Step Optimal Implementations of Large Single-Writer Registers*

Tian Ze Chen\(^1\) and Yuanhao Wei\(^2\)

\(^1\) Department of Computer Science, University of Toronto, Toronto, Canada
tianze.chen@mail.utoronto.ca
\(^2\) Department of Computer Science, University of Toronto, Toronto, Canada
yuanhao.wei@mail.utoronto.ca

Abstract

We present two wait-free algorithms for simulating an \(\ell\)-bit single-writer register from \(k\)-bit single-writer registers, for any \(k \geq 1\). Our first algorithm has \(\Theta(\ell/k)\) step complexity for both \texttt{Read} and \texttt{Write} and uses \(\Theta(4^{\ell/k})\) registers. An interesting feature of the algorithm is that \texttt{Read} operations do not write to shared variables. Our second algorithm has \(\Theta(\ell/k + (\log n)/k)\) step complexity for both \texttt{Read} and \texttt{Write}, where \(n\) is the number of readers, but uses only \(\Theta(n\ell/k + n(\log n)/k)\) registers. Combining both algorithms gives an implementation with \(\Theta(\ell/k)\) step complexity using \(\Theta(n\ell/k)\) space for any \(1 \leq k < \ell\).

We also prove that any implementation with \(O(\ell/k)\) step complexity for \texttt{Read} requires \(\Omega(\ell/k)\) step complexity for \texttt{Write}. Since reading \(\ell\)-bits requires at least \(\lceil \ell/k \rceil\) reads of \(k\)-bit registers, our lower bound shows that our implementation is step optimal.

1998 ACM Subject Classification E.1 Distributed Data Structures, F.1.2 Parallelism and Concurrency

Keywords and phrases atomic register, regular register, wait-free implementation, single writer, optimal

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2016.32

1 Introduction

A register is a fundamental object that supports \texttt{Read} and \texttt{Write} operations. Implementing large \(\ell\)-bit registers from small \(k\)-bit registers in a wait-free manner is a classic problem in distributed computing. We consider this problem for atomic single-writer registers shared by \(n\) readers. This problem arises naturally in practice when \(\ell\)-bits need to be written atomically on a system that provides only \(k\)-bit single-writer registers.

We define the space complexity of an implementation of \(\ell\)-bit registers from shared \(k\)-bit registers to be the number of \(k\)-bit registers that it uses, and we define the step complexity to be the number of \texttt{read} and \texttt{write} operations on these \(k\)-bit registers. Note that \(\lceil \ell/k \rceil\) \texttt{read} steps are required for an \(\ell\)-bit \texttt{Read} operation. Also, any implementation requires \(\lfloor \ell/k \rfloor\) space, since \(2^\ell\) different values need to be represented.

In 1983, Peterson [9] presented an implementation with \(\Theta(\ell/k)\) step complexity for both \texttt{Read} and \texttt{Write}. Peterson’s implementation has space complexity \(\Theta(n\ell/k)\) and works for all \(k \geq 1\).

Later, Larsson et al. [8] improved the step complexity of \texttt{Write} to \(\Theta(n + \ell/k)\), but they used \texttt{Swap} and \texttt{FetchAndOr} as primitives.

* This work was supported by the Natural Science and Engineering Research Council of Canada.

© Tian Ze Chen and Yuanhao Wei; licensed under Creative Commons License CC-BY
Editors: Panagiota Fatourou, Ernesto Jiménez, and Fernando Pedone; Article No. 32, pp. 32:1–32:16
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Step Optimal Implementations of Large Single-Writer Registers

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Read</th>
<th>Write</th>
<th>Space</th>
<th>Restriction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peterson (1983)</td>
<td>$\Theta(\ell/k)$</td>
<td>$\Theta(n\ell/k)$</td>
<td>$\Theta(n\ell/k)$</td>
<td>None</td>
</tr>
<tr>
<td>Chaudhuri, Kosa, Welch (2000)</td>
<td>$\Theta(4^\ell)$</td>
<td>1</td>
<td>$\Theta(4^\ell)$</td>
<td>None</td>
</tr>
<tr>
<td>Aghazadeh, Golab, Woelfel (2014)</td>
<td>$\Theta(\ell/k)$</td>
<td>$\Theta(\ell/k)$</td>
<td>$\Theta(n\ell/k)$</td>
<td>$k \in \Omega(\log n)$</td>
</tr>
<tr>
<td>This Paper</td>
<td>$\Theta(\ell/k)$</td>
<td>$\Theta(\ell/k)$</td>
<td>$O(n\ell/k)$</td>
<td>None</td>
</tr>
</tbody>
</table>

Figure 1: Step complexities for implementations of an atomic $\ell$-bit single-writer register from atomic $k$-bit single writer registers.

In 1991, Vidyasankar [10] showed that an atomic $\ell$-bit register can be implemented from two regular $\ell$-bit registers and one atomic binary register. His Write algorithm performs 2 regular writes and 2 atomic writes, and his Read operation performs 2 regular reads and 1 atomic read in the worst case.

Later, Chaudhuri and Welch [4] presented an implementation of regular $\ell$-bit registers from regular binary registers with step complexity $\Theta(\ell)$ for both Read and Write, using $\Theta(2^\ell)$ space.

In 2000, Chaudhuri, Kosa and Welch [3] presented an atomic $\ell$-bit register implementation from atomic binary registers in which each Write operation performs a single step. However, the step complexity of their Read operation and their space complexity are both $\Theta(4^\ell)$.

Recently, Aghazadeh, Golab and Woelfel [1] implemented an $\ell$-bit multi-writer register from $k$-bit multi-writer registers with step complexity $\Theta(\ell/k)$ for both Read and Write. Their implementation uses $\Theta(n^2\ell/k)$ registers and requires that $k \in \Omega(\log n)$.

The table in Figure 1 summarises the existing implementations. Peterson’s, Chaudhuri and Welch’s, and Aghazadeh, Golab and Woelfel’s implementations are described in more detail in Section 3. Also in Section 3, we show how to modify Aghazadeh, Golab and Woelfel’s implementations to obtain an implementation of an $\ell$-bit single-writer register from $k$-bit single-writer registers with $\Theta(\ell/k)$ step complexity and $\Theta(n\ell/k)$ space complexity, provided that $k \in \Omega(\log n)$.

In this paper, we present an implementation of an atomic $\ell$-bit single-writer register from atomic $k$-bit single-writer registers with $\Theta(\ell/k)$ step complexity that works for all $k \geq 1$. Our implementation uses $O(n\ell/k)$ registers, which is the same as Peterson’s implementation and the single-writer variant of Aghazadeh et al.’s implementation.

We show that our implementation is optimal by proving that any implementation with $O(\ell/k)$ step complexity for Read requires $\Omega(\ell/k)$ step complexity for Write.

Our register implementation is the composition of a tree based implementation and a buffer based implementation. Our tree based implementation has $\Theta(\ell/k)$ step complexity and uses $\Theta(4^{\ell-k})$ registers. An interesting feature is that readers never write to shared registers. This means that helping techniques, such as announcing operations and handshake, are not used. This implementation can be modified to implement a modulo $m$ counter from $k$-bit single-writer registers that supports a single incrementer and any number of readers. Our counter uses $\Theta(m/2^k)$ registers and has $\Theta((\log m)/k)$ step complexity for ReadCounter and Increment.

Our buffer based implementation uses this counter as well as known techniques, such as announcement arrays, round-robin helping, and handshake objects, to obtain an implementation with step complexities $\Theta(\ell/k + (\log n)/k)$, while using only $\Theta(n\ell/k + n(\log n)/k)$ registers.

When $\ell \leq \lfloor (\log_2 n)/2 \rfloor$, our tree based implementation has optimal step complexity and uses $O(n/4^k)$ registers. When $\ell > \lfloor (\log_2 n)/2 \rfloor$, our buffer based register implementation has...
optimal step complexity and uses $\Theta(n\ell/k)$ registers. Combining these two algorithms gives a step optimal implementation using $O(n\ell/k)$ registers for any $1 \leq k < \ell$.

### 2 Preliminaries

A **single-writer register** $R$ is a shared register where only one process can perform **Write** operations and any number of processes can perform **Read** operations. We say that a process owns $R$ if it can write to $R$.

A **single-incrementer modulo $m$ counter** is a shared modulo $m$ counter where only one process can perform **Increment** operations and any number of processes can perform **ReadCounter** operations. We say that a process owns the counter if it can increment the counter. The counter can take on values from $0$ to $m-1$.

We will work in the standard asynchronous shared memory model with $n$ readers $p_0, p_1, \ldots, p_{n-1}$ and one writer, which communicate through $k$-bit registers. Processes may fail by crashing under our model.

In our model, an **execution** is an alternating sequence of **configurations** and **steps** $C_0, e_1, C_1, e_2, C_2, \ldots$, where $C_0$ is an **initial configuration**. Each step is either a **read** or **write** of a $k$-bit register. Configuration $C_i$ consists of the state of every register and every process after the step $e_i$ is applied to configuration $C_{i-1}$. For any two configurations $C$ and $C'$, we use $C \rightarrow C'$ to denote that $C$ precedes $C'$ in the execution.

If $C \rightarrow C'$, the **execution interval** $[C,C']$ is the set of all configurations and steps between $C$ and $C'$, inclusive. Similarly, the **execution interval** of an operation is the set of all configurations and steps from the first step of that operation to the configuration immediately after the last step of that operation. The execution interval for an **incomplete operation** is the set of all configurations and steps starting from the first step of that operation. Two execution intervals intersect if they have a common configuration or step.

We say an object is **atomic** (or equivalently, its implementation is **linearizable** [5]) if, for every possible execution and for each operation on that object in the execution, we can pick a configuration in its execution interval to be its linearization point, such that the operation appears to occur instantaneously at this point. In other words, all operations on the object must behave as if they were performed sequentially, ordered by their linearization points.

We say a register is **regular** if the value returned by each **Read** is either the value written by the last **Write** operation completed before the first step of the **Read** or the value written by a **Write** operation concurrent with the **Read** operation. Note that every atomic register is also regular.

To emphasize the important distinction between atomic and regular registers, consider the scenario where a **Write** operation is concurrent with two **Read** operations by the same process. Suppose the **Write** operation changed the register from value $a$ to value $b$. If the register is regular, then each read operation is allowed to return either $a$ or $b$. However, if the register is atomic, then the second read operation must return $b$ if the first **Read** operation returns $b$.

All implementations that we discuss will be **wait-free**. This means that each operation by any process $p_i$ is guaranteed to complete within a finite number of steps by $p_i$. The **step complexity** of an operation $O$ is the maximum number of steps, over all possible executions, that the process which invoked $O$ performs in the execution interval of $O$. The **space complexity** of an implementation is defined to be the number of shared registers that it uses.
3 Related Work

In this section, we will briefly review a few existing implementations. Our implementation will build upon these implementations.

Both Peterson’s and Aghazadeh et al.’s implementations represent an $\ell$-bit value using an array of $\lceil \ell/k \rceil$ registers, each containing $k$-bits. This construction is called a buffer.

In Peterson’s implementation, there are two global buffers, $G[0]$ and $G[1]$. Each reader also has its own message buffer. WRITE operations alternate between writing their values to $G[0]$ and $G[1]$. The writer flips a binary register $V$ to indicate the currently active buffer. After flipping $V$, the writer then checks for help requests from each reader and writes the current value into the message buffers of the readers that requested help. Finally, the writer acknowledges those help requests. At a high-level, a READ operation performs the following steps: request help from the writer, read $G[V]$, and check for an acknowledgement. If no acknowledgement was received, then the value that it read from $G[V]$ has not been overwritten, so it returns what it read. Otherwise it uses the value that the writer put in its message buffer. Essentially, the idea is that if the reader is fast, it can return what it read from $G$, and if the reader is slow, it will be helped by the writer. Peterson’s implementation has step complexities $\Theta(\ell/k)$ and $\Theta(n\ell/k)$ for READ and WRITE respectively, and space complexity $O(n\ell/k)$.

Aghazadeh et al.’s implementation is more complex and requires a novel garbage collection scheme, which they introduced. They implemented a large multi-writer register from small multi-writer registers. Their implementation achieves $\Theta(\ell/k)$ step complexity for WRITE by having each writer help readers in a round-robin fashion. Thus, only one reader is helped during each WRITE. Since helping is less frequent in their algorithm, they use an array $G$ of $n(8n + 1)$ buffers, instead of 2 buffers, to ensure that a reader is helped before the value it wants to read is overwritten. This means that they require $\Theta(\log n)$ size registers to store pointers to elements in $G$, which leads to the requirement that $k \in \Omega(\log n)$.

Their implementation can be converted into an implementation of an $\ell$-bit single-writer register from $k$-bit single-writer registers. When there is only one writer, each multi-writer register in their implementation is shared by only two processes. Israeli and Shaham [6] presented an implementation of a multi-writer register shared by $p$ processes from single-writer registers of the same size with $\Theta(p)$ step complexity for READ and WRITE. We can use this implementation to simulate the multi-writer registers in Aghazadeh et al.’s implementation from single-writer registers in constant time and constant space. This results in an implementation of an $\ell$-bit single writer register from $k$-bit single writer registers which works for $k \in \Omega(\log n)$ and has $\Theta(\ell/k)$ step complexity. In this case, $G$ only needs to contain $\Theta(n)$ buffers, so the space complexity is reduced to $\Theta(n\ell/k)$.

Now we turn our attention to Chaudhuri and Welch’s regular register implementation. They use a complete binary tree where each leaf represents a different register value and each internal node stores a switch, a shared binary regular register that selects between its two children. Their regular register read operation traverses down the tree, following the switches, until it reaches a leaf and returns the value of that leaf. Their regular register write operation starts at the leaf with the value it wishes to write and traverses up the tree, changing each switch on its path to point towards that leaf.

Using Chaudhuri and Welch’s implementation for the regular $\ell$-bit registers in Vidyasankar’s algorithm gives an implementation of an atomic $\ell$-bit register from $\Theta(2^\ell)$ regular binary registers and one atomic binary register with $\Theta(\ell)$ step complexity. We call this the CWV implementation. The CWV implementation can be used in place of our tree
based implementation in our final optimal implementation. However, our implementation of a counter, which is based on our tree based implementation, is faster than the CWV implementation by a factor of 2. This counter will be used in our buffer based implementation.

4 Tree Based Implementation

We begin by showing how Chaudhuri and Welch’s regular register implementation can be extended to an atomic register implementation. Then we show how both these implementations can be generalized to work for \( k > 1 \). In this section, it is more natural to talk about \( m \)-valued registers, where \( m = 2^\ell \), rather than \( \ell \)-bit registers.

4.1 Implementing an \( m \)-valued atomic register

Consider Chaudhuri and Welch’s regular register implementation where each binary switch is atomic rather than regular. Notice that the WRITE operation in this implementation is atomic in the case where only one switch is changed on the path from the leaf to the root. This observation is the key behind our atomic register implementation. To construct an atomic register, we use a larger tree such that, for every pair of values, there are two leaves with these values that have a common parent. This allows us to change from the current value to any new value by changing only one switch. \( \binom{m}{2} \) height 1 nodes are needed to guarantee this property, but we use \( m^2 \) height 1 nodes to simplify the implementation.

More formally, we construct a complete, perfectly balanced binary tree with \( m^2 \) height 1 nodes, \( w_0, w_1, \ldots, w_{m^2-1} \). Each internal node stores a shared binary register called a switch which selects between its two children. All the binary registers can be regular except for those in the height 1 nodes, which must be atomic. Figure 2 illustrates an atomic 4-valued register.

The node \( w_i \) has a left child with value \( \alpha = \lfloor i/m \rfloor \) and a right child with value \( \beta = (i \mod m) \). So each pair of values \( (\alpha, \beta) \) has a common parent \( w_{\alpha m + \beta} \).

Algorithm 1 presents the pseudo-code for Chaudhuri and Welch’s implementation, which we will use as a subroutine. A `RegularWrite(i)` operation changes the switches in the tree to point towards the leaf with index \( i \). The fields of each node are immutable except for `switch`. The variable `root` and the contents of the array `leaves` are also immutable, and `node` is a local variable. Immutable variables and fields can be stored in the local memory of each process, instead of being stored in shared memory.

Our atomic `Read` algorithm starts at the root and returns the value of the leaf that it arrives at by following switches, just like `RegularRead`.

Our atomic `Write(val)` operation first computes the height 1 node, `parent`, whose left child has the current value and whose right child has the value being written. Then it performs `RegularWrite` with the index of its left child. Next, it changes `parent`’s switch to point to its right child. This step is exactly the same as performing a `RegularWrite` with the index of its right child, because all other switches on the path to the root remain the same. The `Write` operation is linearized immediately after this step.
Algorithm 1 Chaudhuri and Welch’s implementation of a regular \( m \)-valued register.

\begin{align*}
0: & \quad \text{procedure} \text{ RegularRead()} \\
1: & \quad \text{node} \leftarrow \text{root} \\
2: & \quad \textbf{while} \ \text{node} \ \text{is not a leaf} \ \textbf{do} \\
3: & \quad \quad \text{s} \leftarrow \text{read}(\text{node.switch}) \\
4: & \quad \quad \textbf{if} \ \text{s} = 0 \ \textbf{then} \ \text{write}(\text{node.parent.switch, 0}) \\
5: & \quad \quad \textbf{else} \ \text{write}(\text{node.parent.switch, 1}) \\
6: & \quad \quad \text{node} \leftarrow \text{node.parent} \\
7: & \quad \text{return} \ \text{node.value}
\end{align*}

Algorithm 2 Implementation of an atomic \( m \)-valued register.

\begin{align*}
0: & \quad \text{procedure} \text{ Read()} \\
1: & \quad \text{return} \ \text{RegularRead()} \\
2: & \quad \text{node} \leftarrow \text{root} \\
3: & \quad \textbf{while} \ \text{node} \ \text{is not a root} \ \textbf{do} \\
4: & \quad \quad \text{s} \leftarrow \text{read}(\text{node.switch}) \\
5: & \quad \quad \textbf{if} \ \text{s} = 0 \ \textbf{then} \ \text{write}(\text{node.parent.switch, 0}) \\
6: & \quad \quad \textbf{else} \ \text{write}(\text{node.parent.switch, 1}) \\
7: & \quad \text{return} \ \text{node.value}
\end{align*}

Pseudo-code for our atomic register implementation is presented in Algorithm 2. In the pseudo-code, \( oldval \) is a persistent local variable that is initialized to the initial value of the register. The function \( \text{parent}(oldval, val) \) is performed locally and returns the height 1 node whose left child has value \( oldval \) and whose right child has value \( val \). Both \text{Read} and \text{Write} operations take \( \Theta(\log m) \) steps. This immediately implies that they are wait-free.

Fix an execution of \text{Read} and \text{Write} operations. The variables are initialized so that it appears as if a complete \text{Write} of 0 has occurred before any \text{Read} operation. Let \( R \) be a \text{Read} operation in this execution which returns \( \alpha \). If there is a \text{Write} of \( \alpha \) linearized in the execution interval of \( R \), then linearize \( R \) immediately after the linearization point of the first such \text{Write} operation. In this case, \( R \) returns the value of the last \text{Write} operation linearized before it.

Now suppose there is no \text{Write} of \( \alpha \) linearized in the execution interval of \( R \). In this case, we can linearize \( R \) immediately after its first step. We need to show that the last \text{Write} operation \( W \) linearized before the first step of \( R \) is a \text{Write} of \( \alpha \).

Since \( W \) is linearized immediately after its last step, \( W \) completes before \( R \) begins. If the writer does not start another \text{Write} until after \( R \) completes, then \( R \) is concurrent with no \text{RegularWrite} operations and, hence, returns the value written by \( W \). So, suppose the writer starts another \text{Write} before \( R \) completes. Let \( W' \) be the first \text{Write} operation following \( W \).

Suppose, for contradiction, that \( W \) returns \( \beta \neq \alpha \). Since \( W' \) is linearized at line 3, line 3 of \( W' \) occurs after the first step of \( R \) by definition of \( W \). Notice that a \text{Write} operation can be viewed as two \text{RegularWrite} operations. This is because the atomic \text{write} performed on line 3 is equivalent to \text{RegularWrite}(parent.right.index), since the writer performed \text{RegularWrite}(parent.left.index) immediately beforehand.

Therefore the last complete \text{RegularWrite} operation before the start of \( R \) is either the second \text{RegularWrite} of \( W' \) or the first \text{RegularWrite} of \( W' \). From the code, we can see that both operations write the value \( \beta \).

\( R \) consists of a single \text{RegularRead}, so by the correctness of Algorithm 1, there exists a \text{RegularWrite} of value \( \alpha \) concurrent with \( R \). The first such \text{RegularWrite} operation must be the second \text{RegularWrite} of some \text{Write} operation \( W'' \). This is because the first \text{RegularWrite} of each \text{Write} operation writes the same value as the second.
RegularWrite of the previous Write operation. Since the second RegularWrite of $W''$ is atomic and $W''$ is linearized at the following configuration, $W''$ is linearized in the execution interval of $R$ which contradicts our assumption. Therefore $W$ must have written $\alpha$.

▶ Theorem 1. Algorithm 2 implements an atomic $m$-valued register.

4.2 Implementing a Modulo $m$ Counter

It is easy to modify our atomic $m$-valued register implementation to implement an atomic modulo $m$ counter. Since the value can only be incremented, we only need one height 1 node for each $(\alpha, (\alpha + 1) \mod m)$ pair. Hence the space complexity can be reduced to $\Theta(m)$. ReadCounter performs the same steps as the atomic register Read, and Increment is the same as Write. Figure 3 illustrates an atomic 8-valued counter.

4.3 Extension to $k$-bit registers

To extend Chaudhuri and Welch’s implementation and our atomic counter implementation to use $k$-bit registers, for $k > 1$, we replace the binary tree in each implementation with a $2^k$-ary tree, and keep the same set of leaves. This simple modification reduces the height of the tree to $\Theta(\log_2(m))$, so that all operations have step complexity $\Theta((\log m)/k)$. We use one $k$-bit register for each internal node so the space complexity is equal to the number of internal nodes. Since there are $\Theta(m/2^k)$ height 1 nodes, there are $\Theta(m/2^k)$ internal nodes and the space complexity is also $\Theta(m/2^k)$.

For our atomic register implementation, we partition the values into sets of size $2^k - 1$, and have one height 1 node for each pair of these sets. This construction ensures every pair of values are siblings in the tree. Thus, we only need $(m/2^{k-1})^2$ height 1 nodes. Therefore, the step complexity becomes $\Theta((\log m)/k)$ and the space complexity becomes $\Theta(m^2/4^k)$. An $m$-valued register is the same as an $\ell$-bit register when $m = 2^\ell$, so the step complexity is $\Theta(\ell/k)$ and the space complexity is $\Theta(4^{\ell-k})$. If $\ell \leq \lceil \log_2 n \rceil/2$, we have $m \leq 2\sqrt{n}$, which means the implementation has space complexity $O(n/4^k)$.

5 Buffer Based Implementation

We begin by describing the handshake object, a primitive that we use in our implementation. In Section 5.2, we describe our buffer based implementation and analyse its step and space complexities. Then, in Section 5.3, we introduce notation that is used in its correctness proof. Some important handshaking properties are proven in Section 5.4. The proof of correctness appears in Section 5.5.

5.1 Handshaking

A handshake object $H$ is used to coordinate between pairs of processes and can be implemented using a pair of 1-bit single-writer registers $H.r$ and $H.w$. We will use a handshake object $H_i$.
in the buffer based implementation to coordinate between the reader \( p_i \) and the writer. The idea of handshaking first appeared in papers by Peterson [9] and Lamport [7]. The version we will use is from Attiya and Welch [2].

We say that reader \( p_i \) requests help when it sets \( H_{i,w} \). The writer acknowledges a help request from \( p_i \) when it sets the value of \( H_{i,w} \) to be the opposite of what it read from \( H_{i,w} \). The reader \( p_i \) checks for an acknowledgement by checking if these two handshake bits are different and the writer checks for a help request from \( p_i \) by checking if these two handshake bits are the same.

Intuitively, the handshake object guarantees that a check for an acknowledgement by \( p_i \) returns true if and only if the writer has acknowledged a help request from \( p_i \) since \( p_i \)'s last help request. Similarly, a check for a help request from \( p_i \) by the writer returns true if and only if there has been a help request by \( p_i \) since the writer’s last acknowledgement to \( p_i \).

### 5.2 Description

As in Peterson’s implementation, our buffer-based implementation uses an array of buffers \( G \) and a pointer \( V \) to the currently active buffer in \( G \). However, \( G \) contains \( 4n \) buffers, instead of \( 2 \), and \( V \) is implemented using a single-incrementer modulo \( 4n \) counter, as described in Section 4.2. Like Aghazadeh, Golab and Woelfel’s implementation, our implementation uses round-robin helping, except that it uses handshaking and completion bits to coordinate the helping.

In round-robin helping, each WRITE operation only helps a single reader. If the current WRITE operation helps process \( p_i \), then the next WRITE operation will help process \( p_{(i+1) \mod n} \). This ensures that each reader \( p_i \) is helped once every \( n \) WRITE operations.

A reader begins by reading the counter \( V \) and announcing that value. This value is the index of the element in \( G \) that it tries to read. A WRITE operation that sees the announcement helps the reader by sending it the requested element of \( G \), as well as the value that it just wrote. Reader \( p_i \) announces the value it read from \( V \) using an array \( A_i \) of size \([\lceil \log n \rceil / k] \). It is the only process that writes to this array and only the writer reads from this array. The writer uses buffers \( M_i \) and \( N_i \) to send the value that was requested and the value it just wrote, respectively, to \( p_i \). Only the writer can write to these two buffers, and only the reader \( p_i \) can read from these two buffers. The arrays \( A_i \), \( M_i \) and \( N_i \) are accompanied by a completion bit which is set and cleared only by the process that writes to the array. The completion bit is set after a complete write to the array and while the completion bit is set, the array will not be written to. The completion bit of \( A_i \) is reset at the beginning of a READ operation, and the completion bits of \( M_i \) and \( N_i \) are reset when the writer notices a new help request from \( p_i \).

A WRITE\((v)\) operation first computes the reader \( p_i \) that it should help and checks for a help request from that reader. If there is no help request from \( p_i \), the writer writes \( v \) into buffer \( G[(V + 1) \mod 4n] \) and increments \( V \) to point to this buffer. If there is a help request, the writer clears the completion bits of \( N_i \) and \( M_i \), and acknowledges the help request. Next it writes \( v \) into buffers \( G[(V + 1) \mod 4n] \) and \( N_i \), increments \( V \), and sets the completion bit of \( N_i \). In either case, if the completion bit of \( M_i \) is not set and the completion bit of \( A_i \) is set, the writer copies the contents of buffer \( G[A_i] \) into \( M_i \) and sets the completion bit of \( M_i \).

A READ operation by reader \( p_i \) first clears the completion bit of its announcement array \( A_i \) and requests help. Then it announces the current value of \( V \) and sets the completion bit of \( A_i \). If the writer has sent an acknowledgement and the completion bit of \( N_i \) is set, the reader returns the value in \( N_i \). Otherwise, the reader reads buffer \( G[A_i] \) and performs another check; if the writer still has not sent an acknowledgement or if the completion bit of
Algorithm 3 Buffer based implementation of an ℓ-bit register from k-bit registers.

\[ \begin{align*}
G[0 \ldots 4n - 1]: & \text{ array of buffers} \\
V: & \text{ modulo } 4n \text{ counter} \\
\text{For each } i = 0, \ldots, n - 1: & \\
N_i: & \text{ buffer} \\
M_i: & \text{ buffer} \\
F_{N_i}, F_{M_i}: & \text{ completion bits} \\
H_i.w: & \text{ writer’s handshaking bit} \\
H_i.r: & \text{ reader’s handshaking bit} \\
A_i: & \text{ array of } \lceil \log 4n/k \rceil \text{ register} \\
F_{A_i}: & \text{ completion bit} \\
\end{align*} \]

0: procedure Read\(_i\)(\() \)
1: write\((F_{A_i}, 0)\)
2: \(t \leftarrow \text{read}(H_i, w)\)
3: write\((H_i, r, t)\)
4: version \(\leftarrow \text{ReadCounter}(V)\)
5: writearray\((A_i, \text{version})\)
6: write\((F_{A_i}, 1)\)
7: \(h \leftarrow H_i, r \neq \text{read}(H_i, w)\)
8: if \(h \land \text{read}(F_{N_i})\) then
9: \(val \leftarrow \text{readarray}(N_i)\)
10: else
11: \(val \leftarrow \text{readarray}(G[\text{version}])\)
12: \(h \leftarrow H_i, r \neq \text{read}(H_i, w)\)
13: if \(h \land \text{read}(F_{M_i})\) then
14: \(\text{val} \leftarrow \text{readarray}(M_i)\)
15: return \(\text{val}\)

0: procedure Write(value) \)
1: version \(\leftarrow (\text{ReadCounter}(V) + 1) \mod 4n\)
2: \(i \leftarrow \text{version} \mod n\)
3: if \(\text{read}(H_i, r) = H_i, w\) then
4: write\((F_{N_i}, 0)\)
5: write\((F_{M_i}, 0)\)
6: \(t \leftarrow \text{read}(H_i, r)\)
7: write\((H_i, w, 1 - t)\)
8: writearray\((G[\text{version}], \text{value})\)
9: Increment\((V)\)
10: if \(\neg F_{N_i}\) then
11: writearray\((N_i, \text{value})\)
12: write\((F_{N_i}, 1)\)
13: if \(\neg F_{M_i} \land \text{read}(F_{A_i})\) then
14: rversion \(\leftarrow \text{readarray}(A_i)\)
15: writearray\((M_i, G[rversion])\)
16: write\((F_{M_i}, 1)\)

\(M_i\) is not set, the reader returns the value it read from \(G[A_i]\). Otherwise, the writer has sent an acknowledgement and \(M_i\) contains the value that was requested, \(G[A_i]\), so the reader reads and returns the value in \(M_i\).

Pseudo-code for our implementation is presented in Algorithm 3. For two arrays of registers, \(v_1\) and \(v_2\), we use \(\text{writearray}(v_1, v_2)\) to denote copying the value of \(v_2\) into \(v_1\) one register at a time. \(\text{readarray}(v_1)\) denotes reading from \(v_1\) one register at a time and returning the concatenation of the values that were read. These operations are not atomic operations. We will use the convention that 0 represents FALSE and 1 represents TRUE.

The step complexities of Read and Write are \(\Theta(\ell/k + (\log n)/k)\) because reading and incrementing \(V\) takes \(\Theta((\log n)/k)\) steps, copying a buffer takes \(\Theta(\ell/k)\) steps, and copying an announcement array takes \(\Theta((\log n)/k)\) steps. Since both operations have bounded step complexity, the implementation is wait-free.

A total of \(6n\) buffers, a size \(n\) announcement array, \(5n\) bits, and a modulo \(4n\) counter are used, so the overall space complexity is \(\Theta(n\ell/k + n(\log n)/k)\).

### 5.3 Notation

Here we define the notation that we will use throughout the proof.

If \(O\) is an operation, \(C(O, c)\) refers to the configuration immediately after \(O\) completes line \(c\) of the code for that operation. If line \(c\) of \(O\) is a function call, then \(C(O, c)\) is the
configuration immediately after the linearization point of the function call. If line \( c \) of \( O \) is a \texttt{writearray} operation then \( C(O,c) \) indicates the configuration immediately after the completion of the entire operation.

\texttt{READ} is a \texttt{Read} operation performed by process \( p_i \). \texttt{WRITE} is a \texttt{Write} operation that helps reader \( p_i \). This means \( i = (\text{version} \mod n) \) on line 2 of a \texttt{Write} operation.

### 5.4 Properties of Handshaking Bits

The following two properties about the handshaking bits, \( H_i.r \) and \( H_i.w \), follow immediately from properties proved by Attiya and Welch [2].

\textbf{P1.} Let \( C \) be a configuration such that \( H_i.r \neq H_i.w \) and let \( R \) be the last \texttt{READ} operation such that \( C(R,3) \rightarrow C \). Then there exists a \texttt{WRITE} operation \( W \) such that \( C(R,2) \rightarrow C(W,7) \rightarrow C \).

\textbf{P2.} Let \( C \) be a configuration such that \( H_i.r = H_i.w \) and let \( R \) be the last \texttt{READ} operation such that \( C(R,3) \rightarrow C \). Then there does not exist a \texttt{WRITE} operation \( W \) such that \( C(R,3) \rightarrow C(W,6) \rightarrow C(W,7) \rightarrow C \).

In addition, the handshaking bits satisfy the following two properties.

\textbf{P3.} If \( H_i.r \neq H_i.w \) at \( C \) and \( H_i.r = H_i.w \) at a later configuration \( C' \), then there exists a \texttt{READ} operation \( R \) such that \( C \rightarrow C(R,3) \rightarrow C' \).

\textbf{P4.} If \( H_i.r = H_i.w \) at \( C \) and \( H_i.r \neq H_i.w \) at a later configuration \( C' \), then there exists a \texttt{WRITE} operation \( W \) such that \( C \rightarrow C(W,7) \rightarrow C' \).

Both properties have analogous proofs so we will only present the proof of \textbf{P3}.

\textbf{Proof.} Suppose, for contradiction, that \textbf{P3} is violated in some execution. Let \( C \) be the first configuration at which \( H_i.r \neq H_i.w \) and there exists a later configuration \( C' \) at which \( H_i.r = H_i.w \), but there is no \texttt{READ} operation \( R \) such that \( C \rightarrow C(R,3) \rightarrow C' \). Consider the earliest such configuration \( C' \). \( H_i.r \) is not written to between \( C \) and \( C' \) because \( H_i.r \) is only written to by line 3 of a \texttt{READ} operation. Suppose, without loss of generality, that \( H_i.r = 0 \) and \( H_i.w = 1 \) at \( C \). Then \( H_i.r = H_i.w = 0 \) at \( C' \) and there exists a \texttt{WRITE} operation \( W \) that changes \( H_i.w \) from 1 to 0 between \( C \) and \( C' \) by performing line 7. This means \( H_i.r = 1 \) at \( C(W,6) \), so \( C(W,6) \rightarrow C \). There must have been a \texttt{READ} operation \( R \) that changed \( H_i.r \) from 1 to 0 by performing line 3 between \( C(W,6) \) and \( C \). Thus, \( H_i.w = 0 \) at \( C(R,2) \). Since \( C \rightarrow C(W,7) \) and \( H_i.w = 1 \) between \( C(W,6) \) and \( C(W,7) \), it follows that \( C(R,2) \rightarrow C(W,6) \). At \( C(R,2) \), \( H_i.r = 1 \) and \( H_i.w = 0 \). At \( C(W,6) \), \( H_i.r = 1 \) and \( H_i.w = 1 \). Since \( C(R,2) \rightarrow C(W,6) \rightarrow C(R,3) \), there does not exist a \texttt{READ} operation \( R' \) such that \( C(R,2) \rightarrow C(R',3) \rightarrow C(W,6) \). This contradicts the definition of \( C \). Therefore \textbf{P3} holds.

### 5.5 Proof of Correctness

Consider an arbitrary execution of \texttt{Read} and \texttt{Write} operations. Each \texttt{Write} operation \( W \) is linearized at \( C(W,9) \), which is immediately after it increments \( V \).

Let \( R \) be a \texttt{READ} operation by process \( p_i \). If the check on line 8 of \( R \) returns \texttt{FALSE}, then \( R \) is linearized at \( C(R,4) \). We will prove that the value \( R \) returns is equal to the value of \( G[V] \) at line 4 of \( R \). If the check on line 8 of \( R \) returns \texttt{TRUE}, then \( R \) is linearized at \( C(W,12) \), where \( W \) is the last \texttt{Write} operation such that \( C(R,2) \rightarrow C(W,7) \rightarrow C(R,7) \). In this case, we will prove that \( R \) returns the value written by \( W \).
All local variables, in particular version, are initialized to 0. All global variables are also initialized to 0. This initial configuration can be viewed as the result of a complete \texttt{Write(0)} operation. Thus every \texttt{Read} operation is preceded by a complete \texttt{Write} operation.

Intuitively, the following lemma says that, if the test on line 8 of a \texttt{Read}\textsubscript{i} operation \( R \) returns TRUE, then a \texttt{Write}\textsubscript{i} operation has acknowledged the help request from \( R \). This lemma also shows that the linearization point of \( R \) exists and is within its execution interval.

\begin{lemma} \label{lemma:readhelper} Let \( R \) be a \texttt{Read}\textsubscript{i} operation by process \( p_i \). If \( H_i.r \neq H_i.w \) at \( C(R,7) \) and \( F_{N_i} = 1 \) at \( C(R,8) \), then there exists a \texttt{Write}\textsubscript{i} operation \( W \) such that \( C(R,2) \rightarrow C(W,7) \rightarrow C(R,7) \). Furthermore, \( C(W,12) \rightarrow C(R,8) \) for any such \( W \).

\textbf{Proof.} Suppose that \( H_i.r \neq H_i.w \) at \( C(R,7) \) and \( F_{N_i} = 1 \) at \( C(R,8) \). By \textbf{P1}, there exists a write operation \( W \) such that \( C(R,2) \rightarrow C(W,7) \rightarrow C(R,7) \). Let \( W \) be any such operation. Since line 4 of \( W \) sets \( F_{N_i} \) to 0 and \( F_{N_i} = 1 \) when \( p_i \) performs line 8 of \( R \), \( F_{N_i} \) must have changed from 0 to 1 between \( C(W,4) \) and \( C(R,8) \). Therefore \( C(W,12) \rightarrow C(R,8) \).
\end{lemma}

Similarly, the following lemma says that if the test on line 13 of a \texttt{Read}\textsubscript{i} operation \( R \) returns TRUE, then a \texttt{Write}\textsubscript{i} operation has acknowledged the help request from \( R \). Its proof can be obtained from the proof of the previous lemma by replacing \( C(R,7) \) and \( C(R,8) \) with \( C(R,12) \) and \( C(R,13) \).

\begin{lemma} \label{lemma:readhelper2} Let \( R \) be a \texttt{Read}\textsubscript{i} operation by process \( p_i \). If \( H_i.r \neq H_i.w \) at \( C(R,12) \) and \( F_{N_i} = 1 \) at \( C(R,13) \), then there exists a \texttt{Write}\textsubscript{i} operation \( W \) such that \( C(R,2) \rightarrow C(W,7) \rightarrow C(R,12) \).

Informally, the following lemma states that \( N_i \) will not change between any configuration where \( H_i.r \neq H_i.w \) and \( F_{N_i} = 1 \), and the next execution of line 3 of a \texttt{Read}\textsubscript{i} operation. This means that the reader can read safely from \( N_i \) on line 9.

\begin{lemma} \label{lemma:readhelper3} Let \( C \) be a configuration where \( H_i.r \neq H_i.w \) and \( F_{N_i} = 1 \). Let \( R \) be the first \texttt{Read}\textsubscript{i} operation such that \( C \rightarrow C(R,3) \). Then \( N_i \) is not written to between \( C \) and \( C(R,3) \).

\textbf{Proof.} Suppose \( N_i \) was written to between \( C \) and \( C(R,3) \). Then there must be a \texttt{Write}\textsubscript{i} operation \( W \) such that some step of line 11 of \( W \) is executed between \( C \) and \( C(R,3) \). From the code, \( F_{N_i} = 0 \) from \( C(W,10) \) until \( W \) performs line 12. Since \( F_{N_i} = 1 \) at \( C \), it follows that \( C \rightarrow C(W,10) \) and \( F_{N_i} \) changed from 1 to 0 between \( C \) and \( C(W,10) \). So line 4 of some write operation \( W' \) was performed in this interval. It follows from the code that \( H_i.r = H_i.w \) at \( C(W',3) \).

Suppose \( C \) occurred between \( C(W',3) \) and \( C(W',4) \). By \textbf{P4}, line 7 of some \texttt{Write} operation must have occurred between \( C(W',3) \) and \( C \), which is impossible since there is only one writer. Therefore \( C \) occurred before \( C(W',3) \).

In this case, \( H_i.r \) and \( H_i.w \) changed from being unequal to being equal between \( C \) and \( C(W',3) \). By \textbf{P3}, line 3 of some \texttt{Read} operation was performed between \( C \) and \( C(W',3) \), which means it was performed between \( C \) and \( C(R,3) \). This contradicts the choice of \( R \). Therefore \( N_i \) cannot be written to between \( C \) and \( C(R,3) \).
\end{lemma}

The following lemma is an analogous statement for \( M_i \). It guarantees that the reader can read safely from \( M_i \) on line 14. Its proof can be obtained from the proof of Lemma 4 by changing each occurrence of \( N_i \) to \( M_i \) and changing line numbers appropriately.

\begin{lemma} \label{lemma:readhelper4} Let \( C \) be a configuration where \( H_i.r \neq H_i.w \) and \( F_{M_i} = 1 \). Let \( R \) be the first \texttt{Read}\textsubscript{i} operation such that \( C \rightarrow C(R,3) \). Then \( M_i \) is not written to between \( C \) and \( C(R,3) \).
\end{lemma}
For the remainder of this section, $R$ will represent an arbitrary \texttt{READ}_i operation. We will show that $R$ returns the input to the last \texttt{WRITE} operation linearized before $R$. Let $v$ denote the value of $V$ that process $p_i$ reads on line 4 of $R$, and let $g$ be the $\ell$-bit value in $G[v]$ at configuration $C(R, 4)$. It follows from the next lemma that $R$ must return $g$ when $R$ is linearized at $C(R, 4)$.

\begin{lemma}
g is the input to the last \texttt{WRITE} operation linearized before $C(R, 4)$.
\end{lemma}

\begin{proof}
Let $W$ be the last \texttt{WRITE} operation to be linearized before $C(R, 4)$. Suppose that $g$ was not the input to $W$. Since $W$ writes to $G[v]$ before it is linearized, another \texttt{WRITE} operation must have written to $G[v]$ between the linearization point of $W$ and $C(R, 4)$. After $W$ is linearized, $V$ must be incremented $4n - 1$ times before version is reassigned value $v$ on line 1 and $G[v]$ is written to on line 8. Thus, at least $4n - 1$ other \texttt{WRITE} operations are linearized after $W$ and before $C(R, 4)$. This contradicts the choice of $W$.
\end{proof}

Lemma 7 is used to show that a complete \texttt{WRITE}_i operation between $C(R, 4)$ and $C(R, 7)$ will cause the check on line 8 of $R$ to return TRUE. It is also used to prove Lemma 8.

\begin{lemma}
If there is at least one complete \texttt{WRITE}_i operation $W$ between $C(R, 4)$ and the end of $R$, then $H_i.r \neq H_i.w$ and $F_{N_i} = 1$ from the end of $W$ to the end of $R$.
\end{lemma}

\begin{proof}
By lines 3–7 and 10–12 of the code for \texttt{WRITE}_i, it follows that $H_i.r \neq H_i.w$ and $F_{N_i} = 1$ at the end of $W$. No \texttt{READ}_i operation performs line 3 between $C(R, 4)$ and the end of $R$, so, by the contrapositive of $P3$, $H_i.r \neq H_i.w$ from the end of $W$ until the end of $R$. This also implies that line 4 of the code for \texttt{WRITE}_i is not performed from the end of $W$ until the end of $R$, so $F_{N_i}$ remains equal to 1 until the end of $R$.
\end{proof}

Suppose there are two complete \texttt{WRITE}_i operations between $C(R, 4)$ and the end of $R$. Lemma 8 implies that no write to $M_i$ occurs between the end of the second \texttt{WRITE}_i operation and the end of $R$. This will later be used to show that $R$ reads $g$ from $M_i$ if it executes line 14.

\begin{lemma}
If the test on line 8 of $R$ evaluates to FALSE and there are at least two complete \texttt{WRITE}_i operations between $C(R, 4)$ and the end of $R$, then $F_{M_i} = 1$ from the end of the second \texttt{WRITE}_i operation to the end of $R$.
\end{lemma}

\begin{proof}
Let $W$ and $W'$ be the first and second \texttt{WRITE}_i operations between $C(R, 4)$ and the end of $R$. Suppose, for contradiction, that $W$ finishes before $C(R, 7)$. Then, by Lemma 7, $H_i.r \neq H_i.w$ at $C(R, 7)$ and $F_{N_i} = 1$ at $C(R, 8)$, so the test on line 8 of $R$ will evaluate to TRUE. This contradicts the assumption that line 8 of $R$ evaluates to FALSE. Therefore $W$ finishes after $C(R, 7)$ so $W'$ starts after $C(R, 7)$.

From the code, we see that $F_{A_i} = 1$ from $C(R, 7)$ to the end of $R$, so $F_{A_i} = 1$ during the execution of $W'$. It follows from lines 13–16 of the code for \texttt{WRITE}_i that $F_{M_i} = 1$ at the end of $W'$. By Lemma 7, $H_i.r \neq H_i.w$ between the end of $W$ and the end of $R$. Therefore line 5 of the code for \texttt{WRITE}_i is not performed from the end of $W'$ until the end of $R$. Hence $F_{M_i}$ remains equal to 1 from the end of $W'$ until the end of $R$.
\end{proof}

Intuitively, the following lemma captures the idea that, as long as $H_i.r = H_i.w$ or $F_{M_i} = 0$, $G[v]$ is equal to $g$. This lemma shows that $R$ must have read $g$ on line 11 if the check on line 13 returns FALSE.

\begin{lemma}
If $R$ read a value other than $g$ from $G[v]$ on line 11, then $H_i.r \neq H_i.w$ at $C(R, 12)$ and $F_{M_i} = 1$ at $C(R, 13)$.
\end{lemma}
Proof. Suppose that $R$ read a value other than $g$ from $G[v]$ on line 11. Note that, between $C(R, 4)$ and $C(R, 11)$, line 3 of READ, is not performed, so the value of $H_{i.r}$ does not change.

By definition of $g$, a WRITE operation must have written to $G[v]$ between $C(R, 4)$ and $C(R, 11)$. Since $V$ has value $v$ at $C(R, 4)$, $V$ must be incremented $4n - 1$ times after $C(R, 4)$ before \textit{version} is reassigned value $v$ on line 1 of the WRITE and $G[v]$ is written to on line 8. This implies there are at least two full WRITE, operations $W'$ and $W''$ that helped process $p_i$ between $C(R, 4)$ and $C(R, 11)$. Suppose $W''$ occurs after $W'$. By Lemma 7, $H_i.r \neq H_i.w$ and $F_{M_i} = 1$ from the end of $W''$ until the end of $R$. Since $R$ performed lines 11–13, the test on line 8 evaluated to FALSE. Therefore by Lemma 8, $F_{M_i} = 1$ from the end of $W''$ until the end of $R$. Since $W''$ finished before $C(R, 11)$, it follows that $H_i.r \neq H_i.w$ at $C(R, 12)$ and $F_{M_i} = 1$ at $C(R, 13)$.

The proof that $R$ reads $g$ on line 14 if the check on line 13 returns TRUE is presented below.

\textbf{Lemma 10.} If $H_i.r \neq H_i.w$ at $C(R, 12)$ and $F_{M_i} = 1$ at $C(R, 13)$, then $R$ read $g$ from $M_i$ on line 14.

\textbf{Proof.} Suppose $H_i.r \neq H_i.w$ at $C(R, 12)$ and $F_{M_i} = 1$ at $C(R, 13)$. By Lemma 3, there exists at least one write operation $W$ such that $C(R, 2) \rightarrow C(W, 7) \rightarrow C(R, 12)$. Let $W'$ be the last such write operation. Since $W'$ sets $F_{M_i}$ to 0 on line 5 and $F_{M_i} = 1$ at $C(R, 13)$, there exists a write operation $W'$ (possibly equal to $W$) such that $C(W, 5) \rightarrow C(W', 16) \rightarrow C(R, 13)$. Since there is only one writer, $W'$ is either equal to $W$ or starts after $W$ finishes. Hence $C(W, 7) \rightarrow C(W', 13)$.

$F_{A_i} = 1$ at $C(W', 13)$ because $W'$ executed line 16. From the code, we see that $F_{A_i} = 0$ at $C(R, 1)$ and only line 6 of a READ, operation sets $F_{A_i}$ to 1. Thus $C(R, 6) \rightarrow C(W', 13)$.

Next, we prove that $\texttt{version} = v$ at $C(W', 14)$. Since $C(R, 6) \rightarrow C(W', 14) \rightarrow C(W', 16) \rightarrow C(R, 13)$, a complete execution of line 14 of $W'$ occurs after $R$ writes $v$ to $A_i$ on line 5 and before $C(R, 13)$. From the code, we see that $A_i = v$ from $C(R, 5)$ until the end of $R$, so $\texttt{version} = v$ at $C(W', 14)$. Since $\texttt{version}$ is a local variable, $\texttt{version} = v$ while $W'$ performs line 15.

Suppose, for contradiction, that $G[v]$ was written to between $C(R, 4)$ and $C(W', 15)$. The writer writes to $G[v]$ before incrementing $V$ to have value $v$ on line 9. Since $V$ has value $v$ at $C(R, 4)$, it follows that, between $C(R, 4)$ and $C(W', 15)$, $V$ must have been incremented at least $4n - 1$ times. Thus there are at least two complete WRITE, operations between these two configurations. Since $R$ performed lines 11–13, the test on line 8 evaluated to FALSE. By Lemma 8, $F_{M_i} = 1$ from the end of the second WRITE, operation, $W''$, to the end of $R$. Since $C(R, 4) \rightarrow C(W'', 1) \rightarrow C(W', 15) \rightarrow C(R, 13)$, $F_{M_i} = 1$ at $C(W', 15)$. This is impossible, since $W'$ performs line 15 only if $F_{M_i} = 0$ at $C(W', 13)$ and does not change the value of $F_{M_i}$ until line 16. Therefore $G[v]$ was not written to between $C(R, 4)$ and $C(W', 15)$.

By definition, $G[v] = g$ at $C(R, 4)$, so $G[v] = g$ from $C(R, 4)$ until $C(W', 15)$. In particular, $G[v] = g$ while $W'$ executed line 15. Hence $M_i = g$ at $C(W', 15)$.

We claim that $H_i.r \neq H_i.w$ from $C(W, 7)$ to the end of $R$. By the choice of $W$, we see that line 7 of a WRITE, operation does not occur between $C(W, 7)$ and $C(R, 7)$. Since $H_i.r \neq H_i.w$ at $C(R, 7)$, we know that $H_i.r \neq H_i.w$ from $C(W, 7)$ to $C(R, 7)$ by P4. From the code for READ, we see that line 3 of a READ, operation is not executed between $C(R, 7)$ and the end of $R$. Therefore by P3, $H_i.r \neq H_i.w$ from $C(R, 7)$ to the end of $R$. Since $C(W, 7) \rightarrow C(W', 16) \rightarrow C(R, 13)$, it follows that $H_i.r \neq H_i.w$ at $C(W', 16)$.

From the code, we can see that $F_{M_i} = 1$ at $C(W', 16)$ and $M_i$ does not change between $C(W', 15)$ and $C(W', 16)$. Since $C(R, 4) \rightarrow C(W', 16)$, the first READ, operation after
Finally, we show that \( R \) returns the input to the last \texttt{Write} operation linearized before \( R \). First suppose that, \( H_i.r \neq H_i.w \) at \( C(R, 7) \) and \( F_{N_i} = 1 \) at \( C(R, 8) \). By Lemma 2, there is a \texttt{Write} operation \( W \) such that \( C(R, 2) \rightarrow C(W, 7) \rightarrow C(R, 7) \). Let \( W \) be the last such \texttt{Write} operation. Also by Lemma 2, line 12 of \( W \) is executed and \( C(W, 12) \rightarrow C(R, 8) \). \( R \) is linearized at \( C(W, 12) \) and \( W \) is linearized at \( C(W, 9) \), so \( W \) is the last \texttt{Write} operation linearized before \( R \). Let \( \alpha \) be the input to \( W \). Note that \( N_i \) equals \( \alpha \) at \( C(W, 12) \).

We claim that \( H_i.r \neq H_i.w \) from \( C(W, 7) \) to the end of \( R \). By the choice of \( W \), we see that line 7 of a \texttt{Write} operation does not occur between \( C(W, 7) \) and \( C(R, 7) \). Since \( H_i.r \neq H_i.w \) at \( C(R, 7) \), we know that \( H_i.r \neq H_i.w \) from \( C(W, 7) \) to \( C(R, 7) \) by \textbf{P4}. From the code for \texttt{Read}, we see that line 3 of a \texttt{Read} operation is not executed between \( C(R, 7) \) and the end of \( R \). Therefore by \textbf{P3}, \( H_i.r \neq H_i.w \) from \( C(R, 7) \) to the end of \( R \).

In particular, since \( C(W, 7) \rightarrow C(W, 12) \rightarrow C(R, 8) \), \( H_i.r \neq H_i.w \) at \( C(W, 12) \). When \( W \) executes line 12, it sets \( F_{N_i} \) to 1. It follows from Lemma 4 that \( N_i = \alpha \) from \( C(W, 12) \) to line 3 of the next \texttt{Read} operation after \( R \), so \( N_i \) equals \( \alpha \) at \( C(R, 9) \). Thus, \( R \) returns the value written by \( W \), as required.

Now suppose \( H_i.r = H_i.w \) at \( C(R, 7) \) or \( F_{N_i} = 0 \) at \( C(R, 8) \). In this case, \( R \) is linearized at \( C(R, 4) \). By Lemma 6, \( g \) is the value written by the last \texttt{Write} operation linearized before \( C(R, 4) \). Thus, it suffices to prove that \( R \) returns \( g \). Consider two subcases depending on the result of the test on line 13 of \( R \). If the test returns false, then by the contrapositive of Lemma 9, the value that \( R \) read from \( G[\text{revision}] \) on line 11 is equal to \( g \). If the test returns true, then by Lemma 10, \( R \) read \( g \) from \( M_i \) on line 14. So in either case, \( R \) returns \( g \).

\textbf{Theorem 11.} Algorithm 3 implements an atomic \( \ell \)-bit register.

\section{Step Lower Bound of Register Implementation}

So far, we have presented implementations of an atomic \( \ell \)-bit \( n \)-reader single-writer register from atomic \( k \)-bit \( n \)-reader single-writer registers. For the lower bound, we consider the case where the large register only needs to be regular and there is only one reader. This results in a stronger lower bound.

\textbf{Theorem 12.} Any regular \( \ell \)-bit single-reader, single-writer register implementation from atomic \( k \)-bit single-writer registers with \( O(\ell/k) \) step complexity for \texttt{Read} requires \( \Omega(\ell/k) \) step complexity for \texttt{Write}.

\textbf{Proof.} Let \( t = \lceil \ell/k \rceil \). Since \texttt{Read} operations have step complexity \( O(t) \), there are positive integers \( \alpha \) and \( t_0 \) such that, for all \( t \geq t_0 \), each \texttt{Read} operation performs at most \( \alpha t \) steps. Let \( t \geq t_0 \). We consider executions starting from an initial configuration \( I \) in which the writer completes its first \texttt{Write}, crashes, and then a single \texttt{Read} occurs. Let \( u \) be the number of steps performed by the writer in the worst case. If \( u > \alpha t \), the lower bound holds, so suppose that \( u \leq \alpha t \). The \texttt{Read} algorithm can be represented by a decision tree of height at most \( \alpha t \), where each node represents the read of a shared \( k \)-bit register. Without loss of generality, we may assume that no shared \( k \)-bit register is read more than once on any root to leaf path.

For each of the \( 2^k \) different values \( w \) that can be written by the writer, consider the path in this decision tree taken by the reader. Let \( E(w) = \{(i, v) \mid \text{if the shared } k \text{-bit register read at depth } i \text{ contains value } v \neq \text{its value in } I\} \). The set \( E(w) \) uniquely specifies the leaf that the reader reaches and, thus, is an encoding of \( w \). Since \( 1 \leq i \leq u \) and there are \( 2^k - 1 \)
choices for each value \( v \) (i.e. excluding the value of the \( k \)-bit register in configuration \( I \)), the number of different possible encodings is
\[
\sum_{j=0}^{u} \left( \alpha t \right)^{j} \left( 2^{k} - 1 \right)^{j} \leq \sum_{j=0}^{u} \left( \frac{\alpha t}{u} \right)^{j} \left( 2^{k} - 1 \right)^{j} = \left( \frac{\alpha t}{u} \right) \sum_{j=0}^{u} \left( \frac{u}{j} \right) \left( 2^{k} - 1 \right)^{j} = \left( \frac{\alpha t}{u} \right) \left( 2^{k} \right)^{u} \\
\leq \left( 2^{k} \right)^{u} \left( \alpha e / u \right)^{u} = (\alpha e \cdot 2^{k} t / u)^{u}.
\]
Thus \( 2^{\ell} \leq (\alpha e \cdot 2^{k} t / u)^{u} \). Taking the logarithm of both sides yields \( \ell \leq u (\log_{2}(\alpha e) + k + \log_{2}(t/u)) \). Since \( k \leq \ell / t \) and \( t < \ell \), it follows that \( \ell \leq u (\log_{2}(\alpha e) + \ell / t + \log_{2}(t/u)) \) and \( 1 \leq (u / t) \cdot (\log_{2}(\alpha e) / \ell + 1 + \log_{2}(t/u) / \ell) < (u / t) \cdot (\log_{2}(\alpha e) + 1 + \log_{2}(t/u)) \). Setting \( \beta = t / u \) gives \( 1 \leq (\log_{2}(\alpha e) + 1 + \log_{2} \beta) / \beta \). Thus \( \beta - \log_{2} \beta \leq \log_{2}(\alpha e) + 1 \in O(1) \). This implies that \( t / u = \beta \in O(1) \), because \( \lim_{\beta \to \infty} \beta - \log_{2} \beta = \infty \). Therefore \( u \in \Omega(t) = \Omega(\ell / k) \).

7 Conclusion

We presented two new implementations of large \( \ell \)-bit single-writer registers from small \( k \)-bit single-writer registers, which work for all \( k \geq 1 \). We can combine them as follows: use the first implementation if \( \ell \leq \lceil (\log_{2} n) / 2 \rceil \); otherwise, use the second implementation. This results in an implementation of large single-writer registers with optimal step complexity and \( \Theta(\ell n / k) \) space complexity.

We proved that any implementation with \( O(\ell / k) \) step complexity for \textsc{Read} requires \( \Omega(\ell / k) \) step complexity for \textsc{Write}. Since \textsc{Read} of an \( \ell \)-bit register requires at least \( \lceil \ell / k \rceil \) \textsc{Read}s of \( k \)-bit registers, our lower bound shows that our implementation is step optimal.

It would be interesting to find a more space efficient implementation with optimal step complexity or to prove a lower bound on the amount of space required. We have some algorithms with \( o(\ell n / k) \) space complexity, but slightly worse step complexity, so there may be a trade-off between space complexity and step complexity.

It would also be interesting to see if \( \ell \)-bit multi-writer registers can be implemented from \( k \)-bit multi-writer registers with \( \Theta(\ell / k) \) step complexity for any \( k \geq 1 \). Unfortunately, we do not know of any way to modify our tree based implementation to obtain a multi-writer regular (or atomic) register. Without an efficient counter that supports multiple incremements, we can not extend our buffer based implementation to obtain a multi-writer register, either.

Acknowledgements. We would like to thank our supervisor, Professor Faith Ellen, for the many insightful discussions that we’ve had together, and for the numerous hours she put into editing our work.

References


