Self-Stabilizing Disconnected Components Detection and Rooted Shortest-Path Tree Maintenance in Polynomial Steps

Stéphane Devismes\(^1\), David Ilcinkas\(^2\), and Colette Johnen\(^3\)

\(^1\) Université Grenoble Alpes, Grenoble, France
stephane.devismes@imag.fr
\(^2\) Université Bordeaux & CNRS, LaBRI, Talence, France
david.ilcinkas@labri.fr
\(^3\) Université Bordeaux & CNRS, LaBRI, Talence, France
johnen@labri.fr

Abstract

We deal with the problem of maintaining a shortest-path tree rooted at some process \(r\) in a network that may be disconnected after topological changes. The goal is then to maintain a shortest-path tree rooted at \(r\) in its connected component, \(V_r\), and make all processes of other components detecting that \(r\) is not part of their connected component. We propose, in the composite atomicity model, a silent self-stabilizing algorithm for this problem working in semi-anonymous networks under the distributed unfair daemon (the most general daemon) without requiring any \textit{a priori} knowledge about global parameters of the network. This is the first algorithm for this problem that is proven to achieve a polynomial stabilization time in steps. Namely, we exhibit a bound in \(O(W_{\text{max}}^3 n_{\text{max}}^3 + n)\), where \(W_{\text{max}}\) is the maximum weight of an edge, \(n_{\text{max}}\) is the maximum number of non-root processes in a connected component, and \(n\) is the number of processes. The stabilization time in rounds is at most \(3n_{\text{max}} + D\), where \(D\) is the hop-diameter of \(V_r\).

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases distributed algorithm, self-stabilization, routing algorithm, shortest path, disconnected network, shortest-path tree

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.10

1 Introduction

Given a connected undirected edge-weighted graph \(G\), a \textit{shortest-path (spanning) tree rooted at node} \(r\) is a spanning tree \(T\) of \(G\), such that for every node \(u\), the unique path from \(u\) to \(r\) in \(T\) is a shortest path from \(u\) to \(r\) in \(G\). This data structure finds applications in the networking area (\textit{n.b.}, in this context, nodes actually represent processes), since many distance-vector routing protocols, like RIP (Routing Information Protocol) and BGP (Border Gateway Protocol), are based on the construction of shortest-path trees. Indeed, such algorithms implicitly builds a shortest-path tree rooted at each destination.

From time to time, the network may be split into several connected components due to the network dynamics. In this case, routing to process \(r\) correctly operates only for the
processes of its connected component, \(V_r \). Consequently, in other connected components, information to reach \(r \) should be removed to gain space in routing tables, and to discard messages destined to \(r \) (which are unable to reach \(r \) anyway) and thus save bandwidth. The goal is then to make the network converging to a configuration where every process of \(V_r \) knows a shortest path to \(r \) and every other process detects that \(r \) is not in its own connected component. We call this problem the *Disconnected Components Detection and rooted Shortest-Path tree Maintenance* (DCDSPM). Notice that a solution to this problem allows to prevent the well-known *count-to-infinity* problem [27], where the distances to some unreachable process keep growing in routing tables because no process is able to detect the issue.

When topological changes are infrequent, they can be considered as transient faults [30] and self-stabilization [16] – a versatile technique to withstand any finite number of transient faults in a distributed system – becomes an attractive approach. A self-stabilizing algorithm is able to recover without external (e.g., human) intervention a correct behavior in finite time, regardless of the arbitrary initial configuration of the system, and therefore, also after the occurrence of transient faults, provided that these faults do not alter the code of the processes.

A particular class of self-stabilizing algorithms is that of silent algorithms. A self-stabilizing algorithm is *silent* [19] if it converges to a global state where the values of communication registers used by the algorithm remain fixed. Silent (self-stabilizing) algorithms are usually proposed to build distributed data structures, and so are well-suited for the problem considered here. As quoted in [19], the silent property usually implies more simplicity in the algorithm design, moreover a silent algorithm may utilize less communication operations and communication bandwidth.

For sake of simplicity, we consider here a single destination process \(r \), called the *root*. However, the solution we will propose can be generalized to work with any number of destinations, provided that destinations can be distinguished. In this context, we do not require the network to be fully identified. Rather, \(r \) should be distinguished among other processes, and all non-root processes are supposed to be identical: we consider semi-anonymous networks.

In this paper, we propose a silent self-stabilizing algorithm, called Algorithm RSP, for the DCDSPM problem with a single destination process in semi-anonymous networks. Algorithm RSP does not require any *a priori* knowledge of processes about global parameters of the network, such as its size or its diameter. Algorithm RSP is written in the locally shared memory model with composite atomicity introduced by Dijkstra [16], which is the most commonly used model in self-stabilization. In this model, executions proceed in (atomic) steps, and a self-stabilizing algorithm is silent if and only if all its executions are finite. Moreover, the asynchrony of the system is captured by the notion of *daemon*. The weakest (i.e., the most general) daemon is the *distributed unfair daemon*. Hence, solutions stabilizing under such an assumption is highly desirable, because it works under any other daemon assumption. Moreover, time complexity (the *stabilization time*, mainly) can be bounded in terms of steps only if the algorithm works under an unfair daemon. Otherwise (e.g., under a weakly fair daemon), time complexity can only be evaluated in terms of rounds, which capture the execution time according to the slowest process.

Self-stabilizing algorithms under the distributed unfair daemon are numerous in the literature e.g., [14, 12, 21, 5, 1]. However, analyses of the stabilization time in steps is rather unusual and this may be an important issue. Indeed, recently, several self-stabilizing algorithms, which work under a distributed unfair daemon, have been shown to have an exponential stabilization time in steps in the worst case. In [1], silent leader election algorithms
from [12, 14] are shown to be exponential in steps in the worst case. In [15], the Breadth-First Search (BFS) algorithm of Huang and Chen [23] is also shown to be exponential in steps. Finally, in [22] authors show that the first silent self-stabilizing algorithm for the DCDSPM problem (still assuming a single destination) they proposed in [21] is also exponential in steps. Precisely, they exhibit a family of graph of $4k + 2$ nodes on which there is an execution of their algorithm containing at least $2k + 2$ steps.

1.1 Contribution

Algorithm RSP proposed here is the first silent self-stabilizing algorithm for the DCDSPM problem which achieves a polynomial stabilization time in steps. Namely, assuming that the edge weights are positive integers, the stabilization time of RSP is at most $(W_{\text{max}}n_{\text{maxCC}}^3 + (3 - W_{\text{max}})n_{\text{maxCC}} + 3)(n - 1)$, where W_{max} is the maximum weight of an edge, n_{maxCC} is the maximum number of non-root processes in a connected component, and n is the number of processes. (N.b., this stabilization time is less than or equal to $W_{\text{max}}n^4$, for all $n \geq 3$.) Moreover, when all weights are equal to one, the problem reduces to a BFS tree maintenance and the step complexity becomes at most $(n_{\text{maxCC}} + 2n_{\text{maxCC}} + 3)(n - 1)$, which is less than or equal to n^4 for all $n \geq 2$. We also studied the stabilization time in rounds of our solution. We established a bound of at most $3n_{\text{maxCC}} + D$ rounds, where D is the hop-diameter of V_r (defined as the maximum over all pairs $\{u,v\}$ of nodes in V_r of the minimum number of edges in a shortest path from u to v).

1.2 Related Work

To the best of our knowledge, only one self-stabilizing algorithm for the DCDSPM problem has been previously proposed in the literature [21]. This algorithm is silent and works under the distributed unfair daemon, but, as previously mentioned, it is exponential in steps. However, it assumes positive real weights whereas Algorithm RSP assumes positive integer weights\(^1\), and it has a slightly better stabilization time in rounds, precisely at most $2(n_{\text{maxCC}} + 1) + D$ rounds\(^2\).

There are several shortest-path spanning tree algorithms in the literature that do not consider the problem of disconnected components detection. The oldest distributed algorithms are inspired by the Bellman-Ford algorithm [3, 20]. Self-stabilizing shortest-path spanning tree algorithms have then being proposed in [6, 25], but these two algorithms are proven assuming a central daemon, which only allows sequential executions. However, in [24], Tetz Huang proves that these algorithms actually work assuming the distributed unfair daemon. Nevertheless, no upper bounds on the stabilization time (in rounds or steps) are given.

Self-stabilizing shortest-path spanning tree algorithms are also given in [2, 9, 26]. These algorithms additionally ensure the loop-free property in the sense that they guarantee that a spanning tree structure is always preserved while edge costs change dynamically. Now, none of these papers consider the unfair daemon, and consequently their step complexity cannot be analyzed.

Whenever all edges have weight one, shortest-path trees correspond to BFS trees. In [13], the authors introduce the disjunction problem as follows. Each process has a constant input

\(^1\) It is not difficult to see that our algorithm is in fact correct even when weights are positive reals. However, our bound on the number of steps is valid only for integer weights, not for arbitrary real ones.

\(^2\) In fact, [21] announced $2n + D$ rounds, but it is easy to see that this complexity can be reduced to $2(n_{\text{maxCC}} + 1) + D$.

bit, 0 or 1. Then, the problem consists for each process in computing an output value equal to the disjunction of all input bits in the network. Moreover, each process with input bit 1 (if any) should be the root of a tree, and each other process should join the tree of the closest input bit 1 process, if any. If there is no process with input bit 1, the execution should terminate and all processes should output 0. The proposed algorithm is silent and self-stabilizing. Hence, if we set the input of a process to 1 if and only if it is the root, then their algorithm solves the DCDSPM problem when all edge-weights are equal to one, since any process which is not in \(V_r \) will compute an output 0, instead of 1 for the processes in \(V_r \). The authors show that their algorithm stabilizes in \(O(n) \) rounds, but no step complexity analysis given. Now, as their approach is similar to [14], it is not difficult to see that their algorithm is also exponential in steps.

Several other self-stabilizing BFS tree algorithms have been proposed, but without considering the problem of disconnected components detection. Chen et al. present the first self-stabilizing BFS tree construction in [8] under the central daemon. Huang and Chen present the first self-stabilizing BFS tree construction in [23] under the distributed unfair daemon, but recall that this algorithm has been proven to be exponential in steps in [15]. Finally, notice that these two latter algorithms [23, 15] require that processes know the exact number of processes in the network.

According to our knowledge, only the following works [10, 11] take interest in the computation of the number of steps required by their BFS algorithms. The algorithm in [10] is not silent and has a stabilization time in \(O(\Delta n^3) \) steps, where \(\Delta \) is the maximum degree in the network. The silent algorithm given in [11] has a stabilization time \(O(D^2) \) rounds and \(O(n^6) \) steps.

1.3 Roadmap

In the next section, we present the computational model and basic definitions. In Section 3, we describe Algorithm RSP. Its proof of correctness and a complexity analysis in steps are given in Section 4. Finally, an analysis of the stabilization time in rounds is proposed in Section 5.

2 Preliminaries

We consider distributed systems made of \(n \geq 1 \) interconnected processes. Each process can directly communicate with a subset of other processes, called its neighbors. Communication is assumed to be bidirectional. Hence, the topology of the system can be represented as a simple undirected graph \(G = (V, E) \), where \(V \) is the set of processes and \(E \) the set of edges, representing communication links. Every process \(v \) can distinguish its neighbors using a local labeling of a given datatype \(Lbl \). All labels of \(v \)'s neighbors are stored into the set \(\Gamma(v) \). Moreover, we assume that each process \(v \) can identify its local label in the set \(\Gamma(u) \) of each neighbor \(u \). Such labeling is called indirect naming in the literature [29]. By an abuse of notation, we use \(v \) to designate both the process \(v \) itself, and its local labels.

Each edge \(\{u, v\} \) has a strictly positive Integer weight, denoted by \(\omega(u, v) \). This notion naturally extends to paths: the weight of a path in \(G \) is the sum of its edge weights. The weighted distance between the processes \(u \) and \(v \), denoted by \(d(u, v) \), is the minimum weight of a path from \(u \) to \(v \). Of course, \(d(u, v) = \infty \) if and only if \(u \) and \(v \) belong to two distinct connected components of \(G \).

We use the composite atomicity model of computation [16, 18] in which the processes communicate using a finite number of locally shared registers, called variables. Each process
can read its own variables and those of its neighbors, but can write only to its own variables. The state of a process is defined by the values of its local variables. The union of states of all processes determines the configuration of the system.

A distributed algorithm consists of one local program per process. We consider semi-uniform algorithms, meaning that all processes except one, the root r, execute the same program. In the following, for every process u, we denote by V_u the set of nodes (including u) in the same connected component of G as u. In the following V_u is simply referred to as the connected component of u. We denote by n_{\maxCC} the maximum number of non-root processes in a connected component of G. By definition, $n_{\maxCC} \leq n - 1$.

The program of each process consists of a finite set of rules of the form $\text{label} : \text{guard} \rightarrow \text{action}$. Labels are only used to identify rules in the reasoning. A guard is a Boolean predicate involving the state of the process and that of its neighbors. The action part of a rule updates the state of the process. A rule can be executed only if its guard evaluates to true; in this case, the rule is said to be enabled. A process is said to be enabled if at least one of its rules is enabled. We denote by $\text{Enabled}(\gamma)$ the subset of processes that are enabled in configuration γ.

When the configuration is γ and $\text{Enabled}(\gamma) \neq \emptyset$, a daemon selects a non-empty set $\mathcal{X} \subseteq \text{Enabled}(\gamma)$; then every process of \mathcal{X} atomically executes one of its enabled rules, leading to a new configuration γ', and so on. The transition from γ to γ' is called a step. The possible steps induce a binary relation over C, denoted by \rightarrow. An execution is a maximal sequence of configurations $e = \gamma_0\gamma_1\ldots\gamma_i\ldots$ such that $\gamma_{i-1} \mapsto \gamma_i$ for all $i > 0$. The term "maximal" means that the execution is either infinite, or ends at a terminal configuration in which no rule is enabled at any process.

As previously stated, each step from a configuration to another is driven by a daemon. In this paper we assume the daemon is distributed and unfair. “Distributed” means that while the configuration is not terminal, the daemon should select at least one enabled process, maybe more. “Unfair” means that there is no fairness constraint, i.e., the daemon might never select an enabled process unless it is the only enabled process.

In the composite atomicity model, an algorithm is silent if and only if all its executions are finite. Hence, we can define silent self-stabilization as follows.

Definition 1 (Silent Self-Stabilization). Let \mathcal{L} be a non-empty subset of configurations, called set of legitimate configurations. A distributed system is silent and self-stabilizing under the daemon S for \mathcal{L} if and only if the following two conditions hold:

= all executions under S are finite, and
= all terminal configurations belong to \mathcal{L}.

We use the notion of round [17] to measure the time complexity. The first round of an execution $e = \gamma_0, \gamma_1, \cdots$ is the minimal prefix $e_1 = \gamma_0, \cdots, \gamma_j$, such that every process that is enabled in γ_0 either executes a rule or is neutralized during a computation step of e_1. A process v is neutralized during a computation step $\gamma_i \mapsto \gamma_{i+1}$, if v is enabled in γ_i but not in configuration γ_{i+1}. Let e' be the suffix $\gamma_j, \gamma_{j+1}, \cdots$ of e. The second round of e is the first round of e', and so on.

The stabilization time of a silent self-stabilizing algorithm is the maximum time (in steps or rounds) over every execution (starting from any initial configuration) to reach a terminal (legitimate) configuration.

3 Algorithm RSP

This section is devoted to the presentation of our algorithm, Algorithm RSP (which stands for Rooted Shortest-Path). The code of Algorithm RSP is given in Algorithms 1 and 2.
3.1 Variables

In RSP, each process u maintains three variables: st_u, par_u, and d_u. Those three variables are constant for the root process\(^3\), r: $st_r = C$, $\text{par}_r = \perp$\(^4\), and $d_r = 0$. For each non-root process u, we have:

- $st_u \in \{I, C, EB, EF\}$, this variable gives the status of the process. I, C, EB, and EF respectively stand for Isolated, Correct, Error Broadcast, and Error Feedback. The two first states, I and C, are involved in the normal behavior of the algorithm, while the two last ones, EB and EF, are used during the correction mechanism. Precisely, $st_u = C$ (resp. $st_u = I$) means that u believes it is in V_r (resp. not in V_r). The meaning of status EB and EF will be further detailed in Subsection 3.3.

- $\text{par}_u \in \text{Lbl}$, a parent pointer. If $u \in V_r$, par_u should designate a neighbor of u, referred to as its parent, and in a terminal configuration, the parent pointers exhibit a shortest path from u to r.

- Otherwise ($u \notin V_r$), the variable is meaningless.

- $d_u \in \mathbb{N}^*$, the distance value. If $u \in V_r$, then in a terminal configuration, d_u gives the weight of the shortest path from u to r.

- Otherwise ($u \notin V_r$), the variable is meaningless.

3.2 Normal Execution

Consider any configuration, where every process $u \neq r$ satisfies $st_u = I$, and refer to such a configuration as a normal initial configuration. Each configuration reachable from a normal initial configuration is called a normal configuration, otherwise it is an abnormal configuration.

Recall that $st_r = C$ in all configurations. Then, starting from a normal initial configuration, all processes in a connected component different from V_r is disabled forever. Focus now on the connected component V_r. Each neighbor u of r is enabled to execute $R_R(u)$. A process eventually chooses r as parent by executing this rule, which in particular sets its status to C.

Then, executions of rule R_R are asynchronously propagated in V_r until all its processes have status C: when a process u with status I finds one of its neighbors with status C it executes $R_R(u)$: u takes status C and chooses as parent its neighbor v with status C such that $d_u + \omega(u, v)$ is minimum, d_u being updated accordingly. In parallel, rules R_C are executed to reduce the weight of the tree rooted at r: when a process u with status C can reduce d_u by selecting another neighbor with status C as parent, it chooses the one allowing to minimize d_u by executing $R_C(u)$. Hence, eventually, the system reaches a terminal configuration, where the tree rooted at r is a shortest-path tree spanning all processes of V_r.

3.3 Error Correction

Assume now that the system is in an abnormal configuration. Some non-root processes locally detect that their state is inconsistent with that of their neighbors. We call abnormal roots such processes. Informally (see Subsection 3.4 for the formal definition), a process $u \neq r$ is an abnormal root if u is not isolated (i.e., $st_u \neq I$) and satisfies one of the following four conditions:

1. its parent pointer does not designate a neighbor,
2. its parent has status I,
3. \perp is a particular value which is different from any value in Lbl.

\(^3\) We should emphasize that the use of constants at the root is not a limitation, rather it allows to simplify the design and proof of the algorithm. Indeed, these constants can be removed by adding a rule to correct all root’s variables, if necessary, within a single step.
3. its distance value \(d_u\) is inconsistent with the distance value of its parent, or
4. its status is inconsistent with the status of its parent.

Every non-root process \(u\) that is not an abnormal root satisfies one of the two following cases. Either \(u\) is isolated, i.e., \(st_u = I\), or \(u\) points to some neighbors (i.e., \(\text{par}_u \in \Gamma(u)\)) and the state of \(u\) is coherent w.r.t. the state of its parent. In this latter case, \(u \in \text{children}(\text{par}_u)\), i.e., \(u\) is a “real” child of its parent (see Subsection 3.4 for the formal definition). Notice that every so-called parent path \(P = u_1, \ldots, u_k\) such that \(\forall i, 0 \leq i < k, u_i \in \text{children}(u_{i+1})\) is acyclic, and if \(P\) is maximal, then \(u_k\) is either \(r\), or an abnormal root. Hence, we define the normal tree \(T(r)\) (resp. an abnormal tree \(T(v)\), for any abnormal root \(v\)) as the set of all processes \(u\) such that there is a parent path from \(u\) to \(r\) (resp. \(v\)).

Then, the goal is to remove all abnormal trees so that the system recovers a normal configuration. We remove these abnormal trees in a top-down manner starting from their roots. Now, we have to prevent the following situation: an abnormal root leaves its tree and later selects as parent a process that was previously in its tree. Hence, the idea is to freeze each abnormal tree, before removing it. By freezing we mean assigning each member of the tree to a particular state, here \(EF\), so that (1) no member \(u\) of the tree is allowed to execute \(R_u(u)\), and (2) no process \(v\) can join the tree by executing \(R_C(v)\). Once frozen, the tree can be safely deleted from its root to its leaves.

The freezing mechanism (inspired from [4]) is achieved using the status \(EB\) and \(EF\). If a process is not involved into any freezing operation, then its status is \(I\) or \(C\). Otherwise, it has status \(EB\) or \(EF\) and no neighbor can select it as its parent. These two latter states are actually used to perform a “Propagation of Information with Feedback” [7, 28] in the abnormal trees. This is why status \(EB\) means “Error Broadcast” and \(EF\) means “Error Feedback”. From an abnormal root, the status \(EB\) is broadcast down in the tree. Then, once the \(EB\)-wave reaches a leaf, the leaf initiates a convergecast \(EF\)-wave. Once the \(EF\)-wave reaches the abnormal root, the tree is said to be dead, meaning that all processes in the tree have status \(EF\) and, consequently, no other process can join it. So, the tree can be safely deleted from its abnormal root toward its leaves. There is two possibilities for the deletion. If the process \(u\) to be deleted has a neighbor with status \(C\), then it executes rule \(R_R(u)\) to directly join another “alive” tree. Otherwise, \(u\) becomes isolated by executing rule \(R_I(u)\), and \(u\) may join another tree later.

Let \(u\) be a process belonging to an abnormal tree at which it is not the root. Let \(v\) be its parent. From the previous explanation, it follows that during the correction, \((st_v, st_u) \in \{(C, C), (EB, C), (EB, EB), (EB, EF), (EF, EB), (EF, EF)\}\) until \(v\) resets by \(R_R(v)\) or \(R_I(v)\). Now, due to the arbitrary initialization, the status of \(u\) and \(v\) may not be coherent, in this case \(u\) should also be an abnormal root. Precisely, as formally defined below, the status of \(u\) is incoherent w.r.t. the status of its parent \(v\) if \(st_u \neq st_v\) and \(st_v \neq EF\).

Actually, the freezing mechanism insures that if a process is the root of an abnormal alive tree, it is in that situation since the initial configuration (see Lemma 15, page 10:10). The polynomial step complexity mainly relies on this strong property.

3.4 Definitions

- **Definition 2 (Abnormal Root)**. Every process \(u \neq r\), \(\text{abRoot}(u) \equiv st_u \neq I \land \left[\text{par}_u \notin \Gamma(u) \lor st_{\text{par}_u} = I \lor d_u < d_{\text{par}_u} + \omega(u, \text{par}_u) \lor (st_u \neq st_{\text{par}_u} \land st_{\text{par}_u} \neq EB) \right] \).

Every process \(u \neq r\) that satisfies \(\text{abRoot}(u)\) is said to be an abnormal root.

- **Definition 3 (Alive Abnormal Root)**. A process \(u \neq r\) is said to be an alive abnormal root (resp. a dead abnormal root) if \(u\) is an abnormal root and has a status different from \(EF\).
Algorithm 1: Code of RSP for the root process r.

Constants:
- $st_r = C$
- $par_r = \bot$
- $d_r = 0$

Algorithm 2: Code of RSP for any process $u \neq r$.

Variables:
- $st_u \in \{I, C, EB, EF\}$
- $par_u \in Lbl$
- $d_u \in \mathbb{N}^*$

Predicates:
- $P_{\text{reset}}(u) \equiv st_u = EF \land abRoot(u)$
- $P_{\text{correction}}(u) \equiv (\exists v \in \Gamma(u) \mid st_v = C \land d_v + \omega(u, v) < d_u)$

Macro:
- $\text{computePath}(u) : par_u := \text{argmin}_{v \in \Gamma(u) \land st_v = C} (d_v + \omega(u, v))$
- $d_u := d_{par_u} + \omega(u, par_u)$
- $st_u := C$

Rules
- $R_{\text{C}}(u) : st_u = C \land P_{\text{correction}}(u) \quad \rightarrow \quad \text{computePath}(u)$
- $R_{\text{EB}}(u) : st_u = C \land \neg P_{\text{correction}}(u) \land (abRoot(u) \lor st_{par_u} = EB) \quad \rightarrow \quad st_u := EB$
- $R_{\text{EF}}(u) : st_u = EB \land (\forall v \in \text{children}(u) \mid st_v = EF) \quad \rightarrow \quad st_u := EF$
- $R_{\text{R}}(u) : (P_{\text{reset}}(u) \land (\forall v \in \Gamma(u) \mid st_v \neq C)) \quad \rightarrow \quad st_u := I$
- $R_{\text{RR}}(u) : (P_{\text{reset}}(u) \lor st_u = I) \land (\exists v \in \Gamma(u) \mid st_v = C) \quad \rightarrow \quad \text{computePath}(u)$

 (resp. has status EF).

\textbf{Definition 4 (Children).} For every process v, $\text{children}(v) = \{ u \in \Gamma(v) \mid st_v \neq I \land st_u \neq I \land \text{par}_u = v \land d_v \geq d_u + \omega(u, v) \land (st_u = st_v \lor st_v = EB)\}$.

\textbf{Definition 5 (Branch).} A branch is a maximal sequence of processes v_1, \ldots, v_k for some integer $k \geq 1$, such that v_1 is r or an abnormal root and, for every $1 \leq i < k$, we have $v_{i+1} \in \text{children}(v_i)$. The process v_i is said to be at depth i and v_1, \ldots, v_k is called a sub-branch. If $v_1 \neq r$, the branch is said to be illegal, otherwise, the branch is said to be legal.

\textbf{Observation 6.} A branch depth is at most n. A process v having status I does not belong to any branch. If a process v has status C (resp. EF), then all processes of a sub-branch starting at v have status C (resp. EF).

\section{Correctness and Step Complexity of Algorithm RSP}

\subsection{Partial Correctness}

Before proceeding with the proof of correctness and the step complexity analysis, we define some useful concepts.

\textbf{Definition 7 (Legitimate State).} A process u is said to be in a \textit{legitimate state} if u satisfies one of the following three conditions:
1. $u = r$,
2. $u \neq r$, $u \in V_r$, $st_u = C$, $d_u = d(u, r)$, and $d_u = d_{\text{par}_u} + \omega(u, \text{par}_u)$, or
3. $u \notin V_r$ and $st_u = I$.
Observation 8. Every process \(u \neq r \) such that \(st_u = C \) and \(d_u \neq d_{par_u} + \omega(u, par_u) \) is enabled.

Definition 9 (Legitimate Configuration). A legitimate configuration is any configuration where every process is in a legitimate state. We denote by \(\mathcal{LC}_{RSP} \) the set of all legitimate configurations of Algorithm RSP.

Let \(\gamma \) be a configuration. Let \(T_\gamma = (V_\gamma, E_{T_\gamma}) \) be the subgraph, where \(E_{T_\gamma} = \{\{p, q\} \in E \mid p \in V_r \setminus \{r\} \land par_p = q\} \). By Definition 7 (point 2), we deduce the following observation.

Observation 10. In every legitimate configuration \(\gamma \), \(T_\gamma \) is a shortest-path tree spanning all processes of \(V_r \).

We now prove that the set of terminal configurations is exactly the set of legitimate configurations. We start by proving the following intermediate statement.

Lemma 11. In any terminal configuration, every process has either status I or C.

Proof. This is trivially true for the root process, \(r \). Assume there exists a non-root process with status EB in a terminal configuration \(\gamma \). Consider the non-root process \(u \) with status EB having the largest distance value \(d_u \) in \(\gamma \). In \(\gamma \), no process \(v \) with status C can be a child of \(u \), otherwise either \(R_{EB} \) or \(R_C \) is enabled at \(v \) in \(\gamma \), a contradiction. Moreover, by maximality of \(d_u \), \(u \) cannot have a child with status EB in \(\gamma \). Therefore, in \(\gamma \) process \(u \) has no child or it has only children with status EF, and thus rule \(R_{EF} \) is enabled at \(u \), a contradiction. Thus, every process has status \(C \), \(I \), or \(EF \) in \(\gamma \).

Assume now that there exists a non-root process with status EF in a terminal configuration \(\gamma \). Consider the process \(u \) with status EF having the smallest distance value \(d_u \) in \(\gamma \). By construction, \(u \) is an abnormal root in \(\gamma \). So, either \(R_I \) or \(R_C \) is enabled at \(u \) in \(\gamma \), a contradiction.

The next lemma, Lemma 12, deals with the connected components that do not contain \(r \), if any. Then, Lemma 13 deals with the connected component \(V_r \).

Lemma 12. In any terminal configuration, every process that does not belong to \(V_r \) is in a legitimate state.

Proof. Consider, by contradiction, that there exists a process \(u \) that belongs to the connected component CC other than \(V_r \) which is not in a legitimate state in some terminal configuration \(\gamma \). By definition, \(u \) is not the root, moreover it has status \(C \) in \(\gamma \), by Lemma 11. Without loss of generality, assume that \(u \) is the process of \(CC \) with status \(C \) having the smallest distance value \(d_u \) in \(\gamma \). By construction, \(u \) is an abnormal root in \(\gamma \). Thus, rule \(R_{EB} \) is enabled at \(u \) in \(\gamma \), a contradiction.

Lemma 13. In any terminal configuration, every process of \(V_r \) is in a legitimate state.

Proof. Assume, by contradiction, that there exists a terminal configuration \(\gamma \) where at least one process in the connected component \(V_r \) is not in a legitimate state.

Assume also that there exists some process of \(V_r \) that has status \(I \) in \(\gamma \). Consider now a process \(u \) of \(V_r \) such that in \(\gamma \), \(u \) has status \(I \) and at least one of its neighbors has status \(C \). Such a process exists because no process has status EB or EF in \(\gamma \) (Lemma 11), but at least one process of \(V_r \) has status \(C \), namely \(r \). Obviously, \(R_R \) is enabled at \(u \) in \(\gamma \), a contradiction. So, every process in \(V_r \) must have status \(C \) in \(\gamma \). Moreover, for all processes in \(V_r \), we have \(d_u = d_{par_u} + \omega(par_u, u) \) in \(\gamma \), otherwise \(R_C \) is enabled at some process of \(V_r \) in \(\gamma \).
Assume now that there exists a process \(u \) such that \(d_u < d(u,r) \) in \(\gamma \). Consider a process \(u \) of \(V_r \) having the smallest distance value \(d_u \) among the processes in \(V_r \) such that \(d_u < d(u,r) \) in \(\gamma \). By definition, \(u \neq r \) and we have \(d_u > d_{par_u} \) in \(\gamma \), so \(d_{par_u} \geq d(par_u,r) \) in \(\gamma \). Hence, we can conclude that \(d_u \geq d(u,r) \) in \(\gamma \), a contradiction. So, every process \(u \) in \(V_r \) satisfies \(d_u \geq d(u,r) \) in \(\gamma \).

Finally, assume that there exists a process \(u \) such that \(d_u > d(u,r) \) in \(\gamma \). Consider a process \(u \) in \(V_r \) having the smallest distance to \(r \) among the processes in \(V_r \) such that \(d_u > d(u,r) \) in \(\gamma \). By definition, \(u \neq r \) and there exists some process \(v \) in \(\Gamma(u) \) such that \(d(u,r) = d(v,r) + \omega(u,v) \) in \(\gamma \). Thus, we have \(d_v = d(v,r) \) in \(\gamma \). So, \(R_C \) is enabled at \(u \) in \(\gamma \), a contradiction. ▲

After noticing that any legitimate configuration is a terminal one (by construction of the algorithm), we deduce the following corollary from the two previous lemmas.

Corollary 14. For every configuration \(\gamma \), \(\gamma \) is terminal if and only if \(\gamma \) is legitimate.

4.2 Termination

In this section, we establish that every execution of Algorithm RSP under a distributed unfair daemon is finite. More precisely, we compute the following bound on the number of steps of every execution: \(|\omega_{max}n_{maxCC}^3 + (3 - \omega_{max})n_{maxCC} + 3|n - 1 \), where \(n \) is the number of processes, \(\omega_{max} \) is the maximum weight of an edge, and \(n_{maxCC} \) is the maximum number of non-root processes in a connected component.

Lemma 15. No alive abnormal root is created along any execution.

Proof. Let \(\gamma \mapsto \gamma' \) be a step. Let \(u \) be a non-root process that is not an alive abnormal root in \(\gamma \), and let \(v \) be the process such that \(par_u = v \) in \(\gamma' \). If the status of \(u \) is \(EF \) or \(I \) in \(\gamma' \), then \(u \) is not an alive abnormal root in \(\gamma' \). Consider then the case where \(u \) has status \(EB \) in \(\gamma' \). The only rule \(u \) can execute in \(\gamma \mapsto \gamma' \) is \(RE_B \). Whether \(u \) executes \(RE_B \) or not, \(par_u \) is also \(v \) in \(\gamma \). Since \(u \) is not an alive abnormal root in \(\gamma \), and thus not an abnormal root either, \(v \) is not \(r \) and necessarily has status \(EB \) in \(\gamma \) in either case. Moreover, \(u \) belongs to \(children(v) \) in \(\gamma \). So, \(v \) is not enabled in \(\gamma \) and \(u \in children(v) \) remains true in \(\gamma' \). Hence, we can conclude that \(u \) is still not an alive abnormal root in \(\gamma' \).

Let study the other case, i.e., \(u \) has status \(C \) in \(\gamma' \). During \(\gamma \mapsto \gamma' \), the only rules that \(u \) may execute are \(R_R \) or \(R_C \). So, we have \(st_u = C \) in \(\gamma \), because it is a requirement to execute one of the two previous rules, or \(parent_u = v \) in \(\gamma \). During \(\gamma \mapsto \gamma' \), the only rules that \(v \) may execute are \(R_C \) or \(R_{EB} \). Thus, during \(\gamma \mapsto \gamma' \), \(v \) either takes the status \(EB \), decreases its distance value, or does not change the value of its variables. In either cases, \(u \) belongs to \(children(v) \) in \(\gamma' \), which prevents \(u \) from being an alive abnormal root in \(\gamma' \). ▲

Let \(AAR(\gamma) \) be the set of alive abnormal roots in any configuration \(\gamma \). From the previous lemma, we know that, for every step \(\gamma \mapsto \gamma' \), we have \(AAR(\gamma') \subseteq AAR(\gamma) \). So, we can use the notion of \(u \)-segment (inspired from \([1]\)) to bound the total number of steps in an execution.

Definition 16 (\(u \)-Segment). Let \(u \) be any non-root process. Let \(e = \gamma_0, \gamma_1, \ldots \) be an execution.

If there is no step \(\gamma_i \mapsto \gamma_{i+1} \) in \(e \), where there is a non-root process in \(V_u \) which is an alive abnormal root in \(\gamma_i \), but not in \(\gamma_{i+1} \), then the first \(u \)-segment of \(e \) is \(e \) itself and there is no other \(u \)-segment.
Otherwise, let $\gamma_i \mapsto \gamma_{i+1}$ be the first step of e, where there is a non-root process in V_u which is an alive abnormal root in γ_i, but not in γ_{i+1}. The
\textit{first u-segment} of e is the prefix $\gamma_0, \ldots, \gamma_{i+1}$. The \textit{second u-segment} of e is the first u-segment of the suffix $\gamma_{i+1}, \gamma_{i+2}, \ldots$, and so forth.

By Lemma 15, we have

\textbf{Observation 17.} For every non-root process u; for every execution e, e contains at most $n_{\text{maxCC}} + 1$ u-segments, because there are initially at most n_{maxCC} alive abnormal roots in V_u.

\textbf{Lemma 18.} Let u be any non-root process. During a u-segment, if u executes the rule REF, then u does not execute any other rule in the remaining of the u-segment.

\textbf{Proof.} Let seg_u be a u-segment. Let s_1 be a step of seg_u in which u executes REF. Let s_2 be the next step in which u executes its next rule. (If s_1 or s_2 do not exist, then the lemma trivially holds for seg_u.) Just before s_1, all branches containing u have an alive abnormal root, namely the non-root process v at depth 1 in any of these branches. (Note that we may have $v = u$.) On the other hand, just before s_2, u is the dead abnormal root of all branches it belongs to. This implies that v must have executed the rule REF in the meantime and thus is not an alive abnormal root anymore when the step s_2 is executed. Therefore, s_1 and s_2 belong to two distinct u-segments of the execution.

\textbf{Corollary 19.} Let u be a non-root process. The sequence of rules executed by u during a u-segment belongs to the following language: $(R_1 + \varepsilon)(R_{R} + \varepsilon)R_C^*(R_{EEI} + \varepsilon)(R_{EF} + \varepsilon)$.

We use the notion of \textit{maximal causal chain} to further analyze the number of steps in a u-segment.

\textbf{Definition 20 (Maximal Causal Chain).} Let u be a non-root process and seg_u be any u-segment. A \textit{maximal causal chain of seg_u} rooted at $u_0 \in V_u$ is a maximal sequence of actions a_1, a_2, \ldots, a_k executed in seg_u such that the action a_1 sets par_{u_1} to $u_0 \in V_u$ not later than any other action by u_0 in seg_u, and for all $2 \leq i \leq k$, the action a_i sets par_{u_i} to u_{i-1} after the action a_{i-1} but not later than u_{i-1}’s next action.

\textbf{Observation 21.}
- An action a_i belongs to a maximal causal chain if and only if a_i consists in a call to the macro computePath by a non-root process.
- Only actions of Rules R_R and R_C contain the execution of computePath.

Let u be a non-root process and seg_u be any u-segment. Let a_1, a_2, \ldots, a_k be a maximal causal chain of seg_u rooted at u_0.
- For all $1 \leq i \leq k$, a_i consists in the execution of computePath by u_i (i.e., u_i executes the rule R_R or R_C) where $u_i \in V_u$.
- Denote by $d_{\text{seg}_u, v}$ the distance value of process v at the beginning of seg_u. For all $1 \leq i \leq k$, a_i sets d_{u_i} to $d_{\text{seg}_u, u_0} + \sum_{j=1}^{i-1} w(u_j, u_{j-1})$.

For the next lemmas and theorems, we recall that $n_{\text{maxCC}} \leq n - 1$ is the maximum number of non-root processes in a connected component of G.

\textbf{Lemma 22.} Let u be a non-root process. All actions in a maximal causal chain of a u-segment are caused by different non-root processes of V_u. Moreover, an execution of computePath by some non-root process v never belongs to any maximal causal chain rooted at v.

\textbf{OPODIS 2016}
Proof. First note that any rule R_C executed by a process v makes the value of d_v decrease.

Assume now, by the contradiction, that there exists a process v such that, in some maximal causal chain a_1, a_2, \ldots, a_k of a u-segment, v is used as parent in some action a_i, and executes the action a_j, with $j > i$. The value of d_v is strictly larger just after the action a_j than just before the action a_i. This implies that process v must have executed the rule R_R in the meantime. So, a_i and a_j are executed in two different u-segments by Corollary 19 and the fact that v has status C just before the action a_i. Consequently, they do not belong to the same maximal causal chain, a contradiction.

Therefore, all actions in a maximal causal chain are caused by different processes, and a process never executes an action in a maximal causal chain it is the root of. As all actions in a maximal causal chain are executed by process in the same connected component, we are done.

Definition 23 ($S_{seg_u,v}$). Given a non-root process u and a u-segment seg_u, we define $S_{seg_u,v}$ as the set of all the distance values obtained after executing an action belonging to any maximal causal chain of seg_u, rooted at process v ($v \in V_u$).

Lemma 24. Given a non-root process u and a u-segment seg_u, if the size of $S_{seg_u,v}$ is bounded by X for all process $v \in V_u$, then the number of computePath executions done by u in seg_u is bounded by $X(n_{maxCC} - 1)$.

Proof. Except possibly the first, all computePath executions done by u in a u-segment seg_u are done through the rule R_C. For all these, the variable d_u is always decreasing. Therefore, all the values of d_u obtained by the computePath executions done by u are different. By definition of $S_{seg_u,v}$ and by Lemma 22, all these values belong to the set $\bigcup_{v \in V_u \setminus \{u\}} S_{seg_u,v}$, which has size at most $X(n_{maxCC} - 1)$.

By definition, each step contains at least one action, made by a non-root process. Let u be any non-root process. Assume that, in any u-segment seg_u, the size of $S_{seg_u,v}$ is bounded by X for all process $v \in V_u$. So, the number of step of u in seg_u is bounded by $X(n_{maxCC} - 1) + 3$, by Lemma 24 and Corollary 19. Moreover, recall that each execution contains at most $n_{maxCC} + 1$ u-segments (Observation 17). So, u executes in at most $Xn_{maxCC}^2 + 3n_{maxCC} - X + 3$ steps. Finally, as u is an arbitrary non-root process and there are $n - 1$ non-root processes, follows.

Theorem 25. If the size of $S_{seg_u,v}$ is bounded by X for all non-root process u, for all u-segment seg_u, and for all process $v \in V_u$, then the total number of steps during any execution, is bounded by $(Xn_{maxCC}^2 + 3n_{maxCC} - X + 3)(n - 1)$.

Let $w_{max} = \max_{(u,v) \in E} \omega(u,v)$. The size of any $S_{seg_u,v}$, where u is a non-root process and $v \in V_u$, is bounded by $w_{max}n_{maxCC}$, because $S_{seg_u,v} \subseteq \{ds_{seg_u,v} + 1\}$, where $n_{cc} \leq n_{maxCC} + 1$ is the number of processes in V_u. Hence, we deduce the following theorem from Theorem 25 and Corollary 14.

Theorem 26. Algorithm RSP is silent self-stabilizing under the distributed unfair daemon for the set $L\mathcal{C}_{RSP}$ and its stabilization time in steps is at most $[w_{max}n_{maxCC}^3 + (3 - w_{max})n_{maxCC} + 3](n - 1)$, i.e., $O(w_{max}n_{maxCC}^3n)$.

If all edges in G have the same weight w, then the size of $S_{seg_u,v}$, where u is a non-root process and $v \in V_u$, is bounded by n_{maxCC}. Indeed, in such a case, we have $S_{seg_u,v} \subseteq \{ds_{seg_u,v} + i\} \leq n_{cc} - 1\}$, where $n_{cc} \leq n_{maxCC} + 1$ is the number of processes in V_u. Hence, we obtain the following corollary.
Corollary 27. If all edges have the same weight, then the stabilization time in steps of Algorithm RSP is at most $(n_{\text{maxCC}}^3 + 2n_{\text{maxCC}} + 3)(n - 1)$, which is less than or equal to n^4 for all $n \geq 2$.

5 Round Complexity of Algorithm RSP

We now prove that every execution of Algorithm RSP lasts at most $3n_{\text{maxCC}} + D$ rounds, where n_{maxCC} is the maximum number of non-root processes in a connected component and D is the hop-diameter of the connected component containing r, V_r.

The first lemma essentially claims that all processes that are in illegal branches progressively switch to status EB within n_{maxCC} rounds, in order of increasing depth.

Lemma 28. Let $i \in \mathbb{N}^*$. Starting from the beginning of round i, there does not exist any process both in state C and at depth less than i in an illegal branch.

Proof. We prove this lemma by induction on i. The base case ($i = 1$) is obvious, so we assume that the lemma holds for some integer $i \geq 1$. From the beginning of round i, no process can ever choose a parent which is at depth smaller than i in an illegal branch because those processes will never have status C, by induction hypothesis. Moreover, no process with status C can have its depth decreasing to i or smaller by an action of one of its ancestors at depth smaller than i, because these processes have status EB and have at least one child not having status EF. Thus, they cannot execute any rule. Therefore, no process can take state C at depth smaller or equal to i in an illegal branch.

Consider any process u with status C at depth i in an illegal branch at the beginning of the round i. $u \neq r$. Moreover, by induction hypothesis, u is an abnormal root, or the parent of u is not in state C (i.e., it is in the state EB). During round i, u will execute rule R_{EB} or R_{C} and thus either switch to state EB or join another branch at a depth greater than i. This concludes the proof of the lemma.

Corollary 29. After at most n_{maxCC} rounds, the system is in a configuration from which no process in any illegal branch has status C forever.

Moreover, once such a configuration is reached, each time a process executes a rule other than R_{EF}, this process is outside any illegal branch forever.

The next lemma essentially claims that, once no process in an illegal branch has status C forever, processes in illegal branches progressively switch to status EF within at most n_{maxCC} rounds, in order of decreasing depth.

Lemma 30. Let $i \in \mathbb{N}^*$. Starting from the beginning of round $n_{\text{maxCC}} + i$, there does not exist any process at depth larger than $n_{\text{maxCC}} - i + 1$ in an illegal branch having the status EB.

Proof. We prove this lemma by induction on i. The base case ($i = 1$) is obvious, so we assume that the lemma holds for some integer $i \geq 1$. By induction hypothesis, at the beginning of round $n_{\text{maxCC}} + i$, no process at depth larger than $n_{\text{maxCC}} - i + 1$ has the status EB. Therefore, processes with status EB at depth $n_{\text{maxCC}} - i + 1$ in an illegal branch can execute the rule R_{EF} at the beginning of round $n_{\text{maxCC}} + i$. These processes will thus all execute within round $n_{\text{maxCC}} + i$ (they cannot be neutralized as no children can connect to them). We conclude the proof by noticing that, from Corollary 29, once round n_{maxCC} has terminated, any process in an illegal branch that executes either gets status EF, or will be outside any illegal branch forever.
The next lemma essentially claims that, after the propagation of status EF in illegal branches, the maximum length of illegal branches progressively decreases until all illegal branches vanish.

Lemma 31. Let $i \in \mathbb{N}^*$. Starting from the beginning of round $2n_{\text{maxCC}} + i$, there does not exist any process at depth larger than $n_{\text{maxCC}} - i + 1$ in an illegal branch.

Proof. We prove this lemma by induction on i. The base case ($i = 1$) is obvious, so we assume that the lemma holds for some integer $i \geq 1$. By induction hypothesis, at the beginning of round $2n_{\text{maxCC}} + i$, no process is at depth larger than or equal to $n_{\text{maxCC}} - i + 1$ in an illegal branch. All processes in an illegal branch have the status EF. So, at the beginning of round $2n_{\text{maxCC}} + i$, any abnormal root satisfies the predicate P_{reset}, they are enabled to execute either R_I, or R_R. So, all abnormal roots at the beginning of the round $2n_{\text{maxCC}} + i$ are no more in an illegal branch at the end of this round: the maximal depth of the illegal branches has decreased, since by Corollary 29, no process can join an illegal tree during the round $2n_{\text{maxCC}} + i$.

Corollary 32. After at most round $3n_{\text{maxCC}}$, there are no illegal branches forever.

Note that in any connected component that does not contain the root r, there is no legal branch. Then, since the only way for a process to be in no branch is to have status I, we obtain the following corollary.

Corollary 33. For any connected component H other than V_r, after at most $3n_{\text{maxCC}}$ rounds, every process of H is in a legitimate state forever.

In the connected component V_r, Algorithm RSP may need additional rounds to propagate the correct distances to r. In the next lemma, we use the notion of hop-distance to r defined below.

Definition 34 (Hop-Distance and Hop-Diameter). A process u is said to be at hop-distance k from v if the minimum number of edges in a shortest path from u to v is k.

The hop-diameter of a graph G (resp. of a connected component H of the graph G) is the maximum hop-distance between any two nodes of G (resp. of H).

Lemma 35. Let $i \in \mathbb{N}$. In every execution of Algorithm RSP, starting from the beginning of round $3n_{\text{maxCC}} + i$, every process at hop-distance at most i from r is in a legitimate state.

Proof. We prove this lemma by induction on i. First, by definition, the root r is always in a legitimate state, so the base case ($i = 0$) trivially holds. Then, after at most $3n_{\text{maxCC}}$ rounds, every process either belongs to a legal branch or has status I (by Corollary 32), thus any non-isolated process $v \in V_r$ always stores a distance d such that $d \geq d(v, r)$, its actual weighted distance to r. By induction hypothesis, every process at hop-distance at most i from r has converged to a legitimate state within at most $3n_{\text{maxCC}} + i$ rounds. Therefore, at the beginning of round $3n_{\text{maxCC}} + i + 1$, every process v at hop-distance $i + 1$ from r which is not in a legitimate state is enabled for executing rule R_C. Thus, at the end of round $3n_{\text{maxCC}} + i + 1$, every process at hop-distance at most $i + 1$ from r is in a legitimate state (such processes cannot be neutralized during this round). Also, these processes will never change their state since there are no processes that can make them closer to r.

Summarizing all the results of this section, we obtain the following theorem.
Theorem 36. Every execution of Algorithm RSP lasts at most $3n_{\text{maxCC}} + D$ rounds, where n_{maxCC} is the maximum number of non-root processes in a connected component and D is the hop-diameter of the connected component containing r.

Recall that under a weakly fair daemon, every continuously enabled process is eventually activated by the daemon. By definition, every round is finite, yet maybe unbounded, in terms of steps under such an assumption. Hence, if every execution contains a finite number of rounds, then every execution is finite under the weakly fair daemon assumption.

Notice then that all proofs made in this section still hold if we assume that edge weights are strictly positive real numbers. Hence

Observation 37. If edge weights are strictly positive real numbers, then Algorithm RSP is silent self-stabilizing under the distributed weakly fair daemon for the set \mathcal{LC}_{RSP} and its stabilization time in rounds is still at most $3n_{\text{maxCC}} + D$, where n_{maxCC} is the maximum number of non-root processes in a connected component and D is the hop-diameter of the connected component containing r.

References

10:16 Self-Stabilizing Rooted Shortest-Path Tree in Polynomial Steps

