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Abstract
In its traditional definition, a repair of an inconsistent database is a consistent database that
differs from the inconsistent one in a “minimal way.” Often, repairs are not equally legitimate, as it
is desired to prefer one over another; for example, one fact is regarded more reliable than another,
or a more recent fact should be preferred to an earlier one. Motivated by these considerations,
researchers have introduced and investigated the framework of preferred repairs, in the context
of denial constraints and subset repairs. There, a priority relation between facts is lifted towards
a priority relation between consistent databases, and repairs are restricted to the ones that are
optimal in the lifted sense. Three notions of lifting (and optimal repairs) have been proposed:
Pareto, global, and completion.

In this paper we investigate the complexity of deciding whether the priority relation suffices
to clean the database unambiguously, or in other words, whether there is exactly one optimal
repair. We show that the different lifting semantics entail highly different complexities. Under
Pareto optimality, the problem is coNP-complete, in data complexity, for every set of functional
dependencies (FDs), except for the tractable case of (equivalence to) one FD per relation. Under
global optimality, one FD per relation is still tractable, but we establish Πp

2-completeness for
a relation with two FDs. In contrast, under completion optimality the problem is solvable in
polynomial time for every set of FDs. In fact, we present a polynomial-time algorithm for
arbitrary conflict hypergraphs. We further show that under a general assumption of transitivity,
this algorithm solves the problem even for global optimality. The algorithm is extremely simple,
but its proof of correctness is quite intricate.
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1 Introduction

Managing database inconsistency has received a lot of attention in the past two decades.
Inconsistency arises for different reasons and in different applications. For example, in
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common applications of Big Data, information is obtained from imprecise sources (e.g., social
encyclopedias or social networks) via imprecise procedures (e.g., natural-language processing).
It may also arise when integrating conflicting data from different sources (each of which can be
consistent). Arenas, Bertossi and Chomicki [3] introduced a principled approach to managing
inconsistency, via the notions of repairs and consistent query answering. Informally, a repair
of an inconsistent database I is a consistent database J that differs from I in a “minimal”
way, where minimality refers to the symmetric difference. In the case of anti-symmetric
integrity constraints (e.g., denial constraints and the special case of functional dependencies),
such a repair is a subset repair (i.e., J is a consistent subinstance of I that is not properly
contained in any consistent subinstance of I).

Various computational problems around database repairs have been extensively investig-
ated. Most studied is the problem of computing the consistent answers of a query q on an
inconsistent database I; these are the tuples in the intersection

⋂
{q(J) : J is a repair of I} [3,

27]. Hence, in this approach inconsistency is handled at query time by returning the tuples
that are guaranteed to be in the result no matter which repair is selected. Another well
studied question is that of repair checking [1]: given instances I and J , determine whether J
is a repair of I. Depending on the type of repairs and integrity constraints, these problems
may vary from tractable to highly intractable complexity classes [4].

In the above framework, all repairs of a given database instance are taken into account
and treated on a par with each other. There are situations, however, in which it is natural
to prefer one repair over another [16, 8, 34, 33]. For example, this is the case if one source is
regarded more reliable than another (e.g., enterprise data vs. Internet harvesting, precise
vs. imprecise sensing equipment, etc.) or if available timestamp information implies that
a more recent fact should be preferred over an earlier fact. Recency may be implied not
only by timestamps, but also by evolution semantics; for example, “divorced” is likely to be
more updated than “single,” and similarly is “Sergeant” compared to “Private.” (See [15]
for a comprehensive study of data quality.) Motivated by these considerations, Staworko,
Chomicki and Marcinkowski [34, 33] introduced the framework of preferred repairs, where a
priority relation between conflicting facts distinguishes a set of preferred repairs.

Specifically, the notion of Pareto optimality and that of global optimality are based on two
different notions of improvement—the property of one consistent subinstance being preferred
to another. Improvements are basically lifting of the priority relation from facts to consistent
subinstances; J is an improvement of K if J \K contains a fact that is better than all those
in K \ J (in the Pareto semantics), or if for every fact in K \ J there exists a better fact in
J \K (in the global semantics). In each of the two semantics, an optimal repair is a repair
that cannot be improved. A third semantics proposed by Staworko et al. [33] is that of a
completion-optimal repair, which is a globally optimal repair under some extension of the
priority relation into a total relation. In this paper, we refer to these preferred repairs as
p-repair, g-repair and c-repair, respectively.

Fagin et al. [13] have built on the concept of preferred repairs (in conjunction with
the framework of document spanners [14]) to devise a language for declaring inconsistency
cleaning in text information-extraction systems. They have shown there that preferred repairs
capture ad-hoc cleaning operations and strategies of some prominent existing systems for
text analytics [2, 9].

Staworko et al. [33] showed several results on preferred repairs. For example, every
c-repair is also a g-repair, and every g-repair is also a p-repair. They also showed that
p-repair and c-repair checking are solvable in polynomial time (under data complexity) in
the case of denial constraints, and that there is a set of functional dependencies (FDs) for
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which g-repair checking is coNP-complete. Later, Fagin et al. [12] extended that hardness
result to a full dichotomy in complexity over all sets of FDs: g-repair checking is solvable in
polynomial time whenever the set of FDs is equivalent to a single FD or two key constraints
per relation; in every other case, the problem is coNP-complete.

While the classic complexity problems studied in the theory of repairs include repair
checking and consistent query answering, the presence of repairs gives rise to the determinism
problem, which Staworko et al. [33] refer to as categoricity: determine whether the provided
priority relation suffices to clean the database unambiguously, or in other words, decide
whether there is exactly one optimal repair. The problem of repairing uniqueness (in a
different repair semantics) is also referred to as determinism by Fan et al. [18]. In this
paper, we study the three variants of this computational problem, under the three optimality
semantics Pareto, global and completion, and denote them as p-categoricity, g-categoricity
and c-categoricity, respectively.

It is known that under each of the three semantics there is always at least one preferred
repair, and Staworko et al. [33] present a polynomial-time algorithm for finding such a repair.
(We recall this algorithm in Section 3.) Hence, the categoricity problem is that of deciding
whether the output of this algorithm is the only possible preferred repair. As we explain
next, it turns out that each of the three variants of the problem entails quite a unique picture
of complexity.

For p-categoricity, we focus on integrity constraints that are FDs, and establish the
following dichotomy in data complexity. For a relational schema with a set ∆ of FDs:

If ∆ associates (up to equivalence) a single FD with every relation symbol, then p-
categoricity is solvable in polynomial time.
In any other case, p-categoricity is coNP-complete.

For example, with the relation symbol R(A,B,C) and the FD A → B, p-categoricity is
solvable in polynomial time; but if we add the dependency B → A then it becomes coNP-
complete. While there have been several dichotomy results on the complexity of problems
associated with inconsistent data [29, 12, 26, 36], to the best of our knowledge this paper is
the first to establish a dichotomy result for any variant of repair uniqueness identification.

We then turn to investigating c-categoricity, and establish a far more positive picture
than the one for p-categoricity. In particular, the problem is solvable in polynomial time for
every set of FDs. In fact, we present an algorithm for solving c-categoricity in polynomial
time, assuming that constraints are given as an input conflict hypergraph [10] (hence, we
establish polynomial-time data complexity for various types of integrity constraints, such as
conditional FDs [5] and denial constraints [19].) The algorithm is extremely simple, yet its
proof of correctness is quite intricate.

Finally, we explore g-categoricity. We show that in the tractable case of p-categoricity
(equivalence to a single FD per relation), g-categoricity is likewise solvable in polynomial time.
For example, R(A,B,C,D) with the dependency A→ B has polynomial-time g-categoricity.
Nevertheless, we prove that if we add C → D, then g-categoricity becomes Πp

2-complete. We
do not complete a dichotomy as in p-categoricity, and leave that open for future work. Lastly,
we ask whether transitivity of the preference relation makes a difference. We show that the
three semantics of repairs remain different in the presence of transitivity, yet quite remarkably,
the problems g-categoricity and c-categoricity are actually the same. Hence, in the presence
of transitivity g-categoricity is solvable in polynomial time (even when constraints are given
as a conflict hypergraph).

For lack of space, most of the proofs are excluded and will appear in the full version of
the paper [23].
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Related Work
We are not aware of any work on the complexity of categoricity within the prioritized repairing
of Staworko et al. [34]. Fagin et al. [13] investigated a static version of categoricity in the
context of text extraction, but the settings and problems are fundamentally different, and so
are their complexity results (e.g., Fagin et al. [13] establish undecidability results).

In the framework of data currency [16], relations consist of entities with attributes, where
each entity may appear in different tuples, every time with possibly different (conflicting)
attribute values. A partial order of currency is provided on each attribute. A completion
of an instance is obtained by completing the partial order on an attribute of every entity,
and it defines a current instance where each attribute takes its most recent value. In
addition, a completion needs to satisfy given (denial) constraints, which may introduce
interdependencies among completions of different attributes. Fan et al. [16] have studied the
problem of determining whether such a specification induces a single current instance (i.e.,
the corresponding version of categoricity), and showed that this problem is coNP-complete
under data complexity. It is not clear how to simulate their hardness in p-categoricity
or g-categoricity, since their hardness is due to the constrains on completions, and these
constraints do not have correspondents in our case (beyond the partial orders). A similar
argument relates our lower bounds to those in the framework of conflict resolution by Fan
Geerts [15, Chapter 7.3], where the focus is on establishing a unique tuple from a collection
of conflicting tuples.

Fan et al. [16] show that in the absence of constraints, their categoricity problem can be
solved in polynomial time. This tractability result can be used for establishing the tractability
side of Theorem 5.1 in the special case where the single FD is a key constraint. In the general
case of a single FD, we need to argue about relationships among sets, and moreover, the
differences among the three x-categoricity problems matter.

The work on certain fixes [18, 17] considers models that are substantially different from
the one adopted here, where repairs are obtained by chasing update rules (rather than tuple
deletion), and uniqueness applies to chase outcomes (rather than maximal subinstances
w.r.t. preference lifting). The problems relevant to our categoricity are the consistency
problem [18] (w.r.t. guarantees on the consistency of some attributes following certain
patterns), and the determinism problem [18].

Finally, we remark that there have several dichotomy results on the complexity of problems
associated with inconsistent data [29, 12, 26, 36], but to the best of our knowledge this paper
is the first to establish a dichotomy result for any variant of repair uniqueness identification.
A valid question for future work is whether one can use the techniques of this paper in order
to establish a dichotomy in complexity in any of the cleaning frameworks studied in past
research.

2 Preliminaries

We now present some general terminology and notation that we use throughout the paper.

Signatures and Instances

A (relational) signature is a finite set R = {R1, . . . , Rn} of relation symbols, each with a
designated positive integer as its arity, denoted arity(Ri). We assume an infinite set Const
of constants, used as database values. An instance I over a signature R = {R1, . . . , Rn}
consists of finite relations RI

i ⊆ Constarity(Ri), where Ri ∈ R. We write JRiK to denote the
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set {1, . . . , arity(Ri)}, and we refer to the members of JRiK as attributes of Ri. If I is an
instance over R and t is a tuple in RI

i , then we say that Ri(t) is a fact of I. By a slight
abuse of notation, we identify an instance I with the set of its facts. For example, Ri(t) ∈ I
denotes that Ri(t) is a fact of I. As another example, J ⊆ I means that RJ

i ⊆ RI
i for every

Ri ∈ R; in this case, we say that J is subinstance of I.
We use the conventional notation R/k to denote that R is a relation symbol of arity k. In

our examples we often name the attributes and refer to them by their names. For instance,
in Figure 1a we refer to the relation symbol as CompCEO(company, ceo) where company
and ceo refer to Attributes 1 and 2, respectively. In the case of generic relation symbols, we
implicitly name their attributes by capital English letters with the corresponding numeric
values; for instance, we may refer to Attributes 1, 2 and 3 of R/3 by A, B and C, respectively.
We stress that attribute names are not part of our formal model, but are rather used for
readability.

Integrity and Inconsistency

Let R be a signature, and I an instance over R. In this paper we consider two representation
systems for integrity constraints. The first is functional dependencies and the second is
conflict hypergraphs.

Let R be a signature. A Functional Dependency (FD for short) over R is an expression
of the form R : X → Y , where R is a relation symbol of R, and X and Y are subsets of JRK.
When R is clear from the context, we may omit it and write simply X → Y . A special case
of an FD is a key constraint, which is an FD of the form R : X → Y where X ∪ Y = JRK.
An FD R : X → Y is trivial if Y ⊆ X; otherwise, it is nontrivial.

When we are using the alphabetic attribute notation, we may write X and Y by simply
concatenating the attribute symbols. For example, if we have a relation symbol R/3, then
A→ BC denotes the FD R : {1} → {2, 3}. An instance I over R satisfies an FD R : X → Y

if for every two facts f and g over R, if f and g agree on (i.e., have the same values for) the
attributes of X, then they also agree on the attributes of Y . We say that I satisfies a set ∆
of FDs if I satisfies every FD in ∆; otherwise, we say that I violates ∆. Two sets ∆ and ∆′
of FDs are equivalent if for every instance I over R it holds that I satisfies ∆ if and only if
it satisfies ∆′. For example, for R/3 the sets {A → BC,C → A} and {A → C,C → AB}
are equivalent.

In this work, a schema S is a pair (R,∆), where R is a signature and ∆ is a set of FDs
over R. If S = (R,∆) and R ∈ R, then we denote by ∆|R the restriction of ∆ to the FDs
R : X → Y over R.

I Example 2.1. In our first running example, we use the schema S = (R,∆), defined as
follows. The signature R consists of a single relation CompCEO(company, ceo), associating
companies with their Chief Executive Officers (CEO). Figure 1a depicts an instance I over
R. We define ∆ to be {company→ ceo , ceo→ company}, stating that in CompCEO each
company has a single CEO and each CEO manages a single company. Observe that I violates
∆. For example, Google has three CEOs, Alphabet has two CEOs, and each of Pichai and
Page is the CEO of two companies.

While FDs define integrity logically, at the level of the signature, a conflict hypergraph [10]
provides a direct specification of inconsistencies at the instance level, by explicitly stating
sets of facts that cannot co-exist. In the case of FDs, the conflict hypergraph is a graph that
has an edge between every two facts that violate an FD. Formally, for an instance I over a
signature R, a conflict hypergraph H (for I) is a hypergraph that has the facts of I as its
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CompCEO
company ceo

f g
pi Google Pichai

f g
pa Google Page

f g
br Google Brin

f a
pa Alphabet Page

f a
pi Alphabet Pichai

(a) Inconsistent database of
the company-CEO running ex-
ample

f a
pif a

pif g
pa

f g
br f g

pi

f a
pa

f a
pif g

pa

f g
br f g

pi

f a
pa

f g
pa

f g
pif g

br

f a
pa

(b) The conflict graph HI
S and the priority relation �

for the company-CEO running example (left), and two
completions of � (middle and right)

Figure 1

node set. A subinstance J of I is consistent with respect to (w.r.t.) H if J is an independent
set of H; that is, no hyperedge of H is a subset of J . We say that J is maximal if J ∪ {f} is
inconsistent for every f ∈ I \ J . When all the edges of a conflict hypergraph are of size two,
we may call it a conflict graph.

Recall that conflict hypergraphs can represent inconsistencies for various types of integrity
constraints, including FDs, the more general conditional FDs [5], and the more general
denial constraints [19]. In fact, every constraint that is anti-monotonic (i.e., where subsets
of consistent sets are always consistent) can be represented as a conflict hypergraph. In
the case of denial constraints, the translation from the logical constraints to the conflict
hypergraph can be done in polynomial time under data complexity (i.e., when the signature
and constraints are assumed to be fixed).

Let S = (R,∆) be a schema, and let I be an instance over S. Recall that S is assumed
to have only FDs. We denote by HI

S the conflict graph for I that has an edge between every
two facts that violate some FD of S. Note that a subinstance J of I satisfies ∆ if and only if
J is consistent w.r.t. HI

S. As an example, the left graph of Figure 1b depicts the graph HI
S

for our running example; for now, the reader should ignore the directions on the edges, and
view the graph as an undirected one. The following example involves a conflict hypergraph
that is not a graph.

I Example 2.2. In our second running example, we use the toy scenario where the signature
has a single relation symbol Follows/2, where Follows(x, y) means that person x follows
person y (e.g., in a social network). We have two sets of people: ai for i = 1, 2, 3, and bj
for j = 1, . . . , 5. All facts have the form Follows(ai, bj), denoted fij . The instance I has the
following facts: f11, f12, f21, f22, f23, f24, f31, f32, f34, and f35. The hypergraph H for I
encodes the following rules: (a) each ai can follow at most i people; and (b) each bj can be
followed by at most j people. Specifically, H contains the following hyperedges:
{f11, f12}, {f21, f22, f23}, {f21, f22, f24}, {f21, f23, f24}, {f22, f23, f24}, {f31, f32, f34, f35}
{f11, f21}, {f11, f31}, {f21, f31}, {f12, f22, f32}

An example of a (maximal) consistent subinstance J is {f11, f22, f23, f32, f34, f35}.

Prioritizing Inconsistent Databases

We now recall the framework of preferred repairs by Staworko et al. [33]. Let I be an instance
over a signature R. A priority relation � over I is an acyclic binary relation over the facts in
I. By acyclic we mean that I does not contain any sequence f1, . . . , fk of facts with fi � fi+1
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for all i = 1, . . . , k − 1 and fk � f1. If � is a priority relation over I and K is a subinstance
of I, then max�(K) denotes the set of facts f ∈ K such that no g ∈ K satisfies g � f .

An inconsistent prioritizing instance over R is a triple (I,H,�), where I is an instance
over R, H is a conflict hypergraph for I, and � is a priority relation over I with the following
property: for every two facts f and g in I, if f � g then f and g are neighbors in H (that is,
f and g co-occur in some hyperedge).1 For example, if H = HI

S (where all the constraints in
S are FDs), then f � g implies that {f, g} violates at least one FD.

I Example 2.3. We continue our running company-CEO example. We define a priority
relation � by fg

pi � fg
pa, fg

pa � f
g
br and f a

pa � f a
pi. We denote � by corresponding arrows on the

left graph of Figure 1b. (Therefore, some of the edges are directed and some are undirected.)
We then get the inconsistent prioritizing instance (I,HI

S,�) over R. Observe that the graph
does not contain directed cycles, as required from a priority relation.

I Example 2.4. Recall that the instance I of our followers example is defined in Example 2.2.
The priority relation � is given by fil � fjk if one of the following holds: (a) i = j and
k = l + 1, or (b) j = i+ 1 and l = k. For example, we have f11 � f12 and f12 � f22. But we
do not have f11 � f22 (hence, � is not transitive).

Let (I,H,�) be an inconsistent prioritizing instance over a signature R. We say that �
is total if for every two facts f and g in I, if f and g are neighbors in H then either f � g or
g � f . A priority �c over I is a completion of � (w.r.t. H) if � is a subset of �c and �c

is total. As an example, the middle and right graphs of Figure 1b are two completions of
the priority relation � depicted on the left side. A completion of (I,H,�) is an inconsistent
prioritizing instance (I,H,�c) where �c is a completion of �.

Preferred Repairs

Let D = (I,H,�) be an inconsistent prioritizing instance over R. As defined by Arenas
et al. [3], J is a repair of D if J is a maximal consistent subinstance of I. Staworko et
al. [33] define three different notions of preferred repairs: Pareto optimal, globally optimal,
and completion optimal. The first two are based on checking whether a repair J of I can be
improved by replacing a set of facts in J with a “better preferred” set of facts from I; they
differ in the way “better preferred” is interpreted. The third notion is based on the concept
of completion. Next we give the formal definitions.

I Definition 2.5 (Improvement). Let (I,H,�) be an inconsistent prioritizing instance over
a signature R, and J and J ′ be two distinct consistent subinstances of I.

J is a Pareto improvement of J ′ if there exists f ∈ J \ J ′ such that f � f ′ for all
f ′ ∈ J ′ \ J .
J is a global improvement of J ′ if for every f ′ ∈ J ′ \ J there exists f ∈ J \ J ′ such that
f � f ′.

That is, J is a Pareto improvement of J ′ if, to obtain J from J ′, we insert and delete facts,
and one of the inserted facts is preferred to all deleted ones. And J is a global improvement
of J ′ if we similarly obtain J from J ′, but now for every deleted fact a preferred one is
inserted.

1 This requirement has been made with the introduction of the framework [33]. Obviously, the lower
bounds we present hold even without this requirement. Moreover, our main upper bound, Theorem 6.1,
holds as well without this requirement. We defer to future work the thorough investigation of the impact
of relaxing this requirement.
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I Example 2.6. We continue the company-CEO running example. We define four consistent
subinstances of I: J1 = {fg

br, f
a
pi}, J2 = {fg

pa, f
a
pi}, J3 = {fg

br, f
a
pa}, and J4 = {fg

pi, f
a
pa}. Note

the following. First, J2 is a Pareto improvement of J1, since fg
pa ∈ J2 \ J1 and fg

pa � f for
every fact in J1 \ J2 (where in this case there is only one such an f , namely fg

br). Second,
J4 is a global improvement of J2 because fg

pi � fg
pa and f a

pa � f a
pi. (We refer to J3 in later

examples.)

We then get the following variants of preferred repairs.

I Definition 2.7 (p/g/c-repair). Let D be an inconsistent prioritizing instance (I,H,�), and
let J be a consistent subinstance of I. Then J is a:

Pareto-optimal repair of D if there is no Pareto improvement of J .
globally-optimal repair of D if there is no global improvement of J .
completion-optimal repair of D if there exists a completion Dc of D such that J is a
globally-optimal repair of Dc.

We abbreviate “Pareto-optimal repair,” “globally-optimal repair,” and “completion-optimal
repair” by p-repair, g-repair and c-repair, respectively.

We remark that in the definition of a completion-optimal repair, we could replace
“globally-optimal” with “Pareto-optimal” and obtain an equivalent definition [33].

Let D = (I,H,�) be an inconsistent prioritizing instance over a signature R. We denote
the set of all the repairs, p-repairs, g-repairs and c-repairs of D by Rep(D), PRep(D),
GRep(D) and CRep(D), respectively. An easy observation is that when the relation � is
empty, the four types of repairs coincide. Moreover, the following was shown by Staworko et
al. [33].

I Proposition 2.8 ([33]). For all inconsistent prioritizing instances D we have CRep(D) 6= ∅
and CRep(D) ⊆ GRep(D) ⊆ PRep(D) ⊆ Rep(D).

I Example 2.9. We continue our company-CEO example. Recall the instances Ji defined in
Example 2.6. We showed that J1 has a Pareto improvement, so J1 is not a p-repair (although
a repair in the ordinary sense). The reader can verify that J2 has no Pareto improvements,
so J2 is a p-repair. But J2 is not a g-repair, as J4 is a global improvement of J2. The
reader can verify that J3 is a g-repair (hence, a p-repair). Finally, J4 is a g-repair w.r.t. the
left completion of � in Figure 1b (and also w.r.t. the right one). Hence, J4 is a c-repair
(and so a g-repair and a p-repair). In contrast, J3 has a global improvement (and a Pareto
improvement) in both completions; but it does not prove that J3 is not a c-repair (since,
conceptually, one needs to consider all possible completions of �).

I Example 2.10. We now continue the follower example. The inconsistent prioritiz-
ing instance (I,H,�) is defined in Examples 2.2 and 2.4. Consider the instance J1 =
{f11, f22, f23, f32, f34, f35}. The reader can verify that J1 is a c-repair (e.g., by completing
� through the lexicographic order). The subinstance J2 = {f12, f21, f22, f34, f35} is a repair
but not a p-repair, since we can add f11 and remove both f12 and f21, and thus obtain a
Pareto improvement.

3 Categoricity

In this section we define the computational problem of categoricity, which is the main problem
that we study in this paper. Proposition 2.8 states that, under each of the semantics of
preferred repairs, at least one such a repair exists. In general, there can be many possible
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preferred repairs. The problem of categoricity [33] is that of testing whether there is
precisely one such a repair; that is, there do not exist two distinct preferred repairs, and
therefore, the priority relation contains enough information to clean the inconsistent instance
unambiguously.

I Problem 3.1. The problems p-categoricity, g-categoricity, and c-categoricity are those
of testing whether |PRep(D)| = 1, |GRep(D)| = 1 and |CRep(D)| = 1, respectively, given a
signature R and an inconsistent prioritizing instance D over R.

As defined, categoricity takes as input both the signature R and the inconsistent priorit-
izing instance D, where constraints are represented by a conflict hypergraph. We also study
this problem from the perspective of data complexity; there, we fix a schema S = (R,∆),
where ∆ is a set of FDs. In that case, the input consists of an instance I over R and a
priority relation ≺ over I. The conflict hypergraph is then implicitly assumed to be HI

S. We
denote the corresponding variants of the problem by p-categoricity〈S〉, g-categoricity〈S〉 and
c-categoricity〈S〉, respectively.

I Example 3.2. Continuing our company-CEO example, we showed in Example 2.9 that there
are at least two g-repairs and at least three p-repairs. Hence, a solver for g-categoricity〈S〉
should return false on (I,�), and so is a solver for p-categoricity〈S〉. In contrast, we later
show that there is precisely one c-repair (Example 6.2); hence, a solver for c-categoricity〈S〉
should return true on (I,�). If, on the other hand, we replaced � with any of the completions
in Figure 1b, then there would be precisely one p-repair and one g-repair (namely, the current
single c-repair). This follows from a result of Staworko et al. [33], stating that categoricity
holds in the case of total priority relations.

4 Preliminary Insights

We begin with some basic insights into the different variants of the categoricity problem.

Generating an Optimal Repair

We recall an algorithm by Staworko et al. [33] for greedily constructing a c-repair. This is the
algorithm FindCRep of Figure 3a. The algorithm takes as input an inconsistent prioritizing
instance (I,H,�) and returns a c-repair J . It begins with an empty J , and incrementally
inserts tuples to J , as follows. In each iteration of lines 3–6, the algorithm selects a fact f
from max�(I) and removes it from I. Then, f is added to J if it does not violate consistency,
that is, if H does not contain any hyperedge e such that e ⊆ J ∪ {f}. The specific way
of choosing the fact f among all those in max�(I) is (deliberately) left unspecified, and
hence, different executions may result in different c-repairs. In that sense, the algorithm
is nondeterministic. Staworko et al. [33] proved that the possible results of these different
executions are precisely the c-repairs.

I Theorem 4.1 ([33]). Let (I,H,�) be an inconsistent prioritizing instance over R. Let J
be a consistent subinstance of I. Then J is a c-repair if and only if there exists an execution
of FindCRep(I,H,�) that returns J .

Theorem 4.1, combined with Proposition 2.8, has several implications for us. First,
we can obtain an x-repair (where x is either p, g or c) in polynomial time. Hence, if a
solver for x-categoricity determines that there is a single x-repair, then we can actually
generate that x-repair in polynomial time. Second, c-categoricity is the problem of testing
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whether FindCRep(I,H,�) returns the same instance J on every execution. Moreover, due
to Proposition 2.8, p-categoricity (resp. g-categoricity) is the problem of testing whether
every p-repair (resp. g-repair) is equal to the one that is obtained by some execution of the
algorithm.

I Example 4.2. We consider the application of the algorithm FindCRep to the instance of
our company-CEO example (where H = HI

S). The following are two different executions: (1)
+fg

pi, −fg
pa, −f

g
br, +f a

pa, −f a
pi, (2) +f a

pa, −f a
pi, +fg

pi, −fg
pa, −f

g
br. Here, we denote inclusion in

J (i.e., the condition of line 5 is true) by plus and exclusion from J by minus. Observe that
both executions return J4 = {fg

pi, f
a
pa}. This is on a par with the statement in Example 3.2

that in this running example there is a single c-repair.

Complexity Insights

Our goal is to study the complexity of x-categoricity (where x is g, p and c). This problem is
related to that of x-repair checking, namely, given D = (I,H,�) and J , determine whether
J is an x-repair of D. The following is known about this problem.

I Theorem 4.3 ([33, 12]). The following hold.
p-repair checking and c-repair checking are solvable in polynomial time; g-repair checking
is in coNP [33].
Let S = (R,∆) be a fixed schema. If ∆|R is equivalent to either a single FD or two key
constraints for every R ∈ R, then g-repair checking over S is solvable in polynomial time;
otherwise, g-repair checking over S is coNP-complete [12].

Recall from Proposition 2.8 that there is always at least one x-repair. Therefore, given
(I,H,�) we can solve the problem x-categoricity using a coNP algorithm with an oracle
to x-repair checking: for all two distinct subinstances J1 and J2, either J1 or J2 is not an
x-repair. Therefore, from Theorem 4.3 we conclude the following.

I Corollary 4.4. The following hold.
p-categoricity and c-categoricity are in coNP, and g-categoricity is in Πp

2.
For all fixed schemas S = (R,∆), g-categoricity〈S〉 is in Πp

2, and moreover, if ∆|R
is equivalent to either a single FD or two key constraints for every R ∈ R then g-
categoricity〈S〉 is in coNP.

We stress here that if x-categoricity is solvable in polynomial time, then x-categoricity〈S〉
is solvable in polynomial time for all schemas S; this is true since for every fixed schema S the
hypergraph HI

S can be constructed in polynomial time, given I. Similarly, if x-categoricity〈S〉
is coNP-hard (resp. Πp

2-hard) for at least one S, then x-categoricity is coNP-hard (resp. Πp
2-

hard).
When we are considering x-categoricity〈S〉, we assume that all the integrity constraints are

FDs. Therefore, unlike the general problem of x-categoricity, in x-categoricity〈S〉 conflicting
facts always belong to the same relation. It thus follows that our analysis for x-categoricity〈S〉
can be restricted to single-relation schemas. Formally, we have the following.

I Proposition 4.5. Let S = (R,∆) be a schema and x be one of p, g and c. For each relation
R ∈ R, let S|R be the schema ({R},∆|R).

If x-categoricity〈S|R〉 is solvable in polynomial time for every R ∈ R, then x-categoricity〈S〉
is solvable in polynomial time.
If x-categoricity〈S|R〉 is coNP-hard (resp. Πp

2-hard) for at least one R ∈ R, then x-
categoricity〈S〉 is coNP-hard (resp. Πp

2-hard).
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Observe that the phenomenon of Proposition 4.5 does not hold for general x-categoricity
(where conflicts are given by a conflict hypergraph), since hyperedges may cross relations.

In the following sections we investigate each of the three variants of categoricity: p-
categoricity (Section 5), c-categoricity (Section 6) and g-categoricity (Section 7).

5 p-Categoricity

In this section we prove a dichotomy in the complexity of p-categoricity〈S〉 over all schemas
S (where ∆ consists of FDs). This dichotomy states that the only tractable case is where
the schema associates a single FD (which can be trivial) to each relation symbol, up to
equivalence. In all other cases, p-categoricity〈S〉 is coNP-complete. Formally, we prove the
following.

I Theorem 5.1. Let S = (R,∆) be a schema. The problem p-categoricity〈S〉 can be solved
in polynomial time if ∆|R is equivalent to a single FD for every R ∈ R. In every other case,
p-categoricity〈S〉 is coNP-complete.

The tractability side of Theorem 5.1 is fairly simple to prove. The proof of the hardness
side is involved, and we outline it in the rest of this section. Due to Proposition 4.5, it suffices
to consider schemas S with a single relation, which is what we do in the remainder of this
section.

5.1 Proof of Hardness

Our proof is based on the concept of a fact-wise reduction [24], which is formally defined
as follows. Let S = (R,∆) and S′ = (R′,∆′) be two schemas. A mapping from R to R′ is
a function µ that maps facts over R to facts over R′. We naturally extend a mapping µ
to map instances J over R to instances over R′ by defining µ(J) to be {µ(f) | f ∈ J}. A
fact-wise reduction from S to S′ is a mapping Π from R to R′ with the following properties:
(a) Π is injective, that is, for all facts f and g over R, if Π(f) = Π(g) then f = g; (b) Π
preserves consistency and inconsistency, that is, for every instance J over S, the instance
Π(J) satisfies ∆′ if and only if J satisfies ∆; and (c) Π is computable in polynomial time.

Let S and S′ be two schemas, and let Π be a fact-wise reduction from S to S′. Given an
inconsistent instance I over S and a priority relation � over I, we denote by Π(�) the priority
relation �′ over Π(I) where Π(f) �′ Π(g) if and only if f � g. If D is the inconsistent
prioritizing instance (I,HI

S,�), then we denote by Π(D) the triple (Π(I),HΠ(I)
S′ ,Π(�)),

which is also an inconsistent prioritizing instance. The usefulness of fact-wise reductions is
due to the following proposition, which is straightforward.

I Proposition 5.2. Let S and S′ be two schemas, and suppose that Π is a fact-wise reduction
from S to S′. Let I be an inconsistent instance over S, � a priority relation over I, and D
the inconsistent prioritizing instance (I,HI

S,�). Then there is a bijection between PRep(D)
and PRep(Π(D)).

We then conclude the following corollary.

I Corollary 5.3. If there is a fact-wise reduction from S to S′, then there is a polynomial-time
reduction from p-categoricity〈S〉 to p-categoricity〈S′〉.
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S1 S2 S3 S4 S5

S6S0

Two KeysOne FD Other Schemas

Figure 2 The structure of fact-wise reductions for proving the hardness side of the dichotomy of
Theorem 5.1.

Specific Schemas

In the proof we consider seven specific schemas. The importance of these schemas will later
become apparent. We denote these schemas by Si, for i = 0, 1, . . . , 6, where each Si is the
schema (Ri,∆i), and Ri is the singleton {Ri}. The specification of the Si is as follows.

R0/2 and ∆0 = {A→ B, B → A} R1/3 and ∆1 = {AB → C, BC → A, AC → B}
R2/3 and ∆2 = {A→ B, B → A} R3/3 and ∆3 = {AB → C, C → B}
R4/3 and ∆4 = {A→ B, B → C} R5/3 and ∆5 = {A→ C, B → C}

R6/3 and ∆6 = {∅ → A, B → C}

(For S6, recall that ∅ → A denotes the FD ∅ → {1}, that is, facts should have the same value
on the first attribute.) The proof uses fact-wise reductions from the Si, as we explain in the
next section.

Two Hard Schemas

Our proof boils down to proving coNP-hardness for two specific schemas, namely S0 and
S6, and then using (known and new) fact-wise reductions in order to cover all the other
schemas. For S6 the proof is fairly simple. However, hardness for S0 turned out to be highly
challenging to prove, and in fact, this part is the hardest in the proof of Theorem 5.1. Note
that S0 is the schema of our company-CEO running example (introduced in Example 2.1).

I Theorem 5.4. The problems p-categoricity〈S0〉 and p-categoricity〈S6〉 are both coNP-hard.

Applying Fact-Wise Reductions

The following has been proved by Fagin et al. [12].

I Theorem 5.5 ([12]). Let S = (R,∆) be a schema such that R consists of a single relation
symbol. Suppose that ∆ is equivalent to neither any single FD nor any pair of keys. Then
there is a fact-wise reduction from some Si to S, where i ∈ {1, . . . , 6}.

We complete the proof using the following two lemmas, giving additional fact-wise
reductions.

I Lemma 5.6. Let S = (R,∆) be a schema such that R consists of a single relation symbol.
Suppose that ∆ is equivalent to a pair of key constraints, and ∆ is not equivalent to any
single FD. Then there is a fact-wise reduction from S0 to S.

I Lemma 5.7. For all i = 1, . . . , 5 there is a fact-wise reduction from S0 to Si.
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Algorithm FindCRep(I,H,�)

1: J := ∅
2: while max�(I) 6= ∅ do
3: choose a fact f in max�(I)
4: I := I \ {f}
5: if J ∪ {f} is consistent w.r.t. H then
6: J := J ∪ {f}
7: return J

(a) Finding a c-repair [33]

Algorithm CCategoricity(I,H,�)

1: i := 0
2: J := ∅
3: while I 6= ∅ do
4: i := i + 1
5: Pi := max�+ (I)
6: J := J ∪ Pi

7: Ni := {f ∈ I | H has a hyperedge e s.t.
f ∈ e, (e \ {f}) ⊆ J , and (e \ {f}) �+ f}

8: I := I \ (Pi ∪Ni)
9: return true iff J is consistent

(b) Algorithm for c-categoricity

Figure 3 Algorithms for the completion semantics.

The structure of our fact-wise reductions is depicted in Figure 2. Dashed edges are known
fact-wise reductions, while solid edges are new. Observe that each single-relation schema on
the hardness side of Theorem 5.1 has an ingoing path from either S0 or S6, both shown to
have coNP-hard p-categoricity (Theorem 5.4).

6 c-Categoricity

We now investigate the complexity of c-categoricity. Our main result is the following.

I Theorem 6.1. The c-categoricity problem is solvable in polynomial time.

In the remainder of this section we establish Theorem 6.1 by presenting a polynomial-time
algorithm (Figure 3b). The algorithm is very simple, but its proof of correctness is intricate.

To present our algorithm, some notation is required. Let (I,H,�) be an inconsistent
prioritizing instance. The transitive closure of �, denoted �+, is the priority relation over the
facts of I where for every two facts f and g it holds that f �+ g if and only if there exists
a sequence f0, . . . , fm of facts, where m > 0, such that f = f0, fm = g, and fi � fi+1 for
all i = 0, . . . ,m− 1. Obviously, �+ is acyclic (since � is acyclic). Yet unlike �, the relation
�+ may compare between facts that are not necessarily neighbors in H. Let (I,H,�) be an
inconsistent prioritizing instance, let K be a set of facts of I, and let f be a fact of I. By
K �+ f we denote the case where g �+ f for every fact g ∈ K.

The algorithm is depicted in Figure 3b. The input is (I,H,�), an inconsistent prioritizing
instance. (The signature R is not needed by the algorithm.) The algorithm incrementally
constructs a subinstance J of I, starting with an empty J . Later we will prove that there
is a single c-repair if and only if J is consistent; and in that case, J is the single c-repair.
The loop in the algorithm constructs fact sets P1, . . . , Pt and N1, . . . , Nt (where t is the total
number of iterations). Each Pi is called a positive stratum and each Ni is called a negative
stratum. Both Pi and Ni are constructed in the ith iteration. On that iteration we add to J
every fact in Pi, and remove from I every fact in Pi and every fact in Ni. The sets Pi and
Ni are defined as follows.

ICDT 2017



17:14 Detecting Ambiguity in Prioritized Database Repairing

f12

f21

f23 f24

f31 f32

f34 f35

P2 N2 P3 N3P1 N1

f22f11

(a)

A a 2

A b 2

B a 2

B b 3

B a 3

A b 3

B b 1A a 1

(b)

Figure 4 (a) Execution of CCategoricity on the followers example; (b) An inconsistent instance I

over S1 with a priority relation � over I.

Pi consists of the maximal facts in the current I, according to �+.
Ni consists of all the facts f that, together with P1 ∪ · · · ∪ Pi, complete a hyperedge of
preferred facts; that is, H has a hyperedge that contains f , is contained in P1∪· · ·∪Pi∪{f},
and satisfies g �+ f for every incident g 6= f .

The algorithm continues to iterate until I gets empty. As said above, in the end the algorithm
returns true if J is consistent, and otherwise false. Next, we give execution examples.

I Example 6.2. Consider (I,H,�) from our company-CEO running example, illustrated on
the left side of Figure 1b. The algorithm makes a single iteration on this instance, where
P1 = {fg

pi, f
a
pa} and N1 = {fg

pa, f
a
pi, f

g
pa}. Both f

g
pi and f a

pa are in P1 since both are maximal.
Also, each of fg

pa, f a
pi and fg

pa is in conflict with P1, and we have fg
pi � fg

pa, f a
pa � f a

pi, and
fg

pi �+ fg
br.

I Example 6.3. Now consider the inconsistent prioritizing instance (I,H,�) from our
followers running example. Figure 4a illustrates the execution of the algorithm, where
each column describes Pi or Ni, from left to right in the order of their construction. For
convenience, the priority relation �, as defined in Example 2.4, is depicted in Figure 4a using
corresponding edges between the facts.

On iteration 1, for instance, we have P1 = {f11, f34}, since f11 and f34 are the facts
without incoming edges on Figure 4a. Moreover, we have N1 = {f12, f21, f31}. The reason
why N1 contains f12, for example, is that {f11, f12} is a hyperedge, the fact f11 is in P1, and
f11 � f12 (hence, f11 �+ f12). For a similar reason N1 contains f21. Fact f31 is in N1 as
{f11, f31} is a hyperedge, and though f11 6� f31, we have f11 �+ f31. As another example,
N3 contains f24 since H has the hyperedge {f22, f23, f24}, the set {f22, f23} is contained in
P1 ∪ P2 ∪ P3, and {f22, f23} �+ f24.

In the end, J = {f11, f22, f23, f32, f34, f35}, which is also the subinstance J1 of Ex-
ample 2.10. Since J is consistent, the algorithm will determine that there is a single c-repair,
and that c-repair is J .

I Example 6.4. We now give an example of an execution on a negative instance of c-
categoricity. (In Section 7 we refer to this example for a different reason.) Figure 4b shows
an instance I over S1, which is defined in Section 5.1. Recall that in this schema every two
attributes form a key. Each fact R1(a1, a2, a3) in I is depicted by a tuple that consists of
the three values. For example, I contains the (conflicting) facts R1(A, a, 1) and R1(A, a, 2).
Hereon, we write Xyi instead of R1(X, y, i). The priority relation � is given by the directed
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edges between the facts; for example, Aa1 � Aa2. Undirected edges are between conflicting
facts that are incomparable by � (e.g., Ab2 and Ab3).

The execution of the algorithm on (I,HI
S1
,�) is as follows. On the first iteration,

P1 = {Aa1,Ab2,Ba3,Bb1} and N1 = {Aa2,Bb3}. In particular, note that N1 does not
contain Ba2 since it conflicts only with Ba3 in P1, but the two are incomparable. Similarly,
N1 does not contain Ab3 since it is incomparable with Ab2. Consequently, in the second
iteration we have P2 = {Ba2,Ab3} and N2 = ∅. In the end, J = P1 ∪ P2 is inconsistent, and
therefore, the algorithm will return false. Indeed, the reader can easily verify that each of the
following is a c-repair: {Aa1,Ab2,Ba3,Bb1}, {Aa1,Ab2,Ba2,Bb1}, and {Aa1,Ba3,Ab3,Bb1}.

Correctness of CCategoricity is stated in the following theorem.

I Theorem 6.5. Let (I,H,�) be an inconsistent prioritizing instance, and let J be the
subinstance of I constructed in the execution of CCategoricity(I,H,�). Then J is consistent
if and only if there is a single c-repair. Moreover, if J is consistent then J is the single
c-repair.

Theorem 6.5, combined with the observation that the algorithm CCategoricity terminates
in polynomial time, implies Theorem 6.1. As previously said, the proof of Theorem 6.5 is
quite involved. The “only if” direction is that of soundness—if the algorithm returns true
then there is precisely one c-repair. The other direction is that of completeness—if there is
precisely one c-repair then the algorithm returns true. Soundness is the easier direction to
prove, and we do not discuss the proof here. Proving completeness is more involved. We
assume, by way of contradiction, that the constructed J is inconsistent. We are looking at
the first positive stratum Pi such that P1 ∪ · · · ∪ Pi contains a hyperedge. Then, the crux
of the proof is in showing that we can then construct two c-repairs using the algorithm
FindCRep: one contains some fact from Pi and another one does not contain that fact. We
then establish that there are at least two c-repairs, hence a contradiction.

7 g-Categoricity

We now investigate the complexity of g-categoricity. We begin with a tractability result.
Recall from Theorem 5.1 that, assuming P 6= NP, the problem p-categoricity〈S〉 is solvable in
polynomial time if and only if S consists (up to equivalence) of a single FD per relation. The
proof works for g-categoricity〈S〉, so the tractable schemas of p-categoricity remain tractable
for g-categoricity.

I Theorem 7.1. Let S = (R,∆) be a schema. The problem g-categoricity〈S〉 can be solved
in polynomial time if ∆|R is equivalent to a single FD for every R ∈ R.

It is left open whether there is any schema S that is not as in Theorem 7.1 where
g-categoricity〈S〉 is solvable in polynomial time. In the next section we give an insight into
this open problem.

7.1 Intractable Schemas
Our next result shows that g-categoricity〈S〉 hits a harder complexity class than p-categoricity〈S〉.
In particular, while p-categoricity〈S〉 is always in coNP (due to Corollary 4.4), we will show
a schema S where g-categoricity〈S〉 is Πp

2-complete. This schema is the schema S6 from
Section 5.1.

I Theorem 7.2. g-categoricity〈S6〉 is Πp
2-complete.
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The proof of Theorem 7.2 is by a reduction from the Πp
2-complete problem QCNF2: Given a

CNF formula ψ(x,y), determine whether it is the case that for every truth assignment to x
there exists a truth assignment to y such that the two assignments satisfy ψ.

We can generalize Theorem 7.2 to a broad set of schemas, by using fact-wise reductions
from S6. This is done in the following theorem.

I Theorem 7.3. Let S = (R,∆) be a schema such that R consists of a single relation symbol
R and ∆ consists of two nontrivial FDs X → Y and W → Z. Suppose that each of W and
Z contains an attribute that is in none of the other three sets. Then g-categoricity〈S〉 is
Πp

2-complete.

As an example, recall that in S6 we have ∆ = {∅ → A,B → C}. This schema is a
special case of Theorem 7.3, since we can use ∅ → A as X → Y and B → C as W → Z;
and indeed, each of W and Z contains an attribute (namely B and C, respectively) that
is not in any of the other three sets. Additional examples that satisfy the conditions of
Theorem 7.3 (and hence the corresponding g-categoricity〈S〉 is Πp

2-complete) are the following:
{A→ B,C → D}, {A→ C,AB → CD}, {A→ B,ABC → D}, and {A→ B,C → ABD}.
All of these sets are over a relation symbol R/4. (And in each of these sets, the first FD
corresponds to X → Y and the second to W → Z.)

Unlike S6, to this day we do not know what is the complexity of g-categoricity〈Si〉 for
any of the other Si (defined in Section 5.1). This includes S0, for which all we know is
membership in coNP (as stated in Corollary 4.4). However, except for this open problem,
the proof technique of Theorem 5.1 is valid for g-categoricity〈S〉. Consequently, we can show
the following.

I Theorem 7.4. The following are equivalent.
g-categoricity〈S0〉 is coNP-hard.
g-categoricity〈S〉 is coNP-hard for every schema S that falls outside the polynomial-time
cases of Theorem 7.1.

7.2 Transitive Priority
Let (I,H,�) be an inconsistent prioritizing instance. We say that � is transitive if for every
two facts f and g in I, if f and g are neighbors in H and f �+ g, then f � g. Transitivity is
a natural assumption when � is interpreted as a partial order such as “is of better quality
than” or “is more current than.” In this section we consider g-categoricity in the presence of
this assumption. The following example shows that a g-repair is not necessarily a c-repair,
even if � is transitive. This example provides an important context for the results that
follow.

I Example 7.5. Consider again I and � from Example 6.4 (depicted in Figure 4b). Observe
that � is transitive. In particular, there is no priority between Ab2 and Ba2, even though
Ab2 �+ Ba2, because Ab2 and Ba2 are not in conflict (or, put differently, they are not
neighbors in HI

S1). Consider the subinstance J = {Aa1,Ba2,Ab3,Bb1} of I. The reader can
verify that J is a g-repair, but not a c-repair (since no execution of FindCRep can generate
J).

Example 7.5 shows that global and completion optimality are different notions, even
if the priority is transitive. Yet, quite remarkably, in the presence of transitivity the two
coincide on categoricity.
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I Theorem 7.6. Let D = (I,H,�) be an inconsistent prioritizing instance such that � is
transitive. |CRep(D)| = 1 if and only if |GRep(D)| = 1.

Proof. The “if” direction follows from Proposition 2.8, since every c-repair is also a g-repair.
The proof of the “only if” direction is based on the special structure of the c-repair, as
established in Section 6, in the case where only one c-repair exists. Specifically, suppose that
there is a single c-repair J and let J ′ 6= J be a consistent subinstance of I. We need to show
that J ′ has a global improvement. We claim that J is a global improvement of J ′. This is
clearly the case if J ′ ⊆ J . So suppose that J ′ 6⊆ J . Let f ′ be a fact in J ′ \ J . We need to
show that there is a fact f ∈ J \ J ′ such that f � f ′. We complete the proof by finding such
an f .

Recall from Theorem 6.5 that J is the result of executing CCategoricity(I,H,�). Consider
the positive strata Pi and the negative strata Nj constructed in that execution. Since J is
the union of the positive strata, we get that f ′ necessarily belongs to a negative stratum,
say Nj . From the definition of Nj it follows that H has a hyperedge e such that f ′ ∈ e,
(e \ {f ′}) ⊆ P1 ∪ · · · ∪ Pj , and (e \ {f ′}) �+ f ′. Let e be such a hyperedge. Since J ′ is
consistent, it cannot be the case that J ′ contains all the facts in e. Choose a fact f ∈ e such
that f /∈ J ′. Then f �+ f ′, and since � is transitive (and f and f ′ are neighbors), we have
f � f ′. So f ∈ J \ J ′ and f � f ′, as required. J

Interestingly, the proof of Theorem 7.6 is based on the correctness of the algorithm
CCategoricity of Figure 3b. Combining Theorems 6.1 and 7.6, we get the following.

I Corollary 7.7. For transitive priority relations, the problems g-categoricity and c-categoricity
coincide, and in particular, g-categoricity is solvable in polynomial time.

We conclude with two comments. First, the reader may wonder whether Theorem 7.6
and Corollary 7.7 hold for p-categoricity as well. This is not the case. Hardness of p-
categoricity〈S6〉 is proved by a reduction to a transitive priority relation. Second, in their
analysis Fagin et al. [12] have constructed various reductions for proving coNP-hardness
of g-repair checking. In several of these, the priority relation is transitive. We conclude
that there are schemas S such that, on transitive priority relations, g-repair checking is
coNP-complete whereas g-categoricity is solvable in polynomial time.

8 Concluding Remarks

We investigated the complexity of the categoricity problem, which is that of determining
whether the provided priority relation suffices to repair the database unambiguously, in
the framework of preferred repairs [33]. In this framework, integrity constraints are anti-
monotonic and repairing operations are tuple deletions (i.e., subset repairs). Following
the three semantics of optimal repairs, we investigated the three variants of this problem:
p-categoricity, g-categoricity and c-categoricity. We established a dichotomy in the data
complexity of p-categoricity for the case where constraints are FDs, partitioning the cases
into polynomial time and coNP-completeness. We further showed that the tractable side of
p-categoricity extends to g-categoricity, but the latter can reach Πp

2-completeness already for
two FDs. Finally, we showed that c-categoricity is solvable in polynomial time in the general
case where integrity constraints are given as a conflict hypergraph.

We did not address here any qualitative discrimination among the three notions of x-
repairs. Rather, we continue the line of work [34, 13] that explores the impact of the choice
on the entailed computational complexity. It has been established that, as far as repair
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checking is concerned, the Pareto and the completion semantics behave much better than the
global one, since g-repair checking is tractable only for a very restricted class of schemas [13].
In this work we have shown that from the viewpoint of categoricity, the Pareto semantics
becomes likewise intractable (while the global semantics hits an even higher complexity class),
and the completion semantics outstands so far as the most efficient option to adopt.

We complete this paper by discussing directions for future research. It would be interesting
to further understand the complexity of g-categoricity, towards a dichotomy (at least for FDs).
We have left open the question of whether there exists a schema with a single relation and a
set of FDs, not equivalent to a single FD, such that g-categoricity is solvable in polynomial
time. Another interesting direction is the generalization of categoricity to the problems of
counting and enumerating the preferred repairs. For classical repairs (without a priority
relation), Maslowski and Wijsen [29, 30] established dichotomies (FP vs. #P-completeness)
in the complexity of counting in the case where constraints are primary keys. For the
general case of denial constraints, counting the classical repairs reduces to the enumeration
of independent sets of a hypergraph with a bounded edge size, a problem shown by Boros et
al. [7] to be solvable in incremental polynomial time (and in particular polynomial input-
output complexity). For a general given conflict hypergraph, repair enumeration is the well
known problem of enumerating the minimal hypergraph transversals; whether this problem is
solvable in polynomial total time is a long standing open problem [20].

A natural continuation of this work would be to chart the complexity boundaries for more
general cleaning frameworks that feature preferences between repairs, including different types
of integrity constraints, different cleaning operations (e.g., tuple addition and cell update [35]),
and different priority specifications among repairs. The latter includes preferences by
means of general scoring functions [31, 22], aggregation of scores on the individual cleaning
operations [6, 18, 25, 18, 11], priorities among resolution policies [28] and preferences based
on soft rules [32, 21].

Acknowledgments. The authors are very grateful to Ronald Fagin and Phokion Kolaitis
for insightful discussions on the categoricity problem.
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