Design Patterns in Beeping Algorithms∗†

Arnaud Casteigts¹, Yves Métivier², John Michael Robson³, and Akka Zemmari⁴

1 LaBRI, University of Bordeaux, Bordeaux, France
 acasteig@labri.fr
2 LaBRI, University of Bordeaux, Bordeaux, France
 metivier@labri.fr
3 LaBRI, University of Bordeaux, Bordeaux, France
 robson@labri.fr
4 LaBRI, University of Bordeaux, Bordeaux, France
 zemmari@labri.fr

Abstract

We consider networks of processes which interact with beeps. In the basic model defined by Cornejo and Kuhn [5], which we refer to as the BL variant, processes can choose in each round either to beep or to listen. Those who beep are unable to detect simultaneous beeps. Those who listen can only distinguish between silence and the presence of at least one beep. Stronger variants exist where the nodes can also detect collision while they are beeping (BcdL) or listening (BLcd), or both (BcdLcd). Beeping models are weak in essence and even simple tasks are difficult or unfeasible with them.

This paper starts with a discussion on generic building blocks (design patterns) which seem to occur frequently in the design of beeping algorithms. They include multi-slot phases: the fact of dividing the main loop into a number of specialised slots; exclusive beeps: having a single node beep at a time in a neighbourhood (within one or two hops); adaptive probability: increasing or decreasing the probability of beeping to produce more exclusive beeps; internal (resp. peripheral) collision detection: for detecting collision while beeping (resp. listening); and emulation of collision detection: for enabling this feature when it is not available as a primitive.

We then provide algorithms for a number of basic problems, including colouring, 2-hop colouring, degree computation, 2-hop MIS, and collision detection (in BL). Using the patterns, we formulate these algorithms in a rather concise and elegant way. Their analyses (in the full version) are more technical, e.g. one of them relies on a Martingale technique with non-independent variables; another improves that of the MIS algorithm in [8] by getting rid of a gigantic constant (the asymptotic order was already optimal).

Finally, we study the relative power of several variants of beeping models. In particular, we explain how every Las Vegas algorithm with collision detection can be converted, through emulation, into a Monte Carlo algorithm without, at the cost of a logarithmic slowdown. We prove that this slowdown is optimal up to a constant factor by giving a matching lower bound.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Beeping models, Design patterns, Collision detection, Colouring, 2-hop colouring, Degree computation, Emulation

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.15

† This research has been supported by ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE (ANR-16-CE25-0009-03).
1 Introduction

Distributed computing is concerned with various assumptions, like the structure of the network (trees, rings, planar graphs, etc.) or knowledge available to the nodes (network size, identifiers, port numbering, etc.). Another important aspect is the size of messages, which may range from unbounded, to logarithmic size, to constant size.

As a natural goal is to reduce assumptions as much as possible. Typically, when a problem is solved in some strong model, the community strives to solve it in weaker models. In a recent series of works [5, 10, 1, 7, 8, 6], new models were explored that are even weaker than constant size messages. They are called beeping models.

In beeping models, the only communication capabilities offered to the nodes are to beep or to listen. Several variants exist. In [5], a node that beeps is unable to detect whether other nodes have beeped simultaneously. When listening, it can distinguish between silence or the presence of at least one beep, but it cannot distinguish between one and several beeps. In Section 6 of [1], beeping nodes can detect whether other nodes are beeping simultaneously. In [10] and Section 4 of [1], yet another variant is considered where listening nodes can tell the difference between silence, one beep, and several beeps.

In this paper, we denote the ability to detect collision while beeping (internal collision) by B_{cd} and that of detecting collision while listening (peripheral collision) by L_{cd}. The absence of such ability is denoted by B and L, respectively. The existing models can be reformulated using the cartesian product of these capabilities. Hence, the basic model introduced by Cornejo and Kuhn in [5] is BL; the model considered by Afek et al. in [1] (Section 6) and Jeavons et al. in [8] is $B_{cd}L$; and the model considered in [10] and in Section 4 of [1] is BL_{cd}. To the best of our knowledge, $B_{cd}L_{cd}$ was only used in a previous work of the authors [3].

Although some variants are stronger than others, all beeping models remain extremely weak in essence. Yet, they are relevant to account for real-world applications or phenomena. For instance, they reflect the features of a network at the lowest levels (physical and MAC layers), where a node can probe or emit signals, with or without collision detection. At a higher level of abstraction, beeping models also reflect some communication patterns in biology [4, 1, 9].

1.1 Contributions

The contributions of this paper are manifold. As a warm-up, we start by identifying generic building blocks (design patterns) which seem to occur often in the design of beeping algorithms. Then we present a number of algorithms for various graph problems which improve upon previous solutions. Finally, we generalise existing emulation techniques for using collision detection if it is not available, and we prove them optimal w.h.p. up to a constant factor.

Due to space limitations, this version of the paper omits (in its core) most complexity analyses and some proofs. However, both are available in the arXiv version whose reference is given in the first page.

1.1.1 Design patterns

We identify a number of common building blocks in beeping algorithms, including multi-slot phases: the fact of dividing the main loop into a (typically constant) number of slots having specific roles (e.g., contention among neighbours, collision detection, termination detection); exclusive beeps: the fact of having a single node beep at a time in a neighbourhood (within one or two hops, depending on the needs); adaptive probability: increasing or decreasing
Table 1 Randomised Las Vegas colouring algorithms on graphs with \(n \) vertices.

<table>
<thead>
<tr>
<th>Model</th>
<th>Time (# slots)</th>
<th>Message size</th>
<th>Knowledge</th>
<th># colours</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{cd}L)</td>
<td>(O(\log n + \Delta)) expected and w.h.p.</td>
<td>(\simeq 1) bit ((B_{cd}L) beeps)</td>
<td>None</td>
<td>(O(\log n + \Delta))</td>
</tr>
<tr>
<td>(B_{cd}L)</td>
<td>(O(K(\log n + \log^2 K))) w.h.p.</td>
<td>(\simeq 1) bit ((B_{cd}L) beeps)</td>
<td>Upper bound (K) on the max degree of (G)</td>
<td>(K)</td>
</tr>
</tbody>
</table>

the probability of beeping in order to maximise the number of exclusive beeps; \textit{internal} (resp. \textit{peripheral}) collision detection: the fact of detecting collision while beeping (resp. listening); and \textit{ emulation} of collision detection: the fact of detecting collisions even when it is not available as a primitive. As we show in the paper, these patterns make it possible to formulate the algorithms in a rather concise and elegant way.

1.1.2 Algorithms and analyses for basic graph problems

We present, or analyse algorithms for a number of basic graph problems, including colouring, 2-hop colouring, degree computation, Maximal Independent Set (MIS) and 2-hop MIS. Quite often, the design of algorithms is easier and more natural if collision detection is assumed as a primitive, e.g., in \(B_{cd}L_{cd} \) or \(B_{cd}L \). Furthermore, emulation techniques such as those described later in this paper enable safe and automatic translations of algorithms into weaker models like \(BL \). For this reason, our algorithms are expressed using whichever model is the most convenient.

First, we present a Las Vegas (i.e. guaranteed result, uncertain time) colouring algorithm in the \(B_{cd}L \) model, with time complexity of \(O(\log n + \Delta) \) slots \(\omega(h.p.) \), where \(\Delta \) is the maximum degree in \(G \). Its analysis relies on a martingale technique with non-independent random variables, which makes use of a result by Azuma [2] (details in the long version). In fact, the phenomenon is quite ubiquitous in beeping models: the algorithm terminates in the first moment when every node has produced an exclusive beep at least once within its \((1\text{-hop})\) neighbourhood. This stopping time is made more complex by the use of the \textit{adaptive probability} pattern mentioned above. Another algorithm for 2-hop colouring is given, this time in the \(B_{cd}L_{cd} \) model, with slot complexity \(O(\log n + \Delta^2) \) \(\omega(h.p.) \). Both algorithms require no knowledge on \(G \). However, both can result in arbitrarily many colours (in fact, one per slot). If the nodes know an upper bound \(K \geq \Delta \), a different strategy is proposed that uses at most \(K + 1 \) colours. However, the slot complexity becomes \(O(K(\log n + \log^2 K)) \) \(\omega(h.p.) \) for colouring (trade \(K \) for \(K^2 \) in the 2-hop variant). Note that this complexity is not thought to be tight. The results are summarised on Table 1.

Based on the observation that degree computation is strongly related to 2-hop colouring, we present an adaptation of the algorithm for this problem, with same slot complexity, that is, \(O(\log n + \Delta^2) \) \(\omega(h.p.) \). In fact, the random process induced by this algorithm is the same as that of colouring, except that it occurs in the \textit{square} of the graph (whence the \(\Delta^2 \) term). Algorithmically, the main loop contains more specialised slots (e.g., one for peripheral collision reporting), but still a constant number of them, which keeps the asymptotics unchanged. We then turn our attention to the 2-hop MIS problem, which shares common traits and patterns with 2-hop colouring and degree computation and, regarding the high-level purpose of each phase, with the MIS algorithm from [8]. The running time is however shorter than that of 2-hop coulouring and degree computation (and the analysis quite different) due to the fact that exclusive beeps cause whole neighbourhoods to terminate at once. In fact, we prove that the slot complexity of this algorithm is \(O(\log n) \) \(\omega(h.p.) \) with a “reasonable” constant
factor of 76. Noteworthily, the number of phases (i.e. iterations of the main loop) for the 2-hop MIS is exactly the same as what the analogue for classical MIS would produce in the square of the graph. As a consequence, our analysis also improves substantially that of the MIS algorithm presented in [8], where a gigantic constant factor (i.e. one larger than e^{25}) is used. An earlier analysis in [11] yielded a better, yet huge constant of 2×10^{11}. Although constant factors are less meaningful in general, the gap in this case is one between practical and unpractical running times. Furthermore, the contribution it not as much in the constant itself than in the analysis techniques that achieve it.

1.1.3 Collision detection and emulation techniques

Classical considerations on symmetry breaking in anonymous beeping networks, see for example [1] (Lemma 4.1), imply that there is no Las Vegas internal collision detection algorithm in the beeping models BL and BLcd. Likewise, there is no Las Vegas peripheral collision detection algorithm in the beeping models BL and BcdL. Since collision detection is required to detect exclusive beeps with certainty, and this pattern is central in most beeping algorithms, this implies that a large range of algorithms cannot exist in a Las Vegas version in these models.

We study the cost of detecting collision when it is not available, typically in BL, and present generic techniques to emulate collision detection probabilistically in order to transform Las Vegas algorithms with collision detection into Monte Carlo algorithms (uncertain result, guaranteed time) in BL. These techniques generalise that of Algorithm 3 in [1], where a similar strategy is encapsulated into the algorithm. We show how, given $0 < \epsilon < 1$, any collision in the neighbourhood of a given node can be detected in $O(\log(1/\epsilon))$ slots with error at most ϵ, and similarly it can be detected in $O(\log n)$ slots w.h.p. Ensuring that this is true for any node requires more time. By union bound, it holds that $O(\log(n/\epsilon))$ slots are sufficient with error ϵ and that $O(\log n)$ slots are sufficient w.h.p. We prove that this technique is essentially optimal (asymptotically and up to a constant factor) by giving a matching lower bound. Precisely, we prove that some topologies require $\Omega(\log n)$ slots to break symmetries w.h.p. Finally, we provide two generic procedures that can be used in an algorithm to emulate collision detection when it is not available (e.g. in BL). These procedures are EmulateBcdinBL(), to detect collision while beeping, and EmulateLcdinBL(), to detect collision while listening. We illustrate their use in the case of the computation of a MIS given in BcdL, thus obtaining a Monte Carlo algorithm in BL.

1.2 Organisation of the paper

In Section 2 we present the model and give further definitions. Section 3 introduces design patterns in a tutorial manner. These patterns are then used in Section 4 to describe the various algorithms. Finally, Section 5 presents our contribution on collision detection and emulation techniques.

2 Network Model and Definitions

We consider a wireless network and we follow definitions given in [1] and [5]. The network is anonymous: unique identifiers are not available to distinguish the processes. Possible communications are encoded by a graph $G = (V, E)$ where the nodes V represent processes and the edges E represent pairs of processes that can hear each other. We denote by Δ the maximum degree of G. The neighbourhood of a vertex v, denoted $N(v)$, is the set of vertices
adjacent to v (at distance 1 from v). We define $\overline{N}(v)$ by including v itself in $N(v)$. We also use the set of vertices at distance at most 2 from v called the 2-neighbourhood of v and denoted $N_2(v)$ (or $\overline{N}_2(v)$ if it includes v). Finally, we write $\log n$ for the binary logarithm of n.

Time is divided into discrete synchronised time intervals (rounds) also called slots (following the usual terminology in wireless networks). All processes wake up and start computation in the same slot. In each slot, all processors act in parallel and either beep or listen. In addition, processors can perform an unrestricted amount of local computation in-between two slots (in effect, our algorithms require little computation).

\textbf{Remark.} In general, nodes are active or passive. When they are active they beep or listen; in the description of algorithms we say explicitly when a node beeps meaning that a non beeping active node listens.

The time complexity, also called \textit{slot complexity}, is the maximum number of slots needed until every node has terminated. Our algorithms are typically structured into phases, each of which corresponds to a small (constant or logarithmic) number of slots. In the algorithm, we specify which one is the current slot by means of a switch instruction with as many case statements as there are slots in the phase. Phases repeat until some condition holds for termination.

\textbf{Remark.} An algorithm given in a beeping model induces an algorithm in the (synchronous) message passing model. Thus, given a problem, any lower bound on the round complexity in the message passing model also holds for slot complexity in the beeping model.

\section*{Distributed Randomised Algorithm}

A randomised (or probabilistic) algorithm is an algorithm which makes choices based on given probability distributions. A distributed randomised algorithm is a collection of local randomised algorithms (in our case, all identical).

A \textit{Las Vegas} algorithm is a randomised algorithm whose running time is not deterministic, but still finite with probability 1, and that always produces a correct result. A \textit{Monte Carlo} algorithm is a randomised algorithm whose running time is deterministic, but whose result may be incorrect with a certain probability. Put differently, Las Vegas algorithms have uncertain execution time but certain result, and Monte Carlo algorithms have certain execution time but uncertain result. Classical considerations on symmetry breaking in anonymous beeping networks (see for instance Lemma 4.1 in [1]), imply that:

\textbf{Remark.} There is no Las Vegas (and a fortiori no deterministic) algorithm in BL which allows a node to distinguish between an execution where it is isolated and one where it has exactly one neighbour.

From this remark we deduce that there is no Las Vegas counting algorithm in BL, which advocates the use of stronger models. In what follows, we consider whichever model is the most convenient and provide Las Vegas algorithms in these models. We then present canonical emulation techniques to turn any such algorithm into a Monte Carlo one in BL.

\section*{3 Design patterns for beeping algorithms}

As a warm-up, this section presents a number of design patterns which seem to occur frequently in the design of beeping algorithms. The concept of pattern refers here to reusable solutions to common problems. These patterns are then used to describe algorithms in the other sections.
Design Patterns in Beeping Algorithms

Algorithm 1: Exclusive beeps (using B_{cd}).

```plaintext
repeat
    beep with some probability;
    if I beeped alone then
        do something exclusive;
... until finished;
```

Algorithm 2: Two-hops exclusive beeps (using $B_{cd}L_{cd}$).

```plaintext
repeat
    switch slot do
        slot 1 // contending
            beep with some probability;
        slot 2 // detection of peripheral collision
            if several neighbours beeped in slot 1 then
                beep after slot 2
            if I beeped alone in slot 1 and no neighbour beeped in slot 2 then
                do something 2-hop exclusive
... until finished;
```

Exclusive beeps

Beeping algorithms operate in synchronous periods called slots, which are equivalent to the concept of rounds in message passing models. Most problems in distributed computing require some node v to take exclusive decisions at times (i.e., with respect to vertices of $\overline{N}(v)$ or $\overline{N}_2(v)$), which requires some type of symmetry breaking. In beeping networks, this goal is all the more difficult to achieve that the nodes cannot use identifiers nor even port numbers in their basic exchanges. If we assume that a node that is beeping can detect whether another node beeps simultaneously (B_{cd}), then this feature can be used to take exclusive decision if indeed it beeps alone. We call this an exclusive beep. Algorithm 1 illustrates an empty shell of algorithm that relies on repeated attempts to produce exclusive beeps. Most, if not all algorithms rely implicitly on this pattern as a basis.

2-hop exclusive beeps

For some problems like 2-hop colouring, 2-hop MIS, or computation of the degree (all discussed in this paper), the level of mutual exclusion offered by exclusive beeps is not sufficient and the algorithm requires that a node be the only one to beep at distance 2. Assuming collision can also be detected upon listening (L_{cd}), one can design a 2-slots pattern whereby non-beeping neighbours report if they have heard more than one beep. Hence, if a node produced an exclusive beep in the first slot, and none of its neighbours reported a collision in the second, then it knows that it has produced a 2-hop exclusive beep (see Algorithm 2).
Algorithm 3: Adaptive beeping probability (using $B_{cd}L_{cd}$).

```plaintext
Float $p \leftarrow 1/2$ // say
repeat
    beep with probability $p$;
    if I beeped alone then
        do something exclusive;
    else
        if no one beeped then
            increase $p$;
        else
            decrease $p$;
    until finished;
```

Multi-slot phases

The example in Algorithm 2 illustrates another common aspect of beeping algorithms, namely multi-slot phases. The expressivity of a single beep is rather poor, but several combined slots can achieve elaborate behavior. In Algorithm 2, one slot is devoted to contending and another to peripheral collision detection. The whole compound is then called a phase. Another common task is termination detection. In a termination slot, all nodes which have not yet performed some action beep. If the slot remain silent, then a form of local termination is detected: nodes are in a terminal state.

Adaptive probability

As far as feasibility and expressivity are concerned, the next design pattern is not crucial. However, it plays a central role in terms of performance. Adaptive probability consists in adapting the probability to beep in the next phase depending on the outcome of previous phases. Typically, if a collision occurs, the probability is reduced, and if no one beeps, it is increased. Since the nodes do not know how many neighbours are contending with them, this technique proves useful in optimizing the odds of producing exclusive beeps.

The values given to the probabilities in Algorithm 3 are left unspecified. There are several options. In this paper, we use a doubling/halving pattern, that is, p is increased to $2p$ (up to $1/2$), and it is decreased to $p/2$ (without limit). A similar doubling/halving pattern was used in [11]. One could also increment or decrement the denominator of p as done in [3]. The consequences of choosing one over the other are not discussed here.

Collision detection

Most algorithms in this paper use collision detection as a built-in primitive, referred to as B_{cd} for detection on beeping and L_{cd} for detection on listening. However, this feature is not always available as a primitive. An important question is the transformation of a (high-level) algorithm using B_{cd} or L_{cd} (or both) into one that works in the weakest BL model. This question is the topic of Section 5, in which we study generic mechanisms to achieve this goal. Essentially, each slot that requires collision detection can be replaced with a logarithmic number of slots (in the size of various quantities depending on the desired guarantees) where the ties are broken $w.h.p$. We provide dedicated procedures that generalise the technique used internally to one of the algorithms in [1]. Besides complexity, the price to pay is that
the algorithm becomes Monte Carlo instead of Las Vegas, that is, the result is correct only
probabilistically (though possibly w.h.p.). We present a matching lower bound showing that
these procedures are essentially optimal.

4 Algorithms for basic graph problems

We now present algorithms for a number of problems, including colouring (with or without
knowledge on the degree), 2-hop colouring, computation of the degree and 2-hop MIS. These
algorithms are based on various combinations of the patterns presented in Section 3. All
algorithms are Las Vegas, and they rely on medium to strong primitives (\(B_{cdL} \) to \(B_{cdL_{cd}}\)
models) depending on the needs. The adaptation of these algorithms in the weakest model
(\(BL\)) is discussed in Section 5. We also recall Jeavons et al.'s Las Vegas algorithm for the
MIS [8] problem and discuss its relations with our 2-hop MIS algorithm.

Whenever using the adaptive probability pattern in algorithms, for generality, we stick
to the terms increase and decrease (as opposed to our analyses, in which these actions are
instantiated to doubling and halving the probability).

4.1 Colouring

The colouring problem consists of assigning a colour to every node in the network, such that
no two neighbours have the same colour. We first consider the case that no extra information
is available to the nodes. Then we consider that (an upper bound on) the maximum degree
is known.

Colouring without knowledge

Informally, the algorithm proceeds as follows (see Algorithm 4 for details). Initially, every
node is uncoloured (nil). In every phase, each node increments a counter. Uncoloured nodes
contend with each other to produce an exclusive beep, and when one succeeds, it takes the
current value of the counter as its colour and retires. An adaptive probability is used to
regulate the probability of beeping among uncoloured nodes. Local termination (a node and
its neighbours are coloured) detection is not explicitly handled here, though we could add a
termination slot where uncoloured nodes are the only ones to beep.

The running time of this algorithm is of \(O(\log n + \Delta)\) phases w.h.p as well as on average
(none of both imply the other trivially). Note that this is also the number of slots, since each
phase consists of a constant number of slots. As for the number of colours, it is incremented
with time, thus it is at most the same (at most, because some phases may not produce
exclusive beeps).

Colouring with a bound \(K\) on the maximum degree \(\Delta\)

If a bound \(K \geq \Delta\) is known, then one can obtain a better colouring using at most \(K + 1\)
colours. The algorithm follows the same lines as Algorithm 4, i.e. a colour counter is
incremented in each phase, and its current value is chosen by those nodes who produced
an exclusive beep. The main difference (see Algorithm 5 for details) is that only those
colours within \(\{0, \ldots, K\}\) are considered and thus the counter is incremented modulo \(K + 1\).
Conflicts of colours are avoided by keeping a phase idle if the corresponding value was already
taken in the past (locally). To do so, when a node takes a colour, it re-beeps in a new slot
called confirmation slot to inform its neighbours that they must remove the current colour
from their list of authorized colours. Accordingly, the uncoloured will contend in a phase
Algorithm 4: A Las Vegas colouring algorithm in B_{cdL} (without knowledge).

Float $p \leftarrow 1/2$;
Integer $colour \leftarrow \text{nil}$;
Integer $counter \leftarrow 0$;
repeat
 beep with probability p;
 if I beeped alone then
 $colour \leftarrow counter$
 else
 if no one beeped then
 increase p;
 else
 decrease p;
 $counter \leftarrow counter + 1$;
until $colour \neq \text{nil}$;

only if the current colour is still available (otherwise, they wait). An adaptive probability
is used similarly to Algorithm 4, except that idle phases are not considered as silent (the
probability is not updated in these phases).

Regarding performance, the only difference between this algorithm and Algorithm 4 is
that a growing number of phases are idle in each neighbourhood, inflicting a slow down to the
algorithm. Managing the dependencies here proved more difficult and we “only” managed to
prove that the number of phases is $O\left(K(\log n + \log^2 K)\right)$ w.h.p. However, the algorithm is
believed to be faster.

4.2 2-hop colouring

A 2-hop colouring of a graph G is a colouring such that any two nodes at distance ≤ 2
have different colours. In other words, it is a colouring of the square of G, the graph where an
edge exists between nodes which are neighbours in G or share a common neighbour in G.

2-hop colouring without knowledge

A similar strategy is used as in Algorithm 4 (colouring), except that exclusive beeps are
replaced with 2-hop exclusive beeps. Whenever a node produces such a beep, it takes the
current value of the counter as colour. Since no other node has beeped within distance 2,
the colouring is legal. Contrary to the 1-hop colouring, the collaboration of a node remains
crucial even after it becomes coloured. Indeed, this node must keep on reporting peripheral
collisions to its neighbours. As a result, instead of retiring from computation, coloured nodes
keep on listening until all of their neighbours are coloured, which is detected using an extra
termination slot. Details are given in Algorithm 6. Four slots are used in total, the first two
being devoted to the management of 2-hop exclusive beeps (see Section 3 for details). The
third slot manages a (2-hop) adaptive probability based on beeps heard at distance one (slot 1)
or at distance two (slot 3 itself). Finally, slot 4 is the termination slot.

Once we realize that the execution produced here is the same as what Algorithm 4
would produce in the square of G, analysis of this algorithm is straightforward. The only
difference is that the maximal number of contenders of a node becomes Δ^2 instead of Δ.
Thus Algorithm 6 takes $O(\log n + \Delta^2)$ phases (and slots) w.h.p., and the number of colours
cannot exceed the same value.
Algorithm 5: A Las Vegas colouring algorithm in $B_{cd}L$ (knowing $K \geq \Delta$).

Colours = $\{0, \cdots, K\}$;
Float $p \leftarrow 1/2$;
Integer colour \leftarrow nil;
Integer counter $\leftarrow 0$;
repeat
 if counter \in Colours then
 switch slot do
 slot 1 // contending
 beep with probability p
 slot 2 // confirmation
 if I beeped alone in slot 1 then
 colour \leftarrow counter;
 beep;
 else
 if no one beeped then
 increase p;
 else
 decrease p;
 end
 if someone beeped in slot 2 then
 Colours \leftarrow Colours \ {counter}
 end
 end
 counter \leftarrow (counter + 1) mod ($K + 1$);
until colour \neq nil;

With a bound K on the maximum degree Δ

The same idea can be applied as in the 1-hop variant, i.e., taking colours between 0 and $K^2 + 1$ (instead of $K + 1$) and incrementing the counter accordingly (mod $K^2 + 1$). As a result, at most $K^2 + 1$ colours are used, with time complexity $O(K^2(\log n + \log^2 K))$ w.h.p.

4.3 Degree computation

Let us recall that 2-hop exclusive beeps allow a node v to perform an exclusive action within a radius of distance 2. This feature was used in Section 4.2 to assign unique colours. At it turns out, the pattern is very versatile and it can be used to count the degree of a node as well. The strategy consists in replacing the colour-related action in slot 2 (second if-then block) by an action aiming at having v counted in the degree of its neighbours (then v stops contending and keeps on reporting collisions, as before). Precisely, a new confirmation slot is inserted wherein v re-beeps if indeed it produced a 2-hop exclusive beep. Upon hearing the confirmation beep, all of v’s neighbours increment a local counter that eventually amounts to their degree. Termination proceeds in the same way as for the 2-hop-colouring algorithm (i.e. uncounted nodes beep in a termination slot).

Up to a constant factor which accounts for the additional confirmation slot in each phase, the running time of this algorithm is again $O(\log n + \Delta^2)$ w.h.p.
Algorithm 6: A Las Vegas 2-hop-colouring algorithm in $B_{cd}L_{cd}$ (without knowledge).

Float $p \leftarrow 1/2$;
Integer $colour \leftarrow \text{nil}$;
Integer $counter \leftarrow 0$;
repeat
 switch slot do
 slot 1 // contending slot
 if $colour = \text{nil}$ then
 beep with probability p;
 slot 2 // peripheral collision detection (and consequences)
 if several neighbours beeped in slot 1 then
 beep
 if I beeped alone in slot 1 and heard no beep in slot 2 then
 $colour \leftarrow counter$
 slot 3 // adaptive probability
 if someone beeped in slot 1 then
 beep
 if $colour = \text{nil}$ then
 if no beep heard in slot 1 nor 3 then
 increase p
 else
 decrease p
 slot 4 // termination slot
 if $colour = \text{nil}$ then
 beep
 $counter \leftarrow counter + 1$
until no beep heard in slot 4;

4.4 Jeavons et al.’s Las Vegas Algorithm for the MIS in $B_{cd}L$

We recall here Jeavons et al.’s Las Vegas Algorithm for the MIS [8]. This algorithm uses an adaptive probability to maximize the frequency of exclusive beeps (with a doubling/halving pattern for p, starting at $1/2$). If a node v produces an exclusive beep, it enters the MIS (by the end of the first slot), then it uses a confirmation slot to inform its neighbours, all of which terminate together with v. Since the whole neighbourhood shuts down at once, the algorithm progresses faster than, for instance, the basic colouring algorithm discussed above. This algorithm was already proven by Jeavons et al. to terminate within $O(\log n)$ slots with a huge constant factor (larger than e^{25}).

4.5 Computing a 2-hop MIS

In this problem, we must select a set of nodes (the MIS) such that no pair of selected nodes are within distance 2 and no node can be added further to the set. This algorithm is a combination of those of other 2-hop algorithms seen above, and Jeavons et al’s MIS algorithm. That is, the same structure of algorithm is used as for 2-hop colouring or degree computation, except that whenever a node produces a 2-hop exclusive beep, it enters the MIS and informs its neighbours (using the confirmation slot) that they will not be in the MIS. This algorithm
Design Patterns in Beeping Algorithms

takes the same number of phases than what the (1-hop) MIS algorithm would produce in the square of the graph, that is, $O(\log n)$ w.h.p. The number of slots is higher due to using additional slots for managing 2-hop exclusive beeps, but it remains within a (small) constant factor. Interestingly, our analysis of this algorithm improves much over that of [8], taking the huge constant down to 76 (i.e., making the algorithm practical).

5 Collision detection and emulation techniques

In Section 4, we have considered collision detection as a built-in primitive. Depending on the algorithms, we assumed that collision detection was possible while beeping (B_{cd}) or while listening (L_{cd}). This assumption is convenient because it allows one to design Las Vegas algorithms for all the considered problems. Unfortunately, we know since [1] that no Las Vegas algorithms can be designed for most problems without collision detection, that is, in the BL model. One has to turn to Monte Carlo instead, which means that the result is correct only with some probability (possibly w.h.p.). In this section, we investigate the cost of building a probabilistic collision detection primitive in the BL model, inspired by a technique from [1]. Then we adapt it into two generic emulation procedures, one for detecting collision while beeping, the other while listening. These procedures can then be used to translate any Las Vegas algorithm in $B_{cd}L$, BL_{cd}, or $B_{cd}L_{cd}$, into a Monte Carlo algorithm in BL. The cost is a logarithmic slowdown of the execution, which we prove is essentially optimal (for sufficiently large n).

5.1 Collision detection

The impossibility for a node in BL to distinguish between begin alone or having neighbours has strong implications. For instance, in the colouring problem, it means that two neighbours could possibly end up with the same colour. In the MIS problem, two neighbours could enter the MIS. In fact, there is no guarantee on the correctness of basic patterns like exclusive beeps or 2-hop exclusive beeps, which are at the basis of most (if not all) Las Vegas algorithms.

We present a (Monte Carlo) algorithm for detecting collisions in BL. This procedure generalises the technique used in Algorithm 3 of [1], which consists of replacing each slot that requires collision detection in the original model, with several BL slots in which symmetries are probabilistically broken. Of course, the more slots, the more reliable the detection.

The algorithm

Each slot that requires collision detection (B_{cd} or L_{cd}) is replaced with a number of sub-phases, each consisting of two BL slots. For instance, if a node wishes to beep with collision detection in the original algorithm, it will choose one of the two slots (u.a.r.) in each of the sub-phases and will beep in that slot (listen in the other). If it hears a beep while listening in the other slot, then an internal collision is detected. Similarly, if a node wishes to listen with collision detection in the original algorithm, it will listen in both slots of each sub-phase. A peripheral collision is detected if a beep is heard in both slots of a same sub-phase. The procedure is detailed by Algorithm 7, where k is the number of sub-phases used.

False positives never happen, but real collisions might still go unnoticed, with probability inversely related to k. We are interested in determining how large k should be to guarantee that a given node detects a collision in its neighbourhood with a given probability. The stronger question asks how many sub-phases are required to guarantee that none of the nodes fails to detect a collision.
Algorithm 7: Collision detection algorithm in BL (with parameter k)

```
Boolean collision ← false;
Integer i ← 0;
while i < k do
  if v wishes to beep then
    Flip a coin;
    if heads then
      beep in slot 1;
      listen in slot 2;
    else
      listen in slot 1;
      beep in slot 2;
    if another beep was heard then
      collision ← true
  else
    listen in both slots;
    if beeps are heard in both slots then
      collision ← true;
  i ← i + 1;
return collision;
```

Lemma 1. Let v be a node. If a collision occurs in the neighbourhood of v, then v detects it in $O\left(\log\left(\frac{1}{\epsilon}\right)\right)$ sub-phases (slots) with probability at least $1 - \epsilon$, and in $O\left(\log n\right)$ sub-phases (slots) with probability $1 - o\left(\frac{1}{n^2}\right)$.

Proof. Assume a collision occurs between some nodes u_1 and u_2 in the neighbourhood of v (one of them being possibly v itself). It is detected if u_1 and u_2 choose a different slot in at least one of the k sub-phases. The probability that this does not happen is $\left(\frac{1}{2}\right)^k$. This probability is less than ϵ (resp. $o\left(\frac{1}{n^2}\right)$) for any $k \geq \log\left(\frac{1}{\epsilon}\right)$ (resp. $2\log(n)$). Observe that if collisions occur between more than two nodes in the neighbourhood of v, this cannot decrease the odds of a successful detection (to the contrary, the odds can only increase).

Corollary 2. Let G be a graph. If collisions occur in the neighbourhood of an arbitrary number of nodes, then all of them detect collision after at most $O\left(\log\left(\frac{n}{\epsilon}\right)\right)$ sub-phases (slots) with probability at least $1 - \epsilon$, and after at most $O\left(\log n\right)$ sub-phases (slots) w.h.p.

Proof. Assume collisions occur in G and let T denote the number of sub-phases before all concerned nodes detect collision. Clearly $T = \max\{T_v \mid v \in V\}$, where T_v is the time it takes to any node v to decide collision. By the same argument as in the proof of Lemma 1, together with union bound, it holds that

\[
\Pr\left(T > \log\left(\frac{n}{\epsilon}\right)\right) \leq n \times \Pr\left(T_v > \log\left(\frac{n}{\epsilon}\right)\right) \leq n \times \frac{1}{2^{\log(\frac{1}{\epsilon})}} = \epsilon
\]

which proves the first claim. The same argument, combined with the second claim of Lemma 1 proves the second claim.
Algorithm 8: A Procedure to emulate a B_{cd} in the BL model.

Procedure $\text{EmulateL}_{cd}\text{inBL}(in : \text{Integer } k, \text{Array } s; out : \text{Boolean } collision)$

Boolean collision \leftarrow false;
Integeri \leftarrow 0;
repeat
 if $s[i]$ then beep in slot 1; listen in slot 2;
 else listen in slot 1; beep in slot 2;
 if another beep was heard then collision \leftarrow true;
 i $\leftarrow i + 1$
until i $= k$;
End Procedure

Algorithm 9: A Procedure to emulate a L_{cd} in the BL model.

Procedure $\text{EmulateL}_{cd}\text{inBL}(in : \text{Integer } k; out : \text{Boolean } beep, \text{Boolean } collision)$

Boolean beep \leftarrow false;
Boolean collision \leftarrow false;
Integer i \leftarrow 0;
repeat
 switch slot do
 slots 1 and 2
 1. listen
 end of phase:
 if a beep was heard in any slot then
 beep \leftarrow true
 if a beep was heard in both slots then
 collision \leftarrow true
 i $\leftarrow i + 1$
until i $= k$;
End Procedure

5.2 Emulation procedures

Based on this tie-breaking mechanism, we define two probabilistic emulation procedures whose purpose is to replace beep or listen instructions with collision detection in BL. Both are Monte Carlo in the sense that detection is only guaranteed with some probability. The first procedure, $\text{EmulateB}_{cd}\text{inBL}$, is given by Algorithm 8 and the second, $\text{EmulateL}_{cd}\text{inBL}$, by Algorithm 9. Both procedures are parametrized by an integer $k > 1$, which accounts for the number of sub-phases that are used in each invocation of the procedure (k controls the error bound). They return $true$ if a collision has been detected, $false$ otherwise.

Before the execution each vertex generates a sequence s of k random bits (u.a.r.) which will be the ones used in each sub-phase. The reason why this is made once at the beginning rather than in each invocation is a technicality that relates to preventing an additional union bound in the analysis (more k would be needed to guarantee that each invocation is successful if the numbers are drawn every time).

Hence, the value of k depends on the bound we require on the probability of error, a straightforward adaptation of the above analysis gives us the values of Lemma 3.

\blacktriangleright Lemma 3. For any $\varepsilon > 0$, and any $n > 0$:
1. if $k = \lceil \log \left(\frac{1}{\varepsilon} \right) \rceil$, the procedures are correct for a given node with probability $1 - \varepsilon$;
2. if $k = \lceil \log (\frac{n}{\varepsilon}) \rceil$, the procedures are correct for any node with probability $1 - \varepsilon$;
3. if $k = \lceil 2 \log(n) \rceil$, the procedures are correct for any node w.h.p.
Figure 1 The wheel gadget used in the proof of optimality for emulation.

Observe that in general, the size of the network n is not known to the nodes, which is an obstacle to achieving the second and third types of guarantees. However, it is reasonable in practice to assume that the nodes know an upper bound on n, e.g., when a network of wireless sensors is deployed. The upper bound may even be loose without much consequence: so long as it is polynomial in n, the slowdown factor remains of the same order.

Using the procedures

In the listings of our algorithms (see Section 4), listen instructions are implicit. By default, a node listens if it does not beep. Emulation procedures should be used explicitly for both beep and listen primitives, in order for the nodes to remain synchronized (since each of them takes logarithmically many rounds to be carried out). Therefore, whenever a node calls \texttt{EmulateB}_{cd}\texttt{inBL} or \texttt{EmulateL}_{cd}\texttt{inBL}, the other nodes should call one of these or wait the corresponding amount of time. Likewise, the procedures should not be interrupted even after a collision with a given neighbor is detected, to preserve synchrony with other neighbours or farther nodes.

5.3 Optimality of the emulation

In this section we prove that the emulation procedures presented in Section 5.2 are essentially optimal (i.e. asymptotically and up to a constant factor), namely, we prove a $\Omega (\log n)$ lower bound on the number of slots required to detect collision in some graphs called wheels. A (m,s)-wheel, illustrated in Figure 1, is a graph $W = (V, E)$ such that $V = u_1, \ldots, u_{4ms}$, the edges E are all the (u_{i-1}, u_i) (arithmetic modulo $4ms$) plus m spokes, that is edges $(u_{is}, u_{(i+2m)s})$ ($1 \leq i \leq 2m$), where the wheel can be odd (all spokes with i odd) or even (all spokes with i even). The even and odd (m,s)-wheels are isomorphic. We consider only situations in which all vertices u_{is} are in the same state, a state in which they wish to beep and all other vertices are in the same internal state, a state in which they do not wish to beep. Thus vertices at the ends of spokes and no others must conclude that there is a collision. The slot complexity of any algorithm which detects collision in such a graph with high probability is to be $\Omega (\log n)$. Due to space limitations, the full proofs are relegated to the long version. We provide, however, a minimal sentence of insight for each.

Considering a computation of a collision detecting algorithm on a wheel, we define, for any $t > 0$, b^t_i as the signal (beep or not) from u_i to all its neighbours at time t, and, for any $t \geq 0$, B^t_i the sequence $b^1_i \cdots b^t_i$. Then, we define the event E_t for a spoke $u_{is}, u_{(i+2m)s}$ as follows:

$$E_t = \left\{ (B^t_i = B^t_{i+(2m)s}) \wedge (B^t_{i+1} = B^t_{i+(2m)s+1}) \wedge (B^t_{i-1} = B^t_{i+(2m)s-1}) \right\}.$$
Lemma 4. For any $t \ (0 \leq t < s)$, it holds that $\Pr (E_t) \geq 2^{-3t}$.

The proof proceeds by induction on t, with base case $t = 0$. (Full proof in the long version.)

If E_t holds for the spoke $(u_{is}, u_{(i+2m)s})$, we say that the spoke fails to break symmetry within time t. This happens with probability at least 2^{-3t} and, if it happens, the existence of the spoke has had no influence on the computation up to time t. In particular, whenever u_{is} beeped, $u_{(i+2m)s}$ also beeped and so neither has ever heard the other beep.

Theorem 5. For any Monte Carlo algorithm A which detects collision in W, if A halts in less than $\log_2 n/4$ rounds with probability greater than $3/4$ then for some situations in some wheels, A gives incorrect results for some vertices with probability greater than $1/4$.

The proof proceeds using the wheel gadget of Figure 1 and Lemma 4 to characterize the rate at which the symmetry induced by the spokes can be broken. (Full proof in the long version.)

Corollary 6. The complexity of a Monte Carlo algorithm which detects collision with high probability in the BL model is $\Omega(\log n)$.

References