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Abstract
We consider the problem of delivering m messages between specified source-target pairs in an
undirected graph, by k mobile agents initially located at distinct nodes of the graph. Each
edge has a designated length and each agent consumes energy proportional to the distance it
travels in the graph. We are interested in optimizing the total energy consumption for the team
of agents. Unlike previous related work, we consider heterogeneous agents with different rates
of energy consumption (weights wi). To solve the delivery problem, agents face three major
challenges: Collaboration (how to work together on each message), Planning (which route to
take) and Coordination (how to assign agents to messages).

We first show that the delivery problem can be 2-approximated without collaborating and that
this is best possible, i.e., we show that the benefit of collaboration is 2 in general. We also show
that the benefit of collaboration for a single message is 1/ ln 2 ≈ 1.44. Planning turns out to be
NP-hard to approximate even for a single agent, but can be 2-approximated in polynomial time
if agents have unit capacities and do not collaborate. We further show that coordination is NP-
hard even for agents with unit capacity, but can be efficiently solved exactly if they additionally
have uniform weights. Finally, we give a polynomial-time (4 max wi

wj
)-approximation for message

delivery with unit capacities.
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10:2 Energy-Efficient Delivery by Heterogeneous Mobile Agents

1 Introduction

Recent technological progress in robotics allows the mass production of inexpensive mobile
robots which can be used to perform a variety of tasks autonomously without the need
for human intervention. This gives rise to a variety of algorithmic problems for teams of
autonomous robots, hereafter called mobile agents. We consider here the delivery problem of
moving some objects or messages between various locations. A mobile agent corresponds
to an automated vehicle that can pick up a message at its source and deliver it to the
intended destination. In doing so, the agent consumes energy proportional to the distance
it travels. Our goal is to design a centralized algorithm for the agents such that the total
energy consumed is minimized.

In general the agents may not be all identical; some may be more energy efficient than
others if they use different technologies or different sources of power. We assume each agent
has a given weight which is the rate of energy consumption per unit distance traveled by this
agent (here we use the term weights, since the rates are weights of the objective function).
Moreover, the agents may start from distinct locations. Thus it may be sometimes efficient
for an agent to carry the message to some intermediate location and hand it over to another
agent which carries it further towards the destination. On the other hand, an agent may
carry several messages at the same time. Finding an optimal solution that minimizes the
total energy cost involves scheduling the moves of the agents and the points where they pick
up or handover the messages. We study this problem (called WeightedDelivery) for a
graph G which connects all sources and destinations. The objective is to deliver m messages
between specific source-target pairs using k agents located in arbitrary nodes of G. Note that
this problem is distinct from the connectivity problems on graphs or network flow problems
since the initial location of the agents are in general different from the sources where the
messages are located, which means we need to consider the cost of moving the agents to the
sources in addition to the cost of moving the messages. Furthermore, there is no one-to-one
correspondence between the agents and the messages in our problem.

Previous approaches to energy-efficient delivery of messages by agents have focused on
a bottleneck where the agents have limited energy (battery power) which restricts their
movements [1, 8]. The decision problem of whether a single message can be delivered without
exceeding the available energy for any agent is known as the DataDelivery problem [9] or
the BudgetedDelivery problem [4] and it was shown to be weakly NP-hard on paths [9] and
strongly NP-hard on planar graphs [4].

Our Model. We consider an undirected graph G = (V,E). Each edge e ∈ E has a cost (or
length) denoted by le. The length of a simple path is the sum of the lengths of its edges.
The distance between nodes u and v is denoted by dG(u, v) and is equal to the length of
the shortest path from u to v in G. There are k mobile agents denoted by a1, . . . ak and
having weights w1, . . . wk. These agents are initially located on arbitrary nodes p1, . . . , pk of
G. We denote by d(ai, v) the distance from the initial location of ai to node v. Each agent
can move along the edges of the graph. Each time an agent ai traverses an edge e it incurs
an energy cost of wi · le. Furthermore there are m pairs of (source, target) nodes in G such
that for 1 ≤ i ≤ m, a message has to be delivered from source node si to a target node ti.
A message can be picked up by an agent from any node that it visits and it can be carried
to any other node of G, and dropped there. The agents are given a capacity κ which limits
the number of messages an agent may carry simultaneously. There are no restrictions on
how much an agent may travel. We denote by dj the total distance traveled by the j-th
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An optimal, feasible schedule:
u (a1, s1,m1,+), (a2, s2,m2,+), (a1, u ,m1,−),

(a2, u ,m2,−), (a1, u ,m2,+), (a1, t2,m2,−),
(a2, u ,m1,+), (a2, t1,m1,−)

Figure 1 Example of an optimal, feasible schedule for two messages and two agents.

agent. WeightedDelivery is the optimization problem of minimizing the total energy∑k
j=1 wj · dj needed to deliver all messages.
A schedule S describes the actions of all agents as a sequence (ordered list) of pick-up

actions (aj , p,mi,+) and drop-off actions (aj , q,mi,−), where each such tuple denotes the
action of agent aj moving from its current location to node p (node q) where it picks up
message mi (drops message mi, respectively). A schedule S implicitly encodes all the pick-up
and drop-off times and it is easy to compute its total energy use of cost(S) :=

∑k
j=1 wjdj .

We denote by S|aj
the subsequence of all actions carried out by agent aj and by S|mi

the
subsequence of all actions involving pick-ups or drop-offs of message mi. We call a schedule
feasible if every pick-up action (_, p,mi,+), p 6= si, is directly preceded by a drop-off action
(_, p,mi,−) in S|mi and if all the messages get delivered, see Figure 1.

Our Contribution. Solving WeightedDelivery naturally involves simultaneously solving
three subtasks, collaboration, individual planning, and coordination: First of all, if multiple
agents work on the same message, they need to collaborate, i.e., we have to find all intermediate
drop-off and pick-up locations of the message. Secondly, if an agent works on more than
one message, we have to plan in which order it wants to approach its subset of messages.
Finally, we have to coordinate which agent works on which subset of all messages (if they
do this without collaboration, the subsets form a partition, otherwise the subsets are not
necessarily pairwise disjoint). Even though these three subtasks are interleaved, we investigate
collaboration, planning and coordination separately in the next three sections. This leads us
to a polynomial-time approximation algorithm for WeightedDelivery, given in Section 5.

In Section 2 we consider the Collaboration aspect of WeightedDelivery. We first
present a polynomial time solution for WeightedDelivery when there is only a single
message (m = 1). The algorithm has complexity O(|V |3) irrespective of the number of
agents k. In general, we show that any algorithm that only uses one agent for delivering
every message cannot achieve an approximation ratio better than what we call the benefit of
collaboration (BoC) which is at least 1/ ln ((1 + 1/(2m))m (1 + 1/(2m+ 1))). We show this
to be tight for m = 1 (where BoC ≥ 1/ ln 2) and m→∞ (where BoC → 2).

In Section 3 we look at the Planning aspect of WeightedDelivery. Individual planning
by itself turns out to be NP-hard on planar graphs and NP-hard to approximate within a
factor of less than 367

366 . On the positive side, we give approximation guarantees for restricted
versions of WeightedDelivery which turn out to be useful for the analysis in Section 5.

In Section 4 we study the Coordination aspect of WeightedDelivery. Even if collabor-
ation and planning are taken care of (i.e., a schedule is fixed except for the assignment of
agents to messages), Coordination also turns out to be NP-hard even on planar graphs. The
result holds for any capacity, including κ = 1. This setting, however, becomes tractable if
restricted to uniform weights of the agents.

In Section 5 we give a polynomial-time approximation algorithm for WeightedDelivery
with an approximation ratio of 4 ·max wi

wj
for κ = 1. Due to the limited space, some proofs

are omitted, but can be found in the full version of the paper [6].
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10:4 Energy-Efficient Delivery by Heterogeneous Mobile Agents

Related Work. The problem of communicating or transporting goods between sources
and destinations in a graph has been well studied in a variety of models with different
optimization criteria. The problem of finding the smallest subgraph or tree that connects
multiple sources and targets in a graph is called the point-to-point connection problem and
is known to be NP-hard [25]. The problem is related to the more well-known generalized
Steiner tree problem [28] which is also NP-hard. Unlike these problems, the maximum flow
problem in a network [14], puts a limit on the number of messages that can be transported
over an edge, which makes the problem easier allowing for polynomial time solutions. In all
these problems, however, there are no agents carrying the messages as in our problem.

For the case of a single agent moving in a graph, the task of optimally visiting all nodes,
called the Traveling salesman problem or visiting all edges, called the Chinese postman
problem have been studied before. The former is known to be NP-hard [2] while the latter
can be solved in O(|V |2|E|) time [13]. For metric graphs, the traveling salesman problem has
a polynomial-time 3

2 -approximation for tours [10] and for paths with one fixed endpoint [18].
For multiple identical agents in a graph, Demaine et al. [12] studied the problem of moving
the agents to form desired configurations (e.g. connected or independent configurations) and
they provided approximation algorithms and inapproximability results. Bilo et al. [7] studied
similar problems on visibility graphs of simple polygons and showed many motion planning
problems to be hard to approximate.

Another optimization criteria is to minimize the maximum energy consumption by any
agent, which requires partitioning the given task among the agents. Frederickson et al. [17]
studied this for uniform weights and called it the k-stacker-crane problem and they gave
approximation algorithms for a single agent and multiple agents. Also in this minmax context,
the problem of visiting all the nodes of a tree using k agents starting from a single location
is known to be NP-hard [16]. Anaya et al. [1] studied the model of agents having limited
energy budgets. They presented hardness results (on trees) and approximation algorithms
(on arbitrary graphs) for the problem of transferring information from one agent to all others
(Broadcast) and from all agents to one agent (Convergecast). For the same model, message
delivery between a single s-t node pair was studied by Chalopin et al. [8, 9, 4] as mentioned
above. A recent paper [11] shows that these three problems remain NP-hard for general
graphs even if the agents are allowed to exchange energy when they meet.

2 Collaboration

In this section, we examine the collaboration of agents: Given for each message mi all the
agents ai1, ai2, . . . , aix which at some point carry the message, we need to find all pick-
up and drop-off locations (handovers) h1, . . . , hy for the schedule entries (ai1,_,mi,+),
(ai1,_,mi,−), . . . , (aix,_,mi,−). Note, that in general we can have more than two action
quadruples (aij ,_,mi,+/−) per agent aij . When there is only a single message overall
(m = 1), we will use a structural result to tie together WeightedDelivery and Collaboration.
For multiple messages, however, this no longer holds: In this case, we analyze the benefit we
lose if we forgo collaboration and deliver each message with a single agent.

2.1 An Algorithm for WeightedDelivery of a Single Message
I Lemma 1. In any optimal solution to WeightedDelivery for a single message, if the
message is delivered by agents with weights w1, w2, . . . wk, in this order, then
(i) wi ≥ wj whenever i < j, and
(ii) without loss of generality, wi 6= wj for i 6= j.
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Figure 2 Lower bound construction for the benefit of collaboration.

Hence there is an optimal schedule S in which no agent aj has more than one pair of
pick-up/drop-off actions.

I Theorem 2. An optimal solution of WeightedDelivery of a single message in a graph
G = (V,E) with k ≤ |V | agents can be found in O(|V |3) time.

Proof. We use the properties of Lemma 1 to create an auxiliary graph on which we run
Dijkstra’s algorithm for computing a shortest path from s to t. Given an original instance of
single-message WeightedDelivery consisting of the graph G = (V,E), with s, t ∈ V , we
obtain the auxiliary, directed graph G′ = (V ′, E′) as follows:

For each node v ∈ V and each agent ai, there is a node vai
in G′.

Furthermore G′ contains two additional vertices s and t.
For 1 ≤ i ≤ k, there is an arc (s, sai

) of cost wi · dG(pi, s) and an arc (tai
, t) of cost 0.

For (u, v) ∈ E and 1 ≤ i ≤ k, there are two arcs (uai , vai) and (vai , uai) of cost wi · l(u,v).
For u ∈ V and agents ai, aj with wi > wj , there is an arc (uai

, uaj
) of cost wj · dG(pj , u).

Note that any solution to the WeightedDelivery that satisfies the properties of Lemma 1
corresponds to some s-t-path in G′ such that the cost of the solution is equal to the length of
this path in G′ and vice versa. This implies that the length of the shortest s-t path in G′ is the
cost of the optimal solution for WeightedDelivery in G. Assuming that k ≤ |V |, the graph
G′ has |V | · k + 2 ∈ O(|V |2) vertices and at most 2k + (k2|V |+ |V |2k)/2− |V | · k ∈ O(|V |3)
arcs. The edge-costs of the graph G′ can be computed in O(|V |3) time if we use the Floyd
Warshall all pair shortest paths algorithm [15, 27] in G. Finally, we compute the shortest
path from s to t in G′ in time O(|V |3), using Dijkstra’s algorithm with Fibonacci heaps. J

Unfortunately, the structural properties of Lemma 1 do not extend to multiple messages.
In the next two subsections we investigate how the quality of an optimal solution changes if
we only allow every message to be transported by one agent. Different messages may still
be transported by different agents and one agent may also transport multiple messages at
the same time as long as the number of messages is at most the capacity κ. To this end we
define the Benefit of Collaboration as the cost ratio between an optimal schedule Opt and a
best-possible schedule without collaboration S, BoC = minS cost(S)/cost(Opt).

2.2 Lower Bound on the Benefit of Collaboration
I Theorem 3. On instances of WeightedDelivery with agent capacity κ and m messages,
an algorithm using one agent for delivering every message cannot achieve an approximation
ratio better than 1/ ln ((1 + 1/(2r))r (1 + 1/(2r + 1))), where r := min{κ,m}.

Proof. Consider the graph G = (V,E) given in Figure 2, where the length le of every edge e
is 1/n. This means that G is a star graph with center v0,n and r + 1 paths of total length
1 each. We have r messages and message i needs to be transported from vi,0 to v0,2n for

STACS 2017



10:6 Energy-Efficient Delivery by Heterogeneous Mobile Agents

i = 1, . . . , r. There further is an agent ai,j with weight wi,j = 2r
2r+j/n starting at every vertex

vi,j for (i, j) ∈ {1, . . . , r} × {0, . . . , n− 1} ∪ {0} × {n, . . . , 2n}.
We first show the following: If any agent transports s messages i1, . . . , is from vij ,0 to

v0,2n, then this costs at least 2s. Note that this implies that any schedule S for delivering
all messages by the agents such that every message is only carried by one agent satisfies
cost(S) ≥ 2r.

So let an agent ai,j transport s messages from the source to the destination v0,2n.
Without loss of generality let these messages be 1, . . . , s, which are picked up in this order.
By construction, agent ai,j needs to travel a distance of at least j

n to reach message 1, then
distance 1 to move back to v0,n, then distance 2 for picking up message i and going back to
v0,n for i = 2, . . . , s, and finally it needs to move distance 1 from v0,n to v0,2n. Overall, agent
ai,j therefore travels a distance of at least 2s+ j

n . The overall cost for agent ai,j to deliver
the s messages therefore is at least (2s+ j

n ) ·wi,j = (2s+ j
n ) · 2r

2r+j/n ≥ (2s+ j
n ) · 2s

2s+j/n = 2s.
Now, consider a schedule Scol, where the agents collaborate, i.e., agent ai,j transports

message i from vi,j to vi,j+1 for i = 1, . . . , r, j = 0, . . . , n − 1, where we identify vi,n with
v0,n. Then agent a0,j transports all r messages from v0,j to v0,j+1 for j = n, . . . , 2n− 1. This
is possible because r ≤ κ by the choice of r. The total cost of this schedule is given by

cost(Scol) = r ·
∫ 1

0
fstep(x)dx+

∫ 2

1
fstep(x)dx,

where fstep(x) is a step-function defined on [0, 2] giving the current cost of transporting
the message, i.e., fstep(x) = 2r

2r+j/n on the interval [j/n, (j + 1)/n) for j = 0, . . . , 2n − 1.
The first integral corresponds to the first part of the schedule, where the r messages are
transported separately and therefore the cost of transporting message i from vi,j to vi,j+1 is
exactly

∫ (j+1)/n

j/n
fstep(x)dx = 1

n ·
2r

2r+j/n . The second part of the schedule corresponds to the
part, where all r messages are transported together by one agent at a time.
Observe that the function f(x) = 2r · 1

2r−1/n+x satisfies f(x) ≥ fstep(x) on [0, 2], hence

cost(Scol) ≤ r
∫ 1

0
f(x)dx+

∫ 2

1
f(x)dx = 2r

(
r ln(2r − 1

n + x)
∣∣∣1
0

+ ln(2r − 1
n + x)

∣∣∣2
1

)
= 2r ln

((
2r−1/n+1

2r−1/n

)r ( 2r−1/n+2
2r−1/n+1

))
n→∞→ 2r ln

((
1 + 1

2r

)r
(

1 + 1
2r+1

))
.

Thus, the approximation ratio of an algorithm transporting every message by only one agent
is bounded from below by BoC ≥ minS

cost(S)
cost(Scol) ≥ 1/ ln

((
1 + 1

2r

)r
(

1 + 1
2r+1

))
. J

By observing that limr→∞ 1/ ln ((1 + 1/(2r))r (1 + 1/(2r + 1))) = 1/ ln
(
e1/2) = 2, we

obtain the following corollary.

I Corollary 4. A schedule for WeightedDelivery where every message is delivered by
a single agent cannot achieve an approximation ratio better than 2 in general, and better
than 1/ ln 2 ≈ 1.44 for a single message.

2.3 Upper Bounds on the Benefit of Collaboration
We now give tight upper bounds for Corollary 4. The following theorem shows that the
benefit of collaboration is 2 in general. We remark that finding an optimal schedule in
which every message is transported from its source to its destination by one agent, is already
NP-hard, as shown in Theorem 8.
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I Theorem 5. Let Opt be an optimal schedule for a given instance of WeightedDelivery.
Then there exists a schedule S such that every message is only transported by one agent and
cost(S) ≤ 2 · cost(Opt).

Proof Sketch. We may assume (without loss of generality) that the optimal schedule Opt
transports each message along a simple path, and we construct a directed multigraph GS

with the same set of vertices and an arc for every move of an agent in Opt. We label every
arc by the exact set of messages that were carried during the corresponding move in Opt.
For every arc in GS we add a backwards arc with the same label.

Obviously, every connected component of GS is Eulerian, and we claim that any agent
in each component can follow some Eulerian tour that allows to deliver all messages. In
particular, the agent needs exactly twice as many moves as the total number of moves of all
agents in the component in Opt. If we choose the cheapest agent (in terms of weight) in
each component, we obtain a tour with at most twice the cost of Opt.

We compute the Eulerian for the cheapest agent of a component as a combination of
multiple tours, respecting arc labels in the following sense: During every move along a
forward arc, the agent carries the exact set of messages prescribed by the arc label, and
during every move along a backward arc, the agent does not carry any messages. This
ensures that all messages travel along the same path as in Opt. Whenever the agent is at
a vertex v and is missing message i in order to proceed along some path, this means the
current vertex must lie on i’s path in Opt, and thus there must be a path of backwards
edges to the current location of i. The agent follows this path and recursively brings the
message back to v. In the process, more recursive calls may be necessary, but we can prove
that there cannot be a circular dependence between messages.

Therefore, the procedure eventually terminates after computing a closed tour. Note
that, so far, the tour is still “virtual” in the sense that the agent didn’t actually move but
merely computed the tour. We remove the tour from GS , update all message positions,
and recursively apply the procedure starting from the last vertex along the tour that is
still adjacent to untraversed edges. By combining all (virtual) tours that we obtain in the
recursion, we eventually get a Eulerian tour for the agent that obeys all arc labels. This
means that the agent can successfully simulate all moves in Opt while ensuring that it is
carrying the required messages before each move. J

Single Message. For the case of a single message, we can improve the upper bound of 2 on
the benefit of collaboration from Theorem 5, to a tight bound of 1/ ln 2 ≈ 1.44.

The idea of the proof is to use that the weights are non-increasing by Lemma 1. After
scaling appropriately, we assume the message path to be the interval [0, 1] and then choose a
b such that the function b

x+1 is a lower bound on the weight of the agent transporting the
message at point x on the message path. The intersection of b

x+1 and the step-function f
representing the weight of the agent currently transporting the message then gives an agent,
which can transport the message with at most (1/ ln 2)-times the cost of an optimal schedule.

I Theorem 6. For WeightedDelivery with m = 1, there exists a (1/ ln 2)-approximation
algorithm using a single agent.

No Intermediate Dropoffs. For the capacities κ = 1 and κ =∞, the upper bound of 2 on
the benefit of collaboration still holds if we additionally demand that each message is carried
by its single agent without any intermediate dropoffs. We will make use of this result later
in the approximation algorithm for WeightedDelivery with κ = 1 (Section 5).

STACS 2017
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H
p1

G

1 1 1

1 1 1
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0

Figure 3 Finding a Hamiltonian cycle via WeightedDelivery with a single agent. Picking x to
be large enough, e.g. x = |V |, allows us to enforce that the agent will end in p′

1.

I Theorem 7. Let Opt be an optimal schedule for a given instance of WeightedDelivery
with κ ∈ {1,∞}. Then there exists a schedule S such that (i) every message is only transported
by a single agent, with exactly one pick-up and one drop-off, (ii) cost(S) ≤ 2 · cost(Opt),
and (iii) every agent aj returns to its starting location pj.

3 Planning

We now look in isolation at the problem of ordering the messages within the schedule of an
agent, which we call Planning. Formally, the Planning aspect of WeightedDelivery is the
following task: Given a schedule S and one of its agents aj , reorder the actions in S|aj in
such a way that the schedule remains feasible and the costs are minimized.

Generally speaking, for a complex schedule with many message handovers, the reordering
options for a single agent aj might be very limited. First of all, we must respect the capacity
of aj , i.e., in every prefix of S|aj

, the number of pick-up actions (aj , ∗, ∗,+) cannot exceed
the number of drop-off actions (aj , ∗, ∗,−) by more than κ. Even then, reordering S|aj might
render S infeasible because of conflicts with some other subschedule S|ax

. But Planning also
includes the instances where a single agent delivers all the messages, one after the other
straight to the target, and where the only thing that has to be decided is the ordering. We
show now that in this setting, where there is no non-trivial coordination or collaboration
aspect, WeightedDelivery is already NP-hard.

I Theorem 8. Planning of WeightedDelivery problem is NP-hard for all capacities κ
even for a single agent on a planar graph.

The hardness follows by a reduction from Hamiltonian cycles on a grid graph H, a
problem shown to be NP-hard by Itai et al. [21]: We put an isolated message at every node of
H, forcing the agent to visit each node exactly once. A longer edge for the isolated message
at the start forces the agent to come back to the start node towards the end, see Figure 3.

Using similar ideas, we can use recent results for the approximation hardness of metric
TSP [22] to immediately show that Planning of WeightedDelivery can not be approxim-
ated arbitrarily well, unless P = NP.

I Theorem 9. It is NP-hard to approximate the Planning of WeightedDelivery to within
any constant approximation ratio less than 367/366.

3.1 Polynomial-time Approximation for Planning in Restricted Settings
Motivated by Theorem 7, we now look at the restricted setting of planning for a feasible
schedule SR of which we know that each message is completely transported by some agent
aj without intermediate drop-offs, i.e., for every message mi there must be an agent j with
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SR|mi = (aj , si,mi,+), (aj , ti,mi,−). This allows us to give polynomial-time approximations
for planning with capacity κ ∈ {1,∞}:

I Theorem 10. Let SR be a feasible schedule for a given instance of WeightedDelivery
with the restriction that ∀i ∃j : SR|mi

= (aj , si,mi,+), (aj , ti,mi,−). Denote by Opt(SR)
a reordering of SR with optimal cost. There is a polynomial-time planning algorithm Alg
which gives a reordering Alg(SR) such that cost(Alg(SR)) ≤ 2 · cost(Opt(SR)) if κ = 1
and cost(Alg(SR)) ≤ 3.5 · cost(Opt(SR)) if κ =∞.

Proof. By the given restriction, separate planning of each SR|aj independently maintains
feasibility of SR. We denote by mj1,mj2, . . . ,mjx the messages appearing in SR

aj
. We

define a complete undirected auxiliary graph G′ = (V ′, E′) on the node set V ′ = {pj} ∪
{sj1, sj2, . . . , sjx} ∪ {tj1, . . . , tjx} with edges (u, v) having length dG(u, v).

For κ = 1, the schedule Opt(SR)|aj
corresponds to a Hamiltonian path H in G′ of

minimum length, starting in pj , subject to the condition that for each message mji the visit
of its source sji is directly followed by a visit of its destination tji. We can lower bound
the length of H with the total length of a spanning tree T ′ = (V ′, E(T )′) ⊆ G′ as follows:
Starting with an empty graph on V ′ we first add all edges (sji, tji). Following the idea
of Kruskal [23], we add edges from {pj} × {sj1, . . . , sjx} ∪ {tj1, . . . , tjx} × {sj1, . . . , sjx} in
increasing order of their lengths, disregarding any edges which would result in the creation of
a cycle. Now a DFS-traversal of T ′ starting from pj visits any edge (sji, tji) in both directions.
Whenever we cross such an edge from sji to tji, we add (aj , sji,mji,+), (aj , tji,mji,−) as a
suffix to the current schedule Alg(SR)|aj

. We get an overall cost of cost(Alg(SR)|aj
) ≤

2 ·
∑

e∈E(T ′) le ≤ 2 ·
∑

e∈H le = 2 · cost(Opt(SR)|aj ).
For κ =∞, the idea is to first collect all messages by traversing a spanning tree (with

cost ≤ 2 · cost(Opt(SR)|aj
)) and then delivering all of them in a metric TSP path fashion

(with cost ≤ 3
2 · cost(Opt(SR)|aj

)). J

I Remark. If we assume as an additional property that the agent returns to its starting
position pj (as for example in the result of Theorem 7), we can get a better approximation
for the case κ = 1. Instead of traversing a spanning tree twice, we can model this as the
stacker-crane problem for which a polynomial-time 1.8-approximation is known [16].

4 Coordination

In this section, we focus on the Coordination aspect of WeightedDelivery. We assume
that collaboration and planning are taken care of. More precisely, we are given a sequence
containing the complete fixed schedule S− of all actions (_, si,mi,+), . . . , (_, h,mi,−),
. . . , (_, tj ,mj ,−), but without an assignment of the agents to the actions. Coordination is
the task of assigning agents to the given actions. Even though coordination appears to have
the flavor of a matching problem, it turns out to be NP-hard to optimally match up agents
with the given actions. This holds for any capacity, in particular for κ = 1. The latter,
however, has a polynomial-time solution if all agents have uniform weight.

4.1 NP-Hardness for Planar Graphs
We give a reduction from planar 3SAT: From a given planar 3SAT formula F we construct
an instance of WeightedDelivery that allows a schedule S with “good” energy cost(S)
if and only if F is satisfiable.

STACS 2017
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Figure 4 (left) A restricted plane embedding of a 3CNF F which is satisfied by (v1, v2, v3, v4) =
(true, false, false, true). (right) Its transformation to the corresponding delivery graph.

Planar 3SAT. Let F be a three-conjunctive normal form (3CNF) with x boolean variables
V (F ) = {v1, . . . , vx} and y clauses C(F ) = {c1, . . . , cy}. Each clause is given by a subset
of at most three literals of the form l(vi) ∈ {vi, vi}. We define a corresponding graph
H(F ) = (N,A) with a node set consisting of all clauses and all variables (N = V (F )∪C(F )).
We add an edge between a clause c and a variable v, if v or v is contained in c. Furthermore
we add a cycle consisting of edges between all pairs of consecutive variables, i.e., A = A1∪A2,
where A1 = {{ci, vj} | vj ∈ ci or vj ∈ ci} , A2 =

{{
vj , v(j mod x)+1

}
| 1 ≤ j ≤ x

}
. We call

F planar if there is a plane embedding of H(F ). The planar 3SAT problem of deciding
whether a given planar 3CNF F is satisfiable is known to be NP-complete. Furthermore the
problem remains NP-complete if at each variable node the plane embedding is required to
have all arcs representing positive literals on one side of the cycle A2 and all arcs representing
negative literals on the other side of A2 [26]. We will use this restricted version in our
reduction and assume without loss of generality that the graph H(F ) \A2 is connected and
that H(F ) is a simple graph (i.e. each variable appears at most once in every clause).

Building the Delivery Graph. We first describe a way to transform any planar 3CNF graph
H(F ) into a planar delivery graph G = G(F ), see Figure 4.

We transform the graph in five steps: First we delete all edges of the cycle A2, but we
keep in mind that at each variable node all positive literal edges lie on one side and all
negative literal edges on the other side. Secondly let degH(F ),A1(v) denote the remaining
degree of a variable node v in H and surround each variable node by a variable box. A
variable box contains two paths adjacent to v on which internally we place degH(F ),A1(v)
copies of v: One path (called henceforth the true-path) contains all nodes having an adjacent
positive literal edge, the other path (the false-path) contains all nodes having an adjacent
negative literal edge. In a next step, we add a single node between any pair of node copies
of the previous step. As a fourth step, we want all paths to contain the same number of
nodes, hence we fill in nodes at the end of each path such that every path contains exactly
2y ≥ 2 degH(F ),A1(v) internal nodes. Thus each variable box contains a variable node v, an
adjacent true-path (with internal nodes vtrue,1, . . . , vtrue,2y−1 and a final node vtrue,2y) and a
respective false-path. Finally for each clause node c we add a new node c′ which we connect
to c. The new graph G(F ) has polynomial size and all the steps can be implemented in such
a way that G(F ) is planar.

Messages, Agents and Weights. We are going to place one clause message on each of the
y clause nodes and a literal message on each of the 2x paths in the variable boxes for a total
of 4xy messages. More precisely, on each original clause node c we place exactly one clause
message which has to be delivered to the newly created node c′. Furthermore we place a
literal message on every internal node vtrue,i of a true-path and set its target to vtrue,i+1
(same for the false-path). We set the length of all edges connecting a source to its target to 1.
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Figure 5 Agent positions (�) and weights (in black); Messages (→) and edge lengths (in color).

Next we describe the locations of the agents in each variable box. We place one variable
agent of weight 1 on the variable node v. The length of the two adjacent edges are set to
ε, where ε := (8xy)−2. Furthermore we place y literal agents on each path: The i-th agent
is placed on vtrue,2(y−i) (respectively vfalse,2(y−i)) and gets weight 1 + iε. It remains to set
the length of edges between clause nodes and internal nodes of a path. By construction the
latter is the starting position of an agent of uniquely defined weight 1 + iε; we set the length
of the edge to 1−iε

1+iε . For an illustration see Figure 5, where each agent’s starting location is
depicted by a square and each message is depicted by a colored arrow.

Reduction. The key idea of the reduction is that for each variable u, the corresponding
variable box contains a variable agent who can either deliver all messages on the true-path
(thus setting the variable to true), or deliver all messages on the false-path (thus setting
the variable to false). Assume u is set to true. If u is contained in a clause c, then on the
adjacent node vtrue,i there is a (not yet used) literal agent. Intuitively, this agent was freed
by the variable agent and can thus be sent to deliver the clause-message. If u is contained
in c, the corresponding literal on the false-path can’t be sent to deliver the clause message,
since it needs to transport messages along the false-path.

There is such a feasible schedule Sol of the agents in G(F ) if and only if there is a
satisfiable assignment (a solution) for the variables of a 3CNF F . Its total (energy) cost
is cost(Sol) := 4xy + 2y + x(y2 + y + 1)ε ([6, Lemma 12]). Furthermore, we can show
that any schedule S which doesn’t correspond to a satisfiable variable assignment has cost
cost(S) > cost(Sol) ([6, Lemma 13, 14 and 15]). This is true independent of whether S
adheres to the schedule without agents S− or not and holds for any capacity κ.

Fixed Sequence (Schedule without Agent Assignment). It remains to fix a sequence S−
that describes the schedule Sol described in the reduction idea but which does not allow us
to infer a satisfiable assignment: This is the case for any S− consisting of consecutive pairs
(_, si,mi,+), (_, ti,mi,−) such that if mi lies to the left of mj on some true- or false-path,
it precedes mj in the schedule.

I Theorem 11. Coordination of WeightedDelivery is NP-hard on planar graphs for all
capacities κ, even if we are given prescribed collaboration and planning.

4.2 Polynomial-time Algorithm for Uniform Weights and Unit Capacity

Note that Coordination is NP-hard even for capacity κ = 1. Next we show that this setting
is approachable once we restrict ourselves to uniform weights.

STACS 2017
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Figure 6 Illustration of the coordination of the schedule S = (_, s1, m1, +), (_, s2, m2, +),
(_, s3, m1,−), (_, s3, m3, +), (_, t2, m2,−), (_, t3, m3,−), (_, s3, m1, +), (_, t1, m1,−). (left) In-
stance with 3 messages and 2 agents of uniform weight. (center) Equivalent weighted bipartite
matching problem G′. (right) The resulting trajectories of the agents.

I Theorem 12. Given collaboration and planning in the form of a complete schedule with
missing agent assignment, Coordination of WeightedDelivery with capacity κ = 1 and
agents having uniform weights can be solved in polynomial time.

Proof. As before, denote by S− = (_, si,mi,+), . . . , (_, h,mi,−), . . . , (_, tj ,mj ,−) the
prescribed schedule without agent assignments. Since all agents have the same uniform
weight w, the cost cost(S) of any feasible schedule S is determined by cost(S) = w ·

∑k
j=1 dj .

Hence at a pick-up action (_, q,mi,+) it is not so much important which agent picks up the
message as where / how far it comes from.

Because we have capacity κ = 1, we know that the agent has to come from either its start-
ing position or from a preceding drop-off action (_, p,mj ,−) ∈ S−. This allows us to model
the problem as a weighted bipartite matching, see Figure 6 (center). We build an auxiliary
graph G′ = (A ∪B,E′1 ∪ E′2). A maximum matching in this bipartite graph will tell us for
every pick-up action in B, where the agent that performs the pick-up action comes from in A.
Let A := {p1, . . . , pk}∪{(_, ∗, ∗,−)} and B := {(_, ∗, ∗,+)}. We add edges between all agent
starting positions and all pick-ups, E′1 := {p1, . . . , pk}× {(_, q,m,+) | (_, q,m,+) ∈ B} of
weight dG(pi, q). Furthermore, we add edges between drop-offs and all subsequent pick-ups
E′2 := {((_, p,mj ,−), (_, q,mi,+)) | (_, p,mj ,−) < (_, q,mi,+) in S−} of weight dG(p, q).

A maximum matching of minimum cost in G′ captures the optimal assignment of agents
to messages and can be found by solving the classic assignment problem, a special case
of the minimum cost maximum flow problem. Both of these problems can be solved in
polynomial time for instance using the Hungarian method [24] or the successive shortest path
algorithm [14], respectively. The cost of this optimum matching corresponds to the cost of the
agents moving around without messages. The cost of the agents while carrying the messages
can easily be added: Consider the schedule S− restricted to a message mi. This subsequence
S−|mi

is a sequence of pairs of pick-up/drop-off actions ((_, q,mi,+), (_, p,mi,−)), and in
every pair the message is brought from q to p on the shortest path, so we add

∑
dG(q, p).

Concatenating these piecewise shortest paths gives the trajectory of each agent in the
optimum solution, as illustrated in Figure 6 (right). J

Our algorithm is remotely inspired by a simpler problem at the ACM ICPC world finals
2015 [19]. The official solution is pseudo-polynomial [20], Austrin and Wojtaszczyk [3] later
sketched a min-cost bipartite matching solution.

5 Approximation Algorithm

We have seen in Section 2 that the cost of an optimal schedule Opt for WeightedDelivery
can be approximated to within a factor of two by restricting ourselves to schedules SR in
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which every message is only transported by a single agent, with exactly one pick-up and one
drop-off (Theorem 7). Let OptR be an optimal restricted schedule. Given an auxiliary graph
G′ on a vertex set consisting of all agent positions and all message source and destination
nodes, we construct in polynomial time a minimum tree cover of G′ from which be build a
schedule S∗ in which agents travel at most twice the distance of their counterparts in OptR

(similarly to Theorem 10). Here we require capacity κ = 1. In order for our method to work,
we need to be indifferent between different weights; we achieve this by boosting each agent’s
weight wj to maxwi, resulting in an additional loss in the approximation factor of max wi

wj
:

I Theorem 13. There is a polynomial-time (4 max wi

wj
)-approximation algorithm for

WeightedDelivery with capacity κ = 1.
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