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Abstract
The happened-before model (or the poset model) has been widely used for modeling the computa-
tions (execution traces) of parallel programs and detecting predicates (user-specified conditions).
This model captures potential causality as well as locking constraints among the executed events
of computations using Lamport’s happened-before relation. The detection of a predicate in a com-
putation is performed by checking if the predicate could become true in any reachable global state
of the computation. In this paper, we argue that locking constraints are fundamentally different
from potential causality. Hence, a poset is not an appropriate model for debugging purposes
when the computations contain locking constraints. We present a model called Locking Poset,
or a Loset, that generalizes the poset model for locking constraints. Just as a poset captures
possibly an exponential number of total orders, a loset captures possibly an exponential number
of posets. Therefore, detecting a predicate in a loset is equivalent to detecting the predicate in
all corresponding posets. Since determining if a global state is reachable in a computation is a
fundamental problem for detecting predicates, this paper first studies the reachability problem in
the loset model. We show that the problem is NP-complete. Afterwards, we introduce a subset
of reachable global states called lock-free feasible global states such that we can check whether
a global state is lock-free feasible in polynomial time. Moreover, we show that lock-free feasible
global states can act as “reset” points for reachability and be used to drastically reduce the time
for determining the reachability of other global states. We also introduce strongly feasible global
states that contain all reachable global states and show that the strong feasibility of a global
state can be checked in polynomial time. We show that strong feasibility provides an effective
approximation of reachability for many practical applications.
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1 Introduction

One of the fundamental problems in debugging or runtime verification of a parallel program
is to check if a predicate (user-specified condition) could become true in any global state
that can be reached by the program. This problem is challenging because different runs of
the program may reach different sets of global states due to the nondeterministic thread
scheduling even for the same user input. In this paper, we propose a new model of parallel
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17:2 Predicate Detection for Parallel Computations with Locking Constraints

Thread t1
-----------
a1:acquireLock(l)
a2: openFile(f)
a3:releaseLock(l)
a4:closeFile(f)

Thread t2
-----------
b1:acquireLock(l)
b2: openFile(f)
b3: closeFile(f)
b4:releaseLock(l)

Figure 1 A program which has two
threads that might open the file f at the
same time. The possible posets of its
execution are shown in Fig. 2.
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Figure 2 (a) The dashed lines are consistent global
states. (b) Φ only becomes true in the global state G

and it can be correctly detected because G is consistent.
(c) In this poset, G is inconsistent and thus Φ cannot
be detected.

computation that captures the reachable global states on multiple thread schedules and thus
enables efficient predicate detection.

As an example of predicate detection, suppose that the condition Φ: file f is opened by two
threads at the same time, is a potential bug of the parallel program shown in Fig. 1. We would
like to know if the program can possibly reach a global state where Φ is true, i.e., to detect
possibly Φ. One popular debugging method is to run the program and collect a totally ordered
sequence of events. Suppose that the sequence recorded is σ = a1, a2, a3, a4, b1, b2, b3, b4. In
this total order, Φ does not become true. However, the predicate is indeed possible if the
sequence of events starts with the prefix (a1, a2, a3, b1, b2). Hence, the only way to detect
possibly Φ is to perform multiple executions and hope that one of them produces a total
order that makes the predicate true [25, 31].

To alleviate this issue, the computation (the execution trace) of a parallel program is
usually modeled as a partially ordered set (poset) of events, ordered by Lamport’s happened-
before relation (denoted by →) [21]. In this poset, the events that are executed by a single
thread are totally ordered and the events across threads are ordered based on their causality.
Usually, the synchronization due to locks is also modeled with the happened-before relation.
Specifically, the release of a lock is ordered before its subsequent acquisition [10, 22, 3, 5].

By modeling the computation as a poset, we are able to predictively detect the predicate if
it becomes true in any consistent global state of the poset. In the poset model, a global state G
is consistent iff for events e, f :(e→f) ∧ (f∈G)⇒(e∈G). Moreover, consistent global states
are considered reachable because for every consistent global state there always exists at least
one sequence of events that leads the program to reach that global state [1]. Hence, detecting
a predicate on one poset is equivalent to detecting the predicate on multiple sequences of
events. In addition, if we do not know the nature of the predicate, then predicate detection
is usually done by enumerating all consistent global states of the poset and checking if any
one of them satisfies the predicate [6, 18, 5, 3].

For the program in Fig. 1, the executions that produce σ and any total order with the
prefix (a1, a2, a3, b1, b2) are modeled as the same poset shown in Fig. 2a, in which the dashed
lines are consistent global states of the poset and each of which contains all the events on its
left. Fig. 2b shows the only global state G where the predicate Φ becomes true. Since G is
consistent, Φ would be successfully detected when G is enumerated. However, we still have
not solved the problem of predicate detection for all thread schedules. Suppose that thread
t2 obtains the lock before t1 during the execution. Then, we put a happened-before order
from b4 to a1 instead of a3 to b1 as shown in Fig. 2c. In this poset, G is inconsistent and
will not be enumerated. Consequently, a purely poset based predicate detection algorithm
will miss the predicate under a different locking schedule.
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Thread t1
-----------
a1:acquireLock(l)
a2: notify(l)
a3: openFile(f)
a4: closeFile(f)
a5:releaseLock(l)

Thread t2
-----------
b1:recMsg(t3,&m)
b2:openFile(f)

Thread t3
-----------
c1:acquireLock(l)
c2: waitUntilNotified(l)
c3: sendMsg(t2,m)
c4:releaseLock(l)

Figure 3 A program which has three threads
but the file f can only be opened by one thread at
a time.
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Figure 4 (a) The global state G, where Φ

is true, is indeed unreachable because of the
implicit order (the dashed arrow) between
the two critical sections. (b) The local view
that contains only two of the threads, where
G is mistakenly considered reachable.

An alternative approach removes the happened-before (HB) relation due to lock syn-
chronization and determines the reachability of a global state using the techniques of lockset
and acquisition history instead of the HB consistency of the global state [28, 19, 20, 29, 26].
However, these techniques only consider predicates that involve two threads, i.e., data races
and atomicity violations. If the computation contains more than two threads, the detection is
performed on a local view that consists of only two threads at a time. Hence, they can induce
false positives because of the lack of the global view. Consider the program in Fig. 3, which
has three threads. Because of the conditional synchronization (e.g., Java’s notify() and
wait()) between events a2 and c2, thread t1 will obtain the lock l before t3; otherwise, t3 will
be forced to release the lock. Thus, we get a computation as shown in Fig. 4a. Although the
order a5→ c1 is not explicitly captured in the computation, it is always implicitly induced
during the execution of the program. Thus, the global state G, where Φ is true, is indeed
unreachable. If we try to detect Φ in a local view that contains only two threads (see Fig. 4b),
then G could be mistakenly considered reachable and result in a false-positive.

To deal with the co-existence of locks and the happened-before (HB) relation, one
commonly used method is to convert mutual exclusion constraints and the HB relation to
the constraints for SAT/SMT solvers [33, 34, 17]. When a global state that satisfies Φ is
found, the solver is invoked in order to determine whether that global state is reachable in
the computation. If it is reachable, then possibly Φ is detected. Although this method is
applicable for detecting predicates that involve the global view of the system, these solvers
may take exponential time in the worst case.

Since determining the reachability of a global state is a fundamental problem for the
technique of predicate detection, our focus in this paper is on methods that take polynomial
time for determining the reachability. We first introduce a model, named Loset (Locking
poset), which is a generalization of the poset model. A Loset is a Poset augmented with
the notion of locking intervals. In a loset, a lock synchronization is not modeled using the
HB relation. Instead, the intervals of events that are executed under one or more locks are
modeled separately. If two intervals I1 and I2 are executed under the same lock, then it is
understood that events in I1 and I2 cannot be interleaved but can happen in either order.
Since there can be an exponential number of different locking schedules, a loset in effect
would model an exponential number of posets. Thus, a loset allows us to detect possibility
of violation of invariants which would not be possible to detect using a single conventional
poset. Moreover, our technique does not depend on the nature of the predicate. Thus, it can
be used for detecting the predicate whose nature is unknown and requires the global view of
the system.

OPODIS 2016



17:4 Predicate Detection for Parallel Computations with Locking Constraints

Afterwards, we study the complexity of reachability problem in a loset: Given a loset
L and a global state G, the reachability problem asks if there exists a sequence of events
that leads the program to reach G in L. The reachability problem is trivial for a poset: G is
reachable iff G is consistent [1]. However, we show that the reachability problem for a loset
is NP-complete. Our proof uses the NP-completeness of the predicate control problem shown
in [30].

To cope with the NP-completeness, we introduce a subset of reachable global states called
lock-free feasible global states such that we can efficiently check whether a global state is
lock-free feasible in polynomial time. In this paper, a global state is lock-free if it does not
hold any lock. We show that the set of reachable lock-free feasible global states forms a finite
distributive lattice under the usual less than relation < of global states. With the property
of distributive lattice, we show that the reachability of a global state G can be determined
using only a subset (F\G) of events, where F is the greatest lock-free feasible global state
such that F ≤ G. Thus, lock-free feasible states act as “reset” points for reachability and can
be used to drastically reduce the time for checking reachability, by limiting the calculation in
a subcomputation rather than the entire computation.

We also introduce strongly feasible global states that contain all reachable global states such
that checking whether a global state is strongly feasible for a loset can be done efficiently. For
many practical applications, strongly feasible global states provide an effective approximation
of reachability: We show that the set of strongly feasible global states is identical to the set
of reachable global states for computations with two threads. Moreover, our experiments
show that the gap between strong feasibility and reachability seldom exists in practice. We
give a method to enumerate the strongly feasible global states of a loset. In comparison
with two naive but accurate enumeration algorithms, which enumerate only reachable global
states, our enumeration method shows that the strongly feasible property accurately models
the reachable global states for all 11 benchmark programs while using only 15–40% of their
runtime.

We note here that our techniques are orthogonal to the techniques using SAT/SMT
solvers. Given a trace of a computation, instead of calculating the reachability of a global
state G from the initial global state, we only need to compute if G is reachable from the
greatest lock-free feasible global state that precedes G. Moreover, we only need to calculate
the reachability with a SAT/SMT solver if G is strongly feasible.

The rest of the paper is organized as follows. Section 2 presents the loset model. Section 3
and 4 introduce the sets of lock-free feasible and strongly feasible global states. Section 5
discusses the reachability of various classes of global states in a loset. Section 6 shows the
experimental results. Finally, Section 7 concludes this paper.

2 Loset Model of a Computation

A computation (i.e., an execution trace of a parallel program) is modeled as a Loset (Locking
Poset) of events as defined next.

I Definition 1 (Loset). A loset L is a five-tuple L = (E,→, n, L, I) where:
E: is a set of events,
→: is an irreflexive transitive binary relation on E,
n: is the number of threads,
L: is the number of locks,
I: is a set of locking intervals.
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Figure 5 (a) The loset that is equivalent to the two posets in Fig. 2b and 2c. The gray boxes are

the critical sections created by the same lock. The curly braces show the locks that are held at each
event. (b) A loset that is equivalent to C2m

m posets. (c) A loset that is equivalent to m! posets.

The → relation represents the potential causality between events, i.e., e → f means
that the event e may directly or transitively cause the event f . For distributed systems, it
corresponds to the Lamport’s happened-before (HB) relation [21]. In concurrent systems,
we may have additional order constraints due to the fork-join events of threads and the
wait-notification events of conditional synchronization [10, 22, 3, 5]. In this paper, we
maintain the → relation using vector clocks [9, 23]. The set E of events is partitioned into
n sequences E1, E2, · · · , En such that each Ei represents a thread. For all distinct events
e, f ∈ Ei : (e→ f) ∨ (f → e). For convenience, we define the process order relation (denoted
by ≺) such that e ≺ f means e → f in some Ei. A locking interval I ∈ I is a four-tuple
I = (t, l, acq, rel) such that t ∈ {1..n}, l ∈ {1..L}, (acq, rel ∈ Et), and acq ≺ rel. An interval
indicates that the thread I.t acquired the lock I.l at event I.acq and released it at I.rel.

Note that the objective of the → relation is to capture the causality of events but not the
real-time locking order between the acquisition and release events of locks. Therefore, the
locking intervals for the same lock are totally ordered in a poset but not in a loset. Formally,

I Definition 2 (Valid Poset of a Loset). A poset P = (E,→P ) is a valid poset of a loset
L = (E,→, n, L, I) if (→⊆→P ) and ∀I, J ∈ I such that I.l = J.l, we have (I.rel →P

J.acq) ∨ (J.rel→P I.acq).

For instance, the two posets in Fig. 2b and Fig. 2c are the valid posets of the loset in Fig. 5a.
In Fig. 5b, suppose that each thread contains m locking intervals for the same lock, then the
loset is equivalent to C2m

m valid posets because the m intervals of t1 can be interleaved with
those of t2 in C2m

m total orders. Similarly, the loset in Fig. 5c is equivalent to m! valid posets.
Fig. 7 shows a more complex loset. We now define global states and their reachability under
the loset model.

2.1 Global States
A global state G is a subset of E such that ∀e, f ∈ E : (f ∈ G) ∧ (e ≺ f) ⇒ (e ∈ G). In
Fig. 5a, the set {a1, a2, b1} is a global state, but {a2, b1} is not a global state because it
contains event a2 but not a1 even though a1 ≺ a2. A global state G can equivalently be
identified by the number of events of each Ei in G. For example, the global state {a1, a2, b1}
is represented by the array [2, 1]. The symbol G[i] denotes the maximal (latest) event of Ei

in the global state G. The order G ≤ H between the two global states means G[i] � H[i]
holds for any thread i.

A global state G is consistent iff ∀e, f ∈ E : (f ∈ G)∧ (e→ f)⇒ (e ∈ G). A consistent
global state preserves the → relation of the loset. Note that the initial global state (G = φ),
and the final global state (G = E) are always consistent. We define the set el(e) of effective
locks for any event e, which are the locks being held by the thread that has executed e:

el(e) = {I.l | I.acq � e ≺ I.rel}.

OPODIS 2016



17:6 Predicate Detection for Parallel Computations with Locking Constraints

In Fig. 5a, the effective locks of the events in the computation are shown in curly brackets.
We can now define the set of global states that respect the locking constraints. A global state
G is (lock) compatible iff for any i 6= j,G[i] and G[j] are pairwise (lock) compatible, i.e.,
el(G[i]) ∩ el(G[j]) = ∅. Finally, a global state is feasible iff it is consistent and compatible.

If a global state is not feasible then it violates either the consistency constraints or the
locking constraints. Hence, only feasible global states are reachable from the initial global
state. However, not all feasible global states are reachable. For example, the global state G
in Fig. 4a is feasible but not reachable because of the implicit locking order induced by the
conditional synchronization.

2.2 Reachable Global States and Runs
We first introduce a sequence of events called a run, R, in which the total order between
events is denoted by ≺R. The symbol δ(G,R) denotes the global state that is reached by
executing the sequence R of events starting from the global state G. The symbol Ri denotes
the prefix of R of length i. Since only feasible states are reachable, a run goes through only
feasible global states. Formally, a sequence R of events is a run starting from G iff the global
state δ(G,Ri) is feasible for any i such that 0 ≤ i ≤ |R|.A global state G is reachable from
the initial global state φ iff there exists a run R such that δ(φ,R) = G. The reachability
problem is defined as:

I Definition 3 (Loset Reachability Problem). Given a loset L and a global state G, is G a
reachable global state of L?

I Theorem 4. The loset reachability problem is NP-complete.

Proof. (Outline) In [30], the predicate control problem asks if there exists a control sequence,
which is a total order among the critical sections for the same lock, such that the predicate
Φ remains true after the control sequence is added to the computation. It was shown that
the predicate control problem is NP-complete. The model defined in [30] is a special case of
our loset model, where locking intervals do not overlap. It can be shown that there exists a
control sequence that reaches the global state G without violating mutual exclusion iff the
global state G is reachable in the loset. Therefore, the predicate control problem is a special
case of the reachability problem of a loset. The details are available in [2]. J

In the following sections, we present two classes of global states — lock-free feasible global
states and strongly feasible global states. A lock-free feasible global state is always reachable
and a reachable global state is always strongly feasible. Thus, these two classes provide a
lower and an upper bound on the set of reachable global states. Both of these classes can be
checked efficiently (in polynomial time), whereas the reachability problem is NP-complete.
Moreover, to check reachability of a global state G, it is sufficient to check its reachability
from the greatest lock-free feasible global state that precedes G instead of checking it from
the initial global state of the computation.

3 Lock-Free Feasible Global States

A lock-free feasible global state is a feasible global state that holds no lock. We show that
given a reachable global state G of a loset, then any lock-free feasible global state F ≤ G is
also reachable.

I Theorem 5. Given a reachable global state G of a loset and a lock-free feasible global state
F ≤ G, there exists a run that reaches both F and G.
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Proof. Since G is reachable, there exists a run R such that δ(φ, R) = G. Let the sequence
S1 of events be R ↑ F , which is the projection of R that contains only the events in F , and
let S2 = R ↑ (G\F ). Let S = S1⊕S2 (S1 concatenated with S2). We show that the sequence
S of events is also a run, i.e., δ(φ,Si) is feasible for any Si, which implies δ(φ,S1) = F and
δ(F,S2) = G.

Claim 1. ∀i : 0 ≤ i ≤ |S| : δ(φ,Si) is consistent

We show the partial order → of the computation is preserved by the total order ≺S in S.
For any two events, e and f , in S such that e ≺S f , we have
Case 1. (e, f ∈ S1) ∨ (e, f ∈ S2): The → relation between e and f is preserved in ≺R

because R is a run. Since S1 and S2 are projections of R, the → relation is preserved in
≺S1 and ≺S2 .

Case 2. e ∈ S1, f ∈ S2: If e→ f , the → relation is preserved by the concatenation S1 ⊕ S2.
The case f → e is not possible because F is consistent and e ∈ F but f 6∈ F .

Claim 2. ∀i : 0 ≤ i ≤ |S1| : δ(φ,Si
1) is compatible

Let the global state V = δ(φ, Si
1). We show that

∀s 6= t : el(V [s]) ∩ el(V [t]) = ∅. (1)

Let Rj be the shortest prefix of R such that Rj ↑ F = Si
1 and let W = δ(φ, Rj). Then, the

following condition holds because R is a run:

∀s 6= t : el(W [s]) ∩ el(W [t]) = ∅. (2)

Since Si
1 contains the same or fewer events than Rj , we get V ⊆ W , which implies

V [t] �W [t] for any thread t. We now consider the following two cases:
Case 1. V [t] ≺W [t]: Because Si

1 = Rj ↑ F , this case holds only if Rj contains the events
in G\F w.r.t. Et, which implies that Si

1 contains all the events in F w.r.t. Et. Thus, we
get V [t] = F [t] ≺W [t]. Since F is lock-free, we get el(V [t]) = ∅ ⊆ el(W [t]).

Case 2. V [t] = W [t]: In this case, we get el(V [t]) = el(W [t]).
From cases 1 and 2, el(V [t]) ⊆ el(W [t]) holds for any thread t. Then, from (2), (1) holds.

Claim 3. ∀i : 0 ≤ i ≤ |S2| : δ(F,Si
2) is compatible

Let the global state V = δ(F, Si
2). We show that

∀s 6= t : el(V [s]) ∩ el(V [t]) = ∅. (3)

Let Rj be the shortest prefix of R such that Rj ↑ (G\F ) = Si
2 and W = δ(φ, Rj). Then,

the following condition holds because R is a run:

∀s 6= t : el(W [s]) ∩ el(W [t]) = ∅. (4)

Since V initially contains all the events in F and Si
2 contains the same events in G\F as

Rj , we get W ⊆ V , which implies that W [t] � V [t] holds for any thread t:
Case 1. W [t] ≺ V [t]: Because Si

2 = Rj ↑ G\F , this case holds only if Rj contains only the
events in F w.r.t. Et, which implies that Si

2 does not contain any event of Et. Thus, we
get W [t] ≺ V [t] = F [t]. Since F is lock-free, we get el(W [t]) ⊇ el(V [t]) = ∅.

Case 2. W [t] = V [t]: We get el(W [t]) = el(V [t]).

OPODIS 2016
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From the two cases, el(W [t]) ⊇ el(V [t]) holds for any thread t. Then, from (4), (3) holds.
From claims 1, 2, and 3, S is a run that reaches first F using the run S1 and then reaches

G using the run S2. J

Since we use the loset model for analyzing the behavior of parallel programs, we are
interested only in those losets that capture a possible execution from a real-world application,
i.e., the reachability of the final global state of the computation is given by the execution of
the program. Formally, a loset is valid iff its final global state E is reachable. An example
of a loset, which is an artificial computation, that is not valid is available in [2]. A simple
consequence of Theorem 5 is that whenever L is a valid loset, then every lock-free feasible
global state of L is reachable.

I Corollary 6. All lock-free feasible global states of a valid loset are reachable.

Proof. The final global state of a valid loset is reachable. Therefore, from Theorem 5, we
get that every lock-free feasible global state of that loset is reachable. J

The set of reachable lock-free feasible global states also satisfies the following nice property
for all losets: (and not just valid losets).

I Theorem 7. The set of reachable lock-free feasible global states of a loset L forms a
distributive lattice.

Proof. (Outline) For any two reachable lock-free feasible global states, G and H, let M =
(G ∩ H) be their meet and J = (G ∪ H) be their join. We first show that M and J are
lock-free and feasible. Then, from Theorem 5, M is reachable because M ≤ G. To show
their join J is reachable, we construct a sequence SJ of events such that SJ = RG ⊕RMH ,
where RG is a run reaches G and RMH reaches H from M . Then, we show that SJ is also a
run. The details are available in [2]. J

Theorem 7 has two important implications. First, since the set of reachable lock-free
feasible global states forms a distributive lattice, we can concisely represent all lock-free
feasible global states of a valid loset using the set of join-irreducible elements of the distributive
lattice [7] and use slicing to study various sublattices, which reduces the time complexity of
predicate detection to polynomial time for certain classes of predicates [13, 24]. Secondly, as
shown next, we can reduce the search space to determine reachability of a feasible global
state that is not lock-free. Given a global state G, we first find the greatest lock-free feasible
global state F ≤ G. On account of Theorem 7, F is well-defined whenever there exists any
lock-free feasible global state that precedes G. Given G and F , the following theorem shows
that the search for the reachability in a valid loset can be restricted to the events in G\F .

I Theorem 8. Given a global state G of a valid loset and the greatest lock-free feasible global
state F such that F ≤ G, the reachability of G can be determined by the events G\F .

Proof. From Theorem 5, F is reachable because the final global state E is reachable.
Moreover, the run that reaches E of L can be reordered so that it first reaches F and then E.
We consider the following two cases: (1) If G is reachable, then from Theorem 5 there exists
a run R = R1 ⊕R2, where R1 is a run that reaches F and R2 is a run that reaches G from
F . (2) If G is unreachable, then there exists no run from F to G because F is reachable and
lock-free. Hence, the existence of the run R2 depends only on the events G\F . J
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Figure 6 All possible cases of I(l) 7→ J(l) and the locking order I(l).rel→L J(l).acq (shown in
dashed lines).

4 Strongly Feasible Global States

In this section, we give an upper-approximation of reachability. We define the notion of strong
feasibility based on the inferred causality due to the HB relation and locking constraints.
Therefore, a reachable global state is always strongly feasible. Also, just as feasibility and
lock-freedom can be evaluated in polynomial time, strong feasibility can be evaluated in
polynomial time.

4.1 Locking Order
Even though real-time locking order is not modeled in a loset, some order between locks may
be implied due to the HB orders between events and locking constraints (i.e., the events in
different locking intervals of the same lock cannot be interleaved during the execution of the
program). We next introduce the relation 7→ for capturing such implied ordering constraints.

The 7→ relation is defined between locking intervals of the same lock such that I 7→ J

means the locking interval I has to start before J can finish:

I Definition 9 (Relation 7→). Let I(l) and J(l) be the locking intervals of the same lock l.
I(l) 7→ J(l) iff there exist events e and f such that (I(l).acq � e) ∧ (e→ f) ∧ (f � J(l).rel).

Fig. 6 shows all possible cases of I(l) 7→ J(l). Because of the locking constraint from the
lock l, the event I(l).rel has to be executed before J(l).acq. Hence, we define the locking
order →L as follows:

I Definition 10 (Locking Order →L). (e →L f) iff there exists two locking intervals, I(l)
and J(l), of the same lock l such that (e = I(l).rel) ∧ (I(l) 7→ J(l)) ∧ (f = J(l).acq).

If I(l) and J(l) belong to the same thread, then the →L relation is implied by their process
order. Therefore, we only consider the →L relation across different threads. Fig. 6 shows
the corresponding locking order of all possible cases of I(l) 7→ J(l) in the dashed lines. For
convenience, the locking order I(l).rel→L J(l).acq is simplified as I(l)→ J(l) from now on.

In this paper, we assume for simplicity that the initial global state does not hold any lock.
If it is not lock-free, then any interval I(l) that is part of the initial global state is ordered
(by locking constraints) before all other intervals with the same lock l.

4.2 Normalization of Losets
Since the combination of happened-before orders and locking constraints may introduce
additional order constraints →L during execution, it is easier to analyze a loset that satisfies
∀e, f : e→L f ⇒ e→ f . Thus locking order leads us to the following definition:

I Definition 11 (Normal Loset). A loset L = (E,→, n, L, I) is normal if ∀e, f ∈ E : e →L

f ⇒ e→ f .
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Figure 7 (a) An initial loset L, which contains only the HB relation. (b) A normal loset L′,
where the locking orders (the solid arrows) are added to the original loset L.

Fig. 7a shows a loset L, which contains only the HB relation and four locks lw, lx, ly,
and lz. The events acq(l) and rel(l) correspond to the operations acquireLock(l) and
releaseLock(l) of the program, respectively. The solid arrows are direct HB orders between
events. The boxes of different gray-levels are the locking intervals with different locks. The
effective locks of events are shown in the curly brackets. Fig. 7b shows the corresponding
normal loset L′, which has locking orders added to L. The dashed arrows in Fig. 7b are used
to explain the procedure of normalization as shown next.

At first, the HB relation a2 → b2 induces the relation I1(lw) 7→ I2(lw) and hence the
locking order a3→ b1. Therefore, the locking order a3→ b1 is added to L. Similarly, the HB
relation b3→ c5 induces the relation I2(lw) 7→ I3(lw) and hence the locking order b5→ c4.
Afterwards, the relation b5→ c4 induces I2(lz) 7→ I3(lz) and hence the locking order b7→ c2.
The procedure continues until no new locking order is induced. Note that the transitive
HB relation a2 → c5 is not shown in Fig. 7b, which induces I1(lw) 7→ I3(lw) and hence
the locking order a3→ c4, because its corresponding locking order a3→ c4 is transitively
implied by other relations.

Algorithm 1 shows a procedure to normalize a loset L. The algorithm takes as input the
direct and transitive HB orders in the computation (i.e., a2→ b2, b3→ c5, and a2→ c5 in
Fig. 7a) and iteratively adds the locking orders to the computation by locating the cases of
the 7→ relation in Fig. 6a, 6b, and 6c. The case of Fig. 6d is ruled out in Algorithm 1 because
the locking order is transitively implied by I(l) 7→ J(l) and does not induce any new →
relation. At line 9, if the addition of I(l)→ J(l) induces any transitive relation, say e→ f ,
then e→ f is also appended to the set H for checking if any new 7→ relation is induced.

We now discuss the time complexity of the normalization procedure.

I Theorem 12. The time complexity of Algorithm 1 is O(n|E|3L).
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Algorithm 1 NormalizeLoset(L, H)
Input: A loset L that contains only HB orders, which are added to the set H of seed relations.
Output: Returns false if a cycle in the → relation is detected; otherwise, the loset L is normalized.
1: for each seed order ei → ej in H do . H initially contains all direct and transitive → relation.
2: for each l ∈ EL(ei) ∪ EL(ej) do . Exclude the case of Fig. 6d.
3: Let I(l) be the most recent locking interval for l s.t. I(l).acq � ei.
4: Let J(l) be the first locking interval for l s.t. ej � J(l).rel.
5: if either I(l) or J(l) does not exist then continue . None of the cases, Fig. 6a, 6b, or 6c,

holds.
6: if the relation I(l)→ J(l) completes a cycle then return false
7: else
8: Add I(l)→ J(l) to the loset and to the set H . I(l)→ J(l) means I(l).rel→ J(l).acq.
9: Append new transitive relations due to I(l)→ J(l) to H

10: end if
11: return true

Proof. Line 1 executes at most O(|E|2) times because there are at most O(|E|2) pairs of the
→ relation in the computation. Line 2 executes at most L times. The procedures at lines 3
and 4 can be done in constant time by using lookup tables. Finally, the time complexity for
detecting the cycle at line 6 and for locating the transitive relations at line 9 is O(n|E|) by
recomputing vector clocks after the addition of the relation I(l)→ J(l) at line 8. J

We now show that the normal loset contains the same set of runs that reach the final
global state as the original loset. We first define the runs Runs(L) of a loset:

I Definition 13 (Runs of a Loset). Given any loset L, the set Runs(L) = {R | R is a run
that reaches the final global state E of L from the initial global state φ}.

I Theorem 14. Let L be a loset and L′ be the corresponding normal loset, then Runs(L) =
Runs(L′).

Proof. (Sketch) We show that Runs(L′) ⊆ Runs(L) and Runs(L) ⊆ Runs(L′). Since L′

contains more constraints of the → relation, we get Runs(L′) ⊆ Runs(L). On the other
hand, it is easily shown that any run R in Runs(L) is also a run of Runs(L′) because the
run R in Runs(L, E) does not violate any locking order constraint and therefore only goes
through feasible states of L′. J

4.3 Strong Feasibility
If a lock l is held by a thread i in the global state G, then any other thread, say, j, that
acquired the lock l prior to G should have released it before thread i subsequently acquires
it. We refer this implicit order due to G as dynamic locking order. Formally,

I Definition 15 (Dynamic Locking Order→L). (e→L f) iff there exists two locking intervals,
I(l) and J(l), of the same lock l such that

(
(e ∈ Ei)∧(e = I(l).rel � G[i])

)
∧

(
(f ∈ Ej)∧(f =

J(l).acq � G[j] ≺ J(l).rel)
)
.

The dynamic locking orders due to G can be added to H and then be normalized in order
to estimate the reachability of G. We now define strong feasibility of a global state as follows:

I Definition 16 (Strong Feasibility). A feasible global state G is strongly feasible iff the
normalization of the loset due to G does not induce any cycle in the → relation.
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We use the feasible global state G = [8, 7, 7] in Fig. 8 to show the calculation of strong
feasibility:

Step 1: From Theorem 8, this calculation can be bounded between G and the greatest
lock-free feasible global state F that precedes G, i.e., the grayed out events in Fig. 8 are
excluded.

Step 2: Since the lock lz is currently held by the thread t1, so we get the dynamic locking
orders c6→ a7 and b7→ a7. Similarly, the lock ly is currently held by the thread t2, we get
a6→ b6.

Step 3: The HB orders of the sub-loset along with dynamic locking orders are added to
the set H for normalization. From b3 → c5, we get b5 → c4 and then b7 → c2. Then, the
transitive relation a6 → c2 establishes the relation I1(lx) 7→ I3(lx) and hence the locking
order a8→ c1. Consequently, a cycle in the→ relation is induced: a8→ c1→ c6→ a7→ a8.
Thus, G is not strongly feasible.

I Theorem 17. The time complexity for calculating the strong feasibility of a global state is
O(n|E|3L).

Proof. In step 1, the lock-free feasible global state F can be identified using the detection
algorithm for conjunctive predicate [14] starting from G in a backward fashion, which takes
at most O(|E|) time. In step 2, we can locate the dynamic locking orders due to G by
pairwise processing the maximal events of G for each lock, which takes O(n2L) time. In step
3, the normalization takes at most O(n|E|3L) time using Algorithm 1. J

5 Relationship Among Various Classes of Global States

Fig. 9 shows the relationship among different sets of global states in a valid loset, whose
final global state is reachable. Corollary 6 shows that all lock-free feasible global states are
reachable and hence they are a subset of reachable global states. The set of strongly feasible
global states is a superset of reachable global states: (1) Every reachable global state is
strongly feasible because the normalization of a loset does not remove any run that reaches
G, which can be shown by replacing E and L of Theorem 14 with G and the sub-loset from
Theorem 8, respectively. Moreover, a reachable global state does not contain any cycle in →
relation. (2) A strongly feasible global state may be unreachable; an example is shown in [2].

Strong feasibility is still useful in practice; we now show that reachability equals to strong
feasibility in any loset with two threads:
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Figure 10 (a) Case 1: H = G−G[1] is inconsistent. (b) Case 2: H is incompatible. (c) Case
3: H induces a cycle in the → relation and either (f � acq) or (acq � f) holds. (d) Case 3: The
cycle in c implies G[1]→ G[2].

I Theorem 18. In a loset L with two threads, a global state is reachable iff it is strongly
feasible.

Proof. It is sufficient to show that any strongly feasible global state G of a loset with two
threads is always reachable. We show this by induction on the size of G. When |G| = 0, G is
the initial global state and therefore reachable. Now consider any G such that |G| > 0. We
will show that there exists a maximal event e in G such that G−{e} is also strongly feasible.
By the induction hypothesis, we can assume that G− {e} is reachable and therefore G is
reachable.

We now show that there does not exist a strongly feasible global state G such that
removing any of its maximal event results in a global state that is not strongly feasible.
Let H = G−G[1] and F = G−G[2]. Without loss of generality, we show that if H is not
strongly feasible, then G[1]→ G[2]. We consider the following three cases:

Case 1. H is not consistent: It is obvious that G[1]→ G[2]. (See Fig. 10a.)

Case 2. H is not compatible: An example loset is shown in Fig. 10b. If H is not compatible,
then there exists one lock l ∈ el(H[1]) ∩ el(G[2]). Let I(l) and J(l) be the two intervals
for the lock l such that I(l).acq � H[1] ≺ I(l).rel and J(l).acq � G[2] ≺ J(l).rel. Since G is
compatible (i.e., el(G[1]) ∩ el(G[2]) = ∅), we get G[1] = I(l).rel. Consequently, the locking
order I(l).rel→L J(l).acq is induced in G and hence G[1]→ G[2].

Case 3. H contains a cycle in the → relation: Fig. 10c shows an example loset. Since G
is strongly feasible, the cycle must be completed by a locking order that is induced by H.
Suppose that the locking order is induced because of the lock l, then the following conditions
hold:
1. Since the locking order only exits in H, there exists an interval I(l) such that H[1] ≺

I(l).rel = G[1].
2. There exists an interval J(l) such that J(l).rel � G[2]. Thus, the locking order J(l).rel→L

I(l).acq can be induced in H but not G.

In order to complete the cycle, there exists a relation e→ f in H such that I(l).acq ≺
e � H[1] and f ≺ J(l).rel. Since the computation has only two threads, any locking order
due to H must point toward the events that occur on t1. Hence, the relation e→ f is either
an existing HB relation of the computation or a locking order that is induced by G[2]. In
either case, e→ f also exists in G. Then, e→ f would induce the relation I(l) 7→ J(l) in G
(see Fig. 10d) and hence the locking order G[1]→L J(l).acq, which implies G[1]→ G[2].

OPODIS 2016



17:14 Predicate Detection for Parallel Computations with Locking Constraints

Table 1 The information of benchmarks and runtimes (sec.) of each enumeration approach.

Benchmark n #events #GS Runtimes
n #events #GS Runtimes

BFS DFS Ours BFS DFS Ours
bank 7 91 664,325 0.99 3.20 0.09 9 121 53,808,433 350.27 o.o.m. 4.47

arraylist1 12 56 354,293 0.57 1.06 0.07 16 76 28,697,813 175.80 o.o.m. 1.66
arraylist2 7 103 3,045,808 4.48 30.28 0.22 8 118 25,740,144 104.81 o.o.m. 1.75

set1 6 114 947,951 1.36 5.25 1.16 7 147 15,040,942 40.21 o.o.m. 23.02
set2 6 140 2,762,420 3.55 28.70 3.16 7 189 78,130,591 452.43 o.o.m. 160.38
sor 14 66 3,188,645 9.16 32.29 0.22 16 76 28,697,813 174.48 o.o.m. 1.64

raytracer 9 121 4,882,833 10.36 42.57 0.54 10 132 24,414,083 98.15 o.o.m. 2.83
moldyn 13 83 3,188,633 8.66 23.77 0.22 15 93 28,697,831 166.83 o.o.m. 2.08

montecarlo 12 78 354,315 1.53 1.06 0.05 16 98 28,697,835 227.51 o.o.m. 1.88
hedc 7 92 458,334 0.64 1.50 0.38 9 121 24,522,560 108.37 o.o.m. 7.30
tsp 8 76 1,235,981 1.99 11.26 0.17 10 90 25,000,001 115.77 o.o.m. 52.33

If both H and F are not strongly feasible, then we get G[1] → G[2] and G[2] → G[1].
Therefore, G contains the cycle G[1] → G[2] → G[1], which is a contradiction to the
assumption that G is strongly feasible. J

Moreover, in next section our experiments show that the gap between strong feasibility
and reachability seldom exists in practice. We enumerate the reachable global states, by
enumerating the strongly feasible global states, of losets that are captured from the execution
of benchmark programs. In comparison with two naive but accurate enumeration algorithms,
which simulate the execution of the program using one thread in a BFS or DFS fashion
and hence only reachable global states are enumerated, our enumeration approach is able to
produce exactly the same set of global states while using only 15–40% of their runtime.

6 Enumeration of Reachable Global State in the Loset Model

There are two approaches in literature to enumerate reachable global states of a computation.
The first approach uses breadth (BFS) or depth (DFS) first strategy to add one event to the
current global state G at a time [6, 12]. The event to be added satisfies the feasibility of
G. This approach simulates the execution the program using one thread and hence every
enumerated global state is reachable. Because DFS and BFS algorithms might enumerate
the same global state more than once, this approach has to store the enumerated global
states. In the worst case, the memory space for storing might grow exponentially in the
number of threads in the computation.

An alternative approach predefines or calculates a spanning tree among the lattice of
consistent global states and enumerates the global states following the edges of the tree
[27, 18, 15, 11, 12, 4]. However, an edge may pass through unreachable global states because
the set of consistent global states is a superset of reachable global states in a loset. Therefore,
this approach needs to incorporate an additional function to prune the consistent but
unreachable global states. In this paper, we use QuickLex [4] to enumerate the consistent
global states and use strong feasibility to prune the unreachable global states.

Table 1 shows the information of the benchmarks that are used in the experiment. The
benchmark banking is a toy program, which was used to demonstrates typical error patterns
in concurrent programs [8]; arraylist1 is a non-thread-safe container and arraylist2 is a
thread-safe container from Java library; set1 and set2 are implementations of concurrent sets
using different fine-grained locking strategies [16]; sor is a scientific computation application;
raytracer, moldyn, and montecarlo are parallel programs from Java Grande benchmark suite;
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hedc is a crawler for searching Internet archives; and tsp is a parallel solver for the traveling
salesman problem. The benchmarks sor, raytracer, moldyn, montecarlo, hedc, and tsp are the
benchmark programs used in [5, 10, 32]. In addition, the columns of “n”, “#events”, and
“#GS” show the number of threads, the number of events, and the number of enumerated
global states of the computation, respectively.

All the experiments are conducted on a Linux machine with an Intel Xeon 2.67 GHz
CPU and the heap size of Java virtual machine is limited to 2GB. The runtime is measured
in seconds. Table 1 contains two sets of results. The set at the left of the table shows the
largest computations that the DFS algorithm can handle, i.e., the DFS algorithm would run
out of memory when the computations contain one more thread. On the other hand, the
set at the right of the table shows the largest computations that the BFS algorithm can
handle. The BFS and DFS algorithms generate the reachable global states and our approach
generates strongly feasible global states. However, all the compared algorithms generate
the same set of global states. Meanwhile, our approach reduces 84% and 61% of runtime in
comparison with BFS and DFS algorithms, respectively.

7 Conclusion

In this paper, we present Loset, a model for a computation that contains locking constraints.
We first show that the reachability problem in a loset is NP-complete. Afterwards, we present
several useful properties of the model. Specifically, if a loset L is valid, then all lock-free
feasible global states are reachable. In addition, the set of reachable lock-free feasible global
states forms a distributive lattice. We also show that the reachability of G can be determined
using only the subset of events that is located between G and the greatest lock-free feasible
global state F that precedes G. Therefore, the set of lock-free feasible global state acts as a
lower approximation and “reset” point of reachability.

We also present the property of strong feasibility, which is an upper approximation of
reachability, and can be checked in polynomial time. The calculation is based on the inferred
causality due to locking constraints and hence a reachable global state must be strongly
feasible. Because of the lower and upper approximation of reachability, it is easy to answer
the reachability of any given global state G in L if either G is lock-free feasible or not strongly
feasible. If neither of these cases holds, then the reachability can be determined in the
subcomputation (G\F ) rather than the entire computation. Since our technique does not
depend on the nature of predicates, it can be used for detecting the predicates whose nature
are unknown and require the global view of the system.
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