : V (G)→ {1, 2, . . . , |V (H)|}.
Question: Is there a subgraph G′ in G such that G′ ' H, and the vertices of G′ have
distinct colors?

We obtain the desired algorithm by making 2O(n) instances of the Col-Sub-Iso problem
where the pattern graph has size 2n+ 1 and treewidth 3, and the given instance of SEOPM
is a Yes instance if and only if one of the constructed instances is a Yes instance of the
Col-Sub-Iso problem. Our host graph will be a universal suitor graph corresponding to
an instance of SEOPM. We refer the reader to [5] for definitions of treewidth and tree
decomposition. To solve Col-Sub-Iso we will use known algorithms, in particular, the
algorithm alluded to in the following result.
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I Proposition 4 ([1]). Let G and H denote two graphs on n and q vertices, respectively such
that the treewidth of H is at most t. Furthermore, there is a coloring χ : V (G)→ [q] of G.
Then there is a deterministic algorithm for Col-Sub-Iso that runs in time 2q(nt)t+O(1),
and outputs (if there exists one) a subgraph of G that has a distinct color on every vertex,
and is isomorphic to H.

To give the desired reduction to Col-Sub-Iso we essentially enumerate all non-isomorphic
trees on 2n+ 1 vertices. In the past, mainly rooted (undirected) trees have been studied,
out-branchings not as much. However, every rooted tree can be made an out-branching by
orienting every edge away from the root and every out-branching can be transformed into a
rooted tree by disregarding all edge orientations. Thus, rooted trees and out-branchings are
equivalent, and thus, the results obtained for the former are applicable to the latter. Otter [17]
showed that the number of non-isomorphic out-branchings on n vertices is tn = 2.956nnO(1).
We can generate all non-isomorphic rooted trees on n vertices using the algorithm of Beyer
and Hedetniemi [2] of runtime O(tn). We summarize the above in the following result.

I Proposition 5 ([2, 17]). The number of non-isomorphic out-branchings on n vertices is
tn = 2.956nnO(1). Furthermore, we can enumerate all non-isomorphic rooted trees on n

vertices in time O(tn).

4.1 Universality of Universal Suitor Graph
In this section we show the “universality” of the universal suitor graph. That is, how given a
set of preference lists, LM , of men over women, universal suitor graph encodes all potential
suitor graphs. Universal suitor graph for a partial matching encodes all suitor graphs of
all potential extensions of the given partial matching. In particular, we show the following
result.

I Lemma 6. Let LM denote a set of preference lists of men over women and let µ′ denote a
partial matching on the set (M,W ). If there exists a perfect matching µ such that µ′ ⊆ µ (as
a set of edges), then U(LM , µ) is a subgraph of U(LM , µ′), and is isomorphic to the suitor
graph G

(
LM , µ

)
.

Proof. Let M ′ and W ′ denote the subset of men and women who are matched under µ′,
respectively. Let µ′ ⊆ µ, in terms of a subset of edges. We will refer to the suitor graphs
G
(
LM , µ′

)
and G

(
LM , µ

)
as simply suitor graphs for µ′ and µ, respectively.

Consider the universal suitor graph for µ, denoted by U(LM , µ), obtained from U(LM )
by pruning w.r.t.µ. Since µ′ ⊆ µ for every w ∈ W ′ (m ∈ M ′) we have µ(w) = µ′(w)
(µ(m) = µ′(m)). Thus, it is easy to see that U(LM , µ) is a subgraph of U(LM , µ′), and
can be obtained from the latter by applying the pruning operation to every female vertex
wi ∈W \W ′. The next claim completes the proof, since it leads to the conclusion that the
suitor graph G

(
LM , µ

)
is isomorphic to the universal suitor graph U(LM , µ).

I Claim 7. Suitor graph G
(
LM , µ

)
is isomorphic to U(LM , µ).

Proof. By the construction of G
(
LM , µ

)
, we know the suitor graph of µ has arcs (w, µ(w))

for every w ∈ W . Since U(LM , µ) is obtained from U(LM ) by pruning w.r.t.µ, hence we
know that U(LM , µ) contains 2 |µ| vertices⊎

wi∈W
{wi,mi

j | µ(wi) = mj}.

We use Mµ to denote the male vertices in U(LM , µ).
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Let Ψµ : M ∪W → Mµ ∪W denote a function between the vertex sets of G
(
LM , µ

)
and U(LM , µ). For every wi ∈W , we define Ψµ(wi) = wi, and for every mi ∈M , we define
Ψµ(mi) = mj

i , where µ(mi) = wj . We will prove that the map Ψµ is an isomorphism.
We begin with the observation that both graphs are bipartite, with vertex set (M,W )

and (Mµ,W ). Thus, to prove that Ψµ is an isomorphism, it is sufficient to prove that for
every w ∈ W,m ∈ M , (w,m) is an arc in G

(
LM , µ

)
if and only if (w,Ψµ(m)) is an arc in

U(LM , µ), and similarly (m,w) is an arc in G
(
LM , µ

)
if and only if (Ψµ(m), w) is an arc in

U(LM , µ).
Let (wi,mj) be an arc in G

(
LM , µ

)
. Thus, we have µ(wi) = mj , and so Ψµ(mj) = mi

j .
The construction of U(LM , µ) (that is pruning w.r.t.µ) ensures that (wi,mi

j) is an arc in
U(LM , µ). Conversely, if (wi,mi

j) is an arc in U(LM , µ) then since µ is a perfect matching,
by Lemma 2, we can conclude that µ(wi) = mj , and so (wi,mj) is an arc in G

(
LM , µ

)
. This

completes the proof of the if and only if statement about female to male arcs.
Let (mi, wk) be an arc in G

(
LM , µ

)
i.e., µ(mi) = wj . Thus, wk >mi

wj (mi prefers wk
to wj in LM ). The vertex mj

i = Ψµ(mi) and the arc (mj
i , wk) exists in the universal suitor

graph U(LM ). If we can show that mj
i exists in U(LM , µ), then by the additional condition

of Lemma 2, we know that the arc (mj
i , wk) exists in U(LM , µ). We note that mj

i must
survive the pruning of U(LM ) w.r.t.µ because (wj ,mi) is an arc in G

(
LM , µ

)
and so from

the earlier part we know that (wj ,mj
i ) is an arc in U(LM , µ). Hence, mj

i must be a vertex
in U(LM , µ), and so we conclude that (Ψµ(mi), wk) is an arc in U(LM , µ). Conversely, if
(mj

i , wk) is an arc in U(LM , µ), then the presence of mj
i in the graph allows us to invoke

Lemma 2 to conclude that µ(mi) = wj . This implies that wk >mi
wi, hence (mi, wk) must

also be an arc in G
(
LM , µ

)
. This completes the proof of the if and only if statement about

male to female arcs. Hence, our proof is complete. J

Since U(LM , µ) is a subgraph of U(LM , µ′), hence by Claim 7 the latter contains a
subgraph that is isomorphic to G

(
LM , µ

)
. This completes the proof. J

4.2 Rooted Universal Suitor Graph and Valid Subgraphs

For a given universal suitor graph U(LM , µ′) and a subset S ⊆W , we define the corresponding
rooted universal suitor graph with sources in S, as follows. For a vertex w ∈ S, if w
is a source in U(LM , µ′) (i.e. N−(w) = ∅) then we add the arc (r, w). Otherwise, we delete
all the male vertices in N−(w), and add the arc (r, w). The resulting graph is the rooted
universal suitor graph with sources in S, and is denoted by U(LM , µ′, S). We refer the reader
to Figure 2(b) for an example of a rooted universal suitor graph. The set of vertices marked
as S is the set of source vertices that are connected to the root.

Recall that in a universal suitor graph for a partial matching there may be multiple
copies of a male vertex, and that brings us to the notion of a valid subgraph. A subgraph of
U(LM , µ′) is said to be a valid subgraph if it contains every female vertex, and exactly
one copy of every male vertex. The definition can be extended to the rooted subgraphs of
U(LM , µ′, S), where S ⊆ W , and a valid rooted subgraph contains the root, every female
vertex and exactly one copy of every male vertex.

Consider a rooted tree, such that the root is considered to be in layer 0. A vertex v is
said to be in layer i in the tree, if the (unique) path from the root to v contains i arcs. A
rooted tree is called a matching tree if every vertex in an odd layer has a unique child
in the tree. If a matching tree is a valid subgraph of U(LM , µ′) then it is called a valid
matching tree. We note that a matching tree is also an out-branching.
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Given a matching tree T , we construct the triangular matching tree T4, by adding
two new vertices r1 and r2 to T and adding the arcs (r, r1), (r1, r2) and (r2, r). Similarly, for
any given rooted universal suitor graph U(LM , µ′, S), we construct the triangular rooted
universal suitor graph, U4(LM , µ′, S), by adding two new vertices r1 and r2 to T and
adding the arcs (r, r1), (r1, r2) and (r2, r).

Finally, we define the special coloring χsp used to color the vertices of a triangular rooted
universal suitor graph: χsp uses 2n+ 3 colors, giving distinct colors to r, r1, r2, w1, . . . , wn,
and using the remaining n colors such that the subset of copies of the same male vertex gets
a distinct color. That is, for each i (1 ≤ i ≤ n) the subset of {m1

i , . . . ,m
n
i } that exists in the

universal suitor graph gets the n+ 3 + ith color.

4.3 2O(n) Algorithm for SEOPM
In this section we combine all the results we have developed so far and design our algorithm.

Overview of Algorithm 4.1: Let (LM , µ′) be an input instance of SEOPM. If µ′ can be
extended to µ, then (by Lemma 6), we know that G

(
LM , µ

)
is isomorphic to a subgraph in

U(LM , µ′). If µ′ cannot be extended, then by Proposition 1 we know that for any perfect
matching µ ⊇ µ′, the graph G

(
LM , µ

)
does not contain an out-branching rooted at r. In

other words, there exists a vertex v that is not reachable from r in the graph G
(
LM , µ

)
.

Consequently, to “solve” SEOPM on (LM , µ′), it is necessary and sufficient to look for a valid
out-branching or matching tree in the universal suitor graph U(LM , µ′). If the algorithm finds
one, we can conclude that µ′ can be extended, else it answers that µ′ cannot be extended.
We implement these ideas by constructing an appropriate instance of Col-Sub-Iso.

The algorithm works as follows. Assume that we have a stable matching µ that extends
µ′. Then consider the graph G

(
LM , µ

)
and let S denote the subset of female vertices that

are sources in the graph. Our algorithm implements this by enumerating all subsets S of W
in the first loop. Furthermore, by Proposition 1 there is a matching tree, T , rooted at r in
G
(
LM , µ

)
. To “guess” the tree T , we enumerate all non-isomorphic out-branchings on 2n+ 1

vertices and first check whether it is a matching tree. If the enumerated tree is a matching
tree then we create an instance of Col-Sub-Iso, where the host graph is U4(LM , µ′, S),
with its vertices colored by χsp, and the pattern graph is T4. Finally, using an algorithm for
Col-Sub-Iso described in Proposition 4, we test whether, or not (U4(LM , µ′, S), T4, χsp) is
a Yes-instance of Col-Sub-Iso. If the algorithm returns T ∗, we can conclude that a stable
matching µ extends µ′. If the outermost for-loop terminates without finding a Yes-instance
of Col-Sub-Iso, then we return that “no valid out-branching exists” (and hence no stable
extension exists). This concludes the description of the algorithm. We refer the reader to
Algorithm 4.1 for further details. The next lemma argues the correctness of Algorithm 4.1.

I Lemma 8. Let (LM , µ′) denote an input to SEOPM. Then (LM , µ′) is a Yes-instance
of SEOPM if and only if Algorithm 4.1 returns a triangular matching tree T ∗.

Proof. Let (LM , µ′) be a Yes-instance, i.e., there exists a perfect matching µ, such that
µ′ ⊆ µ, and there exists LW such that µ = GS(LM ,LW ). By Lemma 6, G

(
LM , µ

)
is

isomorphic to a subgraph in U(LM , µ′).
By Proposition 1 G

(
LM , µ

)
has an out-branching rooted at r, denoted by T̃ . Since by

Lemma 6 G
(
LM , µ

)
is isomorphic to a subgraph in U(LM , µ′), there exists a valid matching

tree T ′ that is isomorphic to T̃ contained in U(LM , µ′, S∗), where S∗ denotes the set of
sources in G

(
LM , µ

)
. If we delete the labels on the vertices in T ′ (or T̃ ) , we get an out-

branching (in fact, a matching tree) on 2n+ 1 vertices, denoted by T . Thus, T ∈ F , and we
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Algorithm 4.1: Solves SEOPM.
Input: A set of men and women vertices (M,W ), preferences of men LM , and a

partial matching µ′
Let F ← {non-isomorphic out-branchings on 2n+ 1 vertices}
forall S ⊆W do

forall matching tree T ∈ F do
Using Proposition 4 test whether (U4(LM , µ′, S), T4, χsp) is a Yes-instance of
Col-Sub-Iso.

if the algorithm returns a subgraph T ∗ then
return T ∗

return “No valid out-branching exists”

conclude that Algorithm 4.1 will find T ∗, a valid triangular matching tree of U4(LM , µ′, S∗)
that is isomorphic to T4. Hence, the algorithm will return T ∗.

Suppose that Algorithm 4.1 outputs T ∗. Then there exists a subset S ⊆ W , and an
out-branching on 2n+ 1 vertices T , such that U4(LM , µ′, S) contains as subgraph T ∗ which
is isomorphic to the triangular matching tree T4. Observe that U4(LM , µ′, S) has a unique
triangle r, r1, r2 and thus due to the isomorphism, T ∗ contains the triangle r, r1, r2. This
implies that every vertex in T ∗ is reachable from the root of U(LM , µ′, S). Since male vertices
are only reachable from a female vertex, this means that every male vertex has an in-coming
female neighbor. Since, T ∗ \ {r1, r2} is a valid matching tree of U(LM , µ′, S), there is exactly
one copy of every male vertex and every female vertex has a unique out-neighbor. Thus,
if (wi,mi

k) is a female to male arc in T ∗, then T ∗ does not contain any other out-going
arc from wi. Thus, the female to male arcs in T ∗ denote a perfect matching µ. Note that
µ′ ⊆ µ because U(LM , µ′) contains a unique out-going arc for every matched woman in
µ′, hence those arcs must also be part of T ∗. Hence, we can conclude that T ∗ \ {r1, r2} is
an out-branching in the graph G

(
LM , µ

)
. By Proposition 1, this means that (LM , µ′) is a

Yes-instance of SEOPM. This concludes the proof. J

The next lemma gives the running time of Algorithm 4.1.

I Lemma 9. Let (LM , µ′) be an input to SEOPM, where |M | = n. Then, Algorithm 4.1
decides whether (LM , µ′) is a Yes-instance to SEOPM in time 2O(n).

Proof. The running time of the algorithm is upper bounded by the following formula

|{S ⊆W}| × |F| × Time taken by Col-Sub-Iso algorithm

By applying Proposition 5 we upper bound |F| by 2.9562n+1nO(1). It is a well-known fact
that the treewidth of a tree is one, from that it is easy to show that the treewidth of a
triangular matching tree is at most 3. (One can first find the tree-decomposition of the tree
and then add the two vertices r1, r2 to every bag and thus increasing the treewidth by at
most two. See [5, Chapter 7] for more details regarding treewidth.) Thus, when we apply
Proposition 4, we have a host graph that has at most n + n2 + 3 vertices, and a pattern
graph that has size 2n+ 3 and treewidth at most 3. Therefore, the running time for using
the subroutine for Col-Sub-Iso is 22n+3nO(1). Multiplying all these values together, gives
the overall running time to be 2n × 2.9562n+1nO(1) × 22n+3nO(1) = 2O(n). J

Combining Lemmas 8 and 9 we get the following theorem.
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I Theorem 10. There is an algorithm for SEOPM running in time 2O(n).

Proof. Given an instance (LM , µ′) to SEOPM, we first apply Algorithm 4.1. If it returns
that “No valid out-branching exists” then we return that (LM , µ′) is a No-instance of
SEOPM. Else, if the output is T ∗, we first obtain T by deleting r1, r2 and then using T
we obtain a perfect matching µ′ ⊆ µ, by pairing every woman to its unique out-neighbor.
Now we invoke Algorithm Q1 mentioned in [13, Theorem 2] with (LM , µ) and obtain the
desired LW . Correctness and running time follow from Lemmas 8 and 9. This completes the
proof. J

4.4 A Lower Bound under Exponential Time Hypothesis
In this section we show that Theorem 10 is asymptotically optimal. That is, barring an
unlikely scenario occurring in complexity theory, there cannot be a better algorithm for
SEOPM. To prove this we will invoke the Exponential Time Hypothesis (ETH), and use the
well-known NP-hardness reduction from SAT to SEOPM.

Exponential Time Hypothesis (ETH): Let τ denote the infimum of the set of con-
stants c for which there exists an algorithm solving 3-SAT in time O(2cnnO(1)). Then
it is conjectured that τ > 0.

ETH and its counterpart SETH, introduced by Impagliazzo et al. [11], have been extensively
used recently to obtain tight lower bounds for several problems. We use this here to get a
lower bound on the running time possible for SEOPM. To this end we will use the following
result stated in [5, Theorem 14.4].

I Theorem 11 ([5]). Unless ETH fails, there exists a constant c > 0 such that no algorithm
for 3-SAT can achieve running time O(2c(n+m)nO(1)). In particular, 3-SAT cannot be
solved in time 2o(n+m). Here, n and m denote the number of variables and clauses in the
input formula to 3-SAT.

Using Theorem 11 we show the next result.

I Theorem 12. Unless ETH fails, there is no algorithm for SEOPM running in time 2o(n).

Proof. Let us assume that we can find an algorithm A that solves SEOPM in time 2o(n))
where n is the number of men/ women. In [13], Kobayashi and Matsui showed that SEOPM
is NP-complete, by giving a reduction from SAT to SEOPM. In particular, given a SAT
instance with n variables and m clauses, they reduce it to an instance of SEOPM with
2m+ 3n men (and women). An easy observation is that in the reduction given by Kobayashi
and Matsui [13], we could have started with 3-SAT and reduced it to an instance of SEOPM
with 2m + 3n men (and women). Now we show how to design an algorithm for 3-SAT
running in time 2o(n+m) using algorithm A. Given an instance φ of 3-SAT, we start by
applying the polynomial time reduction given in [13] and obtain an instance of SEOPM with
2m+ 3n men and 2m+ 3n women. Now we solve this instance of SEOPM using algorithm
A in time 2o(m+n). Using the solution to an instance of SEOPM we decide in polynomial
time whether φ is satisfiable or not. Thus, we have given an algorithm for 3-SAT running in
time 2o(n+m), contradicting Theorem 11. This concludes the proof. J

5 Concluding thoughts

In this paper we designed an exact algorithm for Stable Extension of Partial Matching
running in time 2O(n). We complemented this result by showing that unless ETH fails the
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running time bound is asymptotically optimal. There are several problems in the stable
matching model that are NP-complete and have been studied from the perspective of
approximation algorithms. However, there is almost no study about these problems either
from the view point of moderately exponential time algorithms or parameterized complexity.
The area needs a thorough study in these algorithmic paradigms and is waiting to explode.
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