Report from Dagstuhl Seminar 16441

Adaptive Isolation for Predictability and Security

Edited by
Tulika Mitra!, Jiirgen Teich?, and Lothar Thiele?

1 National University of Singapore, SG, tulika@comp.nus.edu.sg

2 Friedrich-Alexander-Universitidt Erlangen-Niirnberg, DE,
teich@informatik.uni-erlangen.de

3 ETH Ziirich, CH, thiele@ethz.ch

—— Abstract

This report documents the program and the outcomes of Dagstuhl Seminar 16441 “Adaptive Isol-
ation for Predictability and Security”. Semiconductor technology is at the verge of integrating
hundreds of processor cores on a single device. Indeed, affordable multi-processor system-on-a-
chip (MPSoC) technology is becoming available. It is already heavily used for acceleration of
applications from domains of graphics, gaming (e.g., GPUs) and high performance computing

(e.g., Xeon Phi). The potential of MPSoCs is yet to explode for novel application areas of em-
bedded and cyber-physical systems such as the domains of automotive (e.g., driver assistance
systems), industrial automation and avionics where non-functional aspects of program execution
must be enforceable. Instead of best-effort and average performance, these real-time applica-
tions demand timing predictability and/or security levels specifiable on a per-application basis.
Therefore the cross-cutting topics of the seminar were methods for temporal and spatial isolation.
These methods were discussed for their capabilities to enforce the above non-functional properties
without sacrificing any efficiency or resource utilization. To be able to provide isolation instant-
aneously, e.g., even for just segments of a program under execution, adaptivity is essential at all
hardware- and software layers. Support for adaptivity was the second focal aspect of the seminar.
Here, virtualization and new adaptive resource reservation protocols were discussed and analyzed
for their capabilities to provide application/job-wise predictable program execution qualities on
demand at some costs and overheads. If the overhead can be kept low, there is a chance that
adaptive isolation, the title of the seminar, may enable the adoption of MPSoC technology for
many new application areas of embedded systems.

Seminar October 304, 2016 — http://www.dagstuhl.de/16441

1998 ACM Subject Classification C.3 Special-Purpose and Application-Based Systems: Real-
time and embedded systems

Keywords and phrases Adaptive isolation, Embedded systems, Real-Time systems, Predictabil-
ity, Security, MPSoC, Parallel computing, Programming models, Timing analysis, Virtualiz-
ation

Digital Object Identifier 10.4230/DagRep.6.10.120

Except where otherwise noted, content of this report is licensed
o

under a Creative Commons BY 3.0 Unported license
Adaptive Isolation for Predictability and Security, Dagstuhl Reports, Vol. 6, Issue 10, pp. 120-153
Editors: Tulika Mitra, Jiirgen Teich, and Lothar Thiele

\\v pagstunL Dagstuhl Reports
RePORTs Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/16441
http://dx.doi.org/10.4230/DagRep.6.10.120
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

1 Executive Summary

Tulika Mitra
Jirgen Teich
Lothar Thiele

License) Creative Commons BY 3.0 Unported license
© Tulika Mitra, Jirgen Teich, and Lothar Thiele

Semiconductor industry has shifted from processor clock speed optimization (having reached
its physical limits) to parallel and heterogeneous many-core architectures. Indeed, the
continuous technological scaling enables today the integration of hundred and more cores and,
thus, enormous parallel processing capabilities. Whereas higher (average) performance has
been and still is the major driver for any MPSoC platform design, there is a huge hesitation
and fear to install such platforms in embedded systems that require predictable (boundable)
guarantees of non-functional properties of execution rather than average properties for a mix
of applications. Moreover, it may be observed that in an embedded system, each application
running on a platform typically a) requires different qualities to be satisfied. For example, one
application might demand for authentification, thus requiring the guarantee of unmodified
data and program but have no requirements on speed of execution. Another application
might rather require the execution to meet a set of real-time properties such as a deadline
or a target data rate. To give an example, consider a driver assistance video processing
application in a car that must detect obstacles in front of the car fast enough so to activate
the brake system in a timely manner. It must therefore be possible to enforce a set of
non-functional qualities of execution on a multi-core platform on a per-application/job basis.
b) The above requirements on execution qualities may even change over time or during
the program execution of a single application or being dependent on user or environmental
settings. For example, one user might not care about sending or distributing personal
information over the communication interfaces of a mobile phone whereas another one cares
a lot, even in the presence of side channels.

Unfortunately, the way MPSoCs are built and programmed today, the embedded system
engineers often experience even worse execution qualities than in the single core case, the
reason being the sharing of resources such as cores, buses and/or memory in an unpredictable
way. Another obstacle for a successful deployment of multi-core technology in embedded
systems is the rather unmanageable complexity. This holds particularly true for the analysis
complexity of a system for predictable execution qualities at either compile-time or run-
time or using hybrid analysis techniques. The complexity is caused here by an abundant
number of resources on the MPSoC and the increasing possibilities of interference created by
their concurrent execution and multiple layers of software controlling program executions
on a platform. Such layers are often designed for contradictory goals. For example, the
power management firmware of an MPSoC may be designed to reduce the energy/power
consumption or avoid temperature hot spots. The OS scheduler, on the other hand, may be
designed to maximize the average CPU utilization for average performance. Providing tight
bounds on execution qualities of individual applications sharing an execution platform is
therefore not possible on many MPSoC platforms available today.

One remedy out of this dilemma that has been proposed a long time before the introduction
of any MPSoC technology is isolation. With isolation, a set of techniques is subsumed to
separate the execution of multiple programs either spatially (by allocating disjoint resources)
or temporally (by separating the time intervals shared resources are used). Additionally, in
order to provide isolation on demand, there is the need for adaptivity in all hardware as

121

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

122

16441 — Adaptive Isolation for Predictability and Security

well as software layers from application program to executing hardware platform. Indeed,
adaptivity is considered a key topic in order to reduce or bound execution quality variations
actively on a system and in an on-demand manner for the reason to neither overly restrict
nor to underutilize available resources.

Adaptive Isolation, the topic of the proposed Dagstuhl seminar, may be seen as a novel and
important research topic for providing predictability of not only timing but also security and
may be even other properties of execution on a multi-core platform on a per application/job
basis while easing and trading off compile-time and run-time complexity.

First, a common understanding of which techniques may be used for isolation including
hardware units design, resource reservation protocols, virtualization techniques, and including
novel hybrid and dynamic resource assignment techniques were discussed. Second, a very
interdisciplinary team of experts including processor designers, OS and compiler specialists,
as well as experts for predictability and security analysis were brought together for evaluating
these opportunities and presenting novel solutions. The competencies, experiences, and
existing solutions of the multiple communities stimulated discussions and co-operations that
hopefully will manifest in innovative research directions for enabling predictability on demand
on standard embedded MPSoCs.

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

2 Table of Contents

Executive Summary
Tulika Mitra, Jirgen Teich, and Lothar Thiele

Major Topics Discussed e
Adaptive Isolation for Timing Predictability
Isolation and Adaptivity for Security L.

Cross-Cutting Concerns i it

Summary of the Presentations
Predictability e
Security

Cross-cutting Concerns for Adaptive Isolation

Abstract of Talks e

Network-on-Chip-Assisted Adaptive Partitioning and Isolation Technology for “Dy-
namic” Homogeneous Manycores
Davide Bertozzi and Balboni Marco o

Use only when you need — Providing adaptive temporal isolation in Cyber-Physical
Systems
Samarjit Chakraborty

Achieving Timing Predictability by Combining Models
Heiko Falk and Arno Luppold e

Soteria: Offline Software Protection within Low-cost Embedded Devices
Johannes Gétzfried

Challenges of Temporal Isolation
Gernot Heiser L e

Predictability in Multicore Systems Using Self-Suspending Tasks
Jian-Jia Cheno e e

Software Development for Isolation
Tulika Mitra o o e e e e e

Time-Based Intrusion Detection in Cyber-Physical Systems
Frank Mueller e

Adaptive Pipeline for Security in Real Time Systems
Sri Parameswarano e

Timing Predictability and How to Achieve It
Jan Reineke oL

Connecting the dots — Towards the total automation of embedded systems design
(in Java world)
Zoran Salcico e

Isolation for Security
Patrick Schaumont e

123

16441

124

16441 — Adaptive Isolation for Predictability and Security

T-CREST: Time-predictable Multi-Core Architecture for Embedded Systems
Martin Schoeberl e 139

Adaptive Memory Protection for Many-Core Systems
Wolfgang Schréder-Preikschat 140

Security Issues on the Boundary of Ideal and Real Worlds
Takeshi Sugawara e 141

An Introduction to the Seminar
Jirgen Teich e 141

Isolation, resource efficiency and covert channels
Lothar Thiele e 142

Determinate and Timing-Predictable Concurrency in Reactive Systems — The
Synchronous Approach and the SCCharts Language

Reinhard von Hanxleden e 142

Hybrid Application Mapping for Dynamic Isolation in Invasive Computing

Stefan Wildermann 143

Timing Verification — Flogging a Dead Horse?

Reinhard Wilhelm 143
Working groups e e 144

Runtime Monitoring

Feliz Freiling o e 144

Future of Timing Verification

Samarjit Chakraborty 147

Attack Models

Albert Cohen and Karine Heydemann oo 148

Synergy between Predictability and Security

Frank Mueller e 149

Models of Computation and Programming Languages

Reinhard von Hanzleden 150
Panel Discussion 152
Acknowledgements 152

Participants 153

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

3 Major Topics Discussed

In the following, major topics and questions that were raised and discussed during the
seminar, are summarized.

3.1 Adaptive Isolation for Timing Predictability

New ways to establish isolation by means of hardware and software: Which of the
approaches and known concepts for isolation can be used in adaptive scenarios, which
rather not?

Analysis: Statistical vs. hard guarantees? What are limitations of either approach? Can
these techniques be reasonably generalized to other architectural elements besides caches?
Hybrid Analysis and Resource Management: Novel techniques for Mixed Static/Dynamic
Resource Assignment and Analysis. Which improvements (e.g., reduced search space vs.
less pessimistic bounds) may these techniques deliver and for which set of applications
(e.g., periodic streaming, DSP, aperiodic real-time control, mixed critical applications)
may these be applied? How may the search space for design decisions regarding resource
assignment and scheduling be reduced to a minimum through a characterization of static
vs. run-time?

Online isolation through reconfiguration (e.g., dynamic TDMA adaptation, switching
protocols, dynamic schedule adaptation).

Adaptive hardware architectures (e.g., processor buses with switchable protocols: static
priority vs. TDMA depending on workload mix at run-time).

Utilization and timing analysis for unknown execution time and workload scenarios.
Cost/Benefit Analysis of adaptive isolation techniques: How much more expensive are
adaptive techniques in relation to conventional techniques (Hardware/Software Overheads,
adaptation time (e.g., switching times, optimization times, times until stabilization,
utilization gains, etc.).

How can we bound the interference between tasks due to heat transfer?

3.2 Isolation and Adaptivity for Security

Definition of security in an adaptive MPSoC context. How do security issues change by
introducing adaptivity? What is the attackers’ model?

Security bottlenecks of current MPSoC systems with respect to hardware architecture
and the possibilities to isolate applications.

Security requires a root of trust. Security also makes use of isolation. We should reason
about secure hand-over in the context of adaptivity. When software modules move from
one hardware unit to another one, how are the root of trust and isolation transferred?
With respect to which properties may security be defined? For example, basic isolation
might be defined as a guarantee that no other application may read or write the data of
another. For example, a designer or user of an app might require that the data entered
or processed to be confidential or request a guarantee that it is unaltered.

Which techniques must be available at the hardware and software side to enforce certain
levels of security on a per-application basis on an MPSoC platform and what is the
expected overhead of such techniques?

May different levels of per-application/job security also be established adaptively?
Hardware architecture designs for adaptive security.

125

16441

126

16441 — Adaptive Isolation for Predictability and Security

Do there exist other levels of security? For example, side channel attacks? Which isolation
techniques may be employed on an MPSoC to restrict, prevent, or minimize the chances
of attacks, e.g., in terms of resource isolation through resource allocation techniques,
encryption on demand on a Network-on-Chip, etc.?

Is heat transfer a side-channel information leakage source? Can it be a threat to privacy
and security? How can we quantify the corresponding effects and what are reasonable
countermeasures?

3.3 Cross-Cutting Concerns

From a resource management’s point of view, modern embedded system applications come
with significant challenges: Highly dynamic usage scenarios as already observable in today’s
“smart devices” result in a varying number of applications, each with different characteristics,
but running concurrently at different points in time on a platform. Obviously, full isolation,
avoiding any resource sharing (e.g., by partitioning) is generally too costly or inefficient
(utilization). No isolation, on the other hand, will not allow for timing and security properties
to hold. From the programmer s point of view, strong isolation and efficient sharing are
desired, but they represent two opposing goals.

Traditional techniques to provide a binding or pinning of applications to processors are
either applied at design time and result in a static system design. Such a static design
may, on the one hand, be too optimistic by assuming that all assigned resources are always
available or it may require for over-allocation of cores to compensate for worst-case scenarios.

In this area, cross-cutting techniques such as partitioning, gang scheduling, dynamic
resource allocation, virtualization, e.g., real-time scheduling in hypervisors, are opportunities
that were discussed for their capability for providing some degree of isolation and capabilities
of providing quality on demand per application/job.

Finally, the interaction between security and timing predictability were explored. A
malware can compromise a real-time system by making an application miss its deadline and
the system should ensure that deadline overruns in the presence of malware be predicted
early and remedial actions taken. On the other hand, as the bounds on execution times of an
application are known in real-time systems, an execution time outside the bound indicates
the possibility of unauthorized code execution and provides an additional mechanism for
malware detection. The scheduling and resource allocation should also take into account the
trade-off between the timing overheads of security protection mechanism (e.g., encryption
cost) leading to increased execution time (and hence difficulty in schedulability) vis-a-vis the
need for security isolation.

4 Summary of the Presentations

The presentations in this seminar included state-of-the-art adaptive isolation techniques for
both security and predictability. Five breakout sessions covered discussions on the current
status, future challenges and research opportunities. A very interdisciplinary team of experts
including processor designers, OS and compiler specialists, as well as experts on predictability
and security evaluated these opportunities and presented novel solutions. This subsection
presents an overview of the topics covered by individual speakers in the seminar. Please refer
to the included abstracts to learn more about the individual presentations.

The seminar opened with an introduction by organizer Jiirgen Teich (Friedrich-Alexander-
Universitdt Erlangen-Niirnberg). He explained the motivation behind the seminar in the

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

context of emerging many-core architectures. These architectures can potentially be deployed
in embedded systems with strict timing and security guarantee requirements. He presented
different definitions of timing predictability and sources of unpredictability such as resource
sharing, multi-threading, and power management. He briefly talked about adaptive isolation
techniques, such as resource reservation and virtualization, developed in the context of the
Invasive Computing (InvasIC) project ! — a DFG-funded Transregional Collaborative Research
Center investigating a novel paradigm for the design and resource-aware programming of
future parallel computing systems. He emphasized the similarities between the adaptive
isolation techniques for security and timing predictability — a key theme of the seminar.

The introduction was followed by two keynote talks: one on predictability and one on se-
curity. The predictability keynote was delivered by Jan Reineke (Universitit des Saarlandes).
He explained two sources of variation in execution time for software timing analysis: the
program input and the micro-architectural state. He raised the key concern that interference
due to resource sharing (for L2 cache and memory controller for example) can lead to
significant slowdown on multi-core platform compared to single-threaded execution. He
stressed the importance of deriving accurate timing models given the lack of information
available regarding timing in the underlying architecture. He defined predictability and
analyzability as two important but different properties essential towards accurate software
timing analysis. Both predictability and analyzability can be enhanced by eliminating stateful
micro-architectural components by stateless ones (e.g., replacing caches with scratchpad
memory), eliminating interference in shared resources through isolation, and choosing “for-
getful” micro-architectural components (e.g., Pseudo LRU replacement policy in place of
LRU). In addition, analyzability can be improved if the underlying platform exhibits freedom
from timing anomalies (local worst case does not lead to global worst case in systems with
timing anomaly) and offers timing compositionality. He presented strictly in-order pipeline
processors as an example of such as ideal platform; but the performance impact of such an
architecture and its commercial viability remain unknown.

The keynote talk on security was delivered by Patrick Schaumont (Virginia Polytechnic
Institute). He motivated the need for secure isolation by introducing a contemporary trusted
medical application where privacy/security mechanisms need to be enforced in an end-to-end
fashion from tiny micro-controllers (for sensing) to more powerful multi-cores (for gateway
device) and finally to servers with complex processors, large memory, and huge storage
(for data analytics). He emphasized the key concerns in such platforms, namely, security,
safety, and privacy, that demand isolated storage, communication, and execution. The two
building blocks of secure computing are the trust boundary and the attacker models that
breach the trust boundaries. Isolation is one (but not the only) way to achieve trust by
providing confidentiality guarantees in a secure implementation. However, it is important
to remember that complete isolation is not a feasible alternative and isolation for security
almost always incurs overhead either in terms of area or performance just like predictability.
He then presented two examples of isolation for security: SANCUS for lightweight isolation
in micro-controllers and SGX for server class isolation. In closing, Patrick mentioned few
open challenges such as quantifying security and its resource overhead through well-defined
metrices and classifying properties of secure computing in general and secure computer
architectures in particular.

b http://www.invasic.de

127

16441

http://www.invasic.de

128

16441 — Adaptive Isolation for Predictability and Security

4.1 Predictability

The topics covered under adaptive isolation for predictability centered around the future
of predictability, design of predictable architectures, providing isolation in general-purpose
multi- /many-core architecture, and predictability in reactive systems.

4.1.1 Future of predictability

The talks on timing predictability presented two contrasting views. Reinhard Wilhelm
(Universitiat des Saarlandes) concurred with Jan Reineke’s viewpoint in the keynote that
predictability and analyzability are becoming increasingly challenging and even impossible
with continuous advances in commercial micro-architectures that harm rather than aid
predictability. Architectural complexity leads to analysis complexity. The recipe for success
in timing analysis has been abstraction and decomposition. Unfortunately, contemporary
processors — even processors supposed to be designed for real-time systems (such as ARM
Cortex R5F) — include features (e.g., random replacement caches) that make abstraction and
decomposition infeasible. Alternatives to static timing analysis, such as measurement-based
methods, do not offer soundness and at the same time suffer from lack of accurate timing
models just like static analysis.

In contrast to these views that embedded systems require complete timing predictability,
Samarjit Chakraborty (TU Miinchen) claimed that in certain applications, such as control
systems, it is possible to live with less than total timing predictability. As most controllers
exhibit certain degree of “robustness”, the behavior of the controller will not be impacted if
some deadlines are missed. Thus, timing analysis, instead of focusing on deadline constraints,
should focus on higher-level (control theoretic) goals that better characterize system per-
formance requirements. Achieving this, however, requires quantifying the robustness of the
controller to identify the deadlines that are crucial to be satisfied and the ones that can be
ignored without any major impact on controller outcome.

4.1.2 Predictable Architecture and Optimizations

Reinhard Wilhelm presented a constructive approach called PROMPT architecture that
provides timing isolation for each task when executing multiple tasks on a multi-core
architecture. The generic PROMPT architecture is instantiated for each application so
as to minimize interferences among the tasks of the application as much as possible. The
idea of time predictable architecture was also revisited by Martin Schoeberl (Technical
University of Denmark) who presented T-CREST, a time-predictable multi-core architecture
for embedded systems. The vision behind T-CREST is to make the worst-case fast and
the whole system analyzable rather than make the common case fast as is the conventional
wisdom in general-purpose architecture community. The architecture provides constant-time
execution of instructions, time-division-multiplexing in the Network-on-Chip (NoC), and
software-controlled scratchpad memory for predictability. More importantly, T-CREST
provides a complete platform implemented in FPGAs as well as simulator supporting both
compiler and analysis tools released under open source BSD license.

Zoran Salcic (University of Auckland) presented an orthogonal solution for timing pre-
dictability starting from formal specification of the system in SystemJ, which is based on a
formal model of computation. The key feature of SystemJ is Globally Asynchronous Locally
Synchronous (GALS) model while incorporating Java for objects and computations allowing
SystemJ specification to be executable on any Java processor. He presented an automated
design flow that can translate the formal specification to custom NoC-based heterogeneous

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

multiprocessor platform through design space exploration, optimizations, and scheduling.
This is similar in vein to the PROMPT approach, except that software code, schedule and
platform instance are all generated automatically in this approach. He concluded his talk by
demonstrating an automated bottling machine designed with this model-driven approach.

Heiko Falk (TU Hamburg-Harburg) presents his vision to achieve predictability by
combining models during compilation. In current software design practice for real-time
systems, the software is designed and optimized for the average-case behavior followed by
software timing analysis to ensure that the execution meets deadline constraints. He proposed
design of WCET-aware compiler that optimizes software for the worst-case execution time
rather than average case. This is achieved by integrating the timing models initially designed
for analysis in the compiler itself. Combined with more predictable architectural components,
such as scratchpad memory instead of cache, the WCC compiler can provide resource isolation
and enables schedulability in some systems that could not meet deadlines under existing
software design process.

4.1.3 Isolation for predictability in multi-core

Stefan Wildermann (Universitit Erlangen-Niirnberg) followed up from the introduction by
Jurgen Teich on achieving adaptive isolation in the context of Invasive Computing. He
described a hybrid mapping approach where the solution for each individual task is obtained
statically but these individual solutions are put together at runtime through a compositional
timing analysis that relies on a composable NoC. The main idea is to carry out performance
analysis and design space exploration for individual tasks at design time and identify a set of
Pareto-optimal points. At runtime, depending on the scenario, a set of design points (one
per task) are identified that satisfy the constraints for all the tasks. The downside of this
approach is the huge runtime to choose these design points and may outweigh the benefits of
isolation.

Jian-Jia Chen (TU Dortmund) focused on system-level timing analysis in multi-core
systems with multiple tasks. Current two-phase analysis approaches find the WCET of
each task individually and then compute the worst-case response time (WCRT) of a set of
tasks by considering interference from other tasks for shared resources. However, in the
presence of shared resources, a task might be suspended from execution when it cannot get
immediate access to the resource. This self-suspension of tasks needs to be accounted for
in WCRT analysis. But many existing works fail to handle the impact of self-suspension
correctly leading to overly optimistic execution time. His talk pointed out the challenges
in providing predictability on multi-cores: isolation through time-division-multiplexing
introduces unnecessary pessimism and cannot work if the tasks need to share information.
On the other hand, with sharing, WCRT analysis and schedulability tests are not well-
equipped to handle the interference that need synergy between scheduler design, program
analysis, and models of computation.

4.1.4 Reactive Systems

Reinhard von Hanxleden (Universitit Kiel) and Albert Cohen (ENS-Paris) discussed predict-
ability in reactive systems. Reinhard von Hanxleden talked about the power of synchronous
programming languages such as SCADE and SCCharts. He showed the extensions to these
languages that allow deterministic implementation in hardware/software directly from the
model. He emphasized the importance of compilation approach on timing predictability, spe-
cially in model-to-model mappings. Albert Cohen presented control systems with significant

129

16441

130

16441 — Adaptive Isolation for Predictability and Security

computations and how to reconcile the computation with the control. A synchronous language
like Lustre is extended with isolation control features and ability to safely accommodation
some delay in the computation. Similar to Reinhard von Hanxleden’s approach, the compiler
plays crucial role in mapping the abstract model and real-time scheduling onto multi-core
system with simple runtime support for adaptive isolation.

4.2 Security

In his keynote, Patrick Schaumont talked about hardware architectures needed for secure isol-
ation. Johannes Gotzfried (Universitdt Erlangen-Niirnberg) presented Soteria — a lightweight
solution for secure isolation in low-cost embedded devices. Soteria can effectively protect the
confidentiality and integrity of an application against all kinds of software attacks including
attacks from the system level. Soteria achieves this through a simple program-counter based
memory access control extension for the TT MSP430 microprocessor with minimal overhead.

Tulika Mitra (National University of Singapore) mentioned the challenges associated
with the adoption of secure isolation mechanisms by software developers. She presented
an automated approach that, given an Android application, can identify the sensitive code
fragments, move them to the secure world (ARM TrustZone), and finally re-factor the
original application to establish communication between the normal code fragments and the
secure code fragments. This automation takes away the burden of utilizing secure isolation
mechanisms by software developers.

Lothar Thiele (ETH Ziirich) introduced the possibility of thermal covert channels in
multi-core systems. He demonstrated that the on-chip temperature sensors can represent
a security breach by allowing otherwise isolated applications running on different cores to
communicate and possibility leak sensitive data. A quantification of the covert channel
capacity leveraging both theoretical results from information theory and experimental data
from modern platforms (such as Android phone) showed sufficient bandwidth for the channel
to be useful for information leakage.

Sri Parameswaran (UNSW Sydney) presented an online monitoring technique to detect
and recover from hardware Trojans in pipelined multiprocessor system-on-chip devices. The
system adapts and randomizes to provide security. Takeshi Sugawara (Mitsubishi, Kanagawa)
stressed the importance of assumptions (model abstractions) in security. In the context of
side-channel attacks and LSI reverse engineering, he showed how the countermeasures are
constructed and how their assumptions are falsified. He also presented static isolation based
on domain-specific coprocessors.

4.3 Cross-cutting Concerns for Adaptive Isolation

Adaptive isolation mechanisms that can be employed for both security and predictability, as
well as the synergy and conflict between security and predictability featured prominently
and repeatedly in the seminar.

Gernot Heiser (UNSW Sydney) pointed out the challenges towards isolation from both
security and predictability perspective. He opined that spatial isolation is relatively easy to
achieve, both in single-core and multi-core settings, given the support from both hardware
and software. He cited sel.4 micro-kernel as an example to illustrate his point. He, however,
re-iterated (just like Reinhard Wilhelm and Jan Reineke) that temporal isolation is much
harder especially in the presence of complex, unpredictable hardware. The instruction-set

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

architecture (ISA) no longer provides a guaranteed contract between hardware and software
for either timeliness or security (for example, hidden states and timing channels). He called
on the architects to extend the ISA so that timing effects become visible and hardware
provides mechanisms to partition or flush shared states with bounded latency so as to provide
isolation.

Davide Bertozzi (Universita di Ferrara) focused on NoC to provide adaptive isolation in
many-core architectures. He had a different opinion from Gernot Heiser regarding spatial
isolation and showed that current many-core accelerator architectures are at odds with spatial-
division multiplexing. For example, the traffic generated by different applications may collide
in the NoC when NoC paths are shared between nodes assigned to different applications
even if each core is allocated to only a single application exclusively. He presented routing
restrictions as an approach towards partitioning the resources among different applications;
but this leads to additional challenges in mapping as well as reconfigurability and adaptivity
of the partitions.

Wolfgang Schroder-Preikschat (Universitit Erlangen-Niirnberg) presented isolation in
memory to protect against unintentional programming errors as well as attacks from malicious
programs/processes. While existing memory-management units provide protection, they harm
time predictability. There are scenarios where ubiquitous memory protection is unnecessary
and increases uncertainty for some time, but is required at other points during the run time of
a system. He proposed adaptive memory protection as a solution, where the protection state
of applications can change over time. It allows the combination of benefits of both worlds:
security when memory protection is needed and increased performance and predictability
once security is superfluous.

Sibin Mohan (University of Illinois at Urbana-Champaign) expounded on the interaction
between predictability and security. He alerted the audience to the challenges of real-
time systems running in insecure world. Real-time systems demand predictability; but
predictability actually enables the attackers to precisely reconstruct the execution behavior of
the system. In particular, he showed how information about the behavior of real-time systems
(e.g., schedule) can be leaked by adversaries and presented techniques to deter such attacks.
On the other hand, sometimes it is possible to use the predictable behavioral properties of
real-time systems to actually detect intrusion almost as soon as they occur. Frank Mueller
(North Carolina State University) also exploited the synergy between predictability and
security. His approach utilizes the timing bounds obtained for different code fragments of a
program during static timing analysis. At runtime, if the execution time of a code fragment
falls outside its pre-determined bounds, the system flags an intrusion

5 Abstract of Talks

5.1 Network-on-Chip-Assisted Adaptive Partitioning and Isolation
Technology for “Dynamic” Homogeneous Manycores

Davide Bertozzi (Universita di Ferrara, IT) and Balboni Marco

License @@ Creative Commons BY 3.0 Unported license
© Davide Bertozzi and Balboni Marco
Joint work of Davide Bertozzi, Marco Balboni, Giorgos Dimitrakopoulos, José Flich

The software parallelism is not keeping up with hardware parallelism, therefore the problem
of efficiently exploiting large array fabrics of homogeneous processing cores will soon come

131

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

132

16441 — Adaptive Isolation for Predictability and Security

to the forefront. Multi-programmed mixed-criticality workloads are the straightforward
solution to this problem, although they raise a number of practical issues ranging from
system composability techniques for easier verification, to performance predictability and/or
security. This talk presents a systematic approach to these issues through an adaptive
partitioning and isolation technology for manycore computing fabrics having its key enabler
in the reconfigurable features of the on-chip interconnection network. The technology relies
on two main pillars. First, a hierarchy of partition types enables to properly sandbox
applications with controlled degrees of interactions and/or dependencies (if at all allowed).
Second, fine-grained adaptivity of the system configuration to the workload is implemented
with NoC assistance for the sake of power-efficient resource management at any given point in
time. It follows from this a “design-for-partitioning” philosophy that is at the core of future
dynamic hardware platforms, and that will shape their architectures from the ground up.

5.2 Use only when you need — Providing adaptive temporal isolation in
Cyber-Physical Systems

Samarjit Chakraborty (TU Miinchen, DE)

License) Creative Commons BY 3.0 Unported license
© Samarjit Chakraborty
Joint work of Samarjit Chakraborty, Alejandro Masrur, Ansuman Banerjee, Anuradha M. Annaswamy, Jian-Jia
Chen, Dip Goswami, Harald Voit, Reinhard Schneider
Main reference A. Masrur, D. Goswami, S. Chakraborty, J.-J. Chen, A. Annaswamy, A. Banerjee, “Timing
analysis of cyber-physical applications for hybrid communication protocols”, in Proc. of the Conf.
on Design, Automation and Test in Europe (DATE 2012), pp. 1233-1238, IEEE, 2012.
URL http://dx.doi.org/10.1109/DATE.2012.6176681

Many embedded control systems have distributed implementations, in which sensor values and
control signals have to be communicated over shared communication buses. The participants
sharing the bus along with the bus protocol being used determine the delay suffered by
the control signals, which in turn affect stability and control performance. Two broad
classes of communication protocols exist, which are based on either the time-triggered or the
event-triggered paradigms. The former ensures strict temporal isolation between messages
and results in more deterministic communication. Hence, it is easier to use when guarantees
on stability and control performance are required. The latter does not provide temporal
isolation between messages, but has several advantages like better bus utilization and easier
extensibility. This has also resulted in hybrid protocols that combine the event- and time-
triggered paradigms. However, there has been little work on how to exploit such hybrid
protocols when designing control algorithms, in order to utilize the benefits of both the
communication paradigms. In this talk we will discuss this problem and propose some
promising research directions that involve adaptively providing temporal isolation on a
when-needed basis. This brings up a number of challenges both in the areas of control theory,
and also in timing analysis.

References

1 Harald Voit, Anuradha M. Annaswamy, Reinhard Schneider, Dip Goswami, Samarjit
Chakraborty. Adaptive switching controllers for systems with hybrid communication pro-
tocols. American Control Conference (ACC) 2012

2 Harald Voit, Anuradha Annaswamy, Reinhard Schneider, Dip Goswami, Samarjit
Chakraborty. Adaptive switching controllers for tracking with hybrid communication pro-
tocols. 51th IEEE Conference on Decision and Control (CDC) 2012

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/DATE.2012.6176681
http://dx.doi.org/10.1109/DATE.2012.6176681
http://dx.doi.org/10.1109/DATE.2012.6176681
http://dx.doi.org/10.1109/DATE.2012.6176681

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

3 Alejandro Masrur, Dip Goswami, Samarjit Chakraborty, Jian-Jia Chen, Anuradha An-
naswamy, Ansuman Banerjee. Timing analysis of cyber-physical applications for hybrid
communication protocols. Design, Automation & Test in Europe Conference (DATE) 2012

4 Dip Goswami, Reinhard Schneider, Samarjit Chakraborty. Re-engineering cyber-physical
control applications for hybrid communication protocols. Design, Automation & Test in
Europe Conference (DATE) 2011

5.3 Achieving Timing Predictability by Combining Models
Heiko Falk (TU Hamburg-Harburg, DE) and Arno Luppold

License) Creative Commons BY 3.0 Unported license
© Heiko Falk and Arno Luppold
Main reference A. Luppold, H. Falk, “Code Optimization of Periodic Preemptive Hard Real-Time Multitasking
Systems”, in Proc. of the 18th Int’l Symposium on Real-Time Distributed Computing (ISORC
2015), pp. 35-42, IEEE, 2015.
URL http://dx.doi.org/10.1109/ISORC.2015.8

During the design of embedded software, compilers play an important role, since the ma-
chine code generated by them directly influences criteria like, e.g., execution times, timing
predictability or energy. Particularly, compiler optimizations could be beneficial to improve
such criteria systematically.

The discussions during this seminar revealed that both the predictability and the security
community lack suitable models and that, if models are available, they are often used in the
form of black boxes. This presentation intends to show what can be done within a compiler
when combining models that are usually used by different communities.

By coupling a compiler with a static timing analyzer, a formal WCET timing model
based on micro-architectural features was integrated into the compilation flow. Next, this
low-level hardware model is combined with a code-level control flow model that allows for
the systematic optimization of WCETs by the compiler. Finally, task set-level models from
the scheduling theory community are integrated into the optimization flow.

By means of a Scratchpad Memory (SPM) allocation, this presentation aims to show
how complete multi-task sets can finally be optimized for timing predictability. Due to their
timing predictability, SPMs are useful to achieve isolation between concurrent software tasks.
By combining all these various models into the compiler’s optimization process, we are able
to achieve predictability and inter-task isolation by controlling resource use statically at
compile time for entire multi-task systems.

In the future, it would be worthwhile to investigate in how far the memory-related isolation
achieved by our existing WCET-oriented optimizations are useful for security. Furthermore,
a tight(er) connection between compilers and operating systems might be useful for more
efficient and effective resource allocation decisions at runtime in order to finally achieve
adaptive isolation.

References

1 Arno Luppold, Heiko Falk. Code Optimization of Periodic Preemptive Hard Real-Time
Multitasking Systems. In Proceedings of the 18th International Symposium on Real-Time
Distributed Computing (ISORC), Auckland / New Zealand, April 2015

133

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/ISORC.2015.8
http://dx.doi.org/10.1109/ISORC.2015.8
http://dx.doi.org/10.1109/ISORC.2015.8
http://dx.doi.org/10.1109/ISORC.2015.8

134

16441 — Adaptive Isolation for Predictability and Security

5.4 Soteria: Offline Software Protection within Low-cost Embedded
Devices

Johannes Gétzfried (Universitit Erlangen-Nirnberg, DE)

License @@ Creative Commons BY 3.0 Unported license
© Johannes Gotzfried
Joint work of Johannes Gotzfried, Tilo Miiller, Ruan de Clercq, Pieter Maene, Felix C. Freiling, Ingrid

Verbauwhede

Main reference J. Gotzfried, T. Miiller, R. de Clercq, P. Maene, F. C. Freiling, I. Verbauwhede, “Soteria: Offline
Software Protection within Low-cost Embedded Devices”, in Proc. of the 31st Annual Computer
Security Applications Conf. (ACSAC 2015), pp. 241-250, ACM, 2015.

URL http://dx.doi.org/10.1145/2818000.2856129

Protecting the intellectual property of software that is distributed to third-party devices
which are not under full control of the software author is difficult to achieve on commodity
hardware today. Modern techniques of reverse engineering such as static and dynamic
program analysis with system privileges are increasingly powerful, and despite possibilities of
encryption, software eventually needs to be processed in clear by the CPU. To anyhow be able
to protect software on these devices, a small part of the hardware must be considered trusted.
In the past, general purpose trusted computing bases added to desktop computers resulted
in costly and rather heavyweight solutions. In contrast, we present Soteria, a lightweight
solution for low-cost embedded systems. At its heart, Soteria is a program-counter based
memory access control extension for the TT MSP430 microprocessor. Based on our open
implementation of Soteria as an openMSP430 extension, and our FPGA-based evaluation,
we show that the proposed solution has a minimal performance, size and cost overhead while
effectively protecting the confidentiality and integrity of an application’s code against all
kinds of software attacks including attacks from the system level.

5.5 Challenges of Temporal Isolation
Gernot Heiser (UNSW - Sydney, AU)

License () Creative Commons BY 3.0 Unported license
© Gernot Heiser
Joint work of Gernot Heiser, Anna Lyons, Thomas Sewell, Felix Kam, Qian Ge, Yuval Yarom
Main reference Q. Ge, Y. Yarom, G. Heiser, “Do Hardware Cache Flushing Operations Actually Meet Our
Expectations?”, arXiv:1612.04474v3 [cs.CR], 2016.
URL https://arxiv.org/abs/1612.04474v3

Spatial isolation is well-supported by present hardware and software, e.g. the sel.4 microkernel
has been proved to support spatial isolation, including the absence of covert storage channels.
While the formal arguments about sel.4 presently only apply to a single-core version, the
extension its functional verification to multicore hardware is in progress, and unlikely to
produce issues in terms of spatial isolation.

In contrast, temporal isolation is not only harder to verify, hardware is becoming less
predictable, thanks to an increasing number of performance-enhancement tricks, generally
based on some form of caching and dynamic scheduling of resources. This makes it increasingly
difficult, and in cases impossible, to bound and control non-determinism.

I argue that computer architects have essentially abandoned the instruction-set architec-
ture (ISA) as the contract between hardware and software: by just referring to the ISA, it is
impossible to guarantee safety (timeliness) and security (absence of timing channels).

I argue further that it is hopeless to address this problem unless architects agree to a
usable contract, i.e. extend the ISA so that timing effects become visible (and thus analysable)
or controllable.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2818000.2856129
http://dx.doi.org/10.1145/2818000.2856129
http://dx.doi.org/10.1145/2818000.2856129
http://dx.doi.org/10.1145/2818000.2856129
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://arxiv.org/abs/1612.04474v3
https://arxiv.org/abs/1612.04474v3
https://arxiv.org/abs/1612.04474v3

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

In particular, there must be time bounds on all operations. In practice, bounding each
individual operation (instruction) may not be enough, as this will lead to massively pessimistic
bounds. As future hardware will never be fully utilisable (eg one cannot run all cores because
they will overheat), this pessimism may be tolerable in many cases. In others, enough
information must be available so that it is at least possible to obtain realistic bounds on
the execution time of groups of operations, giving software the opportunity to re-introduce
determinism at a higher level.

Examples of this are variations produced by shared state such as various forms of
caches and interconnects, which produce variations in execution time that break isolation.
Establishing safety requires the ability to bound variations. Establishing security is harder,
as it requires establishing determinism, at least at some course granularity. This is possible
as long as the hardware provides mechanisms to either partition or flush (with bounded
latency) any such shared state.

5.6 Predictability in Multicore Systems Using Self-Suspending Tasks
Jian-Jia Chen (TU Dortmund, DE)

License) Creative Commons BY 3.0 Unported license
© Jian-Jia Chen

In general computing systems, a job (process/task) may suspend itself whilst it is waiting
for some activity to complete. With the presence of self-suspension, the typical critical
instant theorem cannot be directly applied. However, such suspending behavior is in general
unavoidable unless the executions are isolated. In this talk, I present a short overview of
typical schedulability tests, explain our observations why suspension is important to account
for the impact of shared resources, and provide a brief overview of recent developments with
regard to the schedulability tests.

5.7 Software Development for Isolation
Tulika Mitra (National University of Singapore, SG)

License @@ Creative Commons BY 3.0 Unported license
© Tulika Mitra
Joint work of Tulika Mitra, Konstantin Rubinov, Lucia Rosculete, Abhik Roychoudhury
Main reference K. Rubinov, L. Rosculete, T. Mitra, A. Roychoudhury, “Automated Partitioning of Android
Applications for Trusted Execution Environments”, in Proc. of the 38th Int’l Conf. on Software
Engineering (ICSE’16), pp. 923-934, ACM, 2016.
URL http://dx.doi.org/10.1145/2884781.2884817

The co-existence of critical and non-critical applications on computing devices is becoming
commonplace. The sensitive segments of a critical application should be executed in isol-
ation on Trusted Execution Environments (TEE) so that the associated code, data, and
their execution can be protected from malicious applications both for security and timing
predictability. TEE is supported by different technologies and platforms, such as ARM
Trustzone, that allow logical separation of secure and normal worlds. However, software
development on such platforms to take advantage of the hardware support for isolation
remain challenging resulting in slow adoption of isolation techniques at application level.
We develop an automated approach to help application developers adopt hardware-enforced
secure technology for isolation by retrofitting original applications to protect sensitive data.
Our approach automatically partitions critical Android applications into client code to be

135

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2884781.2884817
http://dx.doi.org/10.1145/2884781.2884817
http://dx.doi.org/10.1145/2884781.2884817
http://dx.doi.org/10.1145/2884781.2884817

136

16441 — Adaptive Isolation for Predictability and Security

run in the normal world and TEE code encapsulating the handling of confidential data to
be run in the secure world. We further reduce the overhead due to transitions between the
two worlds. The advantage of our proposed solution is evidenced by efficient automated
partitioning of real-world Android applications to protect sensitive code/data.

5.8 Time-Based Intrusion Detection in Cyber-Physical Systems
Frank Mueller (North Carolina State University — Raleigh, US)

License @ Creative Commons BY 3.0 Unported license
© Frank Mueller
Joint work of Christopher Zimmer, Balasubramanya Bhat, Frank Mueller, Sibin Mohan
Main reference C. Zimmer, B. Bhat, F. Mueller, S. Mohan, “Time-based intrusion dectection in cyber-physical
systems”, in Proceedings of the 1st ACM/IEEE Int’l Conf. on Cyber-Physical Systems (ICCPS’10),
pp. 109-118, ACM, 2010.
URL http://dx.doi.org/10.1145/1795194.1795210

Security in real-time cyber-physical systems (CPS) has been an afterthought, even thoug
such systems are networked. We present three mechanisms for time-based intrusion detection
exploiting information obtained by static timing analysis. For real-time CPS systems, timing
bounds on code sections are readily available as they are calculated during schedulability
analysis. We demonstrate how checks of micro-timings at multiple granularities of code
uncover intrusions (1) in a self-checking manner by the application and (2) through the
operating system scheduler, which has never been done before.

5.9 Adaptive Pipeline for Security in Real Time Systems
Sri Parameswaran (UNSW — Sydney, AU)

License) Creative Commons BY 3.0 Unported license
© Sri Parameswaran
Joint work of Amin Malekpour, Sri Parameswaran, Roshan Ragel

Hardware Trojans are employed by adversaries to either leak information or to prevent com-
putation deliberately by inserting alterations at design time. Hardware Trojans compromise
the operation of systems, reducing the trust placed in any manufactured hardware, as well
as any software executing upon that hardware. A Trojan can be always ON or be triggered
by a certain condition either external or internal. Even before the manufacturing process,
intellectual property (3PIPs) cores supplied by third-party vendors as well as electronic design
automation (EDA) tools (developed by various companies) could well make the in-house
design process of ICs vulnerable. During the typical development cycle of an IC, each
party associated with design, manufacturing and distribution of an IC can be a potential
adversary, who could well insert undesired malicious modifications into the IC. Therefore,
either ensuring that the ICs are free of hardware Trojans or mitigating their harmful impact
is important. Most existing countermeasures focus on the difficult task of detecting and
preventing hardware Trojans. Although Trojan identification before ICs are deployed in the
system can be beneficial, the proposed techniques for detection cannot guarantee detection
of all types and sizes of Trojans. We aim to apply online monitoring notion to a Pipelined
Multiprocessor System-on-Chip (PMPSoC), which enables the system to work safely in the
presence of Trojans while utilizing shelf commercial processing elements (3PIPs). The system
adapts and randomizes to provide security. Our proposed online monitoring would facilitate
the detection/recovery of/from hardware Trojan attacks, albeit with some overheads. Our
system is implemented as PMPSoC architecture and uses a diverse set of 3PIPs.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/1795194.1795210
http://dx.doi.org/10.1145/1795194.1795210
http://dx.doi.org/10.1145/1795194.1795210
http://dx.doi.org/10.1145/1795194.1795210
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tulika Mitra, Jiirgen Teich, and Lothar Thiele 137

5.10 Timing Predictability and How to Achieve It
Jan Reineke (Universitit des Saarlandes, DE)

License) Creative Commons BY 3.0 Unported license
© Jan Reineke
Main reference S. Hahn, J. Reineke, R. Wilhelm, “Toward Compact Abstractions for Processor Pipelines”, in Proc.
of the Correct System Design Symposium in Honor of Ernst-Riidiger Olderog on the Occasion of
His 60th Birthday, LNCS, Vol. 9360, pp. 205-220, Springer, 2015.
URL http://dx.doi.org/10.1007/978-3-319-23506-6_ 14

For hard real-time systems, timeliness of operations has to be guaranteed. Static timing
analysis is therefore employed to compute upper bounds on the execution times of a program.
Analysis results at high precision are required to avoid over-provisioning of resources.

In the first part of the talk, I stress the need for faithful microarchitectural models.
Without such models no reliable predictions about a program’s future execution times can be
made. Unfortunately, models at the level of detailed required for timing analysis are rarely
available.

In the second part of the talk, I discuss the notions of timing predictability and ana-
lyzability. Timing predictability is related to the range of possible execution times of a
program under different conditions, such as different initial hardware states or different
amounts of interference generated by co-running tasks on other processor cores. Modern
microarchitectural features such as deep pipelines, complex memory hierarchies, and shared
resources in multi or many cores generally decrease predictability.

I discuss three approaches to increase predictability:

1. Eliminating stateful components: e.g. by replacing caches by scratchpad memories, or
an out-of-order architecture by a VLIW architecture. The challenge then is the efficient
static allocation of resources.

2. Eliminating interference: this is achieved by partitioning shared resources in time and/or
space. The challenge is the efficient partitioning of the resources.

3. Choosing “forgetful” components, i.e., components whose behavior is relatively insensitive
to its initial state. For caches we know that LRU replacement in this regard. For other
microarchitectural components, our understanding is less developed.

Timing analyzability is concerned with analysis efficiency. Analyzability can be improved

by the same three approaches that increase predictability:

1. Eliminating stateful resources results in fewer hardware states that timing analysis needs
to account for.

2. Eliminating interference allows timing analysis to safely ignore the behavior of co-running
tasks.

3. Different initial states will quickly converge during analysis for forgetful components.

While the three approaches discussed above are beneficial for both predictability and
analyzability, two properties of timing models are related primarily to analyzability:
1. Freedom from timing anomalies, and
2. Timing compositionality
Both properties enable the implicit and thus efficient treatment of large sets of hardware
states during timing analysis. I show that even models of simple in-order processors are
neither free from timing anomalies nor timing compositional. Finally, I sketch “strictly
in-order pipelines”; which are provably free from timing anomalies and timing compositional.

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-319-23506-6_14
http://dx.doi.org/10.1007/978-3-319-23506-6_14
http://dx.doi.org/10.1007/978-3-319-23506-6_14
http://dx.doi.org/10.1007/978-3-319-23506-6_14

138

16441 — Adaptive Isolation for Predictability and Security

5.11 Connecting the dots — Towards the total automation of
embedded systems design (in Java world)

Zoran Salcic (University of Auckland, NZ)

License @@ Creative Commons BY 3.0 Unported license
© Zoran Salcic

Java, although used in large number of embedded systems, still has not found its proper place
in research community. By extending Java with GALS abstractions and formal model of
concurrency and reactivity, we give it a new life. SystemJ language, initially aimed at general
concurrent and distributed systems has found its way to embedded real-time world to become
a language with which a design begins and goes through various transformations until it finds
a suitable/customised multicore platform for its execution. We will talk about how the dots
are connected, the central role of a formal representation of SystemJ program in all phases
and variations of design process. Multi-dimensional research has been developed related to
generation of efficient code that runs on a time-predictable multi-core platform, satisfies
timing constraints proven via static analysis and allows generation of the execution platform
suitable for further requirements such as fault-tolerance, isolation of software behaviours
using spatial and temporal methods within the platform’s NoC, resource-aware program
execution etc.

5.12 Isolation for Security
Patrick Schaumont (Virginia Polytechnic Institute — Blacksburg, US)

License () Creative Commons BY 3.0 Unported license
© Patrick Schaumont

Modern information infrastructure is very heterogeneous, with the Internet of Things on
the one end, and the Cloud on the other. Computing capabilities, storage, and computing
performance vary by orders of magnitude as one moves from the IoT to the cloud. T used the
example of implantable/wearable medical devices to illustrate this point, and to address the
security concerns that occur within such information infrastructure [1, 2]. In particular, there
are requirements for information security, safety, and privacy. These requirements affect the
entire information chain from implanted device up to the cloud server.

Hence, when considering ’isolation for security’, it is vital to do this within the proper
architectural context. Second, the architecture has significant impact on the implementation
of security. Constrained implementations, found near the outer periphery in the internet
of things, use simple micro-controllers, simple cryptography, and static secrets. High-end
implementations, found in the cloud, use advanced processors, complex public-key crypto,
and ephemeral secret. Moreover, many of the high-end architectures have isolation naturally
build-in.

A central concept in the design of secure architectures is that of trust. A computer system
is trusted when it behaves as expected. A computer system that is not trusted has unknown
behavior — that is, it may work as we expect it should, or it may not. We just don’t know.
The boundary between the trusted part and the non-trusted part of a computer system is
the trust boundary.

A closely related concept is that of the attacker model [3]. An attacker model enumerates
the mechanisms through which the adversary will try to breach the trust boundary. In
computer systems, this can be done in various ways. The I/O attacker model assumes an

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

attacker who can manipulate the input of a system in order to cause an internal exception
and take control. The Machine code attacker model assumes an attacker who coexists in the
same memory space as a secure task, thereby introducing the requirement to enforce strict
isolation between the secure task and the rest of the system. The Hardware attacker model
represents the strongest attack and assumes an attacker who has (to some extent) physical
control over the computer architecture.

During the talk, I discussed two examples of computer systems that are able to handle
the Machine code attacker model, including SGX from Intel [5, 6] and SANCUS, developed
at KU Leuven [4].

Some final open issues are (a) how security can be quantified; (b) what metrics would be
suitable to describe secure computing and (c¢) what are the orthogonal properties of secure
computing (next to isolation).

References

1 Michael Rushanan, Aviel D. Rubin, Denis Foo Kune, Colleen M. Swanson: SoK: Security
and Privacy in Implantable Medical Devices and Body Area Networks. IEEE Symposium
on Security and Privacy 2014: 524-539.

2 Wayne Burleson, Shane S. Clark, Benjamin Ransford, Kevin Fu: Design challenges for
secure implantable medical devices. DAC 2012: 12-17.

3 Frank Piessens, Ingrid Verbauwhede: Software security: Vulnerabilities and countermeas-
ures for two attacker models. DATE 2016: 990-999.

4 Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van Herrewege,
Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, Frank Piessens: Sancus: Low-
cost Trustworthy Extensible Networked Devices with a Zero-software Trusted Computing
Base. USENIX Security Symposium 2013: 479-494.

5 Victor Costan, Srinivas Devadas: Intel SGX Explained. TACR Cryptology ePrint Archive
2016: 86 (2016).

6 Ittai Anati, Shay Gueron, Simon Johnson, Vincent Scarlata: Innovative Technology for
CPU Based Attestation and Sealing. Proceedings of the 2nd International Workshop on
Hardware and Architectural Support for Security and Privacy, HASP 2013.

5.13 T-CREST: Time-predictable Multi-Core Architecture for
Embedded Systems

Martin Schoeberl (Technical University of Denmark — Lyngby, DK)

License) Creative Commons BY 3.0 Unported license
© Martin Schoeberl
Main reference M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso, J. Garside, K. Goossens, S.
Goossens, S. Hansen, R. Heckmann, S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li,
D. Prokesch, W. Puffitsch, P. Puschner, A. Rocha, C. Silva, J. Sparsg, A. Tocchi, “T-CREST:
Time-predictable multi-core architecture for embedded systems”, Journal of Systems Architecture,
Vol. 61(9), pp. 449-471, Springer, 2015.
URL http://dx.doi.org/10.1016/j.sysarc.2015.04.002

Real-time systems need time-predictable platforms to allow static analysis of the worst-case
execution time (WCET). Standard multi-core processors are optimized for the average
case and are hardly analyzable. Within the T-CREST project we propose novel solutions
for time-predictable multi-core architectures that are optimized for the WCET instead
of the average-case execution time. The resulting time-predictable resources (processors,
interconnect, memory arbiter, and memory controller) and tools (compiler, WCET analysis)

139

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://dx.doi.org/10.1016/j.sysarc.2015.04.002
http://dx.doi.org/10.1016/j.sysarc.2015.04.002

140

16441 — Adaptive Isolation for Predictability and Security

are designed to ease WCET analysis and to optimize WCET performance. Compared to
other processors the WCET performance is outstanding.

The T-CREST project is the result of a collaborative research and development project
executed by eight partners from academia and industry. The European Commission funded
T-CREST.

5.14 Adaptive Memory Protection for Many-Core Systems
Wolfgang Schroder-Preikschat (Universitit Erlangen-Nirnberg, DE)

License @ Creative Commons BY 3.0 Unported license
© Wolfgang Schroder-Preikschat
Joint work of Gabor Drescher, Wolfgang Schroder-Preikschat

Memory protection based on MMUs or MPUs is widely applied in all areas of computing
from mobile devices to HPC. It is a basic building block to provide security between the
OS kernel and applications but also among different applications. However, unprotected
execution is also generally possible and typically exerted in resource-restricted environments,
for instance embedded systems. Both variants have their advantages and disadvantages.
While memory protection ensures safety and security in the face of arbitrary programs, it is
also costly to manage. Updates of multi-level page-table data structures, TLB invalidations
via inter processor interrupts and page faults on memory accesses are significant sources of
unpredictability.

State of the art operating systems statically determine which applications or application’s
modules run under memory protection and which do not. This assignment of protection does
not change at run time. This means, software is either restricted to solely access its own
memory regions and this is enforced by hardware mechanisms, or it may access all memory
regions freely.

There are scenarios where ubiquitous memory protection is unnecessary and increases
uncertainty for some time, but is required at other points during the run time of a system.
The simplest example is the execution of a single application, kernel regions need to be
protected but otherwise the application may freely access all available memory without
error. Once another application is started, both may need confinement. In the case of
applications written in a type-safe language, memory-protection overheads are also wasteful,
as the application cannot perform arbitrary pointer arithmetic. Another scenario may be
real-time applications where time predictability may be of higher interest than security.
Finally, applications of the same vendor may trust each other but mistrust software of
different origin. Memory protection may be superfluous in this scenario until foreign software
is started on the system.

This talk presents an adaptive memory-protection system that is capable of dynamically
changing the protection state of applications from protected to unprotected and back again.
This adaptability applies at run time to parallel applications utilizing dynamic memory
allocation. It allows the combination of the benefits of both worlds: security when memory
protection is needed and increased performance and predictability once security is superfluous.
Evaluation results for up to 64 cores on a contemporary x86 64 bit server show reduced time
complexity of relevant system services from linear to constant time in the unprotected case.
Unprotected applications benefit from faster system calls, starting at a 3.5 times speedup.
Furthermore, it can be shown that unpredictable running times and system call latencies can
be reduced. Nevertheless, the OS maintains the ability to confine applications at any time.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tulika Mitra, Jiirgen Teich, and Lothar Thiele 141

5.15 Security Issues on the Boundary of Ideal and Real Worlds
Takeshi Sugawara (Mitsubishi — Kanagawa, JP)

License) Creative Commons BY 3.0 Unported license
© Takeshi Sugawara
Joint work of Takeshi Sugawara, Daisuke Suzuki, Minoru Saeki, Ryoichi Fujii, Shigeaki Tawa, Ryohei Hori,
Mitsuru Shiozaki, Takeshi Fujino
Main reference T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori, M. Shiozaki, T. Fujino, “Reversing Stealthy
Dopant-Level Circuits”, in Proc. of the Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2014), Journal of Cryptographic Engineering, Vol. 5(2), pp. 85-94, Springer, 2015.
URL http://dx.doi.org/10.1007/s13389-015-0102-5
Main reference T. Sugawara, D. Suzuki, M. Saeki, M. Shiozaki, T. Fujino, “On Measurable Side-Channel Leaks
Inside ASIC Design Primitives”, in Proc. of the Workshop on Cryptographic Hardware and
Embedded Systems (CHES 2013), Journal of Cryptographic Engineering, Vol. 4(1), pp. 59-73,
Springer, 2014.
URL http://dx.doi.org/10.1007/s13389-014-0078-6

Assumption (i.e., model, abstraction) is essential in security because it is the interface between
theorists and experimentalists. Good assumption can be easily verified by experimentalists. In
the talk, my recent results on the research of side-channel attack and LSI reverse engineering
are briefly introduced in order to show examples how the countermeasures are constructed
and how their assumptions are falsified. Finally, static isolation based on domain-specific
co-processors, that is being common in industry is explained.

5.16 An Introduction to the Seminar
Jiirgen Teich (Universitit Erlangen-Nirnberg, DE)

License) Creative Commons BY 3.0 Unported license
© Jurgen Teich

Presented is an introduction and motivation of the topic of this Dagstuhl Seminar: Adaptive
isolation of applications on Multi-Core Systems in order to provide, improve or enforce
timeliness of computations as well as security on demand.

First, different definitions on timing predictability are revisited and restriction of input
spaces as well as isolation of resources discussed for in improving timing predictability or
allowing analyzability at all. Subsequently, major sources of unpredictability are summarized,
including sharing of resources, multi-threading, and power management techniques as used
today.

For isolation, resource reservation protocols, virtualization techniques and invasive com-
puting, a new paradigm for parallel multi-core computing in which applications “invade”
resources on demand in order to restrict the interference with other applications is introduced.

It is shown that for many applications such as stream processing, a formal timing analysis
is possible. Also, the varation of execution time may be greatly reduced through the isolation
created by invading isolated rather than sharing. Finally, invasive computing may also be
used to virtualize a multi-core platform and provide secure islands on demand.

Conclusions are given to point out similarities and differences between isolation techniques
for time predictability and properties important in the domain of security.

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s13389-015-0102-5
http://dx.doi.org/10.1007/s13389-015-0102-5
http://dx.doi.org/10.1007/s13389-015-0102-5
http://dx.doi.org/10.1007/s13389-015-0102-5
http://dx.doi.org/10.1007/s13389-014-0078-6
http://dx.doi.org/10.1007/s13389-014-0078-6
http://dx.doi.org/10.1007/s13389-014-0078-6
http://dx.doi.org/10.1007/s13389-014-0078-6
http://dx.doi.org/10.1007/s13389-014-0078-6
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

142

16441 — Adaptive Isolation for Predictability and Security

5.17 Isolation, resource efficiency and covert channels
Lothar Thiele (ETH Ziirich, CH)

License) Creative Commons BY 3.0 Unported license
© Lothar Thiele
Joint work of Lothar Thiele, Miedl Philipp

Modern multicore processors feature easily accessible temperature sensors that provide useful
information for dynamic thermal management. These sensors were recently shown to be a
potential security threat, since otherwise isolated applications can exploit them to establish a
thermal covert channel and leak restricted information. Previous research showed experiments
that document the feasibility of (lowrate) communication over this channel, but did not
further analyze its fundamental characteristics. For this reason, the important questions of
quantifying the channel capacity and achievable rates remain unanswered.

To address these questions, we devise and exploit a new methodology that leverages both
theoretical results from information theory and experimental data to study these thermal
covert channels on modern multicores. We use spectral techniques to analyze data from two
representative platforms and estimate the capacity of the channels from a source application
to temperature sensors on the same or different cores. We estimate the capacity to be in
the order of 300 bits per second (bps) for the same-core channel, i.e., when reading the
temperature on the same core where the source application runs, and in the order of 50 bps
for the 1-hop channel, i.e., when reading the temperature of the core physically next to the
one where the source application runs. Moreover, we show a communication scheme that
achieves rates of more than 45 bps on the same-core channel and more than 5 bps on the
1-hop channel, with less than 1% error probability. The highest rate shown in previous work
was 1.33 bps on the 1-hop channel with 11% error probability.

5.18 Determinate and Timing-Predictable Concurrency in Reactive
Systems — The Synchronous Approach and the SCCharts
Language

Reinhard von Hanzleden (Universitit Kiel, DE)

License) Creative Commons BY 3.0 Unported license
© Reinhard von Hanxleden
Joint work of Joaquin Aguado, David Broman, Bjérn Duderstadt, Insa Fuhrmann, Reinhard von Hanxleden,

Michael Mendler, Steven Loftus-Mercer, Christian Motika, Owen O’Brien, Partha Roop, Steven
Smyth, Alexander Schulz-Rosengarten, KIELER and ELK teams

Main reference R. von Hanxleden, B. Duderstadt, C. Motika, S. Smyth, M. Mendler, J. Aguado, S. Mercer, O.
O’Brien, “SCCharts: sequentially constructive statecharts for safety-critical applications:
HW /SW-synthesis for a conservative extension of synchronous statecharts”, in Proc. of the 35th
ACM SIGPLAN Conf. on Prog. Lang. Design and Implementation (PLDI’14), pp. 372-383, ACM,
2014.

URL http://dx.doi.org/10.1145/2594291.2594310

Synchronous programming languages are well established for programming safety-critical
reactive systems that demand determinate behavior and predictable timing. One commercially
successful example is the graphical modeling language provided by the Safety Critical
Application Development Environment (SCADE), which is used for e.g. flight control design.
Another, more recently developed synchronous language are SCCharts, a statechart variant
that extends classical synchronous programming with a more liberal, but yet determinate
scheduling regime for shared variables. SCCharts can be compiled into both software and
hardware, with a sequence of structural model-to-model transformations that allow to map
the temporal behavior back to the model. The presentation emphasizes that the compilation
approach has a high influence on timing predictability.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310
http://dx.doi.org/10.1145/2594291.2594310

Tulika Mitra, Jiirgen Teich, and Lothar Thiele 143

5.19 Hybrid Application Mapping for Dynamic Isolation in Invasive
Computing

Stefan Wildermann (Universitit Erlangen-Nirnberg, DE)

License @ Creative Commons BY 3.0 Unported license
© Stefan Wildermann
Joint work of Andreas Weichslgartner, Deepak Gangadharan, Stefan Wildermann, Michael Gla8, Jirgen Teich

Main reference A. Weichslgartner, D. Gangadharan, S. Wildermann, M. Gla8, J. Teich, “DAARM: Design-time
application analysis and run-time mapping for predictable execution in many-core systems”, in
Proc. of the Int’l Conf. on Hardware/Software Codesign and System Synthesis (CODES’14),
pp. 34:1-34:10, ACM, 2014.

URL http://dx.doi.org/10.1145/2656075.2656083

Multi-Processor Systems-on-a-Chip (MPSoCs) provide sufficient computing power for many
applications in scientific as well as embedded applications. Unfortunately, when real-time,
reliability, and security requirements need to be guaranteed, applications suffer from the
interference with other applications, uncertainty of dynamic workload and state of the
hardware. Composable application/architecture design and timing analysis is therefore a
must for guaranteeing applications to satisfy their non-functional requirements independent
from dynamic workload.

Invasive Computing can be used as the key enabler, as it provides the required isola-
tion of resources allocated to each application. On the basis of this paradigm, this work
presents a hybrid application mapping methodology that combines design-time analysis of
application mappings with run-time management. Design space exploration delivers several
resource reservation configurations with verified and/or validated non-functional properties
of individual applications. These properties can then be guaranteed at run-time, as long as
dynamic resource allocations comply with the offline analyzed resource configurations. In
this work, we show that the approach provides increased flexibility and dynamism of systems
even in the presence of hard real-time constraints. We also show the overhead of performing
this dynamic application isolation based on run-time resource allocation.

5.20 Timing Verification — Flogging a Dead Horse?
Reinhard Wilhelm (Universitit des Saarlandes, DE)

License) Creative Commons BY 3.0 Unported license
© Reinhard Wilhelm
Joint work of Jan Reineke, Sebastian Hahn, Reinhard Wilhelm
Main reference P. Axer, R. Ernst, H. Falk, A. Girault, D. Grund, N. Guan, B. Jonsson, P. Marwedel, J. Reineke,
C. Rochange, M. Sebastian, R. von Hanxleden, R. Wilhelm, W. Yi, “Building timing predictable
embedded systems”, ACM Trans. Embed. Comput. Syst., Vol. 13(4), pp. 82:1-82:37, ACM, 2014.
URL http://dx.doi.org/10.1145/2560033

Recent developments in architectures and their adoption for safety- and time-critical embedded
systems have reduced or even eliminated the chance to apply sound timing-verification
techniques. The complexity, i.e., the size of the state space to be explored, has become just
too large. The deployed new architectures have even made measurement-based, i.e. unsound
techniques unpractical. What remains as alternative? The participants of this Dagstuhl
Seminar have found no answer to this question. Maybe the timing-verification community
should provide the proof that high-performance, predictable architectures are possible.

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1145/2656075.2656083
http://dx.doi.org/10.1145/2656075.2656083
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1145/2560033
http://dx.doi.org/10.1145/2560033

144 16441 — Adaptive Isolation for Predictability and Security

Monitoring System

monitoring data “external” influence

System/Process

Figure 1 Conceptual model of a runtime monitoring system.

6 Working groups

6.1 Runtime Monitoring
Felix Freiling (Universitat Erlangen-Nirnberg, DE)

License () Creative Commons BY 3.0 Unported license
© Felix Freiling

This breakout session ran for two days and focussed on the general topic of runtime monitoring
for predictability and security. The participants on Wednesday were Lothar Thiele, Pieter
Maene, Johannes Gotzfried, Takeshi Sugawara, Jiirgen Teich and Felix Freiling. On Thursday,
the participants were Jan Reineke, Pieter Maene, Johannes Gotzfried, Takeshi Sugawara,
Jurgen Teich, Felix Freiling and Sudipta Chattopadhyay.

6.1.1 Conceptual model

We started with a conceptual model to clarify what we were talking about (see Figure 1).
We usually have two systems: On the one hand there is the monitored system, which is
the system whose properties we wish to monitor. If the monitored system would constantly
satisfy its desired properties, there would be no necessity to monitor it. So we have the
second system: the monitoring system. The monitoring system collects data of the monitored
system (either digital or physical, e.g. using a camera) and has some internal logic that
performs computation on this data. Under certain conditions, the monitoring system might
influence the monitored system, e.g. by resetting the system or initiating a reconfiguration.

Formally, the observations of the monitoring system can be viewed as a sequence of events
or states observed from the monitored system. Such sequences are often called traces. In a
security context, the trustworthiness of the observed data is an issue. But also in a timeliness
context the precision of the observed timings is critical to make truthful/good decisions. The
classical examples of runtime monitoring systems are:

watchdog timers,

fault-injection attack countermeasures using sensors [2], or

intrusion detection services within networks.

6.1.2 Issues in runtime monitoring

The discussion identified several issues that we used to structure the area of runtime
monitoring systems. We discuss each of them seperately in the following sections.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

6.1.2.1 Types of properties that are monitored

We collected a set of properties that are on the usual wishlist of runtime monitoring systems:
timeliness (i.e. meeting realtime deadlines),

control flow integrity (i.e. the control flow does not deviate from the “correct” control

flow intended by the programmer), or

variance of response times (i.e., the variance of response times within the last hour is

below a certain value).

It was noted that in general, properties that can be detected on individual traces fall in
the class of safety properties (in the safety/liveness sense of Lamport [6] and Alpern and
Schneider [1]). It is theoretically possible to derive bad events (or event sequences) from
safety properties and to configure detection conditions for them.

It is well-known that certain types of functional and non-functional properties do not fall
into the class of safety properties. For example, liveness properties (e.g., eventual termination)
cannot be detected at runtime since they are only satisfied in infinite time (to detect violations
one would have to observe the system infinitely long). But also variance of response times
or information flow cannot be modeled as trace sets, but are a property of all traces of a
system (see McLean [7]). They therefore cannot be checked at runtime. However, many
such properties can be approximated by safety properties detectable at runtime (see work by
Schneider [8]). For example, variance can be approximated using a finite time window in the
past, or information flow can be approximated by also using the amount of entropy of the
state trace of certain resources in the past.

Sometimes, it may be necessary or feasible to not detect precise events but rather observe
“anomalies” of some form. This is the usual approach in intrusion detection where it is
sometimes not clear how the attacker will attack and leave traces. If it is not totally clear
what to detect, there are additional problems. For example, an attacker could try to avoid
detection by trying to hide “beneath the radar”, e.g., by performing changes slowly enough
so that they do not cause an anomaly.

6.1.2.2 Monitoring approaches

There can be different types of monitoring approaches. Which one is selected depends on the
type of property being enforced and the type of fault/adversary/attacker being considered.

There is the distinction between permanent and periodic monitoring. Monitoring can also
be done on demand or periodically but not in fixed intervals but in random (unpredictable)
intervals. Given an intelligent adversary, periodic monitoring can be avoided because the
attacker can wait for a check, then perform the attack and cover all traces before the next
check occurs (sometimes called “ABA problem”).

In the literature, there is also the notion of a passive monitoring approach known as
canaries. The idea is to detect fault using an artifact that is sensitive and easily broken by
the fault:

software canary (also known as cookie) which is used for buffer overflow protection like

in StackGuard [4],

active shield used to detect invasive probing of a circuit [3], and

a special data store used to detect timing violation (i.e., canary flip flop).

6.1.2.3 Interactions between monitoring and monitored system

Usually it is assumed that monitoring and monitored system are subject to different types of
faults/attacks. In security, this is realized through privilege separation (user/system level,

145

16441

146

16441 — Adaptive Isolation for Predictability and Security

processor rings, ARM Trustzone, Intel SGX, etc.), such that the attacker assumption can be
justified that the privileged area is not affected by the attack. Without such a restriction on
the attacker no security can be guaranteed (see breakout discussions on “attacker models”).

In the safety/realtime/fault-tolerance area it is sometimes the case that two systems take
on the role of monitoring and monitored system for each other (see for example self-checking
checkers from coding theory or fault-tolerant protocols for voting or agreement). In such
scenarios the fault assumption is restricted in the way that both monitoring and monitored
system can be affected by faults but not both at the same time. In this context, we often find
fault/attacker assumptions such as “k-out-of-n” (meaning that at most & out of n systems
are affected by faults).

6.1.2.4 Suitable reactions

In case the monitoring system issues a reaction, what can this be? In fault-tolerant systems
there exists the notion of faul-safe meaning that the system is switched from operational to a
safe state (e.g. “all signals stop” in railway systems). This is problematic in situations where
there is no safe alternative to normal operation (as in avionics). In this case, the minimum
you can do is to at least ensure that sufficient evidence is collected for a later (post mortem)
analysis, i.e. work which has been done under the heading of secure logging.

In security there is the notion of fail-secure meaning that if the system fails, security
properties like integrity or confidentiality are not violated or re-established (e.g., forward
secrecy). Interestingly, availability is not very often investigated in a security context.
Availability, however, is important in this context since reactions to faults/attacks usually
mean a form of reset or restart, and continuous triggers to restart can cause unavailability
(denial-of-service attacks). This is especially problematic when unavailability is the result of
false detections (false positives) of the monitoring system.

A suitable reaction usually is to adjust resources necessary for the task and continue
the task with better resources. Continuation can mean that it restarts from a previous
(uncorrupted) checkpoint. In this context, the notion of stabilization was mentioned [5]
meaning that as long as faults/attacks happen, no progress is guaranteed, but that the
system automatically regains progress once faults/attacks stop to occur.

6.1.3 Open problems

While most of the above observations can be considered known or at least named in the
literature, we collected a couple of open points that were considered novel aspects of the
problem that deserved some research attention:

The whole issue of distributed monitoring has its problems of its own: Distribution creates
challenges with the attacker model, trust issues in the exchange of information, problems
of global observation etc.

If a monitoring system is needed, why not generate it automatically? Given a monitoring
property, can we automatically generate a monitoring system in software and/or hardware
that observes it?

What is the correct/right granularity of checking the monitored property? Should
monitoring be done periodically, on demand or continuously? What is the relation to
efficiency of the monitoring process?

Monitoring usually assumes that there is some information against which a moniored
property can be checked? Can this signature be normalized? Can it possibly be reduced
to the knowledge of a (cryptographic) key?

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

Adding monitoring functionality increases the attack surface of the program. To what
extent does the monitoring functionality affect security then?

In what sense are safety properties also security properties? Obviously this depends on
the attacker model: Which attacker model comprises which fault model? In case an
attacker model includes a fault model, in what way does runtime monitoring for faults
subsume monitoring effort for attacks? These questions refer to the synergies of faults vs.
attack detection.

References
1 B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181—
185, 1985.

2 Josep Balasch. Introduction to fault attacks. Presentation at TACR Summer School, Chia
Laguna, Sardinia, October 2015. https://www.cosic.esat.kuleuven.be/summer_school
sardinia_ 2015/slides/Balasch.pdf.

3 Sébastien Briais, Stéphane Caron, Jean-Michel Cioranesco, Jean-Luc Danger, Sylvain Guil-
ley, Jacques-Henri Jourdan, Arthur Milchior, David Naccache, and Thibault Porteboeuf.
3D hardware canaries. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic
Hardware and Embedded Systems — CHES 2012 — 14th International Workshop, Leuven,
Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in Computer
Science, pages 1-22. Springer, 2012.

4 Crispan Cowan. Stackguard: Automatic adaptive detection and prevention of buffer-
overflow attacks. In Aviel D. Rubin, editor, Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, USA, January 26-29, 1998. USENIX Association, 1998.

5 E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of
the ACM, 17(11):643-644, November 1974.

6 Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on
Software Engineering, 3(2):125-143, March 1977.

7 John McLean. A general theory of composition for a class of “possibilistic” properties.
IEEE Transactions on Software Engineering, 22(1):53-67, January 1996.

8 Fred B. Schneider. Enforceable security policies. ACM Transactions on Information and

System Security, 3(1):30-50, February 2000.

6.2 Future of Timing Verification
Samarjit Chakraborty (TU Miinchen, DE)

License) Creative Commons BY 3.0 Unported license
© Samarjit Chakraborty

The breakout session explored the future of timing verification of real-time systems. This
breakout session was motivated by the fact safety-critical embedded systems are increasingly
relying on advanced processor architectures that have been designed with the goal of improving
average-case performance and not predictability. Hence, while there have been considerable
advancements in the domains of Worst Case Execution Time (WCET) analysis of programs,
and also timing analysis of real-time systems, this is increasingly appearing to be a loosing
battle. More importantly, academic research in the domains of WCET and timing analysis
has had little impact on practice. Therefore, the question is what is the path forward from
here?

Here, one line of thought that has emerged during the last 1-2 years, especially in the
context of embedded control systems is how many deadlines and which ones should really

147

16441

https://www.cosic.esat.kuleuven.be/summer_school_sardinia_2015/slides/Balasch.pdf
https://www.cosic.esat.kuleuven.be/summer_school_sardinia_2015/slides/Balasch.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

148

16441 — Adaptive Isolation for Predictability and Security

be met in a real-time system? In other words, is 100% predictability, as aimed in real-time
systems research really needed? Typically, many safety critical systems implement some
control algorithm. Meeting control performance requirements are subject to satisfying some
timing constraints, which a real-time systems theorist tries to verify (schedulability analysis)
or ensure (schedule design or synthesis). Hence, deadline constrains have served as a good
interface been control theorists and real-time/embedded systems theorists.

However, most feedback control systems have an inherent degree of robustness. Also when
the plant is in a “steady” state, the system can be run in open loop (i.e., no computation of
control input is necessary). This means that even if some control signals are not computed or
transmitted in time, the control performance still remains acceptable. If these control signals
can be characterized, i.e., acceptable patterns of deadline misses may be computed then they
might be interpreted as a quantification of the degree of predictability that is needed.

This means that timing analysis, instead of focusing on deadline constraints, should focus
on higher-level (control theoretic) goals that better characterize the systems performance
requirements. However, computing acceptable patterns of deadline violations is not trivial
and requires sophisticated control theoretic analysis. For example, see [1, 2]. Further,
timing or schedulability analysis to ascertain that at most these deadline violations may
happen is more difficult than checking that no deadline violations happen. Nevertheless,
such an approach gives a certain leeway that could be exploited to allow platforms and
architectures that cannot be completely analyzed but instead only certain timing bounds on
their performance may be given.

The discussion during this breakout session was also on the need for end-to-end timing
analysis, e.g., considering the influence of operating systems on the execution time of code,
which has not been sufficiently addressed until now. Finally, the need for benchmarks and
the reproducibility of timing analysis techniques were also discussed. One potential solution
would be to consider Simulink models of different controllers (e.g., from the automotive
domain) and use the code synthesized from these models for timing analysis.

References

1 Dip Goswami, Reinhard Schneider, Samarjit Chakraborty. Relaxing Signal Delay Con-
straints in Distributed Embedded Controllers. IEEE Trans. Control Systems Technology
22(6): 2337-2345, 2014

2 Dip Goswami, Samarjit Chakraborty, Purandar Bhaduri, Sanjoy K. Mitter. Characterizing
feedback signal drop patterns in formal verification of networked control systems. IEEE
International Symposium on Computer-Aided Control System Design (CACSD), 2013

6.3 Attack Models
Albert Cohen (ENS - Paris, FR) and Karine Heydemann (UPMC - Paris, FR)

License) Creative Commons BY 3.0 Unported license
© Albert Cohen and Karine Heydemann

This breakout session focused on a general survey of attack models. The participants were
Albert Cohen, Ruan De Clercq, Felx Freiling, Gernot Heiser, Karine Heydemann, Patrick
Koeberl, Peter Maene, Claire Maiza, Sibin Mohan, Frank Mueller, Patrick Schaumont, and
Takeshi Sugawara.

System designers need to define security properties and protective measures to implement
them. This process involves systematic characterization of attack models. The working group

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

conducted survey of logical and physical attacks targeting CPS and IoT devices. The focus
was on threats and attack models in general, in those associated with multi- and many-core
systems in particular. Building on such a survey, researchers will be able to determine
and to quantify the aspects of the design and implementation methods that need to be
revisited, to integrate the security dimension at the heart of defense in depth mechanisms,
correct-by-construction design, test, verification, validation, and certification.

6.4 Synergy between Predictability and Security
Frank Mueller (North Carolina State University — Raleigh, US)

License) Creative Commons BY 3.0 Unported license
© Frank Mueller

This break-out session was attended by about 25 participants and included other break-out
ideas on availability, multi-cores, and levels on security.

In an initial brain-storming session, the full breadth of the topic was covered, where each
participant contributed their ideas. The second session was dedicated to intensive discussions
on various topics and concluded by various action items, including a security attack contest
using predictability as a means of attack. The brain-storming ideas and following discussions
are summarized under a number of topic headings:

6.4.1 Predictability versus Security

Participants observed that some timing predictability techniques are synergistic with security
(and vice versa) while others are antagonistic in the sense that they appear to be in direct
conflict. Synergistic examples range from timing information already available due to real-
time analysis used for intrusion detection over obfuscation techniques in scheduling to the
simplicity of crypto-algorithms facilitating their timing predictability. Antagonistic examples
range from real-time predictability that may facilitate attacks over timing faults as a means
to attack systems to a discussion on whether or not randomized attacks completely void any
attempts to increase software diversity (including but not limited to parallelism/scheduling)
when the number of variants is fixed.

6.4.2 Parallelism

One discussion was dedicated to the challenges of parallelism with diverse opinions. While
isolation (in space, e.g., via partitioning, or in time, e.g., via TDMA) helps both predictability
and security most of the time, it may come at a certain cost. For example, MMU protection
results in page faults, which are costly, yet certain data structures may not require stringent
access protection via MMUs (or MCUs), i.e., the idea of different levels of security seems
intriguing.

6.4.3 Side-channel Attacks

The discussion centered around software-based side-channel attacks. Different types of
leaked information (especially with respect to timing) and counter-measures where discussed.
Mitigation techniques, e.g., obfuscation via randomization, were noted to adversely affect
predictability while isolation typically aids predictability.

149

16441

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

150

16441 — Adaptive Isolation for Predictability and Security

6.4.4 Availability

It was noted that no viable solution for predictability appears to exist. Once compromised, a
hardware unit can always be powered down, even without physical access (assuming firmware
safe-guards can be circumvented or are also affected by the intrusion). The idea of an analogy
to priority inversion in security of a lower critical task affecting a higher critical one was
discussed. Containment methods to handle faults by switching to more simplistic, higher
protection modes also seem attractive in this context. But more fundamental work is required
to better understand this subject.

6.4.5 Connectivity

Not much time was spent on discussing connectivity modes (on/off), but it was noted that
isolation in proprietary networks can help. Independently, a need for protecting edge devices
(e.g., IoT) was voices as they, in large numbers, can easily orchestrate a DDOS attack.

6.4.6 Wish List

We formulated a wish list of action items. One challenge is to come up with a 3-dimensional
model that combines security, predictability and also safety/fault tolerance as all three are
inter-connected. Another challenge is the need for a hierarchy /levels, possibly for each of
these three areas, and/or in a combined model. Different degrees of protection, degrees of
information leakage, affected software mechanisms etc. may require a different response
in protection. But most of all, security should be a first-order design principle, not an
after-thought, as it currently is. And while fundamental security research is still required
that may lead to completely new design methods, research is nonetheless needed to devise
methods for retrofitting security into existing hardware/software systems.

6.4.7 The Programming Challenge

A final discussion culminated in the idea of posing a programming challenge for a successful
timing attack, possibly in an Autosar setting. If successful, extensive PR should be used
to put timing problems into the limelight within the realm of security, much in line with
the way that the real-time system community received credit for saving the Mars Lander
mission due to priority inheritance support on its software platform. One open question was
if a follow-on 1-week attack hackathon should be organized to achieve this goal.

6.5 Models of Computation and Programming Languages
Reinhard von Hanzleden (Universitit Kiel, DE)

License) Creative Commons BY 3.0 Unported license
© Reinhard von Hanxleden

There exist a multitude of models of computation (MoCs) and associated programming
languages. Clearly, there is not a single winner, each has its pros and cons, and often a
combination of languages is used in different parts of the design and at different abstraction
levels. The aim of this break out session, based on two proposals brought in by David
Broman and Reinhard von Hanxleden, was to identify the specific issues that arise for
adaptive isolation. A number of questions were identified in advance, such as which the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Tulika Mitra, Jiirgen Teich, and Lothar Thiele

essential language constructs are, which concepts should be left out, and what can we learn
from currently available real-time languages and APIs. Given the setting of the seminar on
multiprocessor systems on chip (MPSoCs), the role of concurrency was also brought forward
as a possible focus. The participants in the breakout session were Davide Bertozzi (Universita
di Ferrara, IT), David Broman (KTH Stockholm, SE), Reinhard von Hanxleden (U Kiel, DE),
Frank Mueller (North Carolina State University — Raleigh, US), Zoran Salcic (University of
Auckland, NZ), Martin Schoeber] (Technical University of Denmark — Lyngby, DK), Stefan
Wildermann (Universitat Erlangen-Niirnberg, DE) and the aforementioned proposers.

As it turned out, the session participants were mostly from the predictability field,

thus the resulting discussions centered around that aspect and had little focus on security.

Furthermore, rather than trying to propose specific MoCs and languages, the participants
agreed to try to identify properties that suitable MoCs and languages should have (even
though specific MoCs/languages were covered to some extent).

To start with, possible application areas were discussed, including industrial control,

image processing such as in a lane following assistant, and generally cyber-physical systems.

There was a question mark on whether also financial applications would be within the scope,
but later it was agreed that these would possess similar qualities.

Next, it was discussed what we try to avoid. There are obviously non-desirable scenarios,
such as catastrophic failures in power plants and the like, but also “blue screens” that indicate
undesired system states and loss of functionality and consequently may lead to a bad product
reputation and resulting economic consequences. On a more technical level, a MoC/language
should try to rule out things like memory leaks, timing issues due to garbage collection,
and vulnerabilities such as buffer overflows. One participant also brought forward that “C
programming” should be avoided; this, taken literally, would be a rather difficult proposition,
given that C is still one of the most popular languages in particular in the aforementioned
application domains. However, it was agreed (and that was the point of that proposal) that
some of the programming constructs offered by C and similar languages are to be used with
care.

The proper usage of languages like C led to the next topic, namely what we try to aim for.

An MoC/language should be intuitive and familiar. However, in particular for languages that
were not specifically designed with the above listed goals in mind, these languages should
be used in a disciplined manner, possibly using subsets such as e.g. MISRA-C proposed
by the Motor Industry Software Reliability Association. For example, ruling out dynamic
memory allocation could be used to prevent memory leaks. Furthermore, one might want
to use C etc. merely as an intermediate language, to be synthesized from a higher-level
modeling language. The semantics should also be agnostic to available resources, as far as
possible; e.g., a program should behave the same (apart from performance issues) regardless
of on how many cores it is executed. Another important aspect for a language is to make a
clear separation between the end user, the low-level machine implementation expert, and the
compiler writer. Such separation of concern may make it possible for end-users to develop
efficient systems (performance and predictable) within a shorter development time frame.
As obstacles for achieving the above goals the participants identified for example processors
with unpredictable timing, as was also emphasized during earlier presentations (e.g. by
Reinhard Wilhelm) during the seminar. However, it was agreed upon that the whole design
flow matters, not only the execution platform. For example, a programming language
should have full control over reactive control flow (concurrency and preemption), instead
of handing over that responsibility to the operating system or some run time system such
as the Java Virtual Machine. Typically, application-level control tasks do have a certain

151

16441

152

16441 — Adaptive Isolation for Predictability and Security

level of robustness; e.g., an airplane usually can tolerate if a control output arrives after 6
msec instead of 5 msec or is missing altogether for a cycle or two. Similarly, an extra cache
miss or pipeline stall should not lead to a significant change in system behavior. Design and
synthesis paths must be robust, not brittle, and the used MoCs/languages should provide for
that.

To conclude, some questions and remaining challenges were posed. How should time
be incorporated? Do we need new languages, new MoCs? Do DSLs help? Should we have
more open OSs that take hints from user/compiler? How do we achieve composability, e.g.
preserve functional as well as non-functional properties of individual components?

7 Panel Discussion

Sri Parameswaran (UNSW) organized a panel discussion on adaptive isolation. The panel-
ists were Patrick Koeberl (Intel), Tulika Mitra (NUS), Jirgen Teich (Friedrich-Alexander-
Universitit Erlangen-Niirnberg), and Lothar Thiele (ETH Ziirich). The discussion centered
around motivation for the seminar, the similarities, differences between security and pre-
dictability and their interactions/impact in the context of isolation, the future of timing
predictability in the absence of commercial predictable architectures, and the tools, techniques,
mechanisms for isolation covered in the seminar.

8 Acknowledgements

We would like to take the opportunity to thank and acknowledge our organization team
member Ingrid Verbauwhede for her great effort in contributing brilliant ideas and suggestions
on the topic of the seminar as well as to the list of participants. For very unexpected reasons,
she could unfortunately not participate in the seminar.

Tulika Mitra, Jiirgen Teich,

Participants

= Davide Bertozzi
Universita di Ferrara, I'T

= Bjorn B. Brandenburg
MPI-SWS — Kaiserslautern, DE

= David Broman
KTH Royal Institute of
Technology, SE

= Samarjit Chakraborty
TU Minchen, DE

= Sudipta Chattopadhyay
Universitit des Saarlandes, DE

- Jian-Jia Chen
TU Dortmund, DE

= Albert Cohen
ENS — Paris, FR

= Ruan de Clercq
KU Leuven, BE

= Heiko Falk
TU Hamburg-Harburg, DE

= Felix Freiling
Univ. Erlangen-Niirnberg, DE

= Johannes Goétzfried
Univ. Erlangen-Niirnberg, DE

= Gernot Heiser
UNSW - Sydney, AU

and Lothar Thiele

- Andreas Herkersdorf
TU Miinchen, DE

= Karine Heydemann
UPMC - Paris, FR

= Patrick Koeberl
Intel — Hillsboro, US

= Pieter Maene
KU Leuven, BE

= Claire Maiza
Université Grenoble Alpes —
Sait Martin d’Heres, FR

= Peter Marwedel
TU Dortmund, DE

= Tulika Mitra

National University of
Singapore, SG

= Sibin Mohan

Univ. of llinois — Urbana, US

= Frank Mueller
North Carolina State University —
Raleigh, US

= Sri Parameswaran
UNSW - Sydney, AU

= Jan Reineke
Universitdat des Saarlandes, DE

153

= Christine Rochange
University Toulouse, FR

= Zoran Salcic

University of Auckland, NZ

= Patrick Schaumont

Virginia Polytechnic Institute —
Blacksburg, US

= Martin Schoeberl

Technical University of Denmark
— Lyngby, DK

= Wolfgang Schroder-Preikschat
Univ. Erlangen-Niirnberg, DE
= Takeshi Sugawara
Mitsubishi — Kanagawa, JP

= Jiirgen Teich

Univ. Erlangen-Niirnberg, DE
= Lothar Thiele

ETH Ziirich, CH

= Theo Ungerer

Universitdt Augsburg, DE

= Reinhard von Hanxleden
Universitat Kiel, DE

= Stefan Wildermann

Univ. Erlangen-Niirnberg, DE

= Reinhard Wilhelm
Universitdat des Saarlandes, DE

16441

	Executive Summary Tulika Mitra, Jürgen Teich, and Lothar Thiele
	Table of Contents
	Major Topics Discussed
	Adaptive Isolation for Timing Predictability
	Isolation and Adaptivity for Security
	Cross-Cutting Concerns

	Summary of the Presentations
	Predictability
	Security
	Cross-cutting Concerns for Adaptive Isolation

	Abstract of Talks
	Network-on-Chip-Assisted Adaptive Partitioning and Isolation Technology for ``Dynamic'' Homogeneous Manycores Davide Bertozzi and Balboni Marco
	Use only when you need – Providing adaptive temporal isolation in Cyber-Physical Systems Samarjit Chakraborty
	Achieving Timing Predictability by Combining Models Heiko Falk and Arno Luppold
	Soteria: Offline Software Protection within Low-cost Embedded Devices Johannes Götzfried
	Challenges of Temporal Isolation Gernot Heiser
	Predictability in Multicore Systems Using Self-Suspending Tasks Jian-Jia Chen
	Software Development for Isolation Tulika Mitra
	Time-Based Intrusion Detection in Cyber-Physical Systems Frank Mueller
	Adaptive Pipeline for Security in Real Time Systems Sri Parameswaran
	Timing Predictability and How to Achieve It Jan Reineke
	Connecting the dots – Towards the total automation of embedded systems design (in Java world) Zoran Salcic
	Isolation for Security Patrick Schaumont
	T-CREST: Time-predictable Multi-Core Architecture for Embedded Systems Martin Schoeberl
	Adaptive Memory Protection for Many-Core Systems Wolfgang Schröder-Preikschat
	Security Issues on the Boundary of Ideal and Real Worlds Takeshi Sugawara
	An Introduction to the Seminar Jürgen Teich
	Isolation, resource efficiency and covert channels Lothar Thiele
	Determinate and Timing-Predictable Concurrency in Reactive Systems – The Synchronous Approach and the SCCharts Language Reinhard von Hanxleden
	Hybrid Application Mapping for Dynamic Isolation in Invasive Computing Stefan Wildermann
	Timing Verification – Flogging a Dead Horse? Reinhard Wilhelm

	Working groups
	Runtime Monitoring Felix Freiling
	Future of Timing Verification Samarjit Chakraborty
	Attack Models Albert Cohen and Karine Heydemann
	Synergy between Predictability and Security Frank Mueller
	Models of Computation and Programming Languages Reinhard von Hanxleden

	Panel Discussion
	Acknowledgements
	Participants

