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Abstract
Distributed consensus is integral to modern distributed systems. The widely adopted Paxos
algorithm uses two phases, each requiring majority agreement, to reliably reach consensus. In
this paper, we demonstrate that Paxos, which lies at the foundation of many production systems,
is conservative. Specifically, we observe that each of the phases of Paxos may use non-intersecting
quorums. Majority quorums are not necessary as intersection is required only across phases.

Using this weakening of the requirements made in the original formulation, we propose Flex-
ible Paxos, which generalizes over the Paxos algorithm to provide flexible quorums. We show
that Flexible Paxos is safe, efficient and easy to utilize in existing distributed systems. We discuss
far reaching implications of this result. For example, improved availability results from reducing
the size of second phase quorums by one when the system size is even, while keeping majority
quorums in the first phase. Another example is improved throughput of replication by using
much smaller phase 2 quorums, while increasing the leader election (phase 1) quorums. Finally,
non intersecting quorums in either first or second phases may enhance the efficiency of both.
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1 Introduction

Distributed consensus is the problem of reaching agreement in the face of failures. It is a
common problem in modern distributed systems and its applications range from distributed
locking and atomic broadcast to strongly consistent key value stores and state machine
replication [36]. Lamport’s Paxos algorithm [19, 20] is one such solution to this problem and
since its publication it has been widely built upon in teaching, research and practice.

At its core, Paxos uses two phases, each requires agreement from a subset of participants
(known as a quorum) to proceed. The safety and liveness of Paxos is based on the guarantee
that any two quorums will intersect. To satisfy this requirement, quorums are typically
composed of any majority from a fixed set of participants, although other quorum schemes
have been proposed.

In practice, we usually wish to reach agreement over a sequence of values, known as
Multi-Paxos [20]. We use the first phase of Paxos to establish one participant as a leader and
the second phase of Paxos to propose a series of values. To commit a value, the leader must
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25:2 Flexible Paxos: Quorum Intersection Revisited

always communicate with at least a quorum of participants and wait for them to accept the
value.

In this paper, we weaken the requirement in the original protocol that all quorums intersect
to require only that quorums from different phases intersect. Within each of the phases of
Paxos, it is safe to use disjoint quorums and majority quorums are not necessary. We will
refer to this new formulation as Flexible Paxos (FPaxos) as it allows developers the flexibility
to choose quorums for the two phases, provided they meet the above requirement. FPaxos
is strictly more general than Paxos and FPaxos with intersecting quorums is equivalent to
Paxos.

Given that Multi-Paxos and its variants are widely deployed, such a result has wide
reaching practical applications. Since the second phase of Paxos (replication) is far more
common than the first phase (leader election), we can use FPaxos to reduce the size of
commonly used second phase quorums. For example, in a system of 10 nodes, we can safely
allow any set of only 3 nodes to participate in replication, provided that we require 8 nodes
to participate when recovering from leader failure. This strategy, decreasing phase 2 quorums
at the cost of increasing phase 1 quorums, is referred to in the body of the paper as simple
quorums.

The simple quorum system reduces latency, as leaders will no longer be required to wait for
a majority of participants to accept proposals. Likewise, it improves steady state throughput
as disjoint sets of participants can now accept proposals, enabling better utilization of
participants and decreased network load. The price we pay for this is reduced availability as
the system can tolerate fewer failures whilst recovering from leader failure.

However, it is not always necessary to compromise availability for improved steady state
performance. For example, in a system of 10 nodes, we can safely use any set of 5 nodes to
form phase 2 quorums and any set of 6 nodes to form phase 1 quorums. This improves both
the performance and availability of the second phase, without hurting availability of the first
phase at all. In the paper we also illustrate that surprisingly, there are quorum systems such
as grid quorums, in which FPaxos allows us to decrease the quorum sizes of both phases.
Furthermore, in this quorum system, the quorums within either phase do not intersect with
each other.

In the following section we outline the basic Paxos algorithm using the standard termino-
logy. Readers who are already familiar with the algorithm should proceed directly to the
next section. In §3 we describe the observation in detail and then in §4 motivate why such
flexibility is useful in practice. §5 gives an informal description of why it is safe to weaken
Paxos’s assumption on quorum intersection. In §6 we evaluate a naïve implementation of
FPaxos and demonstrate its usefulness. §7 outlines how to dynamically choose quorums and
§8 relates FPaxos to the existing work in the field. A TLA+ [21] specification of the FPaxos
algorithm, which has been model checked against our safety assumption, can be found in [11].

2 Paxos

We wish to decide a single value v between a set of processes. The system is asynchronous,
each process may fail and the messages passed between them may be lost. Each process
has one or more roles. We have three roles: the proposer, a process who wishes to have a
particular value chosen, the acceptor, a process which agrees and persists decided values or
the learner, a process wishing to learn the decided value.

A proposer who has a candidate value will try to propose the value to the acceptors. If a
value has already been chosen, the proposer will instead learn it. The process of proposing a
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value has two stages: phase 1 and phase 2, each phase requires a majority of acceptors to
agree in order to proceed. We will now look at each of these stages in details:

Phase 1 – Prepare & Promise

(i) A proposer selects a unique proposal number p and sends prepare(p) to the acceptors.
(ii) Each acceptor receives prepare(p). If p is the highest proposal number promised, then p

is written to persistent storage and the acceptor replies with promise(p’,v’). (p’,v’) is
the last accepted proposal (if present) where p’ is the proposal number and v’ is the
corresponding proposed value.

(iii) Once the proposer receives promise from the majority of acceptors, it proceeds to phase
two. Otherwise, it may try again with higher proposal number.

Phase 2 – Propose & Accept

(i) The proposer must now select a value v. If more than one proposal was returned in
phase 1 then it must choose the value associated with the highest proposal number.
If no proposals were returned, then the proposer can choose its own value for v. The
proposer then sends propose(p,v) to the acceptors.

(ii) Each acceptor receives a propose(p,v). If p is equal to or greater than the highest
promised proposal number, then the promised proposal number and accepted proposal
is written to persistent storage and the acceptor replies with accept(p).

(iii) Once the proposer receives accept(p) from the majority of acceptors, it learns that the
value v is decided. Otherwise, it may try phase 1 again with a higher proposal number.
Paxos guarantees that once a value is decided, the decision is final and no different value

can be chosen. Paxos will reach agreement provided that bN/2c + 1 acceptors out of N

acceptors are up and are able to communicate. Proving progress requires us to make some
assumptions about the synchrony of the system, as we cannot guarantee progress in a truly
asynchronous systems [7].

Usually, we wish to reach agreement over a sequence of values, which we will refer to as
slots. We could use distinct instances of Paxos to decide each value in the sequence i.e. the
ith slot is decided by the ith instance of Paxos. In practice however, we can do much better
and this is referred to as Multi-Paxos.

The first phase of Paxos is independent of the value proposed for any given instance,
therefore phase 1 can be executed prior to knowledge of which value to propose. Furthermore,
we can aggregate phase 1 over a series of slots. We refer to a proposer who has completed
phase 1 as a leader. To avoid loss of generality, we introduce another agent, the client who is
the origin of values for proposal. Clients may be external to the system or co-located with
other processes such as the proposers.

Figure 1 illustrates how Multi-Paxos performs in practice. The x-axis shows the number
of replicas in the system, each replica performs the roles of proposer, acceptor and learner.
The blue line indicates the commit latency observed by the client and the red line indicates
the average request throughput. As we would expect, increasing the number of replicas
will increase latency and decrease throughput. These findings are consistent with previous
studies [30, 27].

A quorum system is the method by which we choose which sets of acceptors are able
to form valid quorums. It has been observed that Paxos can be generalized to replace
majority quorums with any quorum system which guarantees that any two quorums will
have a non-empty intersection [20, 22]. The fundamental theorem of quorum intersection
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Figure 1 Performance of LibPaxos3 for varying system sizes. Details of the experimental setup
are given in §6.

states that its resilience is inversely proportional to the load on (hence the throughput of)
participants [32]. Therefore, with Paxos and its intersecting quorums, one can only hope to
increase throughput by reducing the resilience, or vice versa. In the rest of this paper, we
show that by weakening the quorum intersection requirement, we can break away from the
inherent trade off between resilience and performance.

3 FPaxos

In this section, we observe that the usual description of Paxos (as given in §2) is more
conservative than is necessary. To explain this observation, we will differentiate between the
quorum used by the first phase of Paxos, which we will refer to as Q1 and the quorum for
second phase, referred to as Q2.

Paxos uses majority quorums of acceptors for both Q1 and Q2. By requiring that quorums
contain at least a majority of acceptors we can guarantee that there will be at least one
acceptor in common between any two quorums. Paxos’s proof of safety and progress is built
upon this assumption that all quorums intersect.

We observe that it is only necessary for phase 1 quorums (Q1 ) and phase 2 quorums
(Q2 ) to intersect. There is no need to require that Q1 ’s intersect with each other nor Q2 ’s
intersect with each other. We refer to this as Flexible Paxos (FPaxos) and it generalizes the
Paxos algorithm. If we allow any set of at least bN/2c+ 1 acceptors to form a Q1 or Q2
quorum in FPaxos, then FPaxos is equivalent to Paxos.

Using this observation, we can make use of many non-intersecting quorum systems. In
its most straight-forward application, we can simply decrease the size of Q2 at the cost of
increasing the size of Q1 quorums.

As we discussed earlier, the second phase of Paxos (replication) is far more frequent than
the first phase (leader election) in Multi-Paxos. Therefore, reducing the size of Q2 decreases
latency in the common case by reducing the number of acceptors required to participate in
replication, improves system tolerance to slow acceptors and allows us to use disjoint sets of
acceptors for higher throughput. The price we pay for this is requiring more acceptors to
participate when we need to establish a new leader. Whilst electing a new leader is a rare
event in a stable system, if sufficient failures occur that we cannot form a Q1 quorum, then
we cannot make progress until some of the acceptors recover.
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Like Paxos, the system is able to make progress provided that at least enough acceptors
are up and able to communicate to form both Q1 and Q2 quorums. Unlike Paxos, we are able
to make progress within a given phase, provided we are able to form quorums corresponding
to that phase. More concretely, if sufficient failures have occurred such that a proposer can
no longer form Q1 quorums but is able to form the smaller Q2 quorums, the system can
continue to safely make progress until a new leader is required. If the acceptors recover
before the current leader fails, then the system suffers no loss in availability as a result.

4 Implications

We will now consider the practical implication of observing that quorums intersection is
required only between the two phases of Paxos. There already exists an extensive literature
on quorum systems from the fields of databases and data replication, which can now be more
efficiently applied to the field of consensus. Interesting example systems include weighted
voting [9], hierarchies [16] and crumbling walls [35]. For now however, we will illustrate the
utility of FPaxos by considering three naïve example quorum systems: (1) majority quorums;
(2) simple quorums and (3) grid quorums.

4.1 Majority quorums
Currently, Paxos requires us to use quorums of size N/2 + 1 when the number of acceptors N

is even1. Using our observation, we can safely reduce the size of Q2 by one from N/2 + 1 to
N/2 and keep Q1 the same. Such a change would be trivial to implement and by reducing
the number of acceptors required to participate in replication, we can reduce latency and
improve throughput. Furthermore, we have also improved the fault tolerance of the system.
As with Paxos, if at most N/2− 1 failures occur then we are guaranteed to be able to make
progress. However unlike with Paxos, if exactly N/2 acceptors fail and the leader is still up
then we are able to continue to make progress and suffer no loss of availability.

Figure 2 shows two example traces of FPaxos with majority quorums in practice. As
the system is comprised of four acceptors, FPaxos uses a majority (3 acceptors) for Q1 but
requires only two acceptors for Q2. In the examples, the two proposers wish to commit
conflicting proposals. In Figure 2a, proposer one is first to execute FPaxos and its value
a is committed. Later, proposer two executes a round of Paxos and learns the value. In
Figure 2b, both proposers successfully execute the first phase of FPaxos and simultaneously
submit conflicting proposed values to the disjoint sets of acceptors. Both Q2 s will intersect
with the two Q1 s, so only one of them will be successful. In the given example, acceptor
two will not accept propose(1, a) as it has already promised to prepare(2). The unsuccessful
proposer can retry with a higher proposal number and learn the chosen value.

4.2 Simple quorums
We will use the term simple quorums to refer to a quorum systems where any acceptor is
able to participate in a quorum and each acceptor’s participation is counted equally. Simple
quorums are a straightforward generalization of majority quorums. Paxos requires that all
quorums intersect, and therefore, as we have previously discussed, each quorum must contain
at least a strict majority of acceptors to meet this requirement.

1 Lamport observed that majorities can be extended to include exactly half of the sets of size N/2 [17].
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(a) FPaxos with two serial proposals.
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accept() accept()

(b) FPaxos with two concurrent proposals.

Figure 2 Sample executions of FPaxos using improved majority quorums. The system is comprised
of four acceptors (A1-A4) and two proposers (P1,P2).

In contrast, FPaxos requires only that quorums from different phases intersect. Therefore,
FPaxos with simple quorums must require that |Q1|+ |Q2| > N . We know that in practice
the second phase is much more common than the first phase so we allow |Q2| < N/2 and
increase the size of Q1 accordingly. For a given size of Q2 and number of acceptors N, the
minimum size of our first phase quorum is |Q1| = N − |Q2|+ 1. FPaxos will always be able
to handle up to |Q2| − 1 failures. However, if between |Q2| to N − |Q2| failures occur, we
can continue replication until a new leader is required.

As has been previously observed [26], we do not need to send prepare and propose messages
to all acceptors, only to at least |Q1| or |Q2| acceptors. If any of these acceptors do not
reply, then the leader can send the messages to more acceptors. This reduces the number of
messages from 4×N to (2× |Q1|) + (2× |Q2|). This comes at the cost of increased latency,
as the leader may not choose the fastest acceptors and must retransmit when failures occur.

4.3 Grid quorums
The key limitation of simple quorums is that reducing the size of the Q2 requires a corres-
ponding increase in the size of Q1 to continue to ensure intersection. Grid quorums are
an example of an alternative quorum system. Grid quorums can reduce the size of Q1 by
offering a different trade off between quorum sizes, flexibility when choosing quorums and
failure tolerance. Grid quorum schemes arrange the N nodes into a matrix of N1 columns by
N2 rows, where N1 ×N2 = N and quorums are composed of rows and columns. As with
many other quorum systems, grid quorums restrict which combinations of acceptors can form
valid quorums. This restriction allows us to reduce the size of quorums whilst still ensuring
that they intersect.
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(a) Paxos. (b) FPaxos.

Figure 3 Example of using a 5 by 4 grid to form quorums for a system of 20 acceptors.

Paxos requires that all quorums intersect thus one suitable grid scheme would require one
row and one column to form a quorum2. Figure 3a shows an example Q1 quorum and Q2
quorum using this scheme. This would reduce the size of a quorum from the majority of N
to N1 + N2 − 1. The number of failures which could be tolerated range from MIN(N1, N2),
where one node from every row or every column fails to (N1 − 1)× (N2 − 1), leaving only
one row and one column remaining.

In FPaxos, we can safely reduce our quorums to one row of size N1 for Q1 and one
column of size N2 for Q2, examples are shown in Figure 3b. This construction is interesting
as quorums from the same phase will never intersect, and may be useful in practice for
evenly distributing the load of FPaxos across a group of acceptors. With simple quorums, a
system cannot recover from leader failure whilst any set of |Q2| = N/2 acceptors have failed.
Now with grid quorums, we are no longer treating all failures equally, it matters which of
the acceptors have failed, not just how many have failed. Recall, that we are able to make
progress in a given phase, provided we can still form a quorum for that phase. For example,
let us consider if four acceptors in either of grids from Figure 3 were to fail. If these failures
occur across two columns then both systems will make progress. If all the failed nodes are
within one column then no progress will be made by Paxos but FPaxos will continue until a
new leader is needed. Likewise, if all the nodes in a given row where to fail, FPaxos would
be able to complete Q1 and thus recover all past decisions, it can then safely fall back to
a reconfiguration protocol to remove or replace the failed acceptors and continue to make
progress. In practice, failures are not independent and so we can distribute acceptors across
the machines, racks or even data centers to minimize the likelihood of simultaneous failure.

By way of a thought experiment, let us consider setting N1 = 1 and N2 = N when using
grid quorums or equivalently setting |Q1| = N and |Q2| = 1 with simple quorums. Any
single acceptor will be sufficient to form a Q2, however every acceptor must participate in
Q1. In practice, this would allow all acceptors to learn the decided value in a single hop,
however we would be unable to recover from leader failure until every acceptor is up.

Alternatively, let us consider setting N1 = N and N2 = 1 when using grid quorums or
equivalently setting |Q1| = 1 and |Q2| = N with simple quorums. This would require every
acceptor to participate in Q2 but only a single acceptor is needed for Q1. If any acceptors are
still up, then we can complete Q1 locally and learn past decisions. As it has been previously
observed [26, 24], such a construction allows us to tolerate f failures with only f +1 acceptors
instead of 2f + 1.

2 In practice, it is sufficient to use one row plus any choice of one grid item from each row below it. The
average quorum size would become N1 + (1/2)N2, although the worst case is still N1 + N2 − 1.
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5 Safety

Lamport’s proof of safety for Paxos does not use the full strength of the assumptions made,
namely that all quorums will intersect. For the sake of completeness, in this section we
outline the proof of safety for FPaxos.

For FPaxos to be safe, every decision that is reached must be final. In other words, once
a value has been decided, no different value can be decided. This can be formally expressed
as the following requirement:

I Theorem 1. If value v is decided with proposal number p and v′ is decided with proposal
number p′ then v = v′

For a given value v to be decided, it must first have been be proposed. Thus the following
requirement is strictly stronger:

I Theorem 2. If value v is decided with proposal number p then for any message propose(p’,v’)
where p′ > p then v = v′

Proof is by contradiction, that is, assume v 6= v′. We will consider the smallest proposal
number p′ > p for which such a message is sent.

Let Q1 and Q2 be the sets of all valid phase 1 and phase 2 quorums respectively and A
be the set of acceptors. Quorums are valid provided that:

∀Q1 ∈ Q1 : Q1 ⊆ A (1)
∀Q2 ∈ Q2 : Q2 ⊆ A (2)
∀Q1 ∈ Q1,∀Q2 ∈ Q2 : Q1 ∩Q2 6= ∅ (3)

Equation 1 specifies that every possible phase 1 quorum is a subset of the acceptors,
likewise for equation 2. Equation 3 specifies that all possible combinations consisting of a
phase 1 and a phase 2 quorum will intersect in at least one acceptor.

Let Qp,2 be the phase 2 quorum used by proposal number p and Qp′,1 be the phase 1
quorum used by proposal number p′. Let Ā be the set of acceptors which participated both
in the phase 2 quorum used by proposal number p and phase 1 quorum used by proposal
number p′, thus Ā = Qp,2 ∩Qp′,1. Since Qp,2 ∈ Q2 and Qp′,1 ∈ Q1 then we can use equation
3 to infer that at least one acceptor must participate in both quorums, Ā 6= ∅.

Let us consider the ordering of events from the perspective of one acceptor acc where
acc ∈ Ā. It is either the case that they receive prepare(p’) first or propose(p,v) first. We will
consider each of these cases separately:

Case 1: Acceptor acc receives prepare(p’) before it receives propose(p,v). When acc receives
propose(p,v), its last promised proposal will be p′ or higher. As p′ > p then it will not
accept the proposal from p, however as acc ∈ Qp,2 it must accept propose(p,v). This is a
contradiction thus it cannot be the case.

Case 2: Acceptor acc receives propose(p,v) before it receives prepare(p’). When acc receives
prepare(p’), there are two cases. Either:

Case 2a: The last promised proposal by acceptor acc is already higher than p′. Then it
will not accept the prepare from p′, however as acc ∈ Qp′,1 it must accept prepare(p’). This
is a contradiction thus it cannot be the case.
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(a) Performance of FPaxos and LibPaxos3
with 5 replicas.
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(b) Performance of FPaxos and LibPaxos3
with 8 replicas.

Figure 4 Throughput and average latency of FPaxos with various simple quorum sizes and
LibPaxos3.

Case 2b: The last promised proposal by acceptor acc is less than p′ then it will reply with
promise(q,v) where p ≤ q < p′. The value v will be the same the one acc accepted with p,
under the minimility hypothesis on p′.

acc ∈ Qp′,1 therefore promise(q, v) will be at least one of the responses received by the
proposer of p′. If this is the only accepted value returned, then its value v will be chosen.
Other proposals may also be received for members of Qp′,1. Recall that p < p′. For each
other proposal (q′, v′′) received, either:

Case (i) q′ < q: These proposal will be ignored as the proposer must choose the value
associated with the highest proposal.

Case (ii) p′ < q′: This case cannot occur as an acceptor will only reply to prepare(p′)
when last promised is < p′.

Case (iii) p < q′ < p′: For an acceptor to have accepted (q′, v′′) then it must have first
been proposed. This is impossible by the minimality assumption on p′.

Thus the value v will be chosen, in contradiction to the assumption that propose(p′, v′)
was sent.

We model checked the formal TLA+ [21] specification of the single-valued FPaxos protocol
with disjoint quorums and the requirement 2 was preserved. The FPaxos TLA+ specification,
given in [11], is only a minor adaptation of the Paxos specification, given in [21].

6 Prototype

We implemented a naïve FPaxos by modifying LibPaxos3 3, a commonly benchmarked
Multi-Paxos implementation. Our modification simply generalized over the size of Q1 and
Q2. The simple quorums were naïvely chosen at random and messages were sent only to a
quorum of nodes.

LibPaxos3 is Multi-Paxos implementation in C which uses TCP/IP for transport. For
each experiment, we tested N replicas, where each replica is an acceptor, a learner and a

3 LibPaxos3 source code https://bitbucket.org/sciascid/libpaxos.
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possible proposer. We used request sizes of 64 bytes with 10 requests in progress at any given
time and all request were first sent to the same replica. Our experiments were ran within a
single linux VM with a single core and 1GB of RAM, we used mininet 4 to simulate a 10
Mbps network with 20 ms round trip time. Each test was run for 120 seconds, we discard
the first and last 10 second to measure the system during its steady state.

Figure 4 show the steady state performance of Paxos and FPaxos with varying sizes of
simple quorums for Q2. These results are as we would expect: by reducing the size of the
Q2 quorum, we send fewer messages and thus increase throughput and decrease latency.

It is worth noting that this is not the complete picture. First, FPaxos outperforms
vanilla LibPaxos even with identical quorum sizes, because FPaxos sends messages only to a
quorum of replicas unlike LibPaxos3 which sends messages to all replicas. When utilizing this
optimization in practice, one may need to carefully trade the strategy for finding quorums
in realistic settings, and consider replica failure, relative replica speeds and communication
delays. Second, unlike Paxos, FPaxos with Q2 of size 2 would not be able to elect a new
leader when two acceptors have failed. On the other hand, in a system of 8 replicas, FPaxos
with Q2 of size 4 handles more failures than Paxos, decreases latency (from 42ms to 37 ms)
and increases throughput (from 198 to 264 reqs/sec).

This prototype demonstrates that implementing a naïve FPaxos is trivial. We show
that even a very naive implementation improves performance and we believe that systems
designed for FPaxos will see far greater performance, particularly by taking advantage of
using disjoint set of acceptors and smarter quorum construction techniques to improve failure
tolerance. Our prototype source code and associated materials are available online5.

7 Enhancements

We observe that the safety of FPaxos relies only on the assumption that a given Q1 will
intersect with all Q2 s with lower proposal numbers. Therefore, we could further weaken the
quorum requirements if a proposer was able to learn which Q2 s have been used with smaller
proposal numbers. We would then require only that a proposer’s Q1 intersect with these
instead of all possible Q2 s.

In order to take advantage of this, we can enhance FPaxos with a mechanism for leaders
to select quorum(s) and to announce their selection. There are many ways this could be
implemented, but for safety the mechanism for a leader to make its quorum selection known
must be weaved carefully into the leader election protocol. Details are left out of the scope
of this paper. Briefly, it would be akin to Paxos reconfiguration and achieved by adopting
the principles of Vertical Paxos [24].

The implications of this enhancement can be far reaching. For example, in a system of
N = 100f nodes, a leader may start by announcing a fixed Q2 of size f + 1 and all higher
proposal numbers (and readers) will need to intersect with only this Q2. This allow us to
tolerate N − f failures. Likewise, a leader may choose a small set of Q2’s and announce all of
them, allowing more flexibility in phase 2 at the cost of less availability in phase 1. A leader
may also change its quorum selection over time using the dynamic selection mechanism.

We expect that these enhancements and others may open many new possibilities for
practical system designs in the future.

4 http://mininet.org
5 https://github.com/fpaxos

http://mininet.org
https://github.com/fpaxos
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8 Related Works

The insightful State Machine Replication (SMR) paradigm [18, 37] underlies many reli-
able systems, including pioneering works in distributed systems field like Viewstamped
Replication [33] and Isis [3]. The Paxos algorithm provides the algorithmic solution for
many production systems architected as replicated state machines. SMR must solve a core
ingredient, agreement, which Dwork et al.[6] solved under minimal synchrony assumptions,
and which is the basis for the single position agreement protocol (called Synod) in Paxos [19].
In the decades following its invention, the Paxos algorithm has been extensively researched:
it has been explained in simpler terms [20, 41], optimized for practical systems [4, 12, 14, 34]
and extended to handle reconfiguration [24] and arbitrary failures [5].

Many variants of Paxos were proposed. Cheap Paxos [26] fixes a single phase 2 quorum
until a leader replacement occurs. Fast Paxos [22] has a leaderless fast-path protocol which
utilizes fast-track phase 2 quorums of size f + d f+1

2 e. Mencius [27] uses a revolving leader
regime. Ring-Paxos [29, 28] applies the idea in Cheap Paxos [26] to a ring overlay using
network-level multicast. Chain Replication [43] daisy-chains acceptors and collapses the two
phases into one chain sweep. Generalized Paxos [23] extends state-machine replication with
commutative commands. Egalitarian Paxos [31] extends Generalized Paxos with fast-track
quorums whose size is f + b f+1

2 c, although this can be further reduced [40]. EVE [15]
optimistically concurrently agrees on commands and later resolves conflicts in case they do
not commute. Corfu [2] lets the leader delegate its exclusive authority to any proposer in
order to yield better parallelism. There are many other variants; a comprehensive taxonomy
of Paxos variants is given in [42]. These previous works were built on the foundations
presented in the pioneering protocols [33, 3, 6, 19], and focused on enhacing them in order to
achieve better performance. Our new observation revisited the foundations and generalized
them; it is completely orthogonal and can be integrated into previous protocols as well as to
real production systems in order to further improve performance.

The SMR reconfiguration problem was addressed in several previous works. Some use
consensus commands to agree on next configurations [33, 25, 24], whereas others use the
first phase to determine which quorum (out of a fix set of quorums) will be used in the
second phase [26, 29]. A general framework for reconfiguration that separates the steady
state agreement mechanism from the reconfiguration event appears in [24]. Reconfiguration
for other fault tolerant services was also previously investigated, e.g., in [10, 1, 13, 39, 8]. As
discussed in §7, the ideas in these works can be adopted in order to enhance FPaxos into a
reconfigurable and dynamic system.

To the best of our knowledge, we are the first to prove and implement this generalization
of Paxos. During the preparation of this publication, Sougoumarane independently made
the same observation on which this work is based and released a blog post summarizing [38]
it for the systems community.

9 Conclusion

In this paper we have described FPaxos, a generalization of the widely adopted Paxos
algorithm, which no longer requires that quorums from the same Paxos phase intersect. We
believe this result has wide ranging consequences.

Firstly, over the last two decades Multi-Paxos has been widely studied, deployed and
extended. Generalizing existing systems to use FPaxos should be quite straightforward.
Exposing replication (phase 2) quorum size to developers would allow them to choose their
own trade off between failure tolerance and steady state latency.

OPODIS 2016
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Secondly, by no longer requiring replication quorums to intersect, we have removed an
important limit on scalability. Through smart quorum construction and pragmatic system
design, we believe a new breed of scalable, resilient and performant consensus algorithms is
now possible.
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