
Approximation Algorithms for CSPs
Konstantin Makarychev1 and Yury Makarychev2

1 Microsoft Research, Redmond, WA, USA
komakary@microsoft.com

2 Toyota Technological Institute at Chicago, Chicago, IL, USA
yury@ttic.edu

Abstract
In this survey, we offer an overview of approximation algorithms for constraint satisfaction prob-
lems (CSPs) – we describe main results and discuss various techniques used for solving CSPs.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint satisfaction problems, Approximation algorithms, SDP, UGC

Digital Object Identifier 10.4230/DFU.Vol7.15301.287

1 Introduction

We start with recalling standard definitions and introducing the notation.

Constraint Satisfaction Problems. In a constraint satisfaction problem (CSP), we are
given a set of variables x1, . . . , xn taking values in a domain D of size d, and a set of m
constraints (predicates) that depend on the specific problem at hand. Our goal is to find an
assignment to the variables that maximizes the number of satisfied constraints. In a weighted
CSP, every constraint has a positive weight and our goal is to maximize the total weight of
satisfied constraints. All results that we discuss in this survey apply to both unweighted and
weighted CSPs. However, for simplicity of exposition, we will only consider the unweighted
case. We will say that a CSP is a k-CSP if all constraints have arity at most k.

An instance is (1− ε)-satisfiable if the optimal solution satisfied at least a (1− ε) fraction
of the constraints.

Approximation Algorithms. An approximation algorithm is a (randomized) polynomial-
time algorithm that finds an approximate solution. The most common measure of an
approximation algorithm’s performance is its approximation factor. An algorithm for a
maximization problem has an approximation factor α ≤ 1 if it finds a solution of value at
least αOPT, where OPT is the value of the optimal solution; an algorithm for a minimization
problem has an approximation factor α ≥ 1 if it finds a solution of value at most αOPT. We
will say that an algorithm is an α-approximation algorithm if it has an approximation factor
of α.

Objectives. We consider several objectives for constraint satisfaction problems:
1. Maximize the number of satisfied constraints. An α-approximation algorithm for this

objective finds a solution that satisfies at least αOPT constraints.
2. Find a solution that satisfies a 1−f(ε) fraction of the constraints given a (1−ε)-satisfiable

instance; where f is some function that tends to 0 as ε→ 0 (f should not depend on n).
© Konstantin Makarychev and Yury Makarychev;
licensed under Creative Commons License BY

The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, ISBN
978-3-95977-003-3.
Editors: Andrei Krokhin and Stanislav Živný; pp. 287–325

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol7.15301.287
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-95977-003-3
http://www.dagstuhl.de/dagpub/978-3-95977-003-3

288 Approximation Algorithms for CSPs

3. Minimize the number of unsatisfied constraints. An α-approximation algorithm for this
objective finds a solution that satisfies at least a (1−αε) fraction of the constraints given
a (1− ε)-satisfiable instance; the approximation factor α may depend on n.

Approximation results for these objectives are often very different. In particular, it makes
sense to study objectives (2) and (3) for a given CSP only if there is a polynomial-time
algorithm that satisfies all the constraints when all of them are satisfiable. Consider an
example – Max 2-Lin(2). This problem is a Boolean CSP of arity 2 with constraints of the
form xi ⊕ xj = c (the problem is a generalization of Max Cut). We can get the following
results for objectives (1)–(3): obtain a 0.87856-approximation for the maximization variant
of the problem [18], satisfy a 1−O(

√
ε) fraction of the constraints if the optimal solution

satisfies a 1− ε fraction of the constraints [18], and get an O(
√

logn)-approximation for the
minimization variant [1]. The first result applies to all instances of Max 2-Lin(2); however,
the guarantee it provides for almost satisfiable instances is very weak – even if the instance is
completely satisfiable it only guarantees that a 0.87856 fraction of the constraints is satisfied.
In contrast, the second result is most interesting for almost satisfiable instances; it guarantees
that in such instances the algorithm satisfies almost all constraints. Finally, the third result is
meaningful only when the instance is (1− c/ logn) satisfiable, and, is particularly interesting
when ε� 1/ log2 n – then it gives a much better approximation guarantee than the second
result.

Techniques. Most state-of-the-art approximation algorithms for constraint satisfaction
problems – with the notable exception of the algorithms for Minimum Horn Deletion and
Minimum Multiway Cut problems – are based on semidefinite programming (SDP). However,
algorithms for different types of CSPs use very different techniques, and challenges that arise
in designing them are quite different. The key parameters that determine what techniques
to use are the arity k of the CSP, the domain size d, and the objective.

Boolean 2-CSPs have the simplest SDP relaxations: each variable xi is encoded by a unit
vector ūi; in the intended integral solution ūi is equal to a fixed unit vector v̄0 ∈ Sn−1 if xi
is true, and ūi is equal to −v̄0 if xi is false. The SDP objective function equals the sum of
contributions of individual constraints. The contribution of a constraint φ(xi, xj) is

∑
α,β∈{0,1}:φ(α,β)

〈v̄0 − (−1)αūi, v̄0 − (−1)β ūj〉
4

= 1
4

∑
α,β∈{0,1}:φ(α,β)

(
1 + (−1)α+β〈ūi, ūj〉 − (−1)α〈ūi, v̄0〉 − (−1)β〈ūj , v̄0〉

)
(1)

Here, the summation is over Boolean values α and β that satisfy the predicate φ(α, β); 0
and 1 represent false and true, respectively. For example, the contribution of the constraint
xi ⊕ xj = 0 is (1 + 〈ūi, ūj〉)/2, the contribution of xi ∨ xj is (3 + 〈ūi + ūj , v̄0〉 − 〈ūi, ūj〉)/4.
The SDP relaxation has constraints ‖ūi‖2 = 1 and, possibly, some additional constraints
that depend on the CSP.

Let us consider how an SDP algorithm works at a high level. We solve the SDP relaxation
and find a (nearly) optimal SDP solution {ūi}. The SDP solution may be very different from
the intended solution; in particular, vectors {ūi} do not have to be equal or close to vectors
v̄0 or −v̄0. We use a randomized rounding procedure to transform the set of vectors ūi to a
Boolean assignment for variables xi. To ensure that the value of the obtained assignment is
large, we want to transform near-by vectors to the same value with a high probability and
antipodal vectors to opposite values. For some problems, we do the rounding in one step; for

K. Makarychev and Y. Makarychev 289

other problems, we use an iterative procedure to do the rounding. In the former case, it is
instructive to think of the rounding procedure as consisting of two actions:

Generate a random partition (A,Sn−1 \A) of the unit sphere Sn−1 into two pieces, which
is symmetric about the origin (that is, A = −(Sn−1 \A)).
Assign xi = 1 if x ∈ A, and xi = 0 if x /∈ A.

Usually, the distribution of random partitions of Sn−1 does not depend on the SDP solution,
except that it may depend on the value of the SDP solution. To prove an approximation
guarantee for this algorithm, we need to lower bound the probability that each constraint
φ(xi, xj) is satisfied in terms of its SDP contribution. To this end, we only have to analyze
how the random partition divides vectors ūi and ūj depending on the angles between them
and between them and v̄0.

SDP relaxations for non-Boolean 2-CSPs are more complex. Consider a 2-CSP with
domain size d > 2; let D = {1, . . . , d} be its domain. Note that we can no longer encode
a variable xi with only one vector ui. Instead, we introduce d SDP vectors ūi1, . . . , ūid
for each xi. In the intended solution, ūij = v̄0 if xi = j and ūij = 0 otherwise. The
SDP contribution of the constraint φ(xi, xj) equals

∑
α,β∈D:φ(α,β)〈ūiα, ūjβ〉. The SDP has

constraints that require that
∑d
j=1 ūij = v̄0 (this constraint can be written equivalently as∥∥∑d

j=1 ūij − v̄0
∥∥2 = 0),

∑d
j=1 ‖ūij‖2 = 1, all vectors ui1, . . . , uid are mutually orthogonal, as

well as additional constraints that depend on the CSP. Informally, we can interpret ‖uij‖2 as
the desired probability of the event xi = j and 〈ui1j1 , ui2j2〉 as the desired probability of the
event xi1 = j1 and xi2 = j2. Then the SDP constraints say that the sum of the probabilities
of the events xi = j over all j is equal to 1, and events xi = j1 and xi = j2 are mutually
exclusive.

Rounding an SDP solution for a non-Boolean 2-CSP is considerably more challenging
than rounding an SDP solution for a Boolean 2-CSP. Now for each variable xi, we want to
choose exactly one vector ūij among d vectors ūi1, . . . , ūid and assign xi = j. Note that we
cannot simply use the same approach as before – choose a random subset A of Euclidean
space, and let xi = j if ūij ∈ A, because we cannot choose a random subset A so that
exactly one of any k orthogonal vectors belong to A (in contrast, it is easy to find a subset
A of Sn−1 so that exactly one of the vectors ū and −ū is in A). Consequently, if we try to
implement such a scheme, we will sometimes assign no value or more than one value to xj .
One approach to fix this problem is to use an iterative rounding procedure:

Find a random subset A such that the probability that two given orthogonal vectors
belong to it is sufficiently small (namely, it should it be at most 1/dc for some c > 1).
Assign xi = j, if ūij ∈ A and there is no j′ 6= j such that ūij′ ∈ A. Get a partial
assignment to variables xi.
If there are unassigned variables, repeat this procedure. Do not change the values of the
already assigned variables.

We note that some algorithms do not use this approach and assign values to all variables
in one step (see e.g. [12]). However, as we will see in Section 3, this approach allows
us to considerably simplify the algorithms’ analysis; loosely speaking, to lower bound
the probability that φ(xi, xj) is satisfied, we only need to lower bound the probabilities
Pr (ūi2j2 ∈ A | ūi1j1 ∈ A) and Pr (ūi1j1 ∈ A | ūi2j2 ∈ A) for j1, j2 ∈ D satisfying the constraint
φ(j1, j2) (both probabilities are over the random choice of A). When we do that, we can
restrict our attention to vectors ūi1j1 and ūi2j2 , and do not have to analyze all possible
spatial configurations of vectors ūi11, . . . , ūi1d, ūj11, . . . , ūj1d. Nevertheless, the analysis is
still more complicated than that for Boolean 2-CSPs. Particularly, it is very important to
properly handle both directions and lengths of vectors.

Chapte r 11

290 Approximation Algorithms for CSPs

Rounding SDPs for most CSPs of arity k > 2 – and especially non-Boolean CSPs of
arity k > 2 – poses additional challenges. The standard SDP relaxation for CSPs of arity
k > 2 is somewhat similar to that for non-Boolean 2-CSPs; the key difference is that for
each constraint φ(xi1 , . . . , xik) and each satisfying assignment xi1 = j1, . . . , xik = jk for
this constraint, we have an additional SDP vector variable v̄(i1,j1),...,(ik,jk). In the intended
solution, v̄(i1,j1),...,(ik,jk) = v̄0 if xi1 = j1, . . . , xik = jk, and v̄(i1,j1),...,(ik,jk) = 0, otherwise.
The SDP objective function equals the sum of ‖v̄(i1,j1),...,(ik,jk)‖2 over all variables v̄.... There
are additional SDP constraints of the form 〈v(i1,j1),...,(ik,jk), uit,jt〉 = ‖v(i1,j1),...,(ik,jk)‖2 and
〈v(i1,j1),...,(ik,jk), uit,j′〉 = 0 if j′ 6= jt. The main challenge is that for such problems as Max
k-And, to lower bound the probability that a constraint φ(xi1 , . . . , xik) is satisfied, we have
to analyze the spatial configuration of all dk vectors xi11, . . . , xi1d, . . . , xik1, . . . , xikd and
vector v̄(i1,j1),...,(ik,jk).

Metric Embedding Techniques. Low-distortion metric embedding techniques are among
the most powerful and widely used in combinatorial optimization. Not surprisingly, they are
also employed for solving certain CSPs: Min UnCut, Min 2CNF Deletion, and Unique Games
(in all these problems, the objective is to minimize the number of unsatisfied constraints).
However, we do not describe any algorithms that use metric embeddings in this survey; we
refer the reader to papers [1, 14].

1.1 Overview of Known Results for CSPs
In this section, we give an overview of known approximation results for constraint satisfaction
problems.

Boolean CSPs. First, we discuss the results for Boolean CSPs with the maximization
objective (objective (1) in our list). The results are summarized in Figure 1. When we
describe a CSP, we write zi to denote a literal xi or x̄i. The most basic Boolean Max 2-CSP
problem is Max Cut. In this problem, each constraint is of the form xi 6= xj , or, equivalently,
xi ⊕ xj = 1. Goemans and Williamson designed a 0.87856 approximation algorithm for the
problem [18]. Later, Khot, Kindler, Mossel, and O’Donnell showed that this algorithm is
optimal assuming the Unique Games Conjecture (UGC)[30]. The best unconditional hardness
result was obtained by Håstad [23], who showed that it is NP-hard to obtain a better than
16/17 ≈ 0.94117 approximation (i.e., for every constant δ > 0, it is impossible to get a
(16/17− δ) approximation in polynomial time if P 6= NP). All these results for Max Cut
also apply to a more general Max 2-Lin(2) problem, a Boolean 2-CSP with constraints of the
form xi ⊕ xj = c (where c ∈ {0, 1}).

Lewin, Livnat, and Zwick gave a 0.94016-approximation algorithm for Max 2-SAT, a
problem with disjunctive constraints of the form zi∨zj [36]; Austrin proved that this algorithm
is optimal assuming UGC [5]. Lewin et al. also designed a 0.87401-approximation algorithm
for Max 2-And, a problem with conjunctive constraints of the form zi∧zj . This problem is the
most general maximization Boolean 2-CSP – there is an approximation-preserving reduction
from any Max Boolean 2-CSP to Max 2-And (thus, if there is an α-approximation for Max
2-And, then there is an α-approximation for any Boolean 2-CSP). Therefore, the algorithm
by Lewin et al. gives a 0.87401 approximation for any Boolean 2-CSP. The approximation
factor of 0.87401 is not known to be optimal – the best upper bound, due to Austrin [5], is
0.87435; note that the gap between the lower and upper bounds is less than 0.0004.

Now consider CSPs of greater arities. In Max 3-SAT, each constraint is a disjunction of
at most 3 literals: zi1 ∧ · · · ∧ zit (t ≤ 3); in Max E3-SAT, each constraint is a disjunction of

K. Makarychev and Y. Makarychev 291

problem constraints approx. factor optimal?
(zi is either xi or x̄i) upper bound

Max Cut xi 6= xj 0.87856 [18] yes [30]Max 2-Lin(2) xi ⊕ xj = cij
Max 2-SAT zi ∨ zj 0.94016 [36] yes [5]
Max Di-Cut x̄i ∧ xj

0.87401 [36]
0.87856 [30]

Max 2-And zi ∧ zj 0.87435 [5]
Any Boolean 2-CSP Boolean 2-CSP 0.87435 [5]
Max 3-SAT

∨t
j=1 zij (t ≤ 3) 7/8 [28, 51] yes [23]

Max E3-SAT
∨3
j=1 zij

Any Boolean k-CSP Boolean k-CSP (0.62661−o(1))k
2k [40] (1+o(1))k

2k [6, 11]
Max k-And zi1 ∧ · · · ∧ zik
Max SAT

∨t
j=1 zij 0.7968 [7] 7/8 [23]

conj. 0.8434 [7]
Max Ek-SAT (k ≥ 3)

∨k
j=1 zij 1− 1/2k yes [23]

Max k-All-Equal zi1 = · · · = zik
0.88007 k

2k [13] (2+o(1))k
2k [6, 11]

Max k-NAE-SAT zi1 = · · · = zit (t ≤ k) 0.7499 [49] 0.87856 [30]
conj. 0.8279 [7]

Max k-Lin(2) (k ≥ 3) zi1 ⊕ · · · ⊕ zik = 0 1/2 yes [23]

Figure 1 List of known positive and negative results for Boolean CSPs with the maximization
objective. Some hardness results assume UGC and some assume only that P 6= NP .

exactly 3 literals. There is a trivial 7/8-approximation algorithm for Max 3E-SAT – simply
choose each xi uniformly at random from {0, 1} (the algorithm can be easily derandomized
using the method of conditional expectations). Max 3-SAT is more difficult – Karloff and
Zwick showed how to get a 7/8-approximation if a certain conjecture is true [28]; then, Zwick
gave a computer-assisted proof that there is indeed a 7/8-approximation algorithm for the
problem [51]. Håstad showed that Max E3-SAT is approximation resistant [23] and, thus,
Max E3-SAT and Max 3-SAT do not admit a better than 7/8 approximation if P 6= NP .

Avidor, Berkovitch, and Zwick [7] studied the general Max SAT problem, in which each
constraint is a disjunction of an arbitrary number of literals. They showed how to get a
0.7968 approximation for the problem; additionally, they gave an algorithm that gets a
0.8434 approximation if a certain conjecture is true. No hardness results have been proved
specifically for Max SAT; however, Håstad’s 7/8 hardness for Max E3-SAT also applies
to Max SAT. Finally, we note that Max Ek-SAT, the problem in which each constraint
is a disjunction of exactly k literals, is considerably simpler than Max SAT. The random
assignment algorithm gives a 1− 1/2k approximation; Håstad showed that there is no better
approximation algorithm for the problem when k ≥ 3 [23].

Consider an arbitrary Boolean k-CSP with the maximization objective. There ia an
approximation-preserving reduction from the problem to Max k-And (the problem in
which every constraint is a conjunction of k literals1). The algorithm by Makarychev

1 The variant of the problem, in which each constraint is a conjunction of at most k literals, is equivalent
to the variant, in which each constraint is a conjunction of exactly k literals.

Chapte r 11

292 Approximation Algorithms for CSPs

problem objective satisfied constraints optimal?
hardness result

Max Cut
(2) 1−O(

√
ε) [18, 13] yes [30]Max 2-SAT

Any Boolean 2-CSP
Max Cut

(3) 1−O(ε
√

logn) [1] No O(1) approx. [30]Max 2-SAT
Any Boolean 2-CSP
Max Horn SAT (2) 1− 8 log log 1

ε/ log 1
ε [50] 1− Ω

(
1/ log 1

ε

)
[22]

Max Horn 2-SAT (2) and (3) 1− 2ε [22] yes [22]

Figure 2 List of known results for almost satisfiable instances of Boolean CSPs. The table shows
what fraction of the constraints we can satisfy if the optimal solution satisfies a (1− ε) fraction of
the constraints. Note that the minimization versions of Max Cut, Max 2-SAT, and Max Horn SAT
are known as Min Uncut, Min 2-CNF Deletion, and Min Horn Deletion, respectively.

and Makarychev [40] gives a (0.62661− o(1))k/2k approximation for Max k-And and thus
for any Max Boolean 2-CSP (the little o(1) term tends to 0 as k →∞). Austrin and Mossel
proved a (1 + o(1))k/2k hardness of approximation if UGC [6] is true; later, Chan proved
that this hardness result holds if P 6= NP . Note that the lower and upper bounds differ only
by a constant factor; we conjecture that the algorithm in [40] actually gets a (1− o(1))k/2k
approximation. We note that the first asymptotically optimal, up to constant factors, upper
and lower bounds for the problem were obtained by Samorodnitsky and Trevisan [46] and
by Charikar, Makarychev, Makarychev [13], respectively. The algorithm in [13] gives a
0.44003k/2k approximation for all values of k.

In Figure 1, we also summarize known results for several other Max Boolean CSPs: Max
Di-Cut, Max k-All-Equal, Max k-NAE-Equal, and Max k-Lin(2).

Now, we briefly describe results for almost satisfying instances of Boolean CSPs (with
objectives (2) and (3) from our list). The results are shown in Figure 2. The algorithm by
Goemans and Williamson for Max Cut satisfies a 1−O(

√
ε) fraction of the constraints if the

optimal solution satisfies a 1− ε fraction of the constraints [18]. Charikar, Makarychev, and
Makarychev [13] gave an algorithm for all Boolean 2-CSPs with the same approximation
guarantee of 1−O(

√
ε). Khot, Kindler, Mossel, and O’Donnell [30] showed that these results

are asymptotically optimal if UGC is true.
Agarwal, Charikar, Makarychev, and Makarychev designed an O(

√
logn) approximation

algorithms for Min Uncut and Min 2-CNF Deletion, the minimization versions of Max Cut
and Max 2-SAT, respectively. The algorithm for Min 2-CNF Deletion gives an O(

√
logn)

approximation to arbitrary minimization Boolean 2-CSPs. The (1−O(
√
ε))-hardness result

by Khot et al. implies that there is no constant factor approximation for Min Uncut,
Min 2-CNF Deletion, and, in general, Min Boolean 2-CSPs if UGC is true. Chlebík and
Chlebíková proved an unconditional 8

√
5− 15 ≈ 2.88854 NP-hardness of approximation for

Min 2-CNF Deletion [15]. Håstad, Huang, Manokaran, O’Donnell, and Wright [24] proved
an unconditional 11/8 = 1.375 NP-Hardness of approximation for Min Uncut.

Finally, we describe results for Max Horn SAT(Min Horn Deletion). Recall that a Horn
clause is a disjunction of literals with at most one positive (non-negated) literal.2 There is

2 Some authors define a Horn clause as a disjunction of literals with at most one negated literal (see

K. Makarychev and Y. Makarychev 293

no approximation algorithm specifically for Horn SAT with the maximization objective; the
approximation algorithm by Avidor et al. for arbitrary SAT instances also gives a 0.7968
approximation for Max Horn SAT [7]. Zwick [50] designed an algorithm for (1− ε) satisfiable
instances of Max Horn SAT (which is also called Min Horn Deletion); the algorithm satisfies
at least a (1− 8 log log 1

ε/ log 1
ε) fraction of the constraints. Guruswami and Zhou proved an

almost matching UGC-hardness result of (1− Ω(1/ log 1
ε)) (note that the upper and lower

bounds differ by a log log 1
ε factor) [22]. They also presented an algorithm that satisfies a

(1− 2ε) fraction of the constraints given a (1− ε)-satisfiable instance of Max Horn 2-SAT
and showed that this result is optimal (if UGC is true) [22].

Non-Boolean Max k-CSP. In Max k-CSP(d), an instance is a CSP with arbitrary con-
straints of arity k over a domain of size d. There is an approximation preserving reduction
from Max k-CSP(d) to the CSP with constraints of the form (xi1 = j1) ∧ · · · ∧ (xik = jk).
Makarychev and Makarychev designed an Ω(dk/dk) approximation algorithm3 for the case
when k ≥ Ω(log d). Very recently, Manurangsi, Nakkiran, and Trevisan [43] gave an
Ω(d log d/dk) approximation algorithm for d ≤ O(log d) (see also [32]). Relying on the
work of Austrin and Mossel [6], Håstad proved a hardness of Ω(kd/dk) for k ≥ d, assuming
UGC [40]. Later, Chan proved that this hardness result holds if P 6= NP [11]. His results
also imply an O(d2/dk) hardness of approximation for k < d and an O(log d/

√
d) hardness

for k = 2. Additionally, Manurangsi et al. [43] showed an 2O(k log k)d (log d)k/2

dk -hardness of
approximation, assuming UGC (this result gives a better upper bound on the approximation
factor when k � log d

log log d). To summarize, the best known approximation factor for the
problem is Ω(dmax(k, log d)/dk); it is known to be optimal up to a constant factor when
k ≥ d (if P 6= NP).

Other CSPs. We describe known results for Unique Games in Section 3 and results for
Minimum Multiway Cut in Section 5.

Universal Algorithm for CSPs. In Section 6, we discuss two very important general results
on approximability of CSPs: the result by Raghavendra [44] that shows that semidefinite
programming gives the best possible approximation for many CSPs and the universal
approximation algorithm for CSPs by Raghavendra and Steurer [45].

1.2 Organization
In Section 2, we describe the algorithm by Goemans–Williamson for Max Cut and discuss
algorithms for other Boolean 2-CSPs. In Section 3, we describe known results for Unique
Games and give an approximation algorithm for the problem, as well as present the framework
of orthogonal separators. Then in Section 4, we discuss techniques for solving CSPs of
arities k > 2. In Section 5, we discuss the Minimum Multiway Cut problem and present
the algorithm by Călinescu, Karloff, and Rabani [10]. This is the only algorithm based
on linear programming that we give in this survey; all other algorithms are based on
semidefinite programming. Finally, in Section 6, we discuss the results by Raghavendra [44]

e.g. [50]). The two definitions are different; however, by negating all literals, an instance of one problem
can be transformed to an instance of the other problem of the same value.

3 We write the approximation factor as dk/dk and not as k/dk−1, because it is easier to compare it to
the approximation factor 1/dk of the random assignment algorithm, when it is written in this form.

Chapte r 11

294 Approximation Algorithms for CSPs

and Raghavendra and Steurer [45] and describe and analyze the universal rounding algorithm
for (generalized) 2-CSPs with nonnegative predicates [45]. We conclude the paper with a list
of open problems.

2 Boolean CSPs or Arity 2: Max Cut and Max 2-SAT

In this section, we describe the Goemans–Williamson approximation algorithm [18] for Max
Cut and discuss approximation algorithms for other Boolean 2-CSPs.

Max Cut problem may be stated as a graph partitioning or constraint satisfaction problem.
In the graph partitioning formulation, we are given a graph G = (V,E), and our goal is to
find a cut (S, S̄) so as to maximize the number of cut edges. In the CSP formulation, we
are given a set variables x1, . . . , xn and a set of constraints of the form xi 6= xj ; our goal
is to find a Boolean assignment that maximizes the number of satisfied constraints. There
is a simple correspondence between the two formulations: vertices correspond to variables,
edges correspond to the constraints, and a solution (S, S̄) corresponds to a CSP solution
that assigns 1 (true) to vertices in S and 0 (false) to vertices in S̄. Below, we consider the
CSP formulation of the problem. We note that all results we describe in this section also
apply to a more general Max 2-Lin(2) problem.

I Theorem 1 ([18]). There exists a randomized polynomial-time approximation algorithm
for Max Cut that finds a solution of value at least αGWOPT, in expectation, where αGW ≈
0.87856.

Proof. We write the following standard SDP relaxation for Max Cut.

maximize 1
4

∑
constraint xi 6=xj

‖ūi − ūj‖2

subject to
‖ūi‖2 = 1 for every i ∈ {1, . . . , n} .

There is an SDP vector variable ūi for each CSP variable xi. The only constraint in the SDP
requires that all vectors ūi be unit vectors.

Let us verify this is indeed a relaxation; that is, the optimal value of the SDP is at most
OPT. To this end, consider an optimal solution xi = x̂i. Now, pick an arbitrary unit vector
v̄0, and define a feasible SDP solution ūi = v̄0 if xi = 1, and ūi = −v̄0 if xi = 0. Observe
that 1

4‖ūi − ūj‖
2 = 1 if xi 6= xj , and 1

4‖ūi − ūj‖
2 = 0, otherwise. Thus, the value of this

SDP solution equals OPT. Therefore, the value of the optimal SDP solution is at most OPT.
We denote the value of the SDP solution by SDP.

The Goemans–Williamson approximation algorithm solves the SDP relaxation and finds
an optimal solution {ūi}. Now, it chooses a random hyperplane H passing through the origin.
The hyperplane partitions space into two half-spaces A and Ā (we arbitrarily choose which
of the half-spaces is A and which is Ā). The algorithm returns the following solution:

xi =
{

1, if ūi ∈ A,
0, if ūi ∈ Ā.

Let us analyze this algorithm. Consider a constraint xi 6= xj . We lower bound the probability
that it is satisfied. Consider the two dimensional plane P passing through ūi and ūj . Note

K. Makarychev and Y. Makarychev 295

that the intersection between P and the random hyperplane H is a random line l in P ,
passing through the origin. Consider line l and the angle formed by vectors ūi and ūj ; note
that l goes through the vertex of the angle.

ūi

ūj l
case 1

ūi

ūj

l

case 2

There are two cases: (1) P separates the sides of the angle and (2) it does not. In the former
case, ūi and ūj lie in different half-spaces w. r. t. H; that is, one of them is in A and the other
is in Ā. The algorithm assigns different values to xi and xj , and thus satisfies the constraint
xi 6= xj . In the latter case, ūi and ūj lie in the same half-space w. r. t. H; the algorithm
assigns the same value to xi and xj , and thus violates the constraint xi 6= xj . We conclude
that the probability that the constraint xi 6= xj is satisfied equals the probability that l
goes between ūi and ūj . This probability equals the angle between ūi and ūj divided by π:
arccos〈ūi, ūj〉/π. We compare this probability with the SDP contribution of the constraint
xi 6= xj : 1

4‖ūi − ūj‖
2 = 1−〈ūi,ūj〉

2 .

Pr (xi 6= xj)
/

1− 〈ūi, ūj〉
2 = 2

π

arccos〈ūi, ūj〉
1− 〈ūi, ūj〉

≥ min
x∈[−1,1]

2
π

arccosx
1− x ≡ αGW ≥ 0.87856.

Here, αGW is the minimum of the function 2
π

arccos x
1−x on [−1, 1]. Numerically, it is greater

than and approximately equal to 0.87856.
We conclude that, in expectation, the algorithm satisfies at least∑
constraint xi 6=xj

Pr (xi 6= xj) ≥
αGW

4
∑

constraint xi 6=xj

‖ūi − ūj‖2 = αGWSDP ≥ αGW OPT

constraints, as required. Note that if we run the algorithm sufficiently many times and
output the best of the solutions we find, we get at least an (αGW − δ) approximation with
high probability (for a polynomially small δ). J

I Theorem 2 (Goemans and Williamson [18]). Given a (1− ε)-satisfiable instance of Max
Cut, the Goemans–Williamson algorithm finds a solution of value at least 1 − O(

√
ε), in

expectation.

Proof. Let m be the number of the constraints. As we showed in the proof of Theorem 1, in
expectation, the fraction of the constraints satisfied by the Goemans–Williamson algorithm
is

1
m

∑
constraint xi 6=xj

Pr (xi 6= xj) = 1
m

∑
constraint xi 6=xj

arccos〈ūi, ūj〉
π

.

Note that cosx ≥ 1− x2/2. Since cosx is decreasing on [0, π], we have x ≤ arccos(1− x2/2);
letting y = x2/2−1, we get arccos y = π−arccos(−y) ≤ π−

√
2(y + 1). Thus, arccos〈ūi,ūj〉

π ≥

1−
√

2
√

1+〈ūi,ūj〉
π . Applying Jensen’s inequality and using that

1
m

∑
constr. xi 6=xj

1− 〈ūi, ūj〉
2 = SDP

m
≥ OPT

m
≥ 1− ε,

Chapte r 11

296 Approximation Algorithms for CSPs

we get that the fraction of satisfied constraints is at least

1
m

∑
constraint xi 6=xj

(
1−
√

2
√

1 + 〈ūi, ūj〉
π

)
≥ 1−

√
2
π

√
1 + 1

m

∑
constr. xi 6=xj

〈ūi, ūj〉 ≥ 1− 2
√
ε

π
,

in expectation. Running this rounding procedure many times, we can find a solution satisfying
a 1− 2(1−δ)

√
ε

π fraction of the constraints with high probability. J

Approximation algorithms for other Boolean 2-CSPs are more complex. Consider the
Max 2-SAT problem, in which constraints are of the form zi∨zj (where zi and zj are literals).
Notationally, it is convenient to introduce variables x−1, . . . , x−n for the negated literals
x̄1, . . . , x̄n; that is, let x−i = x̄i. Then, every constraint can be written as xi ∨ xj , where
i, j ∈ {±1, . . . ,±n}. We write an SDP relaxation for the problem. We have SDP variables
ū±1, . . . , ū±n for CSP variables x±1, . . . , x±n. We require that ūi = −ū−i.

maximize 1
4

∑
constraint xi∨xj

(3 + 〈ūi + ūj , v̄0〉 − 〈ūi, ūj〉)

subject to
3 + 〈ūi + ūj , v̄0〉 − 〈ūi, ūj〉

4 ≤ 1 for every i ∈ {±1, . . . ,±n}

ūi = −ū−i for every i ∈ {±1, . . . ,±n}
‖ūi‖2 = ‖v0‖2 = 1 for every i ∈ {1, . . . ,±n}

Note that we need an extra variable v̄0 in the relaxation for Max 2-SAT (which was absent
in the relaxation for Max Cut). Variable v̄0 represents true; accordingly, −v̄0 represents
false. In the intended SDP solution corresponding to a CSP solution, v̄0 is an arbitrary unit
vector, and ūi = v̄0 if xi = 1, ūi = −v̄0 if xi = 0. Note that the assignments to ūi and ū−i
are consistent: one of them is equal to v̄0 and the other to −v̄0.

Let us informally discuss what properties a rounding procedure for Max 2-SAT should
satisfy. First, note that if ūi is close to v̄0, then the SDP contribution of every constraint of
the form xi ∨ xj (for every j) is close to 1 (in particular, if ūi = v̄0, then the contribution is
1). Hence, we want to round ūi to 1 with high probability. Similarly, if ūi is close to −v̄0,
then the SDP contribution of every constraint of the form x−i ∨ xj is close to 1; hence, we
want to round ūi to 0 with high probability. We get the following heuristic:

Heuristic Rule 1: If |〈ūi, v̄0〉| is “large”, use threshold rounding. Namely, round ūi to 1 if
〈ūi, v̄0〉 > 0; round ūi to 0 if 〈ūi, v̄0〉 < 0.

On the other hand, if |〈ūi, v̄0〉| is 0 or small (then ūi is far from both v̄0 and −v̄0), we
get no or little information from 〈ūi, v̄0〉 whether to round ūi to 1 or 0. Note that the set of
vectors S = {ū : 〈ū, v̄0〉 = 0} is a sphere, which has no distinguished direction. Hence, it is
natural to use the Goemans–Williamson rounding procedure for vectors in S.

Heuristic Rule 2: If 〈ūi, v̄0〉 is “small’, use the Goemans–Williamson algorithm.
Now we need to combine these two heuristics and get a rounding procedure that works

for all vectors, including vectors ūi for which |〈ūi, v̄0〉| is neither “small” not “large”. Lewin,
Livnat, and Zwick [36] use a clever combination of an “outward rotation” and “skewed”
rounding to achieve that in their 0.94016-approximation algorithm for Max 2-SAT. We

K. Makarychev and Y. Makarychev 297

describe a somewhat simpler algorithm by Charikar et al. [13] that satisfies a (1−O(
√
ε))

fraction of the constraint given a (1− ε) satisfiable instance. The algorithm solves the SDP
relaxation and finds vectors ūi. Let ε′ = 1− SDP/m (note that ε′ ≤ ε since SDP ≥ OPT).
The algorithm chooses a random Gaussian vector g with independent components distributed
as N (0, 1). For every i, it lets

xi =
{

1, if 〈ūi, v̄0 +
√
ε′ g〉 > 0,

0, if 〈ūi, v̄0 +
√
ε′ g〉 < 0.

Note that the algorithm always assigns opposite values to xi and x−i, since 〈ūi, v̄0 +
√
ε′ g〉 =

−〈ū−i, v̄0 +
√
ε′ g〉. If ūi is close to v̄0 or −v̄0, then 〈ūi, v̄0〉 is larger in absolute value than

〈ūi,
√
ε′ g〉 with high probability; thus, we essentially use threshold rounding (Heuristic Rule

1); however, if 〈ūi, v̄0〉 = 0, then the algorithm rounds ui depending on the sign of 〈ūi, g〉;
that is, it uses the Goemans–Williamson rounding (namely, all vectors in the half-space
{u : 〈u, g〉 > 0} are rounded to 1; vectors in the half-space {u : 〈u, g〉 < 0} are rounded to 0).

To analyze this algorithm, Charikar et al. upper bound the probability that each constraint
xi ∨ xj is not satisfied. Let the SDP contribution of the constraint xi ∨ xj be 1− ε′ij ; then,
the average of all ε′ij is ε′. It is proved in [13] that the probability that xi ∨ xj is violated is
O(
√
ε′ + ε′ij/

√
ε+
√
ε′). Averaging over all constraints and using Jensen’s inequality, we get

that the expected fraction of violated constraints is O(
√
ε′) = O(

√
ε), as required.

Interestingly, this algorithm differs from many other algorithms in that it may violate a
constraint xi ∨ xj even if the SDP contribution of the constraint is equal to 1 (then, ε′ij = 0);
loosely speaking, the algorithm violates the constraint even if the SDP “thinks” that the
constraint is “certainly” satisfied. In contrast, the Goemans–Williamson algorithm always
satisfies a constraint xi 6= xj if its contribution 1

4‖ūi − ūj‖
2 is 1 (then, vectors ūi and ūj are

antipodal). It turns out that this difference is not accidental: if an algorithm never violates
constraints whose SDP contribution is 1, then it can solve instances with hard constraints;
however, Guruswami and Lee showed that no polynomial-time algorithm for Max 2-SAT
with hard constraints can distinguish between (1− ε)-satisfiable and at-most-ε-satisfiable
instances (if UGC is true) [21].

3 Unique Games

In this section, we define the Unique Games problem, overview known results, and describe
an algorithm for Unique Games.

I Definition 3 (Unique Games). Unique Games is a constraint satisfaction problem of arity
2, in which every constraint has the form xj = πij(xi) for some permutation πij of the
domain D.

Observe that for every fixed value of the variable xi, there is a unique value for the variable
xj that satisfies the constraint between xi and xj . Hence, it is easy to find an exact solution
for a completely satisfiable instance of Unique Games: We simply guess the value of one
variable and then prorogate the values to all other variables (we do this for each connected
component of the constraint graphs). However, this algorithm fails even if 1% of all the
constraints are violated in the optimal solution. Khot [29] conjectured that if the optimal
solution satisfies a (1− ε) fraction of the constraints, then it is NP-hard to find a solution
satisfying even a δ fraction of the constraints. The conjecture is known as Khot’s Unique
Games Conjecture. We state it formally below.

Chapte r 11

298 Approximation Algorithms for CSPs

I Definition 4 (Unique Games Conjecture (UGC) [29]). For every positive ε and δ, there
exists a d such that given an instance of Unique Games on a domain of size d, it is NP-hard
to distinguish between the following two cases:

There exists a solution satisfying a (1− ε) fraction of all the constraints.
Every assignment satisfies at most a δ fraction of all the constraints.

It is unknown whether the conjecture is true or false. However, UGC has proved to be
very useful in obtaining hardness of approximation results. Researchers showed very strong
hardness of approximation results that rely on UGC for such problems as Vertex Cover [31],
Max Cut and Max 2-Lin(q) [30], ordering CSPs [20], and general MAX CSPs [44] (we
discuss the last result in Section 6). Today, we do not know how to obtain similar results
under weaker complexity assumptions. That is why UGC has gained a lot of popularity in
approximation algorithms and hardness of approximation communities. By now, the question
whether the conjecture is true of false is one of the major open questions in theoretical
computer science.

There are several general purpose approximation algorithms for the problem [29, 48, 19, 12,
14]. The best approximation algorithms by Charikar, Makarychev, and Makarychev [12] and
by Chlamtac, Makarychev, and Makarychev [14] find solutions satisfying a 1−O(

√
ε log k)

fraction and 1 − O(ε
√

logn log k)) fraction of all the constraints (respectively) given a
(1 − ε)-satisfiable instance. Khot, Kindler, Mossel, and O’Donnell [30] showed that there
is no polynomial-time algorithm that satisfies more than a 1− c

√
ε log k fraction of all the

constraints if UGC is true. Thus, the algorithm [12] cannot be improved for general instances
of Unique Games if UGC is true. However, there are known better algorithms for special
families of Unique Games. Arora et al. [4] showed that UGC does not hold for instances of
Unique Games whose constraint graphs are expanders (see also [39]). Kolla, Makarychev,
and Makarychev [33] showed that the Unique Games Conjecture does not hold for random
and semi-random instances of Unique Games. Finally, Arora, Barak, and Steurer [2] designed
a sub-exponential (super-polynomial) algorithm for arbitrary instances of Unique Games.
Given a (1 − ε)-satisfiable instance, their algorithm finds a solution satisfying a (1 − εc)
fraction of all the constraints (for some fixed c > 0) in time exp(dnεc).

We now present an SDP-based approximation algorithm for Unique Games by Charikar,
Makarychev, and Makarychev [12]. The exposition of the algorithm follows the paper by
Chlamtac, Makarychev, and Makarychev [14] (see also [8, 37]).

I Theorem 5 (Charikar, Makarychev, Makarychev [12]). There exists an approximation
algorithm that given a (1− ε)-satisfiable instance of Unique Games, finds a solution satisfying
a 1−O(

√
ε log d) fraction of all the constraints.

The approximation of Theorem 5 cannot be improved if the Unique Games conjecture is
true [30]. We prove Theorem 5 using the technique of orthogonal separators [14].

In the next section, we present a standard SDP relaxation for Unique Games (without `22
triangle inequalities). Then, in Section 3.2, we introduce a technique of orthogonal separators.
However, we postpone the proof of existence of orthogonal separators to Section 3.4. In
Section 3.3, we present the approximation algorithm and prove Theorem 5. Finally, in
Section 3.5, we give some useful bounds on the Gaussian distribution.

3.1 SDP Relaxation
We use a standard SDP relaxation for 2CSPs over non-Boolean domain D. We let G = (V,E)
be the constraint graph: The vertices of the graph correspond to the variables xi, the

K. Makarychev and Y. Makarychev 299

edges correspond to the constraints xj = πij(xi). Formally, V = {1, . . . , n}, E = {(i, j) :
there is a constraint xj = πij(xi)}. To simplify the notation, we assume that the graph does
not have parallel edges; i.e. there is at most one constraint between every pair of variables xi
and xj . Note that this restriction on instances can easily be removed. In the SDP relaxation,
we have a vector ūia for every vertex i ∈ V and label a ∈ D. In the intended integral solution,
the vector ūia is the indicator of the event “xi = a”. That is, if x∗i is the optimal solution,
then the corresponding integral solution is as follows:

ū∗ia =
{

1, if x∗i = a;
0, otherwise.

Observe that if a constraint (i, j) is satisfied then ū∗jπij(a) = ū∗ia for all a ∈ D. If the constraint
is violated, then ū∗ia = ū∗jπij(a) = 0 for all but exactly two a’s: ū∗ixi

= 1, but ū∗jπij(xi) = 0;
and ū∗jxj

= 1, but ū∗
iπ−1

ij
(xj) = 0. Thus,

1
2
∑
a∈D
‖ū∗ia − ū∗jπij(a)‖

2 =
{

0, if assignment x∗ satisfies constraint (i, j);
1, if assignment x∗ violates constraint (i, j).

Therefore, the number of violated constraints equals

1
2
∑

(i,j)∈E

∑
a∈D
‖ū∗ia − ū∗jπij(a)‖

2. (2)

Our goal is to minimize this expression. Note that for a fixed variable xi, one and only one
ū∗ia equals 1. Hence, (1) 〈ū∗ia, ū∗ib〉 = 0, if a 6= b; and (2)

∑
a∈D ‖ū∗ia‖2 = 1. We now write the

SDP relaxation (in this SDP, unlike many SDPs we consider in this survey, the objective
measures the number of unsatisfied constraints).

minimize 1
2
∑

(u,v)∈E

∑
a∈D
‖ūia − ūjπuv(a)‖2

subject to
〈ūia, ūjb〉 = 0 for all i ∈ V and a 6= b∑
a∈D
‖ūia‖2 = 1 for all i ∈ V

This is a relaxation, since for ūia = ū∗ia, the SDP value equals the number of violated
constraints (see (2)); and ū∗ia is a feasible solution for the SDP.

3.2 Orthogonal Separators – Overview
The main technical tool of the algorithm is a procedure for sampling a random subset of
vectors, called an orthogonal separator, from the set of all vectors ūia in the SDP solution.
The distribution of the subset must satisfy certain properties which we describe in this
section. Orthogonal separators are used not only in algorithms for Unique Games, but also in
various graph partitioning algorithms [3, 8, 34, 37, 38, 41]. In fact, one can think of Unique
Games as of certain graph partitioning problem.

Let X be a set of vectors in `2 of length at most 1. We say that a distribution over
subsets of X is an m-orthogonal separator of X with `2 distortion D, probability scale α > 0
and separation threshold β < 1, if the following conditions hold for S ⊂ X chosen randomly
according to this distribution:

Chapte r 11

300 Approximation Algorithms for CSPs

1. For all ū ∈ X, Pr(ū ∈ S) = α‖ū‖2.
2. For all ū, v̄ ∈ X with 〈ū, v̄〉 ≤ βmax(‖ū‖2, ‖v̄‖2),

Pr(ū ∈ S and v̄ ∈ S) ≤ αmin(‖ū‖2, ‖v̄‖2)
m

.

3. For all ū, v̄ ∈ X,

Pr(IS(ū) 6= IS(v̄)) ≤ αD ‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖) + α
∣∣‖ū‖2 − ‖v̄‖2∣∣,

where IS is the indicator of the set S; i.e. IS(ū) = 1, if ū ∈ S; IS(ū) = 0, if ū /∈ S.

In most cases, it is convenient to use a slightly weaker (but simpler) bound on Pr(IS(ū) 6=
IS(v̄)).
3’. For all ū, v̄ ∈ X,

Pr(IS(ū) 6= IS(v̄)) ≤ αD′‖ū− v̄‖ ·max(‖ū‖, ‖v̄‖).

The property (3′) follows from (3) with D′ = D + 2, since∣∣‖ū‖2 − ‖v̄‖2∣∣ =
∣∣‖ū‖ − ‖v̄‖∣∣ · (‖ū‖+ ‖v̄‖) ≤ ‖ū− v̄‖ · 2 max(‖ū‖, ‖v̄‖).

The last inequality follows from the (regular) triangle inequality for vectors ū, v̄ and (ū− v̄).
Our algorithm for Unique Games relies on the following theorem.

I Theorem 6 (see Chlamtac, Makarychev, Makarychev [14]). There exists a polynomial-
time randomized algorithm that given a set of vectors X in the unit ball and parameter m,
generates an m-orthogonal separator with `2 distortion D = O

(√
logm

)
, probability scale

α ≥ poly(1/m) and separation threshold β = 0.

I Remark. Chlamtac, Makarychev, Makarychev [14] proved that there exists an `22 orthogonal
separator satisfying conditions (1), (2), and (3′′):

3”. For all ū, v̄ ∈ X, Pr(IS(ū) 6= IS(v̄)) ≤ αD̃‖ū− v̄‖2, where D̃ = O(
√

logn log k).

If we use this type of orthogonal separators in the algorithm that we present in the next
section, we will get an approximation algorithm that satisfies a 1−O(ε

√
logn log k) fraction

of the constraints given a 1− ε satisfiable instance.

3.3 Approximation Algorithm
We now present an approximation algorithm for Unique Games that uses orthogonal separa-
tors. We prove Theorem 6 and show how to generate orthogonal separators in Section 3.4.
Consider the algorithm presented in Figure 3.

I Lemma 7. The algorithm satisfies the constraint between variables i and j with probability
1−O(D√εij), where D is the distortion of the orthogonal separator sampled by the algorithm,
and εij is the SDP contribution of the term corresponding to the edge (i, j):

εij = 1
2
∑
a∈D
‖ūia − ūjπij(a)‖2.

K. Makarychev and Y. Makarychev 301

Input: An instance of Unique Games.
Output: Assignment of labels to vertices.
1. Solve the SDP. Let X = {ūia : i ∈ V, a ∈ D}.
2. Mark all variables as active.
3. while (there are active variables)

a. Produce an m-orthogonal separator S ⊂ X with distortion D and probability scale α
as in Theorem 6, where m = 4k and D = O(

√
logm).

b. For all active variables xi:
Let Si = {a : ūia ∈ S} .
If Si contains exactly one element a, then let xi = a; mark the variable xi as
inactive.

4. If the algorithm performs more than n/α iterations, assign arbitrary values to any
remaining variables (note that α ≥ 1/poly(d)).

Figure 3 Approximation algorithm for Unique Games.

Proof. If (D + 2)√εij ≥ 1/8, then the statement holds trivially, so we assume that (D +
2)√εij < 1/8. For the sake of analysis, we also assume that πij is the identity permutation
(we can simply rename the values of the variable xj so that πij is the identity; this clearly
does not affect the execution of the algorithm).

Consider the first iteration in which we assign a value to one of the variables, xi or xj . At
the end of this iteration, we mark the constraint xi = πij(xj) as satisfied or not: If we assign
the same value a ∈ D to xi and xj , we mark the constraint as satisfied (recall that we assume
that πij is the identity permutation); otherwise, we conservatively mark the constraint as
violated (a constraint marked as violated in the analysis may potentially be satisfied by
the algorithm). Consider one iteration of the algorithm at which both xi and xj are active.
There are three possible cases:
1. Both sets Si and Sj are equal and contain exactly one element, then the constraint

xj = πij(xi) is satisfied after this iteration.
2. The sets Si and Sj are equal, but contain more than one or none elements, then no values

are assigned at this iteration to xi and xj .
3. The sets Si and Sj are not equal, then the constraint may be violated.

Let us estimate the probabilities of each of these events. Using that for all a 6= b the
vectors ūia and ūib are orthogonal, and properties 1 and 2 of orthogonal separators we get
(below α is the probability scale): for a fixed a,

Pr (|Si| = 1; a ∈ Si) = Pr (a ∈ Su)− Pr (a ∈ Su and b ∈ Su for some b 6= a)

≥ Pr (a ∈ Su)−
∑

b∈D\{a}

Pr (a, b ∈ Su)

≥ α‖ūia‖2 −
∑

b∈D\{a}

αmin(‖ūia‖2, ‖ūib‖2)
4d

≥ α‖ūia‖2 −
α

4d
∑

b∈D\{a}

‖ūia‖2

≥ α‖ūia‖2
(

1− (d− 1)
4d

)
≥ 3α‖uia‖2

4 .

Chapte r 11

302 Approximation Algorithms for CSPs

Then, using that
∑
a∈D ‖ūia‖2 = 1, we get

Pr (|Si| = 1) =
∑
a∈D

Pr (|Si| = 1; a ∈ Si) ≥
∑
a∈D

3α‖uia‖2

4 = 3α
4 . (3)

Thus, at every iteration of the algorithm when xi is active, we assign a value to xi with
probability at least 3α/4. The probability that the constraint (i, j) is violated is at most

Pr (Si 6= Sj) ≤
∑
a∈D

Pr (IS(ūia) 6= IS(ūja)) .

We use property 3 of orthogonal separators (see property (3′)) to upper bound the right
hand side

Pr (Si 6= Sj) ≤ αD′
∑
a∈D
‖ūia − ūja‖ ·max(‖ūia‖, ‖ūja‖).

By Cauchy–Schwarz,

Pr (Su 6= Sv) ≤ αD′
√∑
a∈D
‖ūia − ūja‖2 ·

√∑
a∈D

max(‖ūia‖2, ‖ūja‖2)

≤ αD′
√∑
i∈D

2εij ·
√∑
a∈D
‖ūia‖2 + ‖ūja‖2︸ ︷︷ ︸

=
√

2

= 2αD′√εij .

Finally, the probability of satisfying the constraint is at least

Pr (|Su| = 1 and Su = Sv) ≥
3
4α− 2αD′√εij ≥

1
2 α.

Here, we used the assumption D′√εij ≤ 1/8. Since the algorithm performs n/α iterations,
the probability that it does not assign any value to xi or xj before step 4 is exponentially
small. At each iteration the probability of failure is at most O(D√εij) times the probability
of success, thus the probability that the constraint is not satisfied is O(D√εij). J

We now show that the approximation algorithm satisfies a 1−O(
√
ε log d) fraction of all

the constraints.

Proof of Theorem 5. By Lemma 7, the expected number of unsatisfied constraints is equal
to ∑

(u,v)∈E

O(
√
εij log d).

By Jensen’s inequality for the function t 7→
√
t,

1
|E|

∑
(u,v)∈E

√
εij log d ≤

√√√√ 1
|E|

∑
(i,j)∈E

εij log d =

√
SDP
|E|

log d.

Here, SDP =
∑

(i,j)∈E εij denotes the SDP value. If OPT ≤ ε|E|, then SDP ≤ OPT ≤ ε|E|.
Hence, the expected cost of solution is upper bounded by O(

√
ε log k)|E|. J

K. Makarychev and Y. Makarychev 303

3.4 Orthogonal Separators – Proofs
Proof of Theorem 6. In the proof, we denote the probability that a Gaussian N (0, 1)
random variable X is greater than a threshold t by Φ̄(t). We use the following algorithm
for generating m-orthogonal separators with `2 distortion: Assume w.l.o.g. that all vectors
ū lie in Rn. Fix a threshold t = Φ̄−1(1/m) (i.e., fix t such that Φ̄(t) = 1/m). Sample
independently a random Gaussian n dimensional vector g ∼ N (0, I) in Rn and a random
number r in [0, 1]. Return the set

S = {ū : 〈ū, g〉 ≥ t‖ū‖ and ‖ū‖2 ≥ r}.

We note that the idea of using threshold rounding was first used by Karger, Motwani,
and Sudan [26] in their algorithm for approximate graph coloring. We claim that S is an
m-orthogonal separator with `2 distortion O(

√
logm), probability scale α = 1/m and β = 0.

Let us verify that S satisfies the required conditions.

1. For every nonzero vector ū ∈ X, we have

Pr(ū ∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖ and r ≤ ‖ū‖2) =
= Pr(〈ū/‖ū‖, g〉 ≥ t)︸ ︷︷ ︸

1/m

·Pr(r ≤ ‖ū‖2)︸ ︷︷ ︸
‖ū‖2

= ‖ū‖2/m ≡ α‖ū‖2.

Here we used that 〈ū/‖ū‖, g〉 is distributed as N (0, 1), since ū/‖ū‖ is a unit vector. Then,
by the choice of the threshold t, we have Pr(〈ū/‖ū‖, g〉 ≥ t) = 1/m. If ū = 0, then
Pr(r ≤ ‖ū‖2) = 0, hence Pr(ū ∈ S) = 0.

2. For every ū, v̄ ∈ X with 〈ū, v̄〉 = 0, we have

Pr(ū, v̄ ∈ S) = Pr(〈ū, g〉 ≥ t; 〈v̄, g〉 ≥ t; r ≤ ‖ū‖2 and r ≤ ‖v̄‖2)
= Pr(〈ū, g〉 ≥ t‖ū‖ and 〈v̄, g〉 ≥ t‖v̄‖) · Pr(r ≤ min(‖ū‖2, ‖v̄‖2)).

The random variables 〈ū, g〉 and 〈v̄, g〉 are independent, since ū and v̄ are orthogonal vectors.
Hence,

Pr(ū, v̄ ∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖) · Pr(〈v̄, g〉 ≥ t‖v̄‖) · Pr(r ≤ min(‖ū‖2, ‖v̄‖2)).

Note that ū/‖ū‖ is a unit vector, and 〈ū/‖ū‖, g〉 ∼ N (0, 1). Thus,

Pr(〈ū, g〉 ≥ t‖ū‖) = Pr(〈ū/‖ū‖, g〉 ≥ t) = 1/m.

Similarly, Pr(〈v̄, g〉 ≥ t‖v̄‖) = 1/m. Then, Pr(r ≤ min(‖ū‖2, ‖v̄‖2)) = min(‖ū‖2, ‖v̄‖2), since
r is uniformly distributed in [0, 1]. We get

Pr(ū, v̄ ∈ S) = min(‖ū‖2, ‖v̄‖2)
m2 = αmin(‖ū‖2, ‖v̄‖2)

m
.

3. If IS(ū) 6= IS(v̄), then either ū ∈ S and v̄ /∈ S, or ū /∈ S and v̄ ∈ S. Thus,

Pr(IS(ū) 6= IS(v̄)) = Pr(ū ∈ S; v̄ /∈ S) + Pr(ū /∈ S; v̄ ∈ S).

We upper bound the both terms on the right hand side using the following lemma (switching
ū and v̄ for the second term) and obtain the desired inequality.

Chapte r 11

304 Approximation Algorithms for CSPs

I Lemma 8. If ‖ū‖2 ≥ ‖v̄‖2, then

Pr(ū ∈ S; v̄ /∈ S) ≤ αD‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖) + α
∣∣‖ū‖ − ‖v̄‖∣∣;

otherwise,

Pr(ū ∈ S; v̄ /∈ S) ≤ αD‖ū− v̄‖ ·min(‖ū‖, ‖v̄‖).

Proof of Lemma 8. We have

Pr(ū ∈ S; v̄ /∈ S) = Pr(〈ū, g〉 ≥ t‖ū‖; r ≤ ‖ū‖2; v /∈ S).

The event {v̄ /∈ S} is the union of two events {〈v̄, g〉 ≥ t‖v̄‖ and r ≤ ‖v̄‖2} and {r ≥ ‖v̄‖2}.
Hence,

Pr(ū ∈ S; v̄ /∈ S) ≤ Pr(〈ū, g〉 ≥ t‖ū‖; 〈v̄, g〉 < t‖v̄‖; r ≤ min(‖ū‖2, ‖ū‖2)) (4)
+ Pr(〈ū, g〉 ≥ t‖ū‖; ‖v̄‖2 ≤ r ≤ ‖ū‖2).

Let gu = 〈ū/‖ū‖, g〉 and gv = 〈v̄/‖v̄‖, g〉. Both gu and gv are standard N (0, 1) Gaussian
random variables. Thus, Pr(gu ≥ t) = Pr(gv ≥ t) = 1/m = α. We write (4) as follows:

Pr(ū ∈ S; v̄ /∈ S) = Pr(gu ≥ t; gv < t) Pr(r ≤ min(‖ū‖2, ‖v̄‖2)) (5)
+ Pr(gu ≥ t) Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2)

= Pr(gu ≥ t; gv < t) ·min(‖ū‖2, ‖v̄‖2) + αPr(‖v̄‖2 ≤ r ≤ ‖ū‖2). (6)

To finish the proof we need to estimate Pr(gu ≥ t; gv < t) and Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2). Since
r is uniformly distributed in [0, 1], Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2) = ‖ū‖2 − ‖v̄‖2, if ‖ū‖2 − ‖v̄‖2 > 0;
and Pr(‖v̄‖2 ≤ r ≤ ‖ū‖2) = 0, otherwise.

We use Lemma 10 to upper bound Pr(gu ≥ t; gv < t):

Pr(gu ≥ t; gv < t) ≤ O
(√

1− cov(gu, gv) ·
√

logm/m
)
. (7)

The covariance of gu and gv equals cov(gu, gv) = 〈ū/‖ū‖, v̄/‖v̄‖〉 and ‖ū − v̄‖2 = ‖ū‖2 +
‖v̄‖2 − 2〈ū, v̄〉. Hence,

1− cov(gu, gv) = 1− ‖ū‖
2 + ‖v̄‖2 − ‖ū− v̄‖2

2‖ū‖ ‖v̄‖ = ‖ū− v̄‖
2 − (‖ū‖2 + ‖v̄‖2 − 2‖ū‖ ‖v̄‖)

2‖ū‖ ‖v̄‖

= ‖ū− v̄‖
2 − (‖ū‖ − ‖v̄‖)2

2‖ū‖ ‖v̄‖ ≤ ‖ū− v̄‖
2

2‖ū‖ ‖v̄‖ .

We plug this bound in (7) and get

Pr(gu ≥ t; gv < t) ≤ α · ‖ū− v̄‖√
‖ū‖ ||v̄‖

·O(
√

logm) ≤ α · ‖ū− v̄‖
min(‖ū‖, ‖v̄‖) ·O(

√
logm).

Now, Lemma 8 follows from (6). This concludes the proof of Lemma 8 and Theorem 6. J
J

3.5 Gaussian Distribution
In this section, we prove several useful estimates on the Gaussian distribution. Let X ∼
N (0, 1) be one dimensional Gaussian random variable. Denote the probability that X ≥ t
by Φ̄(t):

Φ̄(t) = Pr(X ≥ t).

The first lemma gives a very accurate estimate on Φ̄(t) for large t.

K. Makarychev and Y. Makarychev 305

I Lemma 9. For every t > 0,

t√
2π (t2 + 1)

e−
t2
2 < Φ̄(t) < 1√

2π t
e−

t2
2 .

Proof. Write

Φ̄(t) = 1√
2π

∫ ∞
t

e−
x2
2 dx = 1√

2π

[
−e− x2

2

x

∣∣∣∣∣
∞

t

−
∫ ∞
t

e−
x2
2

x2 dx

]

= 1√
2πt

e−
t2
2 − 1√

2π

∫ ∞
t

e−
x2
2

x2 dx.

Thus,

Φ̄(t) < 1√
2πt

e−
t2
2 .

On the other hand,

1√
2π

∫ ∞
t

e−
x2
2

x2 dx <
1√

2πt2

∫ ∞
t

e−
x2
2 dx = Φ̄(t)

t2
.

Hence,

Φ̄(t) > 1√
2πt

e−
t2
2 − Φ̄(t)

t2
,

and, consequently,

Φ̄(t) > t√
2π(t2 + 1)

e−
t2
2 . J

I Lemma 10. Let X and Y be Gaussian N (0, 1) random variables with covariance
cov(X,Y) = 1− 2ε2. Pick the threshold t > 1 such that Φ̄(t) = 1/m for m > 3. Then

Pr(X ≥ t and Y ≤ t) = O(ε
√

logm/m).

Proof. If εt ≥ 1 or ε ≥ 1/2, then we are done, since ε
√

logm = Ω(εt) = Ω(1) and

Pr(X ≥ t and Y ≤ t) ≤ Pr(X ≥ t) = 1
m
.

So we assume that εt ≤ 1 and ε < 1/2. Let

ξ = X + Y

2
√

1− ε2
; η = X − Y

2ε .

Note that ξ and η are N (0, 1) Gaussian random variables with covariance 0. Hence, ξ and η
are independent. We have

Pr
(
X ≥ t and Y ≤ t

)
= Pr

(√
1− ε2 ξ + εη ≥ t and

√
1− ε2 ξ − εη ≤ t

)
.

Denote by E the following event:

E =
{√

1− ε2 ξ + εη ≥ t and
√

1− ε2 ξ − εη ≤ t
}
.

Chapte r 11

306 Approximation Algorithms for CSPs

Then,

Pr
(
X ≥ t and Y ≤ t

)
= Pr(E and εη ≤ t) + Pr(E and εη ≥ t).

Observe that the second probability on the right hand side is very small. It is upper bounded
by Pr(εη ≥ t), which, in turn, is bounded as follows:

Pr(εη ≥ t) = 1√
2π

∫ ∞
t/ε

e−
x2
2 dx = Φ̄(t/ε) ≤ O

(ε e− t2
2ε2

t

)
≤ O

(ε e− t2
2

t

)
= O(ε/m).

We now estimate the first probability:

Pr(E and εη ≤ t) = Eη[Pr(E and η ≤ t/ε | η)]

= 1√
2π

∫ t/ε

0
Pr(E | η = x) e−x

2/2 dx

= 1√
2π

∫ t/ε

0
Pr(
√

1− ε2ξ ∈ [t− εx, t+ εx]) e−x
2/2 dx.

The density of the random variable
√

1− ε2 ξ in the interval (t− εx, t+ εx) for x ∈ [0, t/ε] is
at most

1√
2π(1− ε2)

e
−(t−εx)2

2(1−ε2) ≤ 1
2 e

−(t−εx)2
2 ≤ 1

2 e
−t2

2 · eεtx ≤ 1
2 e

−t2
2 · ex,

here we used that ε ≥ 1/2 and εt ≥ 1. Hence,

Pr(t− εx ≤
√

1− ε2 ξ ≤ t+ εx) ≤ εx e
−t2

2 · ex.

Therefore,

Pr(E and εη ≤ t) ≤ ε e
−t2

2
√

2π

∫ t/ε

0
xex · e

−x2
2 dx ≤ ε e

−t2
2

√
2π

∫ ∞
0

xex · e
−x2

2 dx︸ ︷︷ ︸
O(1)

.

The integral in the right hand side does not depend on any parameters, so it can be upper
bounded by some constant (e.g. one can show that it is upper bounded by 2

√
2π). We get

Pr(E and εη ≤ t) ≤ O(ε e
−t2

2) = O(ε · tΦ̄(t)) = O(ε
√

logm/m).

This finishes the proof. J

4 CSPs of Higher Arities

In this section, we discuss techniques for solving Max k-CSP(d). We will not present any
approximation algorithms for Max k-CSP(d), but rather we will describe an SDP relaxation
for the problem and explain why rounding this SDP is challenging. To be specific, we
will focus our attention on the regime when k > Ω(log d). In this regime, the best known
approximation is Ω(dk/dk) [40].

Consider an instance of Max k-CSP(d). As we noted in the introduction, we may assume
that all constraints are of the form (xi1 = j1)∧ · · · ∧ (xik = jk). We write an SDP relaxation
for the problem. In the SDP, we have two sets of variables. First, we have a variable ūij for

K. Makarychev and Y. Makarychev 307

each xi and j ∈ D; second, we have a variable v̄C = v̄(i1,j1),...,(ik,jk) and for each constraint
C of the form (xi1 = j1) ∧ · · · ∧ (xik = jk). We denote the set of the constraints by C.

maximize
∑
C∈C
‖v̄C‖2

subject to
d∑
j=1
‖ūij‖2 = 1 for every i (8)

〈ūij1 , ūij2〉 = 0 for every i and j1 6= j2

〈ūij , v̄C〉 = ‖v̄C‖2 for every C ∈ C and clause xi = j in C
〈ūij , v̄C〉 = 0 for every C ∈ C and clause xi = j not in C (9)

In the intended solution, for some unit vector v̄0, we have ūij = v̄0 if xi = j, and ūij = 0,
otherwise; v̄C = v̄0 if C is satisfied, and v̄C = 0, otherwise. Let us first consider a very basic
rounding algorithm for the problem and discuss when it works and when it does not:
1. Choose a random Gaussian vector g with independent components distributed as N (0, 1).
2. For every i, let xi = arg maxj |〈ūij , g〉|.

We analyze the algorithm. Let us consider a CSP constraint C ∈ C and estimate with
what probability the algorithm satisfies it. Keep in mind that we want to get an Ω(kd/dk)
approximation, so the desired probability is Ω(kd |v̄C |2/dk). By renaming variables and
values, we may assume that C is (x1 = 1) ∨ · · · ∨ (xk = 1). Denote ξij = 〈ūij , g〉. Note that
ξij is a Gaussian random variable with mean 0 and variance ‖ūij‖2. The probability that
C is satisfied equals Pr (|ξi1| > |ξij | for all i and j 6= 1). It is instructive to consider a very
special case when the following two assumptions hold.
1. Since 〈ūi1, v̄C〉 = ‖v̄c‖2 for all i, we can write ūi1 = v̄C + ū⊥i1 where ū⊥i1 ⊥ v̄C . Let us

assume that all vectors ū⊥i1 are equal to 0, and thus ūi1 = · · · = ūid = v̄C .
2. Let us assume that all vectors ūij with j 6= 1 have the same length.
The first assumption is not essential, and we make it to slightly simplify the computations;
however, the second assumption is crucial for our analysis. We have, ξ11 = · · · = ξk1. Let
ξ = ξi1, η be a random variable distributed as N (0, ‖ūij‖2), and ρ = Var [ξ] /Var [η] =
‖v̄C‖2/‖ūij‖2, where j 6= 1. Assume that ρ ≤ 1. It follows from (9) that all random variables
ξij , with j 6= 1, are independent from ξ. Thus, for every M ,

Pr(|ξ| > |ξij | for all i and j 6= 1) ≥ Pr (|ξ| ≥M and |ξij | < M for all i and j 6= 1)

= Pr (|ξ| ≥M) Pr (|ξij | < M for i and j 6= 1)
Šidák
≥ Pr (|ξ| ≥M)

∏
i; j 6=1

Pr (|ξij | < M)

= Pr (|ξ| ≥M) Pr (|η| < M)k(d−1)
.

Here, we used Šidák’s theorem to get the inequality on the second line. From Lemma 9, it
is easy to prove that Pr (|η| ≥M) ≤ Pr (|ξ| ≥M)ρ for every threshold M (see [40, Lemma
2.4]). Let p = 1/(ρk(d − 1)) and M be such that Pr (|η| ≥M) = p. Then the probability
that the constraint is satisfied is at least

p1/ρ(1− p)k(d−1) ≈
(

1
ρk(d− 1)

)1/ρ
e−pk(d−1) ≈

(
1
ρkd

)1/ρ
e−1/ρ =

(
1

eρkd

)1/ρ
. (10)

When ρ > c/k (for sufficiently large c), the probability of satisfying C is, loosely speaking, of
order 1/dk/c, which is much greater than the desired probability dk‖v̄C‖2/dk. On the other

Chapte r 11

308 Approximation Algorithms for CSPs

hand, when ρ < c/k, we can use the random assignment rounding. Indeed, from (8) and our
assumptions, we get

1 = ‖ūi1‖2 +
∑
j

‖ūij‖2 = ‖v̄C‖2 + d− 1
ρ
‖v̄C‖2.

Thus, ‖v̄C‖2 ≈ ρ/d < c/(dk) and the desired probability of satisfying the constraint is
O(1/dk), which is less than the probability 1/dk with which the random assignment algorithm
satisfies the constraint (when constants in the O(·)-notation are appropriately chosen). We
see that if choose uniformly at random one of the two algorithms, the basic SDP rounding
and the random assignment, we will satisfy every clause with the desired probability.

This argument can be made formal. However, it crucially uses that all vectors ūij , for
j 6= 1, have the same length. If some of them are considerably longer than 1/

√
d, they will be

chosen disproportionately often. For instance, assume that ‖vC‖2 = c/(dk), a δ fraction of
vectors ūij have length approximately 1/

√
δd, and the remaining vectors ūij are equal to 0. In

this setting, there are d′ ≈ δd non-zero vectors ūij for every i, and ρ′ = ‖v̄C‖2/‖ūij‖2 ≈ cδ/k
(for j > 1 such that ūij 6= 0). Now, loosely speaking, we can use formula (10) with ρ = ρ′ and
d = d′ to estimate the probability of satisfying the constraint4. We get that the probability
is approximately 1/dk/(cδ), which is much less than the desired probability when δ � 1/c.

Let us discuss how we can fix the algorithm. If we knew that ‖ūi1‖2 ≤ O(1/d) for all i,
we would be able to restrict our attention only to those values j such that ‖ūij‖2 ≤ O(1/d);
that is, for each i, we would choose j that maximizes |ξij | only among those j for which
‖ūij‖2 ≤ O(1/d). That would eliminate values j that the rounding procedure chooses with
disproportionately large probabilities and thus fix the algorithm. On the other hand, if we
knew that ‖ūi1‖2 > c/d for all i (for some sufficiently large constant c > 1), then we would
be able to find a good assignment using another algorithm: for every i, we would choose
j uniformly at random among those j for which ‖ūij‖2 > c/d. Note that for every i, there
are at most d/c such values of j. Therefore, the probability that we choose j = 1 for every
i is at least (c/d)k � dk/dk, as desired. In fact, of course, we may have ‖ūi1‖2 < c/d for
some values of i and ‖ūi1‖2 > c/d for other values of i. Nevertheless, it is shown in [40] that
it is possible to combine these two approaches and get an Ω(dk/dk) approximation (when
k = Ω(log d)). We refer the reader to [40] for details.

5 Minimum Multiway Cut

In this section, we describe known approximation results for the Minimum Multiway Cut
problem. From a CSP viewpoint, the problem is a CSP of arity 2 over a domain D with two
types of constraints:

Equality constraints of the form xi = xj .
Unary constraints of the form xi = j, where j ∈ D.

The objective is to minimize the number of unsatisfied constraints. The problem is usually
stated as a graph partitioning problem.

I Definition 11. We are given a graph G = (V,E) and a set of terminals T = {s1, . . . , sd} ⊂
V . We need to partition the graph into d pieces P1, . . . , Pd such that si ∈ Pi. Our goal is to
minimize the number of cut edges.

4 We showed that formula (10) is a lower bound on the probability that C is satisfied; but, in fact, it
gives a reasonable estimate on the probability.

K. Makarychev and Y. Makarychev 309

s2s1

s3

e2e1

e3

e2e1

e3

s2s1

s3

Figure 4 The figure shows (1) an input graph, (2) a feasible LP solution, (3) a random partitioning,
and (4) the corresponding cut in the graph.

Observe that the two formulations are equivalent. Given a CSP instance, we construct a
graph instance of the problem as follows: we introduce a vertex vi for each variable xi and
add auxiliary vertices s1, . . . , sd; for each constraint xi1 = xi2 , we add an edge (vi1 , vi2); for
each constraint xi = j we add an edge (vi, sj). Similarly, we can transform a graph instance
to a CSP instance. Note that there is a one-to-one correspondence between solutions to
the problems: an assignment A : {xi} → D corresponds to the partitioning P1, . . . , Pd with
Pj = {vi : A(xi) = j} and vice versa. Below, we will discuss the Multiway Cut problem
in the standard graph partitioning formulation. Note that the problem can be solved in
polynomial-time when d = 2 (then, it is equivalent to the Minimum Cut problem), but it is
NP-hard for every d ≥ 3 [16].

Minimum Multiway Cut was introduced by Dahlhaus, Johnson, Papadimitriou, Seymour,
and Yannakakis [16] in 1994. Since then, a number of approximation algorithms have been
proposed in the literature [16, 10, 27, 9, 47]. The best known algorithm is due to Sharma
and Vondrák [47]. The algorithm gets a 1.309017 approximation; there is also a variant of
the algorithm that gets a 1.2965 approximation, but the analysis of this algorithm is only
computer-verified. Freund and Karloff [17] proved an integrality gap of 8/7− o(1) for the
problem. Manokaran, Naor, Raghavendra, and Schwartz [42] proved that the hardness of
approximation factor for Minimum Multiway Cut is equal to the integrality gap if UGC
holds. The results of [17, 42] imply a 8/7− o(1) hardness of approximation (if UGC is true).

We note that the maximization version of the problem, in which the objective is to
maximize the number of satisfied constraints received much less attention. Langberg, Rabani,
and Swamy [35] designed a (2 +

√
2)/4 ≈ 0.85355 approximation algorithm for the problem

and showed an integrality gap of 6/7− o(1) ≈ 0.85714− o(1).

All known approximation algorithms for Minimum Multiway Cut – other than the 2-
approximation algorithm by Dahlhaus et al. – use the linear programming (LP) relaxation
by Călinescu, Karloff, and Rabani [10]. The recent algorithms by Buchbinder, Naor, and
Schwartz [9] and Sharma and Vondrák [47] are significantly more involved than the algorithm
by Călinescu et al. and, in particular, require computer-assisted fine tuning of the parameters
to get the best approximation factors. Thus, in this survey, we describe the original LP
relaxation and algorithm by Călinescu, Karloff, and Rabani [10].

Consider the following relaxation for the problem. For every vertex u, we introduce
d LP variables u1, . . . , ud and let ū = (u1, . . . , ud). Let ∆ = {x̄ ∈ Rd : x1 + · · · + xd =
1, x1 ≥ 0, . . . , xd ≥ 0}; ∆ is a simplex with vertices e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0),
. . . , ed = (0, . . . , 0, 1) (see Figure 4). We write the following linear program.

Chapte r 11

310 Approximation Algorithms for CSPs

minimize 1
2
∑

(u,v)∈E

‖ū− v̄‖1

subject to
s̄j = ej for every j ∈ {1, . . . , d} ,
ū ∈ ∆ for every vertex u.

It is easy to see that this program is indeed a linear program – we can write the objective
function as a linear function by introducing auxiliary variables. Namely, introduce additional
LP variables yuvi; add inequalities yuvi ≥ ui − vi and yuvi ≥ vi − ui. Then, replace each
term ‖ū− v̄‖1 in the objective function with the expression

∑k
i=1 yuvi.

We denote the value of an optimal solution by OPT, and the value of LP by LP.

I Claim 12. The LP is a relaxation of the problem. That is, LP ≤ OPT.

Proof. Consider an optimal solution P1, . . . , Pd. Let ū = ei for u ∈ Pi. Clearly, ū is a feasible
LP solution. We compute the value of this solution. Consider an edge e = (u, v). Suppose
that u ∈ Pi and v ∈ Pj . The contribution of e to the objective function is

‖u− v‖1
2 = ‖ei − ej‖12 =

{
1, if i 6= j,

0, if i = j.

That is, the contribution of e is 1 if e is cut, and 0, otherwise. Thus, the total contribution
of all edges equals the number of cut edges. We get that the value of the LP solution {ū} is
OPT. Therefore, LP ≤ OPT. J

I Definition 13. Given a feasible LP solution, we define a distance function d(·, ·) on the
vertices of the graph:

d(u, v) = 1
2‖ū− v̄‖.

Let Br(u) be the ball of radius r around vertex u w. r. t. distance d(·, ·): Br(u) =
{v : d(u, v) < r}.

Now, we describe the algorithm by Călinescu, Karloff, and Rabani [10].

I Theorem 14 (Călinescu, Karloff, and Rabani [10]). There exists a 3/2-approximation
algorithm for Minimum Multiway Cut.

Proof. The algorithm is presented in Figure 5. We prove that the algorithm always returns
a feasible solution.

I Claim 15. The algorithm returns a feasible solution.

Proof. Note that si ∈ Br(si) and si /∈ Br(sj) for every j 6= i. Therefore, si necessarily lies
in Pi, as required. J

Now we compute the expected cost of the solution. Consider an edge e = (u, v). Note
that

d(u, si) = ‖ū− ei‖2 =
(1− ui) +

∑
j 6=i uj

2 = (1− ui) + (1− ui)
2 = 1− ui.

K. Makarychev and Y. Makarychev 311

Approximation Algorithm for Multiway Cut
Input: graph G = (V,E) and a set of terminals T = {s1, . . . , sd} ⊂ V .
Output: a partition P1, . . . , Pd of V such that si ∈ Pi.

solve the LP relaxation for Minimum Multiway Cut. Define d(u, v) = 1
2‖ū− v̄‖1.

choose a random permutation π of {1, . . . , d}
choose r uniformly at random from (0, 1)
let A = ∅
for i = π(1), π(2), . . . , π(d− 1) do

let Pi = Br(si) \A
let A = A ∪ Pi

let Pπ(d) = V \A
return partition P1, . . . , Pd
Figure 5 Approximation algorithm for Multiway Cut.

Let

Ai = min(d(u, si), d(v, si)) and Bi = max(d(u, si), d(v, si)).

We have,

Bi −Ai = |d(u, si)− d(v, si)| = |ui − vi|.

We may assume without loss of generality that

A1 ≤ A2 ≤ · · · ≤ Ad. (11)

Let us write i ≺ j if π−1(i) < π−1(j) (i precedes j in the order defined by π). We say that an
index i settles the edge (u, v) if i is the first index w.r.t. π such that u ∈ Br(si) or v ∈ Br(si)
(or both). In other words, index i settles edge e if Ai ≤ r and Aj > r for all j ≺ i. Let Ei be
the event that i settles (u, v). Note that at most one of the events Ei happens. (If no event
Ei happens than u and v belong to Pπ(k), and the edge (u, v) is not cut.)

When the event Ei happens, we add either one or both of the vertices u and v to Pi. Note
that in the former case, the edge (u, v) is cut since u ∈ Pi and v /∈ Pi; in the latter case, the
edge (u, v) is not cut since u, v ∈ Pi. We conclude that

Pr (e is cut) =
d−1∑
i=1

Pr (Ei and |{u, v} ∩Br(si)| = 1) =
d−1∑
i=1

Pr (Ei and Ai ≤ r < Bi) .

We are going to show now that Pr (Ei|r) ≤ 1/2 for every i > 1. Consider the event Li that
i � 1. Since events i � 1 and 1 � i are equiprobable, event Li happens with probability 1/2.
We claim that when Li happens Ei does not happen, and, therefore,

Pr (Ei|r) ≤ 1− Pr (Li|r) = 1
2 .

Assume to the contrary that both events happen. Then
r ≥ Ai and r < Aj for every j ≺ i,
and 1 ≺ i,

Chapte r 11

312 Approximation Algorithms for CSPs

therefore, r ≥ Ai and r < A1; thus, Ai < A1, which contradicts to our assumption (11). We
have,

Pr (e is cut) =
d−1∑
i=1

Pr (Ei and Ai ≤ r < Bi) =
d−1∑
i=1

Er [Pr (Ei|r) Pr (Ai ≤ r < Bi|r)]

≤ (B1 −A1) +
k∑
i=2

Bi −Ai
2 = B1 −A1

2 +
k∑
i=1

Bi −Ai
2

= |u1 − v1|
2 +

k∑
i=1

|ui − vi|
2 = |u1 − v1|+ ‖ū− v̄‖1

2 .

Observe that

‖u− v‖1 ≥ |u1 − v1|+

∣∣∣∣∣
k∑
i=2

ui −
k∑
i=2

vi

∣∣∣∣∣ = |u1 − v1|+ |(1− u1)− (1− v1)| = 2 |u1 − v1|.

Thus Pr (e is cut) ≤ 3‖ū− v̄‖1/4. By the linearity of expectation, the expected number of
cut edges is at most∑

(u,v)∈E

3
4‖ū− v̄‖1 = 3 LP

2 ≤ 3 OPT
2 .

We proved that our algorithm gives a 3/2 approximation, in expectation. By running this
algorithm many times we can get a (3/2 + ε) approximation with high probability. In fact,
the algorithm can be easily derandomized using the method of conditional expectations. J

6 Universal Rounding Algorithm

In this section, we discuss the hardness of approximation result by Raghavendra [44] and
universal rounding algorithm by Raghavendra and Steurer [45]. Then, we describe in detail
the rounding algorithm for a special case of CSPs of arity 2.

We consider a class of generalized CSPs of arity k with variables over a fixed domain
D = {1, . . . , d} and predicates from a constant-size set Λ. Every predicate π ∈ Λ is a function
from Dk to [−1, 1]. We shall refer to this class of CSPs as k-CSP Λ. The value of a solution
x∗i for instance I of k-CSP Λ equals

1
|Π|

∑
π(xi1 ,...,xik

)∈Π

π(x∗i1 , . . . , x
∗
ik

),

where Π is the set of predicates in I. The expression above has a normalization factor 1/|Π|;
thus the value of any solution lies in the range [−1, 1]. Note that a regular (non-generalized)
CSP is simply a generalized CSP in which all predicates take only values 0 and 1. We say
that a predicate π is nonnegative if π is nonnegative on every assignment. Observe that
finding an assignment of maximum value in an instance of k-CSP Λ is equivalent to finding
an assignment of minimum value in the instance where every predicate π is replaced with
−π. Thus, all results stated for maximization versions of generalized CSPs can be easily
translated to results for minimization versions of generalized CSPs and vice versa. However,
as we discuss later, the results for minimization and maximization CSPs with nonnegative
predicates – and, in particular, results for minimization and maximization regular CSPs –
are quite different.

K. Makarychev and Y. Makarychev 313

In a breakthrough paper [44], Raghavendra showed that assuming the Unique Games
Conjecture, the best possible approximation for many CSPs can be obtained by solving a
standard SDP relaxation. To formally state his result, we describe the SDP relaxation and
introduce some notation. First, we formulate the SDP for CSPs of arity 2; then, in the next
section, we present the SDP for CSPs of higher arities. As we discussed earlier, for each
variable xi, we introduce SDP vector variables ūi1, . . . , ūid. We also introduce a special unit
vector v0.

maximize 1
|Π|

∑
π(xi,xj)∈Π

∑
a,b∈D

π(a, b)〈ūia, ūjb〉 (12)

subject to (13)∑
a∈D

ūia = v0 for all i (14)

〈ūia, ūib〉 = 0 for all i, j ∈ [n]; a 6= b (15)
〈ūia, ūjb〉 ≥ 0 for each constraint π(xi, xj) ∈ Π and a, b ∈ D (16)

Let OPT = opt(I) be the value of the optimal solution for instance I, and SDP = sdp(I)
be the value of the optimal SDP solution for I. Define gap as follows:

gap(s) = inf{opt(I) : sdp(I) ≥ s}.

That is, gap(s) equals the minimum possible optimum value of an instance I with SDP value
at least s.

I Theorem 16 (Raghavendra [44]). Assuming the Unique Games Conjecture, for every
positive ε and every s ∈ (−1, 1), it is NP-hard to distinguish between instances I with
opt(I) ≥ s and opt(I) ≤ gap(s+ ε) + ε.

Note that since we can find the optimal solution of the SDP in polynomial time, we can
distinguish instances with (A) opt(I) > s and (B) opt(I) < gap(s)− ε: If sdp(I) > gap(s),
then I is in the set (A), otherwise I is in the set (B). Furthermore, Raghavendra [44] and
then, Raghavendra and Steurer [45] showed that given an instance with SDP value at least
s, we can find an assignment of value at least gap(s − ε) − ε. We present a proof of this
theorem for 2-CSPs with nonnegative predicates in Section 6.2.

I Theorem 17 (Raghavendra and Steurer [45]). For every class of problems k-CSP Λ and
every positive ε, there exists a randomized polynomial time algorithm that given an instance I
of k-CSP Λ with the SDP value SDP finds a solution {x∗i } of value at least gap(SDP− ε)− ε.

This result applies to both minimization and maximization problems. For a minimization
problem, the algorithm by Raghavendra and Steurer [45] finds a solution of cost at most
gapmin(SDP + ε) + ε, where gapmin(s) = sup{opt(I) : sdp(I) ≤ s}.

Let us discuss what the results by Raghavendra [44] and Raghavendra and Steurer [45]
imply for the three objectives we introduced in the introduction. Consider a generalized
k-CSP Λ, and let α be the integrality gap of its SDP relaxation. Can we get an (α − ε)
approximation using the algorithm by Raghavendra and Steurer [45]? Generally speaking, no.
If the value of the optimal solution OPT is positive, but is very close to 0, then gap(SDP−ε)−ε
may be negative. Hence, we cannot even guarantee that the algorithm finds a solution of
positive value.

Now, assume that all predicates π ∈ Λ are nonnegative (in particular, this condition
holds for regular CSPs), then the optimal value of any maximization k-CSP Λ is bounded

Chapte r 11

314 Approximation Algorithms for CSPs

away from 0 by some positive β (as we will see in a moment) and thus the algorithm always
returns a solution of value at least

α(SDP− ε)− ε ≥ αOPT− 2ε = αOPT− 2β(ε/β) ≥ (α− 2ε/β) OPT,

which is an (α− 2ε/β) approximation to the optimal value. Here we used that gap(s) ≥ αs.
The constant β equals the expected value of a predicate π on a random input for the

worst predicate π ∈ Λ:

β = min
π∈Λ

Ex1,...,xk∈D[π(x1, . . . , xk)].

The value of a random assignment is at least β, in expectation, for any instance of k-CSP Λ.
Thus the optimal value of any maximization k-CSP Λ is at least β.

Similarly, Theorem 16 implies that no algorithm can achieve a better than an (α+O(ε))
approximation if UGC holds. Indeed, consider an integrality gap instance I with the
integrality gap α′ ≤ α+ ε. Then, by Theorem 16, it is NP-hard to find a solution of value at
least α′(SDP+ε)+ε given an instance of value SDP. Thus no algorithm has an approximation
factor better than

α′(SDP + ε) + ε

SDP ≤ α′ + 2ε
SDP ≤ α

′ + 2β(ε/β)
OPT ≤ α+ ε+ 2ε/β.

I Corollary 18 (Raghavendra and Steurer [45], Raghavendra [44]). For every maximization
k-CSP Λ with nonnegative predicates and every positive ε, there exists a polynomial time
(α− ε)-approximation algorithm, where α is the integrality gap of the SDP relaxation from
Section 6.1. Further, for every positive ε, there is no (α + ε)-approximation algorithm if
UGC holds.

Note that for many maximization CSPs the best approximation ratio α is still not known.
From Theorems 16 and 17, we cannot get an analog of Corollary 18 for minimization

versions of generalized CSPs with nonnegative predicates and for regular CSPs with objective
(3) (described in the introduction). The reason for that is that the cost of a minimization
CSP can be arbitrarily close to 0.5 Similarly, we cannot get an analog of Corollary 18 for
objective (2). What we can get is the following. Let f(δ) = 1− gap(1− δ). There exists an
algorithm that given a (1− δ)-satisfiable instance and parameter ε > 0, finds an assignment
satisfying a (1− f(δ + ε)− ε) fraction of the constraints. The running time of the algorithm
is polynomial in n and exponential in 1/ε. Note that typically we have to take δ = O(ε) to
make this guarantee interesting. However, if we, say, let δ = ε, we get an algorithm with
running time exponential in 1/δ.

6.1 SDP Relaxation for k-CSPs with k > 2

The SDP relaxation for CSPs of arity k > 2 consists of two parts: a semidefinite program
and a linear program connected by special constraints. The SDP part has the same variables
ūia and v̄0 as the SDP relaxation for k = 2. These variables must satisfy SDP constraints
(14) and (15).

5 In fact, most minimization CSPs studied in the literature – such as Min UnCut, Min 2CNF Deletion
and Unique Games (with objective (3)) – do not admit a constant factor approximation if UGC holds.
Their worst case instances have cost o(1).

K. Makarychev and Y. Makarychev 315

The LP part has a variable pi1...ik (a1, . . . , ak) ∈ [0, 1] for every predicate π(xi1 , . . . , xik)
and (a1, . . . , ak) ∈ Dk. For every predicate π(xi1 , . . . , xik), we define a local probability
distribution on the assignments to the variables xi1 , . . . , xik :

P̃ri1,...,ik
(
(xi1 , . . . , xik) ∈ E

)
=

∑
(a1,...,ak)∈E

pi1...ik (a1, . . . , ak).

Formally, every P̃ri1,...,ik is a linear combination of the LP variables pi1...ik (a1, . . . , ak). Now
we can write the objective function as follows:

1
|Π|

∑
π(xi1 ,...,xik

)∈Π

∑
(a1,...,xk)∈Dk

π(a1, . . . , ak)P̃ri1,...,ik
(
xi1 = a1, . . . , xik = ak

)
.

We add an LP constraint P̃ri1,...,ik
(
(xi1 , . . . , xik) ∈ Dk

)
= 1. We then connect the LP and

SDP by imposing the constraints

P̃ri1,...,ik (xi = a) = ‖ūia‖2

P̃ri1,...,ik (xi = a, xj = b) = 〈ūia, ūjb〉

for all predicates π(xi1 , . . . , xik) and i, j ∈ {i1, . . . , ik}. We refer the reader to the paper by
Raghavendra [44] for more discussion on this SDP relaxation.

6.2 Rounding Algorithm for 2-CSPs with Nonnegative Predicates
The main observation behind the universal rounding algorithm is that for every SDP solution
ūia there exists another SDP solution ū′ia with a constant number (depending on ε and d) of
distinct vectors ū′ia that has approximately the same SDP value as the original solution ūia.
Here is the formal statement we need.

I Theorem 19. For every positive ε, there exists a randomized polynomial time algorithm
that given an instance I of a 2-CSP with the set of predicates Π and an SDP solution ūia of
value SDP returns a set of predicates Π′ of size at least (1− ε)|Π|, an SDP solution ū′ia for
the instance with predicates Π′ of value at least SDP − ε, and a set W of size at most f(ε, d)
(for some function f depending only on ε and d) such that each tuple wi = (ū′i1, . . . , ū′id)
belongs to W. The algorithm fails with exponentially small probability.

We prove Theorem 19 in Section 6.3. We now present and analyze the universal rounding
algorithm.

The algorithm works in three phases: First, it solves the SDP relaxation and obtains
a set of vectors ūia. Then, using Theorem 19, the algorithm transforms the SDP solution
into another solution ū′ia of approximately the same value such that the number of distinct
tuples wi = (ū′i1, . . . , ū′id) is upper bounded by some function f(ε, d) of ε and d, which does
not depend on the number of variables and constraints. We denote the set of all wi by W.
The algorithm identifies variables xi that are mapped to the same tuple of vectors w and
obtains a new instance Ĩ of 2-CSP Λ. Formally, the instance Ĩ has a variable x′w for each
w ∈ W and a constraint π(x′wi

, x′wj
) for each constraint π(xi, xj) in I. Note that Ĩ has at

most f(ε, d) variables. The algorithm finds the optimal solution x∗w for Ĩ by enumerating all
d|W| possible solutions. Finally, the algorithm outputs the solution xi = x∗wi

for the original
instance I.

Chapte r 11

316 Approximation Algorithms for CSPs

Input: An instance I of 2-CSP Λ, parameter ε > 0.
Output: A solution xi of value at least gap(SDP− ε)− ε.
1. Solve the SDP and obtain vectors ūia.
2. Transform vectors ūia to vectors ū′ia and construct the set W using the algorithm from

Theorem 19. Let wi = (ū′i1, . . . , ū′id) for each i. By Theorem 19, wi ∈ W.
3. Build a new instance Ĩ of 2-CSP Λ: For each w ∈ W , create a variable x′w in Ĩ. For each

constraint π(xi, xj) between xi and xj in I, add the constraint π(x′wi
, x′wj

) between x′wi

and x′wj
to Ĩ.

4. Find the optimal solution x∗wi
for Ĩ by enumerating all possible solutions of Ĩ.

5. Output the solution xi = x∗wi
.

The running time of the algorithm is exponential in |W| but is polynomial in n, since the
size of W is upper bounded by f(ε, d) which depends only on ε and d. We show that the
algorithm finds a solution of cost at least gap(SDP− ε). Denote by I ′ and Ĩ ′ subinstances
of I and Ĩ in which we removed predicates from Π \ Π′ and kept predicates from Π′. By
Theorem 19, the value of the SDP solution ū′ia on the instance I ′ is at least SDP−ε. Observe
that the SDP solution ū′ia corresponds to a feasible SDP solution for the instance Ĩ ′ in which
the vectors for the variable x′wi

are ū′i1, . . . , ū′id. This SDP solution is well defined, since
(ū′i1, . . . , ū′id) = wi = wj = (ū′j1, . . . , ū′jd) if wi = wj . The value of the SDP solution ū′ia on
the instance I ′ equals the value of the corresponding SDP solution on Ĩ ′ since for every
constraint π(xi, xj) in I ′, we have a constraint π(x′wi

, x′wj
) in Ĩ ′, and the SDP value of the

constraint π is the same in instances I ′ and Ĩ ′: It is equal to
∑
ab π(a, b)〈ū′ia, ū′jb〉. Since the

optimal SDP value of the instance I ′ is at least SDP− ε, the value of the optimal solution
x∗wi

for I ′ is at least gap(SDP− ε) (by the definition of gap(·)). The value of the solution
xi = x∗wi

for the instance I ′ is the same as the value of the solution x∗wi
for Ĩ ′. If we omit the

normalization factor 1/|Π| in the definition of the value of a solution, then the value of the
solution xi for the instance I will be greater than or equal to the value of the solution xi for
the instance I ′, since the value of removed predicates – predicates in Π \Π′ – is nonnegative.
With the normalization, we get that the value of the solution xi for the original instance I is
lower bounded by (|Π′|/|Π|) · gap(SDP− ε) ≥ (1− ε)gap(SDP− ε) ≥ gap(SDP− ε)− ε.

6.3 Proof of Theorem 19
Proof. We describe an algorithm for constructing the set W and vectors ū′ia. The algorithm
works in three steps: At the first step, it embeds the original SDP solution ūia into a low
dimensional space using the Johnson–Lindenstrauss transform [25]. Denote the embedding of
the vector ūia by ϕ(ūia). At the second step, the algorithm slightly perturbs vectors ϕ(ūia),
so that the perturbed vectors ϕ′(ūia) satisfy all SDP constraints. At this step, the algorithm
also removes some predicates from the set Π. Finally, at the third step, the algorithm picks an
η-net (for sufficiently small η; η = ε/Cd) in the set of tuples (ϕ′(ūi1), . . . , ϕ′(ūid)) equipped
with the norm `2 ⊕∞ · · · ⊕∞ `2 and for every i finds wi ∈ W closest to (ϕ′(ūi1), . . . , ϕ′(ūid)).
It lets ū′ia be the a-th component of wi. We show that for most variables xi, xj and values
a, b ∈ D, 〈ū′ia, v̄′jb〉 ≈ 〈ūia, v̄jb〉, and hence the SDP value of the solution ū′ia approximately
equals the SDP value of the optimal SDP solution ūia. We describe each step of the algorithm
in detail below. We use the following notation in the proof: for every nonzero vector ū, let
ν(ū) = ū/‖ū‖. Let ν(0) = 0.

K. Makarychev and Y. Makarychev 317

Input: An SDP solution {ūia} of value SDP and a parameter ε ∈ (0, 1).
Output: A set W of size at most f(ε, d) and an SDP solution {ū′ia} of value at least SDP− ε
such that wi = (ū′i1, . . . , ū′id) ∈ W for each i.
1. Embed ūia into a low dimensional space using the Johnson–Lindenstrauss transform as

described in Section 6.3.1 and obtain vectors ϕ′(ūia).
2. Transform vectors ϕ(ūia) to vectors ϕ′(ūia) using the Gram–Schmidt process (see

Lemma 24) and the procedure from Lemma 25 with µ = d2(3d+1 d+ 1)η.
3. Find an η-net W in the set of all tuples (ϕ′(ūi1), . . . , ϕ′(ūid)). For each i, let wi be the

vector in W closest to (ϕ′(ūi1), . . . , ϕ′(ūid)) in the norm `2 ⊕∞ · · · ⊕∞ `2. Let ū′ia be the
a-th component of the tuple wi.

6.3.1 Step I: Johnson–Lindenstrauss Transform
We use the Johnson–Lindenstrauss lemma and two simple corollaries which we state now.

I Theorem 20 (Johnson–Lindenstrauss [25]). For every η ∈ (0, 1) and δ ∈ (0, 1), there exists
an integer m = O(log(1/δ)/ε2) and a family Φ of linear operators from Rn to Rm such that
for every ū ∈ Rn and a random ϕ ∈ Φ, we have

Pr
ϕ

(‖ū‖2 ≤ ‖ϕ(ū)‖2 ≤ (1 + η)‖ū‖2) ≥ 1− δ.

Moreover, a random operator ϕ can be sampled from Φ in randomized polynomial time.

I Corollary 21. For every η ∈ (0, 1), δ ∈ (0, 1) and every unit vector v̄0 ∈ Rn, there exists
an integer m = O(log(1/δ)/ε2) and a family Φ of linear operators from Rn to Rm such that
for every ū ∈ Rn and a random ϕ ∈ Φ, we have ‖ϕ(v̄0)‖ = 1 a.s. and

Pr
ϕ

((1− η)‖ū‖2 ≤ ‖ϕ(ū)‖2 ≤ (1 + η)‖ū‖2) ≥ 1− δ. (17)

Moreover, a random operator ϕ can be sampled from Φ in randomized polynomial time.

Proof. We simply let ϕ(ū) = ϕ̃(ū)/‖ϕ̃(v̄0)‖, where ϕ̃ is the random operator from Theorem 20.
J

I Corollary 22. For a random ϕ ∈ Φ from Corollary 21 we have: for every ū, v̄ ∈ Rn

Pr
ϕ

(〈ν(ū), ν(v̄)〉 − 3η ≤ 〈ϕ(ν(ū)), ϕ(ν(v̄))〉 ≤ 〈ν(ū), ν(v̄)〉+ 3η) ≥ 1− 4δ.

Proof. Consider ϕ from Corollary 21. Assume that ϕ preserves the lengths of vectors ν(ū),
ν(v̄), and (ν(ū) ± ν(v̄)) up to a factor (1 ± η) (as in Equation (17)). This happens with
probability at least 1− 4δ. We have

2〈ϕ(ν(ū)), ϕ(ν(v̄))〉 = ‖ϕ(ν(ū)) + ϕ(ν(v̄))‖2 − ‖ϕ(ν(ū))‖2 − ‖ϕ(ν(v̄))‖2

≥ (1− η) ‖ν(ū) + ν(v̄)‖2 − (1 + η) ‖ν(ū)‖2 − (1 + η) ‖ν(v̄)‖2

≥
(
‖ν(ū) + ν(v̄)‖2 − ‖ν(ū)‖2 − ‖ν(v̄)‖2

)
−

− η
(
‖ν(ū) + ν(v̄)‖2 + ‖ν(ū)‖2 + ‖ν(v̄)‖2

)
≥ 2〈ν(ū), ν(v̄)〉 − 6η.

By applying the bound above to vectors ū and −v̄, we get 〈ϕ(ν(ū)), ϕ(ν(v̄))〉 ≤ 〈ν(ū), ν(v̄)〉+
3η. J

Chapte r 11

318 Approximation Algorithms for CSPs

At the first step, the algorithm embeds vectors ūia into m = O(log(1/δ′)/ε2) dimensional
space for δ′ = η/(8d2) and η′ = η/6 using Corollary 22. We show that vectors ϕ(ūia) satisfy
the SDP constraint (14), almost satisfy SDP constraints (16), and almost preserve inner
products between vectors.

I Lemma 23.
1. For every i ∈ [n],

∑
a∈D ϕ(ūia) = ϕ(v0), and ‖ϕ(v0)‖ = 1 a.s.

2. For every i ∈ [n],

Pr
ϕ

(
|〈ν(ϕ(ūia)), ν(ϕ(ūib))〉| ≤ η for all a 6= b

)
≥ 1− η.

3. For all i, j ∈ [n],

Pr
ϕ

(
〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η for all a, b

)
≥ 1− η.

Proof. Item 1 holds because ϕ is a linear operator and
∑
a∈D ūia = v̄0. Then, for ev-

ery a 6= b, we have 〈ūia, ūib〉 = 0, and hence 〈ν(ūia), ν(ūib)〉 = 0. By Corollary 22,
|〈ϕ(ν(ūia)), ϕ(ν(ūib))〉| ≤ η/2 with probability at least 1 − η/d2 for each a 6= b, and, by
Corollary 21, ‖ϕ(ν(ūia))‖ ≥ 1− η/6 with probability 1− η/(4d2) for each a. Thus, for every
i ∈ V , with probability at least 1− η, we have for all a, b:

|〈ν(ϕ(ūia)), ν(ϕ(ūib))〉| =
|〈ϕ(ν(ūia)), ϕ(ν(ūib))〉|
‖ϕ(ν(ūia))‖ ‖ϕ(ν(ūia))‖ ≤

η/2
(1− η/6)2 < η.

Hence, item 2 holds. Similarly, for every i, j ∈ V , with probability at least 1− η, we have for
all a, b,

〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η‖ūia‖‖ūjb‖/2 ≥ 〈ūia, ūjb〉 − η/2,

and ‖ϕ(ūia)‖ ≤ (1 + η/6)‖ūia‖, ‖ϕ(ūjb)‖ ≤ (1 + η/6)‖ūjb‖. Consequently,

〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η

for all a, b with probability 1− η. Hence, item 3 holds. J

6.3.2 Step II: Fixing Violated SDP Constraints
Lemma 23 shows that vectors ϕ(ūia) satisfy SDP constraints (14) and almost satisfy con-
straints (15) and (16) as 〈ūia, ūjb〉 ≈ 〈ϕ(ūia), ϕ(ūjb)〉 for most i, j ∈ [n] and a, b ∈ D. At the
second step, the algorithm slightly perturbs vectors ϕ(ūia) to fix all SDP constraints. First,
the algorithm applies the Gram–Schmidt orthogonalization process (described in Lemma 24
below) to vectors ϕ(ūi1), . . . , ϕ(ūid) for each i ∈ [n] and obtains vectors ϕ⊥(ūi1), . . . , ϕ⊥(ūid)
that satisfy constraints (15). Then, the algorithm transforms vectors ϕ⊥(ūia) into vectors
ϕ′(ūia) using the procedure from Lemma 25 with µ = d2(3d+1 d + 1)η. This fixes most
constraints (16). The algorithm removes those predicates π ∈ Π for which the constraint (16)
is still violated. We denote obtained vectors by ϕ′(ūia) and the set of remained predicates
by Π′. We now state Lemma 24 and Lemma 25.

I Lemma 24 (Gram–Schmidt process). There exists a polynomial time algorithm that given
vectors v̄1, . . . , v̄d of length at most 1.5 returns vectors v̄′1, . . . , v̄′d such that (1) 〈v̄′a, v̄′b〉 = 0
for a 6= b, (2)

∑
a v̄a =

∑
a v̄
′
a, and (3) ‖v̄′a − v̄a‖ ≤ 3ddη, where η = maxa,b |〈ν(v̄a), ν(v̄b)〉|.

K. Makarychev and Y. Makarychev 319

I Lemma 25. There exists a polynomial-time algorithm that transforms any set of vectors
v̄ia satisfying the SDP constraints (14) and (15) into a set of vectors v̄′ia also satisfying SDP
constraints (14) and (15) for some unit vector v̄′0 such that 〈v̄′ia, v̄′jb〉 = (1−µ)〈v̄ia, v̄jb〉+µ/d2

for all i, j ∈ [n], i 6= j, a, b ∈ D, where µ ∈ [0, 1] is a parameter.

We first show that vectors ϕ′(ūia) satisfy all SDP constraints for the instance with predicates
Π′ and estimate the value of this SDP solution. Then, we prove Lemmas 24 and 25.

I Lemma 26. Vectors ϕ′(ūia) together with the vector v̄′0 = ϕ′(v0) satisfy all SDP constraints
for the set of predicates Π′. Further the expected value of the SDP solution ϕ′(ūia) is at least
(1 − 2µ)SDP, where SDP is the value of the solution ūia. The expectation is taken over a
random embedding ϕ ∈ Φ.

Proof of Lemma 26. First, observe that vectors ϕ′(ūia) satisfy all SDP constraints (16),
simply because we remove all predicates π(xi, xj) for which these constraints are violated.
By Lemma 25, vectors ϕ′(ūia) satisfy SDP constraints (14) and (15) if vectors ϕ⊥(ūia)
satisfy these constraints. By Lemma 23, item 1, we have

∑
a∈D ϕ(ūia) = ϕ(v0) for all

i. The Gram–Schmidt process preserves all sums
∑
a∈D ϕ(ūia) (by Lemma 24, item 2).

Hence, vectors ϕ⊥(ūia) satisfy SDP constraints (14). For every i, the Gram–Schmidt
process transforms vectors ūi1, . . . , ūid into orthogonal vectors; thus, ϕ⊥(ūia) satisfy SDP
constraints (15). This shows that vectors ϕ′(ūia) form a feasible SDP solution.

We now estimate the SDP value of the solution ϕ′(ūia). Let

Vη = {i ∈ [n] : |〈ν(ϕ(ūia)), ν(ϕ(ūib))〉| ≤ η for a 6= b; and ‖ϕ(ūia)‖2 ≤ 1.5 for all a};
Πη = {π(xi, xj) ∈ Π : 〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūib〉 − η for a, b ∈ D; i, j ∈ Vη}.

By Lemma 23, the sets Vη and Πη contain almost all variables and predicates, respectively.
Specifically, for every i, Pr(i ∈ Vη) ≥ 1−2η; for all π(xi, xj) ∈ Π, Pr(π(xi, xj) ∈ Πη) ≥ 1−5η.
We show that for all π(xi, xj) ∈ Πη, SDP constraints (16) are satisfied, and, thus, Πη ⊂ Π′.
We use the following simple claim.

I Claim 27. Consider four vectors v̄1, v̄2 and v̄′1, v̄′2. Suppose that ‖v̄1−v̄′1‖ ≤ η, ‖v̄2−v̄′2‖ ≤ η,
and ‖v̄′1‖, ‖v̄′2‖ ≤ 1 for some positive η < 1, then 〈v̄′1, v̄′2〉 ≥ 〈v̄1, v̄2〉 − 3η.

Proof. We have 〈v̄1, v̄2〉 =
〈
v̄′1 − (v̄′1 − v̄1), v̄′2 − (v̄′2 − v̄2)

〉
≥ 〈v̄′1, v̄′2〉 − ‖v̄′1 − v̄1‖ ‖v̄′2‖ −

‖v̄′1‖ ‖v̄′2 − v̄2‖ − ‖v̄′1 − v̄1‖‖v̄′2 − v̄2‖ ≥ 〈v̄′1, v̄′2〉 − 3η. J

By the definition of Πη, we have 〈ϕ(ūia), ϕ(ūjb)〉 ≥ 〈ūia, ūjb〉 − η. By Lemma 24, item 3,
and Claim 27, we have 〈ϕ⊥(ūia), ϕ⊥(ūjb)〉 ≥ 〈ϕ(ūia), ϕ(ūjb)〉 − 3ddη. Then, by Lemma 25,
〈ϕ′(ūia), ϕ′(ūjb)〉 = (1 − µ)〈ϕ⊥(ūia), ϕ⊥(ūjb)〉+ µ/d2. Putting these inequalities together,
we get

〈ϕ′(ūia), ϕ′(ūjb)〉 ≥ (1− µ)〈ūia, ūib〉 − (3d+1 d+ 1)η + µ/d2 = (1− µ)〈ūia, ūib〉. (18)

Here, we used that µ/d2 = (3d+1 d+ 1)η. Equation (18) implies that SDP constraints (16)
are satisfied for vectors ϕ′(ūia).

We now estimate the value of the SDP solution. For every predicate π(xi, xj) in Πη, we
have∑

a,b∈D

π(a, b)〈ϕ′(ūia), ϕ′(ūjb)〉 ≥ (1− µ)
∑
a,b∈D

π(a, b)〈ūia, ūjb〉.

Every predicate π(xi, xj) in Π belongs to Π′ with probability at least (1 − 5η). Thus the
expected SDP value for vectors ϕ′(ūia) is at least (|Π|/|Π′|) (1−5η)(1−µ)SDP ≥ (1−2µ)SDP.

Chapte r 11

320 Approximation Algorithms for CSPs

The multiplicative factor (|Π|/|Π′|) ≥ 1 is due to the normalization factor 1/|Π| in the SDP
objective. This finishes the proof of Lemma 26. J

Proof of Lemma 24. In the proof, we denote the projection of a vector v̄ to a non-zero
vector ū by projū v̄:

projū v̄ = 〈ū, v̄〉
‖ū‖2

ū = 〈v̄, ν(ū)〉ν(ū).

As before ν(ū) = ū/‖ū‖ for ū 6= 0. Observe that projū v̄ is collinear with ū; and (v̄ − projū v̄)
is orthogonal to ū.

We describe an algorithm that transforms vectors v̄1, . . . v̄d to orthogonal vectors v̄′1, . . . , v̄′d.
The algorithm works in d iterations. After iteration t, it obtains a set of vectors v̄1(t), . . . , v̄d(t)
satisfying the following properties: (1′) 〈v̄a(t), v̄b(t)〉 = 0 for a, b ≤ t, and a 6= b, (2′)∑
a v̄a(t) =

∑
a v̄a, (3′) ‖ν(v̄a(t))− ν(v̄a)‖ ≤ 3aη for a ≤ t and v̄a(t) = v̄a for a > t, and (4′)

‖v̄a(t)− v̄a‖ ≤ 3tη for all a. The algorithm returns vectors v̄′a = v̄a(d). Note that the desired
conditions (1)–(3) follow from the conditions (1′)–(4′) on vectors v̄a(d). At the first iteration,
we set v̄a(1) = v̄a for all a. At iteration t ≥ 2, we let

v̄t(t) = v̄t(t− 1)−
∑
a<t

projv̄a(t−1) v̄t(t− 1); (19)

v̄b(t) = v̄b(t− 1) + projv̄b(t−1)(v̄t(t− 1)− v̄t(t))
)

for b < t; (20)

v̄b(t) = v̄t(t− 1) for b > t. (21)

We prove by induction that properties (1′)–(4′) hold. It is easy to see that the properties
hold for vectors v̄a(0), since v̄a(0) = v̄a. Consider t > 1. Observe that vectors v̄a(t) are
collinear with vectors v̄a(t − 1) for a < t and v̄a(t) = v̄a(t − 1) for a > t. The only vector
that changes the direction is the vector v̄t(t). The sum

∑
a<t projv̄a(t−1) v̄t(t− 1) equals the

projection of the vector v̄t(t− 1) to the span of orthogonal vectors v̄1(t− 1), . . . , v̄t−1(t− 1).
Hence, v̄t(t) is orthogonal to v̄1(t− 1), . . . , v̄t−1(t− 1), and, also, to vectors v1(t), . . . , v̄t−1(t),
which are collinear with v̄1(t− 1), . . . , v̄t−1(t− 1). Thus, property (1′) holds for t. The sum
of vectors on the left hand side of (19–21) equals the sum of vectors on the right hand side
of (19–21). Thus, property (2′) holds. For all a 6= t, we have ν(v̄a(t)) = ν(v̄a(t− 1)). So we
need to check (3′) only for a = t. Since v̄t(t− 1) = vt and ν(v̄t(t− 1)) = ν(v̄t), we get

‖v̄t(t)− v̄t‖ = ‖
∑
b<t

projv̄b(t) v̄t‖ = ‖
∑
b<t

〈ν(v̄b(t)), v̄t〉 ν(v̄b(t))‖ ≤
∑
b<t

|〈ν(v̄b(t)), v̄t〉|

=
∑
b<t

(
|〈ν(v̄b), v̄t〉|+ |〈ν(v̄b(t))− ν(v̄b), v̄t〉|

)
≤
∑
b<t

(
|〈ν(v̄b), ν(v̄t)〉| · ‖v̄t‖+ ‖ν(v̄b(t))− ν(v̄b)‖ ‖v̄t‖|

)
≤ ‖v̄t‖ ·

∑
b<t

(
|〈ν(v̄b), ν(v̄t)〉|+ ‖ν(v̄b(t))− ν(v̄b)‖

)
.

We now upper bound |〈ν(v̄b), ν(v̄t)〉| ≤ η and ‖ν(v̄b(t)) − ν(v̄b)‖ ≤ 3bη and obtain the
following inequality:

‖v̄t(t)− v̄t‖ ≤
∑
b<t

(η + 3bη)‖v̄t‖ =
(
(t− 1) + (3t − 3)/2

)
η‖v̄t‖ ≤ 0.6 · 3tη‖v̄t‖. (22)

The last inequality can be easily verified numerically. Let α be the angle between v̄t(t) and
v̄t. The formula above shows that sin(α) = ‖v̄t(t) − v̄t‖/‖v̄t‖ ≤ 0.6 · 3dη. Observe that

K. Makarychev and Y. Makarychev 321

‖ν(v̄t(t))− ν(v̄t)‖ = 2 sin(α/2) and 2 sin(α/2) = sin(α)/ cos(α/2) < 3d, since cos(α/2) > 0.6,
if sinα < 1/3. This proves property (3′).

Finally, property (4′) holds, since for a < t, ‖v̄a(t)− v̄a(t−1)‖ = |〈v̄t(t)− v̄t(t−1), ν(v̄a(t−
1))〉| ≤ 3tη by (22); ‖v̄t(t)− v̄t(t−1)‖ ≤ 3tη also by (22); and for a > t, v̄a(t) = v̄a(t−1). J

Proof of Lemma 25. Observe that it is sufficient to prove Lemma 25 for µ∗ = 1: If vectors
z̄ia satisfy the conditions of this lemma for µ∗ = 1, then vectors v̄′ia =

√
1− µ v̄ia ⊕

√
µ z̄ia

satisfy the conditions of the lemma for any µ (with v̄′0 =
∑
a v̄
′
ia, which does not depend

on i). Here ⊕ denotes the direct sum. This follows from the following identity: 〈v̄′ia, v̄′jb〉 =
(1− µ)〈v̄ia, v̄jb〉+ µ〈z̄ia, z̄jb〉.

To construct vectors z̄ia, consider the random assignment algorithm. The algorithm
independently assigns a random value from D to every variable xi. Let xrndia be the indicator
random variable of the event that the algorithm sets xi = a. The random variables xrndia

lie in the L2 space equipped with the standard inner product 〈xrndia , xrndjb 〉 = E[xrndia xrndjb].
It easy to see that ‖xrndia ‖2 = 1/d, 〈xrndia , xrndjb 〉 = 1/d2 for i 6= j, 〈xrndia , xrndib 〉 = 0 for a 6= b.
Furthermore,

∑
a x

rnd
ia = 1 for every i. We isometrically embed xrndia from L2 into `2 and

obtain vectors z̄ia. J

6.3.3 Step III: Rounding to a η-Net
At the last step, the algorithm picks an η-net in the set of all tuples (ϕ′(ūi1), . . . , ϕ′(ūid))
equipped with the norm `2 ⊕∞ · · · ⊕∞ `2. In this norm, the distance between two tuples
(ϕ′(ūi1), . . . , ϕ′(ūid)) and (ϕ′(ūj1), . . . , ϕ′(ūjd)) equals maxa∈D ‖ϕ′(ūia) − ϕ′(ūja)‖2. We
denote the η-net by W. The size of an η-net in the m-dimensional space, where all vectors
ϕ′(ūia) lie, is upper bounded by (1 + 2/η)m. Thus the size of W is upper bounded by
(1 + 2/η)md. This number, (1 + 2/η)md, depends on m, d and η, which in turn depend only
on ε and d. For each i ∈ [n], the algorithm picks wi ∈ W closest to (ϕ′(ūi1), . . . , ϕ′(ūid)),
sets ū′ia to be the a-th component of wi, and outputs all vectors ū′ia.

Observe that for each i there is a j such that ū′ia = ϕ′(ūja) for all a. Thus, vectors
ū′ia satisfy all SDP constraints. We need to lower bound the SDP value of the solution
ū′ia. Note that for each i and a, ‖ūia − ϕ′(ūia)‖ ≤ η, since W is an η-net. By Claim 27,
〈ū′ia, ū′jb〉 ≥ 〈ϕ′(ūia), ϕ′(ūjb)〉−3η. Thus, the value of the SDP solution u′ia is at least the value
of the SDP solution for ϕ′(ūia) minus 3d2η. Thus, it is lower bounded by (1−2µ)SDP−3d2η ≥
SDP− d2(3d+1 d+ 4)η, where SDP is the SDP value of the solution ūia. This finishes the
proof of Theorem 20. J

7 Open Problems

The most important open problem in the field is to prove or disprove the Unique Games
Conjecture. Here, we list some other interesting open problems.

I Open Problem 1. Close the gap between the known approximation factors and hardness
results for the following problems: Max 2-And, Max SAT, Multiway Cut.

I Open Problem 2. We know that the best possible approximation factor for Max k-And
and all Boolean k-CSPs is ckk/2k, where ck = Θ(1). Find the limit of ck as k →∞.

Austrin and Mossel [6] and Chan [11] showed that ck ≤ 1 + o(1). We conjecture that
this upper bound is tight, ck = 1 ± o(1), and, moreover, the algorithm from [40] has an
approximation factor of (1− o(1))k/2k.

Chapte r 11

322 Approximation Algorithms for CSPs

I Open Problem 3. Prove or disprove that the currently best known approximation factor
of Ω(dmax(k, log d)/dk) for k-CSP(d) is asymptotically optimal. It is known that this
approximation factor is optimal when d = Ω(k) [11].

I Open Problem 4. Suppose that the integrality gap of a minimization k-CSP Λ is αn (αn
may depend on the number of variables n). Does there exist a polynomial-time algorithm
with an approximation factor (1 + ε)αn for every positive ε?

References

1 Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev. O(
√

logn)
approximation algorithms for Min UnCut, Min 2CNF Deletion, and directed cut problems.
In Proceedings of the Symposium on Theory of Computing, pages 573–581, 2005. doi:
10.1145/1060590.1060675.

2 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. In In Proceedings of the Symposium on Foundations of Com-
puter Science, pages 563–572, 2010. doi:10.1109/FOCS.2010.59.

3 Sanjeev Arora, Rong Ge, and Ali Kemal Sinop. Towards a better approximation for sparsest
cut? In Proceedings of the Foundations of Computer Science, pages 270–279, 2013.

4 Sanjeev Arora, Subhash A. Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and
Nisheeth K. Vishnoi. Unique games on expanding constraint graphs are easy. In Proceedings
of the Symposium on Theory of Computing, pages 21–28, 2008. doi:10.1145/1374376.
1374380.

5 Per Austrin. Towards sharp inapproximability for any 2-CSP. SIAM Journal on Computing,
39(6):2430–2463, 2010.

6 Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise inde-
pendence. Computational Complexity, 18(2):249–271, 2009.

7 Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved approximation algorithms for Max
NAE-SAT and Max SAT. In Approximation and Online Algorithms, pages 27–40. Springer,
2005.

8 Nikhil Bansal, Uriel Feige, Robert Krauthgamer, Konstantin Makarychev, Viswanath Na-
garajan, Joseph Naor, and Roy Schwartz. Min-max graph partitioning and small set ex-
pansion. In FOCS, pages 17–26, 2011.

9 Niv Buchbinder, Joseph Seffi Naor, and Roy Schwartz. Simplex partitioning via exponential
clocks and the multiway cut problem. In Proceedings of the Symposium on Theory of
Computing, pages 535–544, 2013.

10 Gruia Călinescu, Howard Karloff, and Yuval Rabani. An improved approximation algorithm
for multiway cut. In Proceedings of the Symposium on Theory of Computing, pages 48–52,
1998.

11 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Proceed-
ings of the Symposium on Theory of Computing, pages 447–456. ACM, 2013.

12 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for unique games. In Proceedings of the Symposium on Theory of Computing, pages 205–214,
2006. doi:10.1145/1132516.1132547.

13 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for maximum constraint satisfaction problems. ACM Transactions on Algorithms (TALG),
5(3):32, 2009.

14 Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique games
using embeddings. In Proceedings of the Symposium on Foundations of Computer Science,
pages 687–696, 2006.

http://dx.doi.org/10.1145/1060590.1060675
http://dx.doi.org/10.1145/1060590.1060675
http://dx.doi.org/10.1109/FOCS.2010.59
http://dx.doi.org/10.1145/1374376.1374380
http://dx.doi.org/10.1145/1374376.1374380
http://dx.doi.org/10.1145/1132516.1132547

K. Makarychev and Y. Makarychev 323

15 Miroslav Chlebík and Janka Chlebíková. On approximation hardness of the Minimum
2SAT-Deletion problem. In Proceedings of the International Symposium on Mathematical
Foundations of Computer Science, pages 263–273, 2004.

16 Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou, Paul D. Seymour, and
Mihalis Yannakakis. The Complexity of Multiterminal Cuts. SIAM Journal on Computing,
23:864–894, 1994. doi:10.1137/S0097539792225297.

17 Ari Freund and Howard Karloff. A lower bound of 8/(7+ 1k- 1) on the integrality ratio of
the călinescu–karloff–rabani relaxation for multiway cut. Information Processing Letters,
75(1):43–50, 2000.

18 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for Max-
imum Cut and Satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, 1995.

19 Anupam Gupta and Kunal Talwar. Approximating unique games. In Proceedings of the
Symposium on Discrete Algorithm, pages 99–106, 2006.

20 Venkatesan Guruswami, Johan Håstad, Rajsekar Manokaran, Prasad Raghavendra, and
Moses Charikar. Beating the random ordering is hard: Every ordering CSP is approxima-
tion resistant. SIAM Journal on Computing, 40(3):878–914, 2011.

21 Venkatesan Guruswami and Euiwoong Lee. Complexity of approximating csp with bal-
ance/hard constraints. In Proceedings of the Conference on Innovations in Theoretical
Computer Science, pages 439–448, 2014.

22 Venkatesan Guruswami and Yuan Zhou. Tight bounds on the approximability of almost-
satisfiable horn sat and exact hitting set. In Proceedings of the Symposium on Discrete
Algorithms, pages 1574–1589, 2011.

23 Johan Håstad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

24 Johan Håstad, Sangxia Huang, Rajsekar Manokaran, Ryan O’Donnell, and John Wright.
Improved NP-Inapproximability for 2-Variable Linear Equations. In Approximation, Ran-
domization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 341–360. Schloss Dagstuhl – Leibniz-Zentrum
fuer Informatik, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.341.

25 William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a
Hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

26 David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by semidef-
inite programming. Journal of the ACM (JACM), 45(2):246–265, 1998.

27 David R Karger, Philip Klein, Cliff Stein, Mikkel Thorup, and Neal E Young. Rounding al-
gorithms for a geometric embedding of minimum multiway cut. Mathematics of Operations
Research, 29(3):436–461, 2004.

28 Howard Karloff and Uri Zwick. A 7/8-approximation algorithm for MAX 3SAT? In Pro-
ceedings of the Foundations of Computer Science, pages 406–415, 1997.

29 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
Symposium on Theory of Computing, pages 767–775, 2002.

30 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxima-
bility results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357,
2007.

31 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2−ε.
In IEEE Conference on Computational Complexity, pages 379–386, 2003.

32 Guy Kindler, Alexandra Kolla, and Luca Trevisan. Approximation of non-boolean 2CSP.
In Proceedings of the Symposium on Discrete Algorithms, pages 1705–1714, 2016.

Chapte r 11

http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.341

324 Approximation Algorithms for CSPs

33 Alexandra Kolla, Konstantin Makarychev, and Yury Makarychev. How to play unique
games against a semi-random adversary: Study of semi-random models of unique games.
In Proceedings of the Symposium on Foundations of Computer Science, pages 443–452,
2011.

34 Robert Krauthgamer, Joseph Seffi Naor, and Roy Schwartz. Partitioning graphs into bal-
anced components. In Proceedings of the Symposium on Discrete Algorithms, pages 942–949,
2009.

35 Michael Langberg, Yuval Rabani, and Chaitanya Swamy. Approximation algorithms for
graph homomorphism problems. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 176–187. Springer, 2006.

36 Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques for the MAX
2-SAT and MAX DI-CUT problems. In Integer Programming and Combinatorial Optimiza-
tion, pages 67–82. Springer, 2002.

37 Anand Louis and Konstantin Makarychev. Approximation algorithm for sparsest k-
partitioning. In Proceedings of the Symposium on Discrete Algorithms, pages 1244–1255,
2014.

38 Anand Louis and Yury Makarychev. Approximation Algorithms for Hypergraph Small Set
Expansion and Small Set Vertex Expansion. In Approximation, Randomization, and Combi-
natorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, September
4-6, 2014, Barcelona, Spain, volume 28 of Leibniz International Proceedings in Informat-
ics (LIPIcs), pages 339–355. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2014.
doi:10.4230/LIPIcs.APPROX-RANDOM.2014.339.

39 Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders. In
Approximation and Online Algorithms, volume 6534 of Lecture Notes in Computer Science,
pages 190–200. Springer Berlin / Heidelberg, 2011.

40 Konstantin Makarychev and Yury Makarychev. Approximation algorithm for non-Boolean
Max k-CSP. Theory of Computing, 10(13):341–358, 2014.

41 Konstantin Makarychev and Yury Makarychev. Nonuniform graph partitioning with un-
related weights. In Proceedings of the International Colloquium on Automata, Languages,
and Programming, pages 812–822, 2014.

42 Rajsekar Manokaran, Joseph Seffi Naor, Prasad Raghavendra, and Roy Schwartz. Sdp gaps
and ugc hardness for multiway cut, 0-extension, and metric labeling. In Proceedings of the
fortieth annual ACM symposium on Theory of computing, pages 11–20, 2008.

43 Pasin Manurangsi, Preetum Nakkiran, and Luca Trevisan. Near-optimal UGC-hardness of
approximating Max k-CSPr. In Proceedings of the Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (to appear), 2016.

44 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP?
In Proceedings of the Symposium on Theory of Computing, pages 245–254, 2008. doi:
10.1145/1374376.1374414.

45 Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Proceedings of the Symposium on Theory of Computing, pages 755–764, 2010. doi:
10.1145/1806689.1806792.

46 Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the Symposium on Theory of Computing,
pages 191–199, 2000.

47 Ankit Sharma and Jan Vondrák. Multiway cut, pairwise realizable distributions, and de-
scending thresholds. In Proceedings of the Symposium on Theory of Computing, pages
724–733, 2014.

48 Luca Trevisan. Approximation algorithms for unique games. In Proceedings of the Sympo-
sium on Foundations of Computer Science, pages 197–205, 2005.

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/1806689.1806792
http://dx.doi.org/10.1145/1806689.1806792

K. Makarychev and Y. Makarychev 325

49 Jiawei Zhang, Yinyu Ye, and Qiaoming Han. Improved approximations for Max set splitting
and Max NAE SAT. Discrete Applied Mathematics, 142(1):133–149, 2004.

50 Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the Symposium on
Theory of Computing, pages 551–560, 1998.

51 Uri Zwick. Computer assisted proof of optimal approximability results. In Proceedings of
the Symposium on Discrete Algorithms, pages 496–505, 2002.

Chapte r 11

	Introduction
	Overview of Known Results for CSPs
	Organization

	Boolean CSPs or Arity 2: Max Cut and Max 2-SAT
	Unique Games
	SDP Relaxation
	Orthogonal Separators – Overview
	Approximation Algorithm
	Orthogonal Separators – Proofs
	Gaussian Distribution

	CSPs of Higher Arities
	Minimum Multiway Cut
	Universal Rounding Algorithm
	SDP Relaxation for k-CSPs with k > 2
	Rounding Algorithm for 2-CSPs with Nonnegative Predicates
	Proof of Theorem 19
	Step I: Johnson–Lindenstrauss Transform
	Step II: Fixing Violated SDP Constraints
	Step III: Rounding to a eta-net

	Open Problems

