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—— Abstract

The wait-free read-write memory model has been characterized as an iterated Immediate Snapshot
(IS) task. The IS task is affine — it can be defined as a (sub)set of simplices of the standard
chromatic subdivision. In this paper, we highlight the phenomenon of a “natural” model that can
be captured by an iterated affine task and, thus, by a subset of runs of the iterated immediate
snapshot model. We show that the read-write memory model in which, additionally, k-set-
consensus objects can be used is “natural” by presenting the corresponding simple affine task
captured by a subset of 2-round IS runs. As an “unnatural” example, the model using the
abstraction of Weak Symmetry Breaking (WSB) cannot be captured by a set of IS runs and, thus,
cannot be represented as an affine task. Our results imply the first combinatorial characterization
of models equipped with abstractions other than read-write memory that applies to generic tasks.
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1 Introduction

A principal challenge in distributed computing is to devise protocols that operate correctly
in the presence of failures, given that system components (processes) are asynchronous.

The most extensively studied wait-free model of computation [21] makes no assumptions
about the number of failures that can occur. In particular, in a wait-free solution of a
distributed task, a process participating in the computation should be able to produce an
output regardless of the behavior of other processes.

Topology of wait-freedom. Wait-free task solvability in the read-write shared-memory
model has been characterized in an elegant way through the existence of a specific continuous
map from geometrical structures describing inputs and outputs of the task [22, 24].
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p2 sees {p}

Ordered run:
{p2} {1} {ps}

p1 sees {p1,pa2}

Synchronous
run: {pi,ps,ps}

3 sees {pa, ps}

pa sees {p1,po} P2 sees {pa,p3}

p1 sees {pi} p3 sees {ps}

Figure 1 Chrs in the 2-dimensional case.

A task T is wait-free solvable (using reads and writes) if and only if there exists a
simplicial, chromatic map from a subdivision of the input simplicial complex to the output
simplicial complex, satisfying the specification of T'. In particular, using the iterated standard
chromatic subdivision [22, 26] (one such iteration of the standard 2-simplex s, denoted by
Chrs, is depicted in Figure 1), we obtain a combinatorial representation of the wait-free
model. [terations of this subdivision capture precisely rounds of the iterated immediate
snapshot (IIS) model [5, 24].

This characterization can be interpreted as follows: the wait-free read-write model can
be characterized, regarding task solvability, by an iterated (one-shot) Immediate Snapshot
task, which, in turn, captured by the chromatic simplex agreement task [5, 24] on Chrs.

Beyond wait-freedom: k-concurrency and k-set consensus. Unfortunately, very few tasks
are solvable in the wait-free manner using read and writes [3, 24, 31], so a lot of work has
been invested in characterizing task solvability in various restrictions of the wait-free model.

A straightforward way to define such a restriction is to bound the concurrency level
of runs [14]. In the k-concurrency model, at most k processes can be concurrently active
(during the interval between the invocation and response of the task). The k-concurrency
model is known to be equivalent to the k-set-consensus model in which processes, in addition
to the read-write shared memory, can access k-set-consensus objects [13].

Iterated tasks for k-set-consensus. In this paper, we show that the k-set-consensus model
can be captured by an iterated affine task [17]. Informally, an affine task consists in solving
chromatic simplex agreement [5, 24] on a subcomplex of some iteration of the standard
chromatic subdivision. We show that the affine task R capturing the k-set-consensus model
consists of all simplices of the second chromatic subdivision, in which at most k processes
contend with each other (cf. examples of Ry and R for 3 processes in Figure 3).

We show that R}, the set of IIS runs corresponding to iterations of this subcomplex Ry,
solves precisely the same set of tasks as the k-set-consensus model does. Note that our
definition of the IIS model does not assume process failures: every process takes infinitely
many steps in every run, but, because of the use of iterated memory, a “slow” process may
not be seen by “faster” ones from some point [29, 10, 7]. Thus, solving a task in R} requires
every process to output.

Techniques and results. Our result is established through the existence of three simulations.

The first one simulates, in the k-set-consensus model, a k-concurrent execution of any
read-write algorithm in the k-set-consensus model. We derive that the k-set-consensus model
solves every task that is solvable k-concurrently.
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The second algorithm solves Ry in the k-concurrency model, i.e., solves chromatic simplex
agreement on the Ry complex. By iterating this solution, we can simulate the R} model
and, thus, solve any task solvable in Rj.

The third algorithm simulates runs of an algorithm using read-write memory and k-set-
consensus objects in Rj. Compared to the simulations in [23, 18, 16, 7, 17], our algorithm
ensures that every process eventually outputs in R}, assuming that the simulated algorithm
ensures that every correct process eventually outputs.

Thus, a task is solvable using iterations of Ry if and only if it can be solved in the
wait-free model using reads, writes, and k-set-consensus objects (or, equivalently, assuming
k-concurrency). Therefore, the k-set-consensus model has a bounded representation as an
iterated affine task: processes iteratively invoke instances of Ry a bounded number of times
until they assemble enough knowledge to produce an output for the task they are solving.

Our results suggest a separation between “natural” models that have matching affine tasks
and, thus, can be captured precisely by subsets of IIS runs and less “natural” ones, like WSB,
having a manifold structure that is not affine [19]. We conjecture that such a combinatorial
representation can also be found for a large class of restrictions of the wait-freedom, beyond
k-concurrency and k-set consensus. This claim is supported by a recent derivation of the
t-resilience affine task [32].

Related work. There have been several attempts to extend the topological characterization
of [24] to models beyond the wait-free one [23, 16, 17, 28]. However, these results either
only concern the special case of colorless tasks [23], consider weaker forms of solvability [16],
introduce a new kind of infinite subdivisions [17], or also use non-iterated infinite subset of
IIS runs [28].

In particular, Gafni et al. [17] characterized task solvability in models represented as
subsets of IIS runs via infinite subdivisions of input complexes. This result assumes a
limited notion of task solvability in the iterated model that only guarantees outputs to “fast”
processes [11, 29, 7] that are “seen” by every other process infinitely often.

Concerning the reduction to iterated models, Imbs et al [25] showed that the model
of iterated z-consensus, i.e., consensus among & processes, is equivalent regarding task
solvability to the model of read-write memory and access to z-consensus objects.

In contrast with the earlier work, this paper studies the inherent combinatorial properties
of general (colored) tasks and assumes the conventional notion of task solvability. Concurrently
with the recently discovered affine task for t-resilience [32], our results truly capture the
combinatorial structure of a restriction of the wait-free model.

Roadmap. The rest of the paper is organized as follows. Section 2 gives model definitions,
briefly overviews the topological representation of iterated shared-memory models. In
Section 3, we present the definition of Ry corresponding to the k-concurrency model. In
Section 4, we show that Ry can be implemented in the k-set-consensus model and that any
task solvable in the k-set-consensus model can be solved by iterating Ry. Section 5 discusses
related models and open questions.

2 Preliminaries

Let II be a system composed of n asynchronous processes, p1,...,p,. We consider two models
of communication: (1) atomic snapshots [1] and (2) iterated immediate snapshots [5, 24].
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Atomic snapshots. The atomic-snapshot (AS) memory is represented as a vector of shared
variables, where processes are associated to distinct vector positions, and exports two
operations: update and snapshot. An update operation performed by p; replaces the shared
variable at position ¢ with a new value and a snapshot returns the current state of the vector.
The model in which processes only have access to an AS memory is called the AS model.

Iterated immediate snapshots. In the iterated immediate snapshot (IIS) model, processes
proceed through an ordered sequence of independent memories My, My, . ... Each memory M,
is accessed by a process with a single immediate snapshot operation [4]: the operation
performed by p; takes a value v; and returns a set V;,. of values submitted by the processes
(w.l.o.g, we assume that values submitted by different processes are distinct), so that the
following properties are satisfied: (self-inclusion) v; € Vj,; (containment) (Vi C Vj,) V (Vi C
Vir); and (immediacy) v; € Vj = Vi TV,

Protocols and runs. A protocol is a distributed automaton that, for each local state of
a process, stipulates which operation and which state transition the process is allowed to
perform in its next step. We assume here deterministic protocols, where only one operation
and state transition is allowed in each state. A run of a protocol is defined as a possibly
infinite sequence of states and operations.

In the IIS communication model, we assume that processes run the full-information
protocol: the first value each process writes is its initial state. For each r > 1, the outcome of
the immediate snapshot operation on memory M, _; is submitted as the input value for the
immediate snapshot operation on memory M,.. After a certain number of such (asynchronous)
rounds, a process may gather enough information to decide, i.e., to produce an irrevocable
non-_L output value. A run of the IIS communication model is thus a sequence V;,., i € N,
and r € N, determining the outcome of the immediate-snapshot operation for every process i
and each iterated memory M,..

Failures and participation. In the AS model (or the defined below AS model in which
k-set-consensus objects can additionally be accessed), a process that takes only finitely many
steps of the assigned protocol in a given run is called faulty, otherwise it is called correct. We
assume that in its first step, a process writes its initial state in the shared memory using the
update operation. If a process completed this first step it is said to be participating, the set
of participating processes in a given run is called the participating set. Note that, since every
process writes its initial state in its first step, the initial states of participating processes are
eventually known to every process that takes sufficiently many steps.

In contrast, the IIS model does not have the notion of a faulty process. Instead, a process
may appear “slow” [29, 10, 7], i.e., be late in accessing iterated memories from some point
on so that some “faster” processes do not see them.

Tasks. In this paper, we focus on distributed tasks [24]. A process invokes a task with an
input value and the task returns an output value, so that the inputs and the outputs across
the processes, respect the task specification. Formally, a task is defined through a set Z of
input vectors (one input value for each process), a set O of output vectors (one output value
for each process), and a total relation A : T — 2© that associates each input vector with
a set of possible output vectors. An input | denotes a non-participating process and an
output value L denotes an undecided process. Check [22] for more details on the definition.
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A protocol solves a task T' = (Z, O, A) in a given model, if it ensures that in every infinite
run of the model in which processes start with an input vector I € Z, there is a finite prefix
R of the run where: (1) all decided values form a vector O € O such that (I,0) € A, and
(2) every correct process has decided.

k-set-consensus and k-concurrency models. A k-set-consensus object can be accessed
with a propose operation that takes a proposed value as an argument and returns a decided
value as a response, so that, in each run, decided values constitute a subset of proposed
values of size at most k. For k € {1,...,n — 1}, in the k-set-consensus model, processes
communicate via the AS memory and k-ste-consensus objects.

Let R be a finite run of the AS model. A process p; is called active at the end of R if p;
participates in R but has not terminated by the end of R. Let active(R) denote the set of all
processes that are active at the end of R.

A run R of the AS model is k-concurrent (k = 1,...,n) if at most k processes are
concurrently active in R, i.e., max{|active(R’)|; R’ prefix of R} < k. The k-concurrency
model is the set of k-concurrent runs of the AS model.

It is known that the k-concurrency model is equivalent to the k-set-consensus model [13]!:
any task that can be solved k-concurrently can also be solved in the k-set-consensus model,
and vice versa.

Standard chromatic subdivision and 11S. To give a combinatorial representation of the IIS
model, we use the language of simplicial complezes [33, 22]. In short, a simplicial complex
is defined as a set of wvertices and an inclusion-closed set of vertex subsets, called simplices.
The dimension of a simplex ¢ is the number of its vertices minus one. Any subset of these
vertices is called a face of the simplex. A simplicial complex is pure (of dimension n) if each
its simplices are contained in a simplex of dimension n.

A simplicial complex is chromatic if it is equipped with a coloring function — a non-
collapsing simplicial map x from its vertices to the standard (n — 1)-simplex s of n vertices,
in one-to-one correspondence with n colors 1,2,...,n. All simplicial complexes we consider
here are pure and chromatic. Please refer to the extended version of this paper [15] or [22]
for more details on the formalism.

For a chromatic complex C, we let Chr C' be the subdivision of C' obtained by repla-
cing each simplex in C' with its standard chromatic subdivision [26]. The vertices of Chr C
are pairs (v,0), where p is a vertex of C' and ¢ is a simplex of C containing v. Ver-
tices (v1,01), -+, (Um,0m) form a simplex if all v; are distinct and all o; satisfy the proper-
ties of immediate snapshots. Subdivision Chr's for the 2-dimensional simplex s is given in
Figure 1. Each vertex represents a local state of one of the three processes p1, p2 and ps (red
for pq, blue for p and white for p3) after it takes a single immediate snapshot. Each triangle
(2-simplex) represents a possible state of the system. A corner vertex corresponds to a local
state in which the corresponding process only sees itself (it took its snapshot before the other
two processes moved). An interior vertex corresponds to a state in which the process sees all
three processes. The vertices on the 1-dimensional faces capture the snapshots of size 2.

If we iterate this subdivision m times, each time applying the same subdivision to each of
the simplices, we obtain the m*" chromatic subdivision, Chr”™ C. It turns out that Chr™ s
precisely captures the m-round (full-information) IIS model, denoted IS™ [24]. Each run

of IS™ corresponds to a simplex in Chr™s. Every vertex v of Chr™s is thus defined

1 In fact, this paper contains a self-contained proof of this equivalence result.
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Figure 2 Contention sets (simplices in red) in a 3-process system.

as (p,IS*(p,0),...,IS™(p,0)), where each IS'(p,o) is interpreted as the set of processes
appearing in the i IS iteration obtained by p in the corresponding IS™ run. The carrier of
vertex v is then defined as the set of all processes seen by p in this run, possibly through the
views of other processes: it is the smallest face of s that contains v in its geometric realization.
The carrier of a simplex is the maximal carrier of its vertices (related by inclusion).

Affine Tasks. As we show in this paper, the k-set-consensus model (and, thus, the k-
concurrency model) can be captured by an iterated affine task [17]. Affine tasks can be seen
as a generalization of simplex agreement tasks [5, 24], where the output complex is no longer
a subdivision but a subset of some iteration of the standard chromatic subdivision. More
formally, let L be a pure subcomplex of Chr's for some [ € N of the dimension of s. The
affine task associated to L is then simply defined as (s, L, A), where, for every face t C s,
A(t)=LnN Chr! t. With a slight abuse of notations, the subcomplex L is used to denote the
affine task associated to L.

By running m iterations of this task, we obtain L™, a subcomplex of Chr'™s, corres-
ponding to a subset of IS "™ runs (each iteration includes ! IS rounds). We denote by L*
the set of infinite runs of the IIS model where every prefix restricted to a multiple m of [ IS
rounds belongs to the subset of IS ™ runs associated to L™.

3 The complex of k-set consensus

We now define Ry, a subcomplex of Chr?s, that precisely captures the ability of k-set
consensus (and read-write memory) to solve tasks. The definition of Ry, is expressed via a
restriction on the simplices of Chr? s that bounds the size of contention sets. Informally, a
contention set of a simplex o € Chr?s (or, equivalently, of an IS? run) is a set of vertices (or,
processes) that “see each other”. When a process p; starts its IS execution after another
process p; terminates, p; must observe p;’s input, but not vice versa. Thus, a set of processes
that see each others’ inputs must have been concurrently active at some point.

Topologically speaking, a contention set of a simplex o € Chr?s is a set of vertices in o
sharing the same carrier, i.e., a minimal face t C s that contains their vertices. Thus, for a
given simplex o € Chr? s, the set of contention sets is defined as follows:

» Definition 1 (Contention sets). Cont(c) = {7 C o,Vv € 7, carrier(v) = carrier(T)}.

Contention sets for simplices of Chr?s in a 3-process system are depicted in Figure 2:
for each simplex o € Chr?s, every face of o that constitutes a red simplex is a contention



E. Gafni, Y. He, P. Kuznetsov, and T. Rieutord

£
AN

S e
RSTTS

7 ST
AN
L =\ N
-5

(b) Complex R»

(a) Complex R4

Figure 3 R and R (in blue) for 3 processes.

set of 0. In an interior simplex, every set of vertices are contention sets. Every “total order”
simplex (shown in blue in Figure 3a), matching a run in which processes proceed, one by
one, in the same order in both IS' and IS, has only three singleton as contention sets. All
other simplices include a contention set of two processes. In the associated IIS run, processes
are said to be contending if they are associated to vertices forming a contention set.

Now Ry, is defined as the set of all simplices in Chr?s, in which the contention sets have
cardinalities of at most k:

» Definition 2 (Complex Rj). Ry, = {0 € Chu’s,Vr € Cont(c), |7| < k}.

It is immediate to see that the set of simplices in Ry constitutes a simplicial complex: every
face 7 of 0 € Ry is also in Ry.

Examples of R; and R, for a 3-process system are shown in Figures 3a and 3b, respectively.
Obviously, for the unrestricted 3-set consensus case, R3 = Chr?s. Note that R4 only contains
six “total order” simplices, while R consists of all simplices of Chr? s that touch the boundary.

4  From k-set consensus to R; and back

In this section, we show that any task solvable in the k-set consensus model can be solved in
Rj, and vice versa. The main result is established via simulations: a run of an algorithm
solving a task in one model is simulated in the other.

4.1 From k-set consensus to k-concurrency

We first show that the k-concurrency model is equivalent, regarding task solvability, to the
k-set-consensus model. This result has been stated in a technical report [13], but no explicit
proof appears in the literature, and we fill the gap below.

Simulating a k-process shared memory system. We employ generalized state machines
(proposed in [14] and extended in [30]) that allow us to simulate an inputless (i.e., simulated
processes have a default initial state) k-process read-write memory system in the k-set-
consensus model. To ensure consistency of simulated operations, we use commit-adopt
objects [11] that can be implemented using AS. A commit-adopt object exports one operation
propose(v) that takes a parameter in an arbitrary range and returns a couple (flag,v'), where
flag can be either commit or adopt and where v’ is a previously proposed value. Moreover, if

6:7
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Algorithm 1: k£ processes shared memory system simulation: process p;.

1 SharedObjects: KSC[1...] k—simultaneous consensus objects;

2 CA[l...][1...k] : commit — adopt objects;

3 MEM][1...n][l...k] init (—1, 1) : single writer shared memory array;
4 Init: r; + 0; foreach m € {1,...,k} do (WC;[m], View;[m]) < (0,0);

5 Repeat forever

6 ri — 1 +1;

7 (Index;, Value;) < KSC|r;].propose(WC, View;);

8 (Flag;[Index;], val;) < C Alri][Index;].propose( Value;);

9 if val; = (¢, *) with ¢ > WC;[Index;] then (WC;[Index;], View;[Indez;]) + valy;
10 foreach m € {1,...,k} \ Indez; do

11 (Flagi[m],val;) < CA[r;][m].propose( View;[m]);

12 if val; = (¢, %) with ¢ > WC;[m] then (WC;[m], View;[m]) < vals;

13 foreach m € {1,...,k} do

14 if Flag;[m] = Commit then

15 M EM(i][m]. Update(W C;[m], WriteVal(W C;[m], View;[m]));
16 WCi[m] < WCi[m] + 1;
17 View;|m] = CurWrites(M EM.Snapshot());

18 End repeat;

19 With CurWrites (M EM,q;)=
20 foreach m € {1,...,k} do curWC[m| = —1, curWrite[m] = L;
21 foreach (m,l) € {1,...,k} x{1,...,n} do

22 if MEMyo[l)[m].WC > curWC[m] then
23 | curWClm] = MEMyq[l][m].WC, curWrite[m] = MEM,q[l][m].Value;
24 return curWrite;

a process returns a commit flag, then every process must return the same value. Further, if
no two processes propose different values, then all returned flags must be commit.

Liveness of the simulation relies on calls to k-simultaneous consensus objects [2]. To
access a k-simultaneous consensus object, a process proposes a vector of k inputs, one for each
of the consensus instances, 1,2, ...k, and the object returns a couple(i,v), where index i
belongs to {1,...,k} and v is a value proposed by some process at index 7. It ensures that no
two processes obtain different values with the same index. Moreover, if ¢ < k distinct input
vectors are proposed then only values at indices 1,...,¢ can be output. The k-simultaneous
consensus object is equivalent to k-set-consensus in the read-write shared-memory system [2].

Our simulation is described in Algorithm 1. We use three shared abstractions: an infinite
array of k-simultaneous consensus objects K SC', one object per round, an infinite array of
arrays of k indexed commit-adopt objects C'A, i.e., k objects per round, and a single-writer
multi-reader memory M EM with k slots.

In every round, the simulator starts by accessing the round k-simultaneous-consensus
object with its local estimation of the simulated system state (line 7). Then the simulator
access the commit-adopt object associated with the index, and using the state estimation as
proposed value, output earlier by the k-simultaneous-consensus object (line 8). After that the
simulator go through the £ — 1 remaining commit-adopt objects of the round, using its current
estimation of the simulated processes state as proposals (lines 8-11). It is guaranteed that at
least one process commits, in particular, process p; that is the first to return from its first
commit-adopt invocation in this round (on a commit-object C'), because any other process
with a different proposal must access a different commit-adopt object first and, thus, it must
invoke C' after p; returns. To ensure that a unique written value is selected, simulators
replace their current proposal values with the values returned by the commit-adopt objects
(lines 8-11). Note that the processes do not select values corresponding to an older round
of simulation, to ensure that processes do not alternate committing and adopting the same
value indefinitely.
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In the simulation, the simulators propose snapshot results for the simulated processes.
Once a proposed snapshot has been committed, a simulator stores in the shared memory
the value that the simulated process must write in its next step (based on its simulated
algorithm), equipped with the corresponding write counter (line 15). The write counter
is then incremented and a new snapshot proposal is computed (line 17). To compute a
simulated snapshot, for each process, the most recent value available in the memory M EM is
selected by comparing the write counters WC' (auxiliary function CurWrites at lines 19-24).

» Lemma 3. Algorithm 1 provides a non-blocking simulation of an inputless k-process AS
memory system in the k-set consensus model. Moreover, if there are { < k active processes,
then one of the first { simulated processes is guaranteed to make progress.

The proof of Lemma 3 can be found in the companion technical report [15]. The proof
is constructed by showing that: (1) No two different written values are computed for the
same simulated process and the same write counter; (2) In every round of the simulation,
at least one simulator commits a new simulated operation; (3) Every committed simulated
snapshot operation can be linearized at the moment when the actual snapshot operation
which served for its computation took place; and (4) Every simulated write operation can be
linearized to the linearization time of the first actual write performed by a simulator with
the corresponding value.

Using the extended BG-simulation to simulate a k-concurrent execution. We have shown
that a k-process inputless AS memory system can be simulated in the k-set-consensus model.
In its turn, the simulated system can be used to simulate a k-concurrent execution by running
an extended BG-simulation protocol [3, 6].

The BG-simulation technique allows k+ 1 processes s1, ..., Sk+1, called BG-simulators, to
simulate, in a wait-free manner, a k-resilient run of any protocol A on m processes p1, ..., Pm
(m > k). The simulation guarantees that each simulated step of every process p; is either
agreed upon by all simulators, or is blocked because of a slow or faulty simulator (and one
less simulator participates further in the simulation for each step which is not agreed on).

In the original BG simulation, a faulty simulator may indefinitely block an arbitrary
simulated process. The extended BG-simulation [12] additionally exports an abort operation
that, when applied to a blocked simulated process, re-initializes it, so that the process
can move forward until an output for it is computed, or another simulator makes it block
again. The abort mechanism must be used carefully in order to keep liveness properties, by,
for example, ensuring that the slow or crashed simulator will not participate again in the
simulation. Refer [3, 6, 12] for a more formal description of the BG-simulation technique.

As previously done in [9], the main idea of the simulation is to run a depth-first BG-
simulation (i.e., simulate the more advanced available code) instead of a classical bread-first
BG-simulation (i.e., simulate the least advanced available code). Indeed, the BG-simulation
consists in executing pieces of shared-memory codes in any valid order (i.e., respecting
simulated threads dependencies). But to prevent starvation of the BG-simulators, one cannot
wait to simulate the next piece of code a blocked thread and thus must move to another
thread. But by selecting the more advanced available thread, then, as we will verify, this
provides a k-concurrent simulation when executed by k BG-simulators.

Three aspects requires clarification. First, the threads we want to execute k-concurrently
require input values, initially available only to the corresponding process. This is resolved by
simply having processes write their initial state to the shared memory before participating
in the BG-simulation executed on the k-process inputless system provided by Algorithm 1.

6:9
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Algorithm 2: Process code for the k-concurrent simulation for p;.

1 Thread[i] < Input;

2 while Thread/i/!=Complete do

3 | Execute 1 round of Algorithm 1(Algorithm 3);
4 return Thread[i].output();

Algorithm 3: Code for BG-simulator number m.

1 Repeat forever

2 Let A= {i € {1,...,n}, Thread[i]! = NotInitialized A Thread[i]! = Complete};
3 if |A| > m then

4 Let Blocked = {i € A, Thread[i] = Blocked};

5 if A = Blocked then

6 | forall i € A do Thread[i].Abort() ;

7 Let j = argmax;c o\ piockeq T Pread[i]. Progress();

8 Execute(Thread|i]. NextStep());

9 End repeat;

This way there is at least as many opened threads (i.e., a thread associated with a process
with an input value visible to all simulators) as possible active BG-simulators.

Secondly, as threads are used to execute an algorithm solving a task, they may terminate,
thus reducing the number of threads available. This is why processes execute Algorithm 1
one round at a time: At each round each process checks if its own thread is complete, and if
so it stops and it returns with its task output. This ensures that the number of processes
active in Algorithm 1 execution follows, with some latency, the number of threads available.

Lastly, when there is £ < k available threads, the last (k — ¢) BG-simulators stop
participating in the simulation to adapt the number of active BG-simulators to the number of
available threads. Moreover, a BG-simulator uses the abort mechanism, on all active threads,
if it is one of the first £ BG-simulators and if every active thread is currently blocked.

These algorithms are available in Algorithm 2 for the process code, and in Algorithm 3 for
the BG-simulator code. The threads correspond to process simulations. A thread is said to
be Notlnitialized if the corresponding process did not provide yet its input value (Alg. 2, 1. 1).
Otherwise it can be either Blocked, Available, or Complete. If it is initialized, Progress()
returns the number of simulation steps that has been performed, possibly 0. Note that in
the case where multiple threads have the same progress when selecting the most advanced
one (Alg. 3, 1. 7), any one of them can be selected.

» Lemma 4. All tasks solvable in the k-concurrency model can be solved in the k-set-consensus
model.

The proof of Lemma 4 is quite tedious, and therefore relegated to the associated technical
report [15], even if the construction of the algorithms and the main aspect of their correctness
are quite simple and natural.

The main argument relies on the fact that the number of processes participating in
Algorithm 1 follows the number of active threads. Thus, when the number of active threads ¢
is smaller than k, we have the property that Algorithm 1 provides progress to one out of the
first ¢ simulated processes (see Lemma 3). Therefore, one out of the ¢ first BG-simulators
takes infinitely many steps. But as only the first £ BG-simulators remains active, the ¢ active
threads cannot remain blocked by slow BG-simulators. The technical difficulties relies in
showing that the use of the abort mechanism does not cause trouble as well as the delays to
reach stability after a change in the number of active threads. On another hand, the safety
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of the simulation is quite easy to show, as at most k — 1 active threads may be blocked when
selecting a thread to simulate, if k already took steps and did not terminate then one of
these k will be selected to continue further its simulation.

4.2 From k-concurrency to R;.

We now show that k-concurrency can solve Ry, i.e., it can solve the affine task on the
subcomplex Rj. In fact, running any algorithm implementing immediate snapshot in the
k-concurrency model would do the job.

» Lemma 5. The two-round immediate snapshot algorithm solves the affine tasks Ry, in the
k-concurrency model.

Proof. Consider two iterated rounds of any IS algorithm (e.g., [4]) in the k-concurrency
model. The set of IS? outputs of this algorithm, forms a valid simplex ¢ in Chr®s [5].

Let o be any such simplex. Let S be the contention set of ¢ containing two vertices v and
v’, and let p and ¢ be the processes corresponding to the vertices v and v’. By contradiction,
suppose that p and ¢ were not concurrently active in the corresponding I$? run. Without
loss of generality, suppose that p’s computation was terminated before the activation of g,
so p cannot be aware of ¢’s input. Thus, p cannot see ¢, which implies that v and v’ have
different carriers, which contradicts the definition of a contention set.

Therefore, all vertices in a contention set are associated to processes that were active at
the same time. Thus, k-concurrent runs produce simplices in which contention sets are of
size at most k and, thus, belong to Ry. Since the simplices of Rj output by the simulation
correspond to the participating processes only, we indeed get an algorithm solving chromatic
simplex agreement on complex Ry. <

Now it is easy to show that the k-set consensus model is, regarding task solvability, at
least as strong as the R} model:

» Theorem 6. Any task solvable by R, can be solved in the k-set-consensus model.

Proof. By Lemma 5, the affine task on Ry, is solvable in the k-concurrency model. Moreover,
according to Lemma 4, any task solvable in the k-concurrency model can be solved in the
k-set consensus model. Therefore, by iterating a solution to the affine task Ry, a run of R}
can be simulated in the k-set-consensus model and used to solve any task solvable in R}. <«

4.3 From R}, to k-set consensus

Now we show how to simulate in R} any algorithm that uses the AS memory and k-set-
consensus objects.

k-set consensus simulation design. A non-blocking simulation of the AS memory in R},
is straightforward, since the set of R} runs is a subset of (Chr(s))* runs, and there exist
several algorithms simulating the AS memory in (Chr(s))*, e.g., [18].

Solving k-set consensus is not very complicated either in Rj: every iteration of Ry
provides a set of at most k leaders, i.e., processes with an IS output containing at most k
elements, where at least one such leader is visible to every process, i.e., it can be identified
as a leader and its input is visible to all. The set of leaders of Ro are shown in figure 4a in
red, it is easy to observe that every simplex in Ro has at most two leaders, and that one
is visible to every process (every process with a carrier of size at most 2 is a leader). This
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(a) Leaders. (b) Processes with the smallest IS® output.

Figure 4 R for 3 processes: (a) leaders — vertices in red, and (b) processes with the smallest
IS* output — simplices in red.

property gives a very simple k-set-consensus algorithm: every process decides on the value
proposed by one of these k leaders. We will later show how this property can be derived
from the restriction of Ry on the size of contention sets.

The real difficulty of the simulation consists in combining the shared-memory and k-
set-consensus simulations, as in the simulated protocol, some processes may be accessing
k-set-consensus objects while other processes are performing AS operations. Liveness of our
k-set-consensus algorithm relies on the participation of visible leaders, i.e., on the fact that the
leaders propose values for this instance of k-set-consensus. In this sense, our k-set-consensus
algorithm may block if some leader is performing an AS operation or is involved in a different
instance of k-set-consensus. Similarly if a “fast” process is involved in a k-set-consensus,
then it can prevent every “slow” process to complete any AS memory operation as a write
may be validated only after having been observed by every active process.

The solution we propose consists in (1) synchronizing the two simulations in order
to ensure that, eventually, at least one process will complete its pending operation, and
(2) ensuring that the processes collaborate by participating in every simulated operation. In
our solution, every process tries to propagate every observed proposed value (for a write
operation), and every process tries to reach a decision in every k-set-consensus object accessed
by some process. For that, we make the processes participate in both simulation protocols
(read-write and k-set-consensus) in every round of R}, until they decide.

Even though the simulated algorithm executes only one operation at a time and requires
the output of the previous operation to compute the input for the following one, we enrich
the simulated process with dummy operations that do not alter the simulation result. Then
eventually some undecided process is guaranteed to complete both pending operations, where
at most one of them is a dummy one. This scheme provides a non-blocking simulation of any
algorithm using the AS memory and k-set-consensus objects.

We use the following observation. The shared memory simulation from [18] provides
progress to the processes with the smallest snapshot output (i.e., with the smallest set of
observed processes values). Our k-set-consensus algorithm provides progress to the leaders
with the smallest Ry output, i.e., the processes with the smallest associated carrier. We
synchronize the liveness properties of the two simulations by running the AS simulation only
on every second round of the two rounds of restricted immediate snapshots associated to
Ry, denoted IS2. For example, Figure 4b depicts the 2-dimensional of Ro, where the sets of
processes with the smallest IS? outputs are represented as red simplices.
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Algorithm 4: k-set consensus simulation in Rj: process i.

1 Init: r; < 0; State; < undecided; Consld; < L; ConsProp; < L;

2 WriteVal;[i] < FirstWrite;(); WriteCount;[i] < 1;

3 foreach m € {1,...,n}\ {i} do (WriteCount;[m], WriteVal;[m]) < (0, L);
a ConsHistory; < 0 : List of adopted agreement proposals;

5 Repeat forever
6 r; < 1 + 1;Leaders; < true;
7 IS2output = Ry|ri](State;, (WriteCount;, WriteVal;), ConsHistory;);

8 foreach (j, View;) € IS? putput do

9 Let (Statej, (WriteCount;, WriteVal;), ConsHistory;) < RKInput(j);
10 foreach m € {1,...,n} do
11 if WriteCount;[m] > WriteCount;[m] then

12 |  WriteCount;[m] = WriteCount;[m], WriteVal;[m] = WriteVal;[ml];
13 if |Undecided(View;)| < k then

14 if E(Consldi, x) € ConsHistory; then Leaders; + false;
15 foreach (A;q, Avar) € ConsHistory; do
16 \ ReplaceOrAdd (A;4,*) in ConsHistory; with (A;4, Ayal);

17 if (Bmeqa,...,nyWritesCount;[m]) = r; then

,,,,,

18 if PendingWriteSnapshotOperation() then

19 | TerminateWriteOperation(WriteVal;);

20 if Leaders; A Consld; # 1 then

21 ConsProp, < Ayq where (Consld;, Ayqr) € ConsHistorys;
22 TerminateAgreementOperation(A,,;); Consld; + L;
23 if Terminated() then State < decided;

24 else

25 WriteCount;[i] < WriteCount;[1] + 1;

26 if NextAgreementOperation() = Available then

27 (Consld;, ConsProp,) < NextAgreement;();

28 if (E(Aid,Aml) € ConsHistory; with A;q = Consld;) then
29 | Add (Consld;, ConsProp;) in ConsHistorys;

30 if NextWriteSnapshotOperation() = Available then
31 |  WriteVal[i] < NextWrite;();

32 End repeat;

This way at least the leader with the smallest Ry output will make progress in both
simulations. Indeed, the definition of Ry implies that the set of processes with the smallest
Ry, outputs includes a leader, and a process with the smallest 1S? output also has the smallest
R output. Figure 4 gives an example of an intersection between the set of processes with
the smallest IS? output and the set of leaders: here every process with the smallest IS
output has a carrier of size at most 2 and every such process is a leader.

k-set consensus simulation algorithm. Algorithm 4 provides a simulation, in R;, of any
protocol designed for the k-set-consensus model. The algorithm is based on the shared
memory simulation from [18], applied on IS%outputs of every iteration of Ry, combined with
a parallel execution of instances of our k-set-consensus algorithm. The simulation works in
rounds that can be decomposed into three stages: communicating through Ry, updating
local information, and validating progress.

The first stage consists in accessing the new R, iteration associated with the round, using
information on the ongoing operations as an input (see line 7). For memory operations, an
input to Ry consists of an array containing the most recent known update operation for
every process, WriteVal;, and the timestamp associated with the written value, WriteCount;;
ConsHistory, is a list of all adopted proposals for all accessed agreement operations. Finally,
a value State, set to decided or undecided, is also put in R}’s input, to indicate whether the
process has completed its simulation.
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The second stage consists in updating the local information according to the output
obtained from R (lines 8-16). The input value of each process observed in the second
immediate snapshot of Ry, is extracted (line 9). These selected inputs are examined in order
to replace the local write values WriteCount; with the most recent ones, i.e., associated
with the largest write counters (lines 10-12). The ConsHistory variable of every leader,
i.e., a process with an IS output containing at most k undecided process inputs (using the
variable State), is scanned in order to adopt all its decision estimates (lines 13-16). Moreover,
the boolean value Leaders; is used to check if every observed leader transmitted a decision
estimate for the pending agreement operation, Consld;.

The third stage consists in checking whether pending operations can safely be terminated
(lines 17-22), and if so, whether the process has completed its simulation (line 23) or if new
operations can be initiated (line 24-31).

Informally, it is safe for a process to decide in line 20, as there are at most k Leaders per
round, one of which (1) is visible to every process and (2) provides a decision estimate for
the pending agreement. Thus, every process adopts the decision estimate from a leader of
the round, reducing the set of possible distinct decisions to k.

A pending memory operation terminates when the round number r; equals the sum of the
currently observed write counters (test at line 17), as in the original algorithm [18]. Indeed,
the equality implies that the writes in the estimated snapshot have been observed by every
process (line 19). Last, if a process did not terminate, it increments its write counter and, if
there is a new operation available, the process selects the operation (see lines 25-31).

If there is a new agreement operation, then the input proposal and the object identifier
are selected (line 27) and they are used for the current decision estimate in ConsHistory;
(line 29), unless a value has already been adopted (line 28). If there is a new write operation
then the current write value is simply changed (line 31), a dummy write thus consists in
re-writing the same value.

» Lemma 7. In R}, Algorithm 4 provides a non-blocking simulation of any algorithm
designed for the k-set-consensus model.

The proof of Lemma 7 is delegated to the companion technical report [15]. The main
aspects of the proof are taken from the base algorithm from [18], while the liveness of the
agreement operations relies on the restriction provided by R and the size of contention sets.

Lemma 7 implies the following result:

» Theorem 8. Any task solvable in the k-set-consensus model can be solved in Rj,.

Proof. To solve in Rj, a task solvable in the k-set-consensus model, we can simply use
Algorithm 4, simulating any given algorithm solving the task in the k-set-consensus model.

The non-blocking simulation provided by Algorithm 4 ensures, at each point, that at
least one live process eventually terminates. As there are only finitely many processes, every
live process eventually terminates. |

Lemma 4, Theorem 6, and Theorem 8 imply the following equivalence result:

» Corollary 9. The k-concurrency model, the k-set-consensus model, and R}, are equivalent
regarding task solvability.

This equivalence result can be used to derived a generalization of the asynchronous
computability theorem from [24] in its discrete formulation from what it means for a task to
be solvable in R} :
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Figure 5 Fully ordered sub-Chrs.

» Theorem 10. Discrete k-Concurrent ACT: A task (Z, 0, A) is solvable in the k-concurrency
or k-set-consensus model if and only if there exists a color-preserving, carrier-preserving,
simplicial map ¢: R{CV — O for some natural number N.

5 Concluding remarks: on minimality of Chr?s for k-set consensus

This paper shows that the models of k-set consensus and k-concurrency are captured by the
same affine task Ry, defined as a subcomplex of Chr?s. One may wonder if there exists a
simpler equivalent affine task, defined as a subcomplex of Chrs, the 1-degree of the standard
chromatic subdivision. Just like for the ¢-resilient affine task [8, 32], this is in general not
possible. Consider the case of k = 1 (consensus) in a 3-process system. We can immediately
see that the corresponding subcomplex of Chrs must contain all “ordered” simplexes depicted
in Figure 5. Indeed, we must account for a wait-free 1-concurrent IS* run in which, say, p1
runs first until it completes (and it must outputs its corner vertex in Chrs), then ps runs
alone until it outputs its vertex in the interior of the face (p1, p2) and, finally, p3 must output
its interior vertex.

The derived complex is connected. Moreover, any number of its iterations still results in
a connected complex. The simple connectivity argument implies that consensus cannot be
solved in this iterated model and, thus, the complex cannot capture 1-concurrency.

Interestingly, the complex in Figure 5 precisely captures the model in which, instead of
consensus, weaker test-and-set (TS) objects are used: (1) using TS, one easily make sure that
at most one process terminates at an IS level, and (2) in I.S runs defined by this subcomplex,
any pair of processes can solve consensus using this complex and, thus, a TS object can
be implemented. It is not difficult to generalize this observation to k-TS objects [27]: the
corresponding complex consists of all simplices of Chrs, contention sets of which are of size
at most k. The equivalence (requiring a simple generalization for the backward direction)
can be found in [27, 20].

Overall, this raises an intriguing question whether every object, when used in the read-
write system, can be captured via a subcomplex of Chr™ s for some m € N.
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