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Abstract
The Dagstuhl Seminar on 16481 “New Directions for Learning with Kernels and Gaussian Pro-
cesses” brought together two principal theoretical camps of the machine learning community at
a crucial time for the field. Kernel methods and Gaussian process models together form a signi-
ficant part of the discipline’s foundations, but their prominence is waning while more elaborate
but poorly understood hierarchical models are ascendant. In a lively, amiable seminar, the par-
ticipants re-discovered common conceptual ground (and some continued points of disagreement)
and productively discussed how theoretical rigour can stay relevant during a hectic phase for the
subject.
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Machine learning is a young field that currently enjoys rapid, almost dizzying advancement
both on the theoretical and the practical side. On account of either, the until quite recently
obscure discipline is increasingly turning into a central area of computer science. Dagstuhl
seminar 16481 on “New Directions for Learning with Kernels and Gaussian Processes”
attempted to allow a key community within machine learning to gather its bearings at this
crucial moment in time.

Positive definite kernels are a concept that dominated machine learning research in
the first decade of the millennium. They provide infinite-dimensional hypothesis classes
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that deliver expressive power in an elegant analytical framework. In their probabilistic
interpretation as Gaussian process models, they are also a fundamental concept of Bayesian
inference:

A positive definite kernel k : X× X→ R on some input domain X is a function with the
property that, for all finite sets {x1, . . . , xN} ⊂ X, the matrix K ∈ RN×N , with elements
kij = k(xi, xj), is positive semidefinite. According to a theorem by Mercer, given certain
regularity assumptions, such kernels can be expressed as a potentially infinite expansion

k(x, x′) =
∞∑

i=1
λiφi(x)φ∗i (x′), with

∞∑
i=1

λi <∞, (1)

where ∗ is the conjugate transpose, λi ∈ R+ is a non-negative eigenvalue and φi is an
eigenfunction with respect to some measure ν(x): a function satisfying∫

k(x, x′)φi(x)dν(x) = λiφi(x′). (2)

Random functions f(x) drawn by independently sampling Gaussian weights for each eigen-
function,

f(x) =
∞∑

j=1
fjφj(x) where fj ∼ N (0, λi), (3)

are draws from the centered Gaussian process (GP) p(f) = GP(f ; 0, k) with covariance
function k. The logarithm of this Gaussian process measure is, up to constants and some
technicalities, the square of the norm ‖f‖2

k associated with the reproducing kernel Hilbert
space (RKHS) of functions reproduced by k.

Supervised machine learning methods that infer an unknown function f from a data
set of input-output pairs (X,Y ) := {(xi, yi)}i=1,...,N can be constructed by minimizing an
empirical risk `(f(X);Y ) regularized by ‖·‖2

k. Or, algorithmically equivalent but with different
philosophical interpretation, by computing the posterior Gaussian process measure arising
from conditioning GP(f ; 0, k) on the observed data points under a likelihood proportional to
the exponential of the empirical risk.

The prominence of kernel/GP models was founded on this conceptually and algorithmically
compact yet statistically powerful description of inference and learning of nonlinear functions.
In the past years, however, hierarchical (‘deep’) parametric models have bounced back and
delivered a series of impressive empirical successes. In areas like speech recognition and image
classification, deep networks now far surpass the predictive performance previously achieved
with nonparametric models. One central goal of the seminar was to discuss how the superior
adaptability of deep models can be transferred to the kernel framework while retaining at
least some analytical clarity. Among the central lessons from the ‘deep resurgence’ identified
by the seminar participants is that the kernel community has been too reliant on theoretical
notions of universality. Instead, representations must be learned on a more general level
than previously accepted. This process is often associated with an ‘engineering’ approach
to machine learning, in contrast to the supposedly more ‘scientific’ air surrounding kernel
methods. But its importance must not be dismissed. At the same time, participants also
pointed out that deep learning is often misrepresented, in particular in popular expositions,
as an almost magic kind of process; when in reality the concept is closely related to kernel
methods, and can be understood to some degree through this connection: Deep models
provide a hierarchical parametrization of the feature functions φi(x) in terms of a finite-
dimensional family. The continued relevance of the established theory for kernel/GP models
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hinges on how much of the power of deep models can be understood from within the RKHS
view, and how much new concepts are required to understand the expressivity of a deep
learning machine.

There is also unconditionally good news: In a separate but related development, kernels
have had their own renaissance lately, in the young areas of probabilistic programming
(‘computing of probability measures’) and probabilistic numerics (‘probabilistic descriptions
of computing’). In both areas, kernels and Gaussian processes have been used as a descriptive
language. And, similar to the situation in general machine learning, only a handful of
comparably simple kernels have so far been used. The central question here, too, is thus how
kernels can be designed for challenging, in particular high-dimensional regression problems.
In contrast to the wider situation in ML, though, kernel design here should take place
at compile-time, and be a structured algebraic process mapping source code describing a
graphical model into a kernel. This gives rise to new fundamental questions for the theoretical
computer science of machine learning.

A third thread running through the seminar concerned the internal conceptual schism
between the probabilistic (Gaussian process) view and the statistical learning theoretical
(RKHS) view on the model class. Although the algorithms and algebraic ides used on both
sides overlap almost to the point of equivalence, their philosophical interpretations, and thus
also the required theoretical properties, differ strongly. Participants for the seminar were
deliberately invited from both “denominations” in roughly equal number. Several informal
discussions in the evenings, and in particular a lively break-out discussion on Thursday
helped clear up the mathematical connections (while also airing key conceptual points of
contention from either side). Thursday’s group is planning to write a publication based on
the results of the discussion; this would be a highly valuable concrete contribution arising
from the seminar, that may help drawing this community closer together.

Despite the challenges to some of the long-standing paradigms of this community, the
seminar was infused with an air of excitement. The participants seemed to share the sensation
that machine learning is still only just beginning to show its full potential. The mathematical
concepts and insights that have emerged from the study of kernel/GP models may have to
evolve and be adapted to recent developments, but their fundamental nature means they are
quite likely to stay relevant for the understanding of current and future model classes. Far
from going out of fashion, mathematical analysis of the statistical and numerical properties
of machine learning model classes seems slated for a revival in coming years. And much of it
will be leveraging the notions discussed at the seminar.



Arthur Gretton, Philipp Hennig, Carl Edward Rasmussen, and Bernhard Schölkopf 145

2 Table of Contents

Summary
Arthur Gretton, Philipp Hennig, Carl Edward Rasmussen, and Bernhard Schölkopf 142

Overview of Talks
Random Fourier Features for Operator-Valued Kernels
Florence d’Alché-Buc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Practical Challenges of Gaussian Process Applications
Marc Deisenroth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Deep kernels and deep Gaussian processes
David Duvenaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Finding Galaxies in the Shadows of Quasars with Gaussian Processes
Roman Garnett . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Comparing samples from two distributions
Arthur Gretton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

GPs and Kernels for Computation – new opportunities in probabilistic numerics
Philipp Hennig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

GPy and GPFlow
James Hensman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Approximate EP for Deep Gaussian Processes
Joseé Miguel Hernández-Lobato . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Modelling Challenges in AutoML
Frank Hutter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Convergence guarantees for kernel-based quadrature
Motonobu Kanagawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Don’t Panic: Deep Learning Methods are Mostly Harmless
Neil D. Lawrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

Horses
David Lopez-Paz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Kernel Learning with Convolutional Kernel Networks
Julien Mairal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Shrinkage Estimators
Krikamol Muandet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

MMD/VAE/f-GAN: Methods for Estimating Probabilistic Models
Sebastian Nowozin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

Score matching and kernel based estimators for the drift of stochastic differential
equations
Manfred Opper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Gaussian Processes – Past and Future?
Carl Edward Rasmussen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

How to fit a simple model
Carl Edward Rasmussen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

16481



146 16481 – New Directions for Learning with Kernels and Gaussian Processes

String Gaussian Processes & Generalized Spectral Kernels
Stephen Roberts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Kernels – Past and Future?
Bernhard Schölkopf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Kernel Embeddings and Bayesian Quadrature
Dino Sejdinovic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Kernel Mean Embeddings
Carl-Johann Simon-Gabriel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Random Fourier Features and Beyond
Bharath Sriperumbudur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Learning with Hierarchical Kernels
Ingo Steinwart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Distribution Regression
Zoltán Szabó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Stochastic (partial) differential equations and Gaussian processes
Simo Särkkä . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Consistent Kernel Mean Estimation for Functions of Random Variables
Ilya Tolstikhin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Uncertain inputs in Gaussian Processes
Mark van der Wilk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Frequentist properties of GP learning methods
Harry van Zanten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

The ML Invasion of ABC
Richard Wilkinson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Working groups
Generative Models
David Duvenaud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

Limitations of GPs / non-Gaussian-Processes
Stefan Harmeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

The separation between Kernels/GPs and Deep Learning
Sebastian Nowozin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Connections and Differences between Kernels and GPs
Dino Sejdinovic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



Arthur Gretton, Philipp Hennig, Carl Edward Rasmussen, and Bernhard Schölkopf 147

3 Overview of Talks

3.1 Random Fourier Features for Operator-Valued Kernels
Florence d’Alché-Buc (Telecom ParisTech, FR)

License Creative Commons BY 3.0 Unported license
© Florence d’Alché-Buc

Joint work of Romain Brault and Florence d’Alché-Buc
Main reference R. Brault, M. Heinonen, F. d’Alché Buc, “Random Fourier Features For Operator-Valued Kernels”,

in Proc. of the 8th Asian Conf. on Machine Learning, JMLR W&CP, Vol. 63, 2016.
URL http://www.jmlr.org/proceedings/papers/v63/Brault39.pdf

Devoted to multi-task learning and structured output learning, operator-valued kernels
provide a flexible tool to build vector-valued functions in the context of Reproducing Kernel
Hilbert Spaces. To scale up operator-valued kernel-based regression devoted to multi-task and
structured output learning, we extend the celebrated Random Fourier Feature methodology to
get an approximation of operator-valued kernels. We propose a general principle for Operator-
valued Random Fourier Feature construction relying on a generalization of Bochner’s theorem
for shift-invariant operator-valued Mercer kernels. We prove the uniform convergence of
the kernel approximation for bounded and unbounded operator random Fourier features
using appropriate Bernstein matrix concentration inequality. Numerical experiments show
the quality of the approximation and the efficiency of the corresponding linear models on
multiclass and regression problems.

3.2 Practical Challenges of Gaussian Process Applications
Marc Deisenroth (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Marc Deisenroth

Main reference G. Bertone, M.P. Deisenroth, J. S. Kim, S. Liem, R. Ruiz de Austri, M. Welling, “Accelerating the
BSM interpretation of LHC data with machine learning”, arXiv:1611.02704 [hep-ph], 2016.

URL https://arxiv.org/abs/1611.02704v1

In many applications, we face practical challenges with Gaussian processes and kernel
methods. For example, in robotics and personalized healthcare, data- efficient learning
(i.e., learning from small data sets) is critical. We can achieve this in multiple ways, e.g.,
by carefully modeling uncertainty in the model and the inference, transfer learning or the
incorporation of structural priors. Focusing on uncertainty representation, it is critical
to propagate uncertainty through a (Gaussian process) system, which is computationally
expensive (training may not be the computational bottleneck). Other applications include the
optimization (or learning) of simulators of very expensive experiments (e.g., LHC, bioprocesses
or neotissue engineering). Challenge we face are high-dimensional optimization problems and
scalability in the number of data points. Generally, scalability seems to be a general problem,
and we should think about scale-free model architectures, inference and the software that
allows us to perform distributed computing.
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3.3 Deep kernels and deep Gaussian processes
David Duvenaud (Toronto, CA)

License Creative Commons BY 3.0 Unported license
© David Duvenaud

Joint work of David Duvenaud, Oren Rippel, Ryan P. Adams, Zoubin Ghahramani
Main reference D. Duvenaud, O. Rippel, R. P. Adams, Z. Ghahramani, “Avoiding pathologies in very deep

networks”, arXiv:1402.5836 [stat.ML], 2014.
URL https://arxiv.org/abs/1402.5836v3

To suggest better neural network architectures, we analyze the properties different priors on
compositions of functions.

We showed how we can construct deep kernels by composing their implicit features, and
examine the properties of such kernels as we increase their depth.

We then showed how such models are different from deep Gaussian processes, and by
visualizing draws from deep GP priors examined their properties as a function of depth.

Finally, we show that you get additive covariance if you do dropout on Gaussian processes.

3.4 Finding Galaxies in the Shadows of Quasars with Gaussian
Processes

Roman Garnett (Washington University – St. Louis, US)

License Creative Commons BY 3.0 Unported license
© Roman Garnett

Joint work of Roman Garnett, Shirley Ho, Jeff Schneider
Main reference R. Garnett, S. Ho, J. Schneider, “Detecting Damped Lyman-α Absorbers with Gaussian

Processes”, arXiv:1605.04460 [astro-ph.CO], 2016.
URL https://arxiv.org/abs/1605.04460v1

I discussed recent application of Gaussian processes to a problem from astrophysics: detecting
damped Lyman-α absorbers in lines of sight to quasars. DLAs represent proto-galaxies in
the ancient universe and their distribution is of interest to cosmology. The state of the art
for detecting DLAs is visual inspection; however we show we can construct an automated
method via Bayesian model selection, with GPs as our models of spectroscopic data. We use
a dataset of ∼50, 000 quasar observations from SDSS-III to derive a custom “quasar kernel”.
The learned kernel has structure markedly different from off-the-shelf kernels. Performance
on the detection task relied critically on this structure. Finally, I pointed out I had to rely
on quasi- Monte Carlo to estimate model evidence for the DLA model because the integrand
had dynamic range on the order of ∼6000 nats. No off-the-shelf model can handle such data.
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3.5 Comparing samples from two distributions
Arthur Gretton (University College London, GB)

License Creative Commons BY 3.0 Unported license
© Arthur Gretton

Joint work of Kacper Chwialkowski, Arthur Gretton, Wittawat Jitkrittum, Dino Sejdinovic, Bharath
Sriperumbudur, Heiko Strathmann, Dougal Sutherland, Zoltán Szabo

Main reference W. Jitkrittum, Z. Szabo, K. Chwialkowski, A. Gretton, “Interpretable Distribution Features with
Maximum Testing Power”, arXiv:1605.06796v2 [stat.ML], 2016.

URL https://arxiv.org/abs/1605.06796v2

We provide an overview of kernel approaches to comparing distributions. The focus is on
choosing the function class, and adapting the test statistc, so as to maximize the power of
the associated tests.

We begin with an introduction to embeddings of probabilities to a reproducing kernel
Hilbert space (RKHS), where an embedding is simply the expectation of the kernel function
that defines the RKHS. We demonstrate that the difference in these embeddings can be
interpreted as an integral probability metric, called the Maximum Mean Discrepancy (MMD).
This statistic can be used in a test of homogeneity, where two samples are observed, and the
null hypothesis is that both samples are drawn from the same distribution.

The power of a statistical test based on the MMD will depend on the particular RKHS
used. We show that the asymptotic distribution of the statistic is Gaussian under the
alternative, and an infinite sum of weighted chi squared variables under the null. Since the
null distribution has faster shrinking variance, it is shown that the kernel maximizing the test
power is the one which gives the largest ratio of the MMD to its variance (the optimization
is performed on a held-out validation set). We demonstrate that this optimized kernel can
distinguish between samples from a generative adversarial network, and samples drawn from
a reference test set.

An alternative approach to homogeneity testing is to look for maximum of the witness
function associated with the MMD, which is a smooth function with largest amplitude where
the probability mass of P and Q is most different. We can therefore use the values of the
witness function at a particular set of points to construct a test statistic. Our statistic
involves normalizing these witness function values by their joint covariance. We may optimize
a lower bound on the test power by maximizing the test statistic over the witness point
locations on a held-out validation set. We use this test to distinguish positive and negative
emotions on a facial expression database, showing that a distinguishing feature reveals the
facial areas most relevant to emotion.

Finally, we address the problem of comparing a model to a sample, for instance in the
context of statistical model criticism. In this case, the MMD witness function can be modified
by a Stein operator, to have zero expectation under the model distribution. The resulting
statistic is denoted the Maximum Stein Discrepancy (MSD). This Stein operator can be
computed even when the distribution cannot be normalized. We use the MSD to demonstrate
the inadequacy of fit of a simple regression model to data with heteroscedastic noise.
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3.6 GPs and Kernels for Computation – new opportunities in
probabilistic numerics

Philipp Hennig (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Philipp Hennig

Main reference P. Hennig, M. Osborne, M. Girolami, “Probabilistic numerics and uncertainty in computations,”
Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences,
471(2179), 2015.

URL http://dx.doi.org/10.1098/rspa.2015.0142
URL http://probabilistic-numerics.org

The computational complexity of machine learning models (not just kernel/GP models) is
dominated by numerical tasks: optimization, integration, linear algebra, and the solution
of differential algebra. The algorithms we use for these tasks have mostly arrived in our
community from other disciplines, such as computational physics, and simulation. Interest-
ingly, these methods can actually be interpreted as active learning algorithms themselves,
since they estimate latent/incomputable quantities (e.g. the value of an integral) from
observable/computable quantities (e.g. values of the integrand at various, actively chosen
nodes). Over recent years, this observation has given rise to a class of numerical methods
known as probabilistic numerical algorithms: Methods that take in and return probability
measures, rather than point estimates. A string of papers have revealed that many popular
and foundational numerical methods can be written as least-squares regression, and thus
interpreted as MAP estimators arising from Gaussian probabilistic models. Careful analysis
shows that the associated posterior variances can be calibrated at low computational cost,
meaning that they provide a meaningful notion of uncertainty in computation. Now, this
new framework can be used to build new functionality sorely needed in machine learning:
Increased performance through custom prior assumptions; stability of computations under
stochastic computations, and new notions of algorithmic safety through statistical hypothesis
testing.

3.7 GPy and GPFlow
James Hensman (Lancaster University, GB)

License Creative Commons BY 3.0 Unported license
© James Hensman

Joint work of James Hensman, Alex Matthews, Mark van der Wilk, Neil Lawrence, Max Zwiessele and others
Main reference A.G. de G. Matthews, M. van der Wilk, T. Nickson, K. Fujii, A. Boukouvalas, P. León-Villagrá,

Z. Ghahramani, J. Hensman, “GPflow: A Gaussian process library using TensorFlow”,
arXiv:1610.08733 [stat.ML], 2016.

URL https://arxiv.org/abs/1610.08733
URL https://www.github.com/SheffieldML/GPy

In this talk, I present a live demo of working with the Python-based frameworks GPy and
GPFlow.

Some discussion has arisen surrounding the reasons for the success of Deep Learning,
and one of the contributing factors is widely agreed to be the availability of Deep Learning
software. In this talk I argue that Deep Learning software can easily be adapted to suit
kernel methods.

I describe how reverse mode differentiation of the Cholesky algorithm has been added to
TensorFlow by Alex Matthews and myself. I then describe GPy and GPflow, two frameworks
for Gaussian process computation.
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I also present a live demo designed to introduce the audience to the concepts needed to
understand TensorFlow, and how to adapt it to their own needs and projects.

3.8 Approximate EP for Deep Gaussian Processes
Joseé Miguel Hernández-Lobato (Harvard University – Cambridge, US)

License Creative Commons BY 3.0 Unported license
© Joseé Miguel Hernández-Lobato

Main reference T.D. Bui, D. Hernández-Lobato, Y. Li, J.M. Hernández-Lobato, and R.E. Turner, “Deep
Gaussian Processes for Regression using Approximate Expectation Propagation”, in Proc. of the
33rd Int’l Conf. on Machine Learning (JMLR 2016), Vol. 48, pp. 1472–1481, 2016.

URL http://jmlr.org/proceedings/papers/v48/bui16.pdf

Deep Gaussian processes (DGPs) are multi-layer hierarchical generalisations of Gaussian
processes (GPs) and are formally equivalent to neural networks with multiple, infinitely
wide hidden layers. DGPs are nonparametric probabilistic models and as such are arguably
more flexible, have a greater capacity to generalise, and provide better calibrated uncertainty
estimates than alternative deep models. We develop a new approximate Bayesian learning
scheme that enables DGPs to be applied to a range of medium to large scale regression
problems for the first time. The new method uses an approximate Expectation Propagation
procedure and a novel and efficient extension of the probabilistic backpropagation algorithm
for learning. We evaluate the new method for non- linear regression on eleven real-world
datasets, showing that it always outperforms GP regression and is almost always better
than state-of-the-art deterministic and sampling-based approximate inference methods for
Bayesian neural networks.

3.9 Modelling Challenges in AutoML
Frank Hutter (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
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Main reference M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, “Efficient and Robust
Automated Machine Learning”, in Proc. of Advances in Neural Information Processing Systems 28
(NIPS 2015), pp. 2962–2970, Neural Information Processing Systems Foundation Inc., 2015.

URL https://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning
URL http://www.ml4aad.org

In this talk, I briefly overviewed recent developments in the field of automated machine
learning, which gives rise to very popular applications of Gaussian processes in Bayesian
optimization. I then discussed some of the modelling challenges that occur in this field (such
as high dimensionality, conditional spaces, large number of data points, heteroscedasticity,
large noise, modelling across data sets, and modelling of learning curves) and initial solutions;
some of these solutions were based on Gaussian processes, and some were based on random
forests and Bayesian neural networks. We then discussed the challenges of treating all of
these problems using Gaussian processes.
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3.10 Convergence guarantees for kernel-based quadrature
Motonobu Kanagawa (Institute of Statistical Mathematics – Tokyo, JP)
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Joint work of Motonobu Kanagawa, Bharath Sriperumbudur, Kenji Fukumizu
Main reference M. Kanagawa, B.K. Sriperumbudur, K. Fukumizu, “Convergence guarantees for kernel-based

quadrature rules in misspecified settings”, in Proc. of Advances in Neural Information Processing
Systems 29 (NIPS 2016), pp. 3288–3296, Neural Information Processing Systems Foundation Inc.,
2016.

URL http://papers.nips.cc/paper/6174-convergence-guarantees-for-kernel-based-quadrature-rules-in-
misspecified-settings

In this talk, I present recent results on kernel-based quadrature. Kernel- based quadrature
rules are becoming important in machine learning and statistics, as they achieve super-

√
n

convergence rates in numerical integration, and thus provide alternatives to Monte Carlo
integration in challenging settings where integrands are expensive to evaluate or where
integrands are high dimensional. These rules are based on the assumption that the integrand
has a certain degree of smoothness, which is expressed as that the integrand belongs to a
certain reproducing kernel Hilbert space (RKHS). However, this assumption can be violated
in practice (e.g., when the integrand is a black box function), and no general theory has been
established for the convergence of kernel quadratures in such misspecified settings. In this
talk, I explain that it is actually possible to prove that kernel quadratures can be consistent
even when the integrand does not belong to the assumed RKHS, i.e., when the integrand is
less smooth than assumed. Specifically, I show that one can derive convergence rates that
depend on the (unknown) lesser smoothness of the integrand, where the degree of smoothness
is expressed via powers of RKHSs or via Sobolev spaces.

3.11 Don’t Panic: Deep Learning Methods are Mostly Harmless
Neil D. Lawrence (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
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URL http://inverseprobability.com/2016/11/29/new-directions-in-kernels-and-gaussian-processes.html

With the success of deep learning software and a wide variety of succesfull applications deep
learning methods seem to be making the transition to a domain of engineering. A challenge
is that the potential pitfalls of the deployment of these ideas has not been characterised.
Currently empirical results are leading our theoretical understanding. To be a robust
engineering discipline deep learning pipelines need to be placed on stronger theoretical
foundations. This presents an opportunity for better characterized methods to augment deep
learning ideas and prevent us from sucumbing to the pitfalls. The greater interpretability of
kernel and GP methods as well as their more elegant mathematical characterization present
opportunities in
1. Meta learning and characterisation of the deep deep learning pipeline.
2. Privacy, fairness and transparency.
3. Integration of physical systems with data driven models.
4. Quantifying the value of data.
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3.12 Horses
David Lopez-Paz (Facebook – AI Research, US)

License Creative Commons BY 3.0 Unported license
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I talked about “horses”, which are “systems that do not address the problem that they seem
to be addressing”. In particular, our current machine learning solutions are horses, since they
are vulnerable to slight mismatches between training and testing data (domain adaptation,
adversarial perturbation, etc.).

Taming horses is the biggest challenge for machine learning. More specifically, machine
learning has a predictive focus (minimize the loss L(y, y′) between the true targets y = f(x)
and our estimates y′ = f ′(x)). This contrasts the scientific method, which explains “why”
things happen in terms of mechanisms (minimize the loss L(f, f ′) between the true mechanism
f and our estimate f ′).

Since correlation is to prediction what causation is to explanation, I propose to tame
horses by developing machine learning algorithms that leverage only causal dependencies,
and ignore confounding dependencies.

3.13 Kernel Learning with Convolutional Kernel Networks
Julien Mairal (INRIA – Grenoble, FR)

License Creative Commons BY 3.0 Unported license
© Julien Mairal

Main reference J. Mairal, “End-to-End Kernel Learning with Supervised Convolutional Kernel Networks”, in Proc.
of Advances in Neural Information Processing Systems 29 (NIPS 2016), pp. 1399–1407, Neural
Information Processing Systems Foundation Inc., 2016.

URL http://papers.nips.cc/paper/6184-end-to-end-kernel-learning-with-supervised-convolutional-kernel-
networks

In this talk, we present a new image representation based on a multilayer kernel machine
that performs end-to-end learning. Unlike traditional kernel methods, where the kernel
is handcrafted or adapted to data in an unsupervised manner, we learn how to shape
the kernel for a supervised prediction problem. We proceed by generalizing convolutional
kernel networks, which originally provide unsupervised image representations, and we derive
backpropagation rules to optimize model parameters. As a result, we obtain a new type of
convolutional neural network with the following properties: (i) at each layer, learning filters
is equivalent to optimizing a linear subspace in a reproducing kernel Hilbert space (RKHS),
where we project data; (ii) the network may be learned with supervision or without; (iii) the
model comes with a natural regularization function (the norm in the RKHS). We show that
the method achieves reasonably competitive performance on some standard “deep learning”
image classification datasets such as CIFAR-10 and SVHN, and also state-of-the-art results
for image super-resolution, demonstrating the applicability of the approach to a large variety
of image-related tasks.
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3.14 Shrinkage Estimators
Krikamol Muandet (Mahidol University, TH)
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Joint work of Krikamol Muandet, Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf
Main reference K. Muandet, B. Sriperumbudur, K. Fukumizu, A. Gretton, B. Schölkopf, “Kernel mean shrinkage

estimators”, Journal of Machine Learning Research, 17(48):1–41, 2016.
URL http://jmlr.org/papers/v17/14-195.html

A mean function in a reproducing kernel Hilbert space (RKHS), or a kernel mean, is central
to kernel methods in that it is used by many classical algorithms such as kernel principle
component analysis, and it also forms the core inference step of modern kernel methods that
rely on embedding probability distributions in RKHSs. Given a finite sample, an empirical
average has been used commonly as a standard estimator of the true kernel mean. Despite a
widespread use of this estimator, we show that it can be improved thanks to the well-known
Stein phenomenon. We propose a new family of estimators called kernel mean shrinkage
estimators (KMSEs), which benefit from both theoretical justifications and good empirical
performance. The results demonstrate that the proposed estimators outperform the standard
one, especially in a “large d, small n” paradigm.

3.15 MMD/VAE/f-GAN: Methods for Estimating Probabilistic Models
Sebastian Nowozin (Microsoft Research UK – Cambridge, GB)
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Joint work of Sebastian Nowozin, Ryota Tomioka, Botond Cseke, Diane Bouchacourt, Pawan Kumar
Main reference S. Nowozin, B. Cseke, R. Tomioka, “f-GAN: Training Generative Neural Samplers using Variational

Divergence Minimization”, in Proc. of Advances in Neural Information Processing Systems 29
(NIPS 2016), pp. 271–279, Neural Information Processing Systems Foundation Inc., 2016.

URL http://papers.nips.cc/paper/6066-f-gan-training-generative-neural-samplers-using-variational-
divergence-minimization

Main reference D. Bouchacourt, P.K. Mudigonda, S. Nowozin, “DISCO Nets : DISsimilarity COefficients
Networks”, in Proc. of Advances in Neural Information Processing Systems 29 (NIPS 2016),
pp. 352–360, Neural Information Processing Systems Foundation Inc., 2016.

URL http://papers.nips.cc/paper/6066-f-gan-training-generative-neural-samplers-using-variational-
divergence-minimization

Estimating generative or discriminative probabilistic models is important in practical ap-
plications. To formalize estimation we can think of measures of discrepancy between two
distributions: the model distribution and the unknown true distribution. The classes of
discrepancy measures are: 1. integral probability metrics, 2. proper scoring rules, and
3. f-divergences. Integral probability metrics take the supremum of a difference of two
expectations over a class of functions. Depending on the choice of function class this realizes
metrics such as the total variation, maximum mean discrepancy, or the Wasserstein metric.
If the function class is taken to be a RKHS the resulting metric is the kernel MMD. Proper
scoring rules require a more detailed access to the model distribution through its density
function or properties thereof. Typical examples are the likelihood, the Brier score, or
Bernardo’s quadratic scoring rule. In some cases, taking the integral of a scoring rule yields
an f-divergence. f-divergences require access to the density function of both the model
distribution and the true distribution, which is not available. Recently a variational lower
bound on f-divergences allows to circumvent this requirement by introducing an additional
variational function. Training a generative model with this variational approach yields a
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saddle-point problem to solve, an approach known as the generative-adversarial network
(GAN) approach. These new approaches to estimating models in the likelihood-free setting
have allowed new levels of performance in fitting complicated distributions such as learning
distributions of natural images.

3.16 Score matching and kernel based estimators for the drift of
stochastic differential equations

Manfred Opper (TU Berlin, DE)
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Main reference P. Batz, A. Ruttor, M. Opper, “Variational estimation of the drift for stochastic differential

equations from the empirical density”, Journal of Statistical Mechanics: Theory and Experiment,
Vol. 2016, Number 8, 2016.

URL http://dx.doi.org/10.1088/1742-5468/2016/08/083404

Score matching is a method for estimating the logarithms of a probability density (up to
a constant) which is not based on a likelihood. Using a kernel method this approach has
recently been generalised to nonparametric density estimation.

I show that this method relates to a drift estimation problem for certain classes of
stochastic differential equations and can be generalised to treat interesting types of Langevin
equations.

I also show that the kernel method can be understood as a proper Bayesian approach in
the limit, where observations of the stochastic process are densely sampled in time.

3.17 Gaussian Processes – Past and Future?
Carl Edward Rasmussen (University of Cambridge, GB)
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Main reference C.E. Rasmussen, C.K. I. Williams, “Gaussian Processes for Machine Learning”, MIT Press,
ISBN-10 0-262-18253-X, 2006.

URL http://www.gaussianprocess.org/gpml

I attempt to give an overview of challenges of GPs in the past and what the situation
might look like in the future. I discussed 5 central theorems: 1) Uses of GPs; although GPs
are often used simply to model functions, their central advantage are situations where the
predictive error bars are central: probabilistic numerics, decision making, RL and active
learning among others. 2) Practical considerations: providing good code/toolboxes and
automation, covariance functions and inducing points. These questions haven’t really been
addressed satisfactorily. 3) Computational considerations: these questions have largely been
solved, especially inducing point methods are very good. 4) Covariance structures: we still
don’t have a clear idea how to implement more sophisticated covariance functions, or how
practically to do inference when the number of hyperparameters (statistically) prohibit ML
type 2 treatment. 5) Towards the future: can we construct little Lego brick GPs which can
take probabilistic inputs and can be assembled as stacked into useful structures?
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3.18 How to fit a simple model
Carl Edward Rasmussen (University of Cambridge, GB)
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In this talk, I present a paradox of suboptimal learning when fitting parameters of a simple
model class. We show how it can be beneficial to learn a complex model which is then
projected onto the simple model class rather than directly map from data to parameters.

3.19 String Gaussian Processes & Generalized Spectral Kernels
Stephen Roberts (University of Oxford, GB)
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In this talk we introduce ways of invoking highly non-stationary kernels. String GPs allow for
a domain to be broken into a series of conditionally independent Gaussian Processes, which
merely ensure continuity in f and f ′ at the boundaries. We show how this allows for not just
non-stationary modelling in the extreme, but also a competitive scaling to large data sets.
Using Lebesgue’s decomposition theorem, it is showed that the two major methodologies in
spectral kernel learning represent the continuous and singular components of the measure
and how this can be extended to more general cases using a bi-measure.

3.20 Kernels – Past and Future?
Bernhard Schölkopf (MPI für Intelligente Systeme – Tübingen, DE)
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Main reference A. Scibior, C.-J. Simon-Gabriel, I. O. Tolstikhin, B. Schölkopf, “Consistent Kernel Mean
Estimation for Functions of Random Variables”, in Proc. of Advances in Neural Information
Processing Systems 29 (NIPS 2016), pp. 1732–1740, Neural Information Processing Systems
Foundation Inc., 2016.
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The talk summarized the development of kernel methods for machine learning, focusing on
the main ideas and some future possibilities: introduction of p.d. kernels within the theory
of integral equations, their use in potential functions methods, in SVM, the general “kernel
trick”, the observation that kernels can be defined on arbitrary sets of objects, the link to
GPs, and finally the idea to represent distributions by kernel means, underlying kernel tests
such as MMD and kernel independence tests.

Kernel mean representations lend themselves well to the development of kernel methods
for probabilistic programming, i.e., methods for lifting functional operations defined for data
types to the same functional operations for distributions over these data types.
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3.21 Kernel Embeddings and Bayesian Quadrature
Dino Sejdinovic (University of Oxford, GB)
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The talk overviewed kernel embeddings as implicit representations of probability measures,
leading to the framework allowing nonparametric hypothesis testing and learning on dis-
tributions as inputs. In addition, the theory of kernel embeddings allows an alternative
interpretation of Bayesian Quadrature (BQ) which does not require invoking the Gaussian
process model which puts prior measures on known integrands. This interpretation leads to
a recipe for the method applicable where kernel embeddings are not analytically available,
while still matching the convergence rates of BQ.

3.22 Kernel Mean Embeddings
Carl-Johann Simon-Gabriel (MPI für Intelligente Systeme – Tübingen, DE)
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We started with a brief introduction to KMEs, that motivated the embedding function:

m : P → H

P 7→
∫
k(·, x) dP (x)

This embedding defines a distance dk between probability measures, which metrizes the usual
weak convergence if and only if k is continuous and m is injective. We then showed how to
systematically link the following three frequently used concepts: universal, characteristic and
strictly positive definite kernels. From these links, we concluded that KMEs can be extended
so as to embed not only probability measures, but also generalised measuers, aka. Schwartz-
distributions. Furthermore, these extensions can remain injective, if the original embedding
is injective. The sets of Schwartz-distributions can be seen as sets of measures and of their
(distributional) derivatives. Interestingly, the embedding of the derivative P ′ of P can be
easily deduced from the embedding of P . We hope that these extended embeddings will find
applications in numerical methods for differential equation solving.
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3.23 Random Fourier Features and Beyond
Bharath Sriperumbudur (Pennsylvania State University – University Park, US)
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In this talk, I will recall the primal and dual formulations of linear ridge regression and
kernel ridge regression as a motivating example to introduce feature approximations in the
primal setting. Kernel methods have traditionally focused on the dual setting as it does not
require the knowledge of the feature maps and also scales only with the sample size. To
improve the scalability of kernel methods, various approximations to the dual problem has
been studied in terms of incomplete Cholesky factorization, Nyström methods etc. Recently,
a Fourier feature based finite dimensional approximation has been introduced which enables
to work with the primal setting. In this talk, I will discuss the quality of approximation of
Fourier features and present results on the optimality of approximation rates. Then, I will
discuss various generalizations and directions of random feature approximations, some of
which include rates of approximation for derivatives of kernels, optimal approximation rates
for operator-valued kernels and possibility of other approximations to improve the scalability
of kernel methods in the primal setting.

3.24 Learning with Hierarchical Kernels
Ingo Steinwart (Universität Stuttgart, DE)
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Main reference I. Steinwart, P. Thomann, N. Schmid, “Learning with Hierarchical Gaussian Kernels”,
arXiv:1612.00824 [stat.ML], 2016.

URL http://arxiv.org/abs/1612.00824

We investigate iterated compositions of weighted sums of Gaussian kernels and provide an
interpretation of the construction that shows some similarities with the architectures of
deep neural networks. On the theoretical side, we show that these kernels are universal and
that SVMs using these kernels are universally consistent. We further describe a parameter
optimization method for the kernel parameters and empirically compare this method to SVMs,
random forests, a multiple kernel learning approach, and to some deep neural networks.
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3.25 Distribution Regression
Zoltán Szabó (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 3.0 Unported license
© Zoltán Szabó

Joint work of Zoltán Szabó, Bharath Sriperumbudur, Barnabás Póczos, Arthur Gretton
Main reference Z. Szabó, B.K. Sriperumbudur, B. Póczos, A. Gretton, “Learning Theory for Distribution

Regression”, Journal of Machine Learning Research 17(152):1–40, 2016.
URL http://jmlr.org/papers/v17/14-510.html

We focus on the distribution regression problem (DRP): we regress from probability measures
to Hilbert-space valued outputs, where the input distributions are only available through
samples (this is the ‘two-stage sampled’ setting). Several important statistical and machine
learning problems can be phrased within this framework including point estimation tasks
without analytical solution (such as entropy estimation), or multi-instance learning. However,
due to the two-stage sampled nature of the problem, the theoretical analysis becomes quite
challenging: to the best of our knowledge the only existing method with performance
guarantees to solve the DRP task requires density estimation (which often performs poorly in
practise) and the distributions to be defined on a compact Euclidean domain. We present a
simple, analytically tractable alternative to solve the DRP task: we embed the distributions
to a reproducing kernel Hilbert space and perform ridge regression from the embedded
distributions to the outputs. We prove that this scheme is consistent under mild conditions,
and construct explicit finite sample bounds on its excess risk as a function of the sample
numbers and the problem difficulty, which hold with high probability. Specifically, we
establish the consistency of set kernels in regression, which was a 17-year- old-open question,
and also present new kernels on embedded distributions. The practical efficiency of the
studied technique is illustrated in aerosol prediction using multispectral satellite images.

3.26 Stochastic (partial) differential equations and Gaussian processes
Simo Särkkä (Aalto University, FI)

License Creative Commons BY 3.0 Unported license
© Simo Särkkä

Stochastic partial differential equations and stochastic differential equations can be seen as
alternatives to kernels in representation of Gaussian processes. Linear operator equations give
spatial kernels, temporal kernels are equivalent to linear Itô stochastic differential equations.
The differential equation representations allow for the use of differential equation numerical
methods on Gaussian processes. For example, finite-differences, finite elements, basis function
methods, and Galerkin methods can be used. In temporal and spatio-temporal case we can
use linear-time Kalman filter and smoother approaches.
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3.27 Consistent Kernel Mean Estimation for Functions of Random
Variables

Ilya Tolstikhin (MPI für Intelligente Systeme – Tübingen, DE)

License Creative Commons BY 3.0 Unported license
© Ilya Tolstikhin

Joint work of Adam Scibior, Carl-Johann Simon-Gabriel, Ilya Tolstikhin, Bernhard Schölkopf
Main reference A. Scibior, C.-J. Simon-Gabriel, I. O. Tolstikhin, B. Schölkopf, “Consistent Kernel Mean

Estimation for Functions of Random Variables”, in Proc. of Advances in Neural Information
Processing Systems 29 (NIPS 2016), pp. 1732–1740, Neural Information Processing Systems
Foundation Inc., 2016.

URL http://papers.nips.cc/paper/6545-consistent-kernel-mean-estimation-for-functions-of-random-
variables

Given a random variable X and a function defined over the same space, we consider a problem
of constructing a flexible representation for a distribution of f(X). Following the approach
of [1], we propose to do so by using mean embeddings of probability distributions into
corresponding Reproducing Kernel Hilbert Spaces. Our new results show that a consistent
estimation of the mean embedding of X leads to a consistent estimation of the mean embedding
of f(X). In particular, this result shows the consistency of a new estimator proposed by [1].
Apart form asymptotic results we also provide a finite sample guarantees for Matern kernels
and discuss possible applications, including probabilistic programming.

References
1 B. Schölkopf, K. Muandet, K. Fukumizu, S. Harmeling, and J. Peters: “Computing func-

tions of random variables via reproducing kernel Hilbert space representations.” In: Stat-
istics and Computing 25(4), 755–766, 2015.

3.28 Uncertain inputs in Gaussian Processes
Mark van der Wilk (University of Cambridge, GB)

License Creative Commons BY 3.0 Unported license
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We introduced Sparse GP inference using Variational Bayesian inference. In this framework,
we aim to minimise the KL divergence of some easily computable approximate posterior to
the true posterior. The structure of the approximations lends itself really well to handling
uncertain inputs as well. The ability to do so is essential for the idea of making GPs “building
blocks” of Machine Learning, like neural network layers, if uncertainty is to be taken into
account. Finally we contrast the goal of uncertain input GPs to distribution regression from
the kernel literature. Could there be any way to combine the methods?

3.29 Frequentist properties of GP learning methods
Harry van Zanten (University of Amsterdam, NL)

License Creative Commons BY 3.0 Unported license
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GPs have been routinely used as priors in a variety nonparametric statistical problems,
including regression and classification. In this talk I gave a short overview of theoretical
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results that have been obtained during the last 10 years or so about the frequentist performance
of such methods.

The first wave of convergence rate results for nonparametric Bayes with fixed GP priors
showed that to achieve optimal rates, the regularity of the GP has to exactly match the
regularity of the function that is being estimated. These results apply to all the popular
kernels, including the Matern and the squared exponential, for instance. Since the true
regularity of the function of interest is typically not known, it is therefore necessary to have
adaptive procedures that automatically set tuning, or hyper parameters in an optimal way. A
second wave of results showed that both hierarchical and empirical Bayes methods can do this
properly, provided they are carefully constructed. The results show that matters are actually
a bit delicate. It is important for instance which priors are placed on hyper parameters, or
which hyper parameters are held fixed and which are tuned. The third class of results that I
discussed deal with the frequentist interpretation of nonparametric credible sets. Ideally, we
would like a 95% credible set to be a frequentist 95% confidence set as well and at the same
time have minimal, optimal size. It turns out that in the adaptive setting in which you don’t
know the regularity of the truth and use for instance hierarchical Bayes or empirical Bayes,
this is fundamentally impossible. Whatever priors you use, there are always ground truths
for which the credible sets are completely misleading. This means that confidence statements
in nonparametric settings are fundamentally conditional: in nonparametric problems you
can only believe credible sets, or error bars, if you really believe that your prior reflects the
fine properties of the truth.

Several fundamental issues concerning GP methods are not fully understood yet. One of
the most interesting ones is perhaps the issue of the fundamental limitations and possibilities
of distributed GP methods. Under which conditions can such methods achieve the same
optimal, adaptive performance as a centralised methods?

References
1 A. W. van der Vaart, and J. H. van Zanten: “Rates of contraction of posterior distributions

based on Gaussian process priors.” In: The Annals of Statistics, 1435–1463, 2008.
2 A.W. van der Vaart, and J. H. van Zanten: “Adaptive Bayesian estimation using a Gaussian

random field with inverse Gamma bandwidth.” In: The Annals of Statistics, 2655–2675,
2009.

3 A. W. van der Vaart, and J. H. van Zanten: “Information rates of nonparametric Gaussian
process methods.” In: Journal of Machine Learning Research 12, 2095–2119, 2011.

4 B. Szabó, A. W. van der Vaart, and J. H. van Zanten: “Frequentist coverage of adaptive
nonparametric Bayesian credible sets.” In: The Annals of Statistics 43(4), 1391–1428, 2015.

3.30 The ML Invasion of ABC
Richard Wilkinson (University of Sheffield, GB)

License Creative Commons BY 3.0 Unported license
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There are classes of models for which we can easily sample realizations from the model, but
where we cannot compute the likelihood function π(x|θ). These typically are in scientific
problems where the model represents our physical knowledge about the system. ABC methods
are a class of Monte Carlo algorithms for doing all inference using simulation from the model.
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In particular, they target some form of posterior distribution π̃(θ|D) ∝ π̃(D|θ)π(θ) where
the likelihood function used, π̃, may be very different from the true likelihood π.

In the past few years, some of the most interesting ideas in ABC have arisen in machine
learning groups. These include approaches for bypassing the need to choose a set of summary
statistics by instead using a kernel embedding & using the MMD metric to determine whether
the simulator output is comparable to the data, & the use of generative adversarial networks
as alternatives to pseudo-likelihood based approaches. There has also been significant work
using surrogate models for the likelihood function, for example, by using Gaussian processes
to approximate the likelihood function & then using the GP in a MCMC inference scheme
to find the posterior.

4 Working groups

4.1 Generative Models
David Duvenaud (Toronto, CA)

License Creative Commons BY 3.0 Unported license
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Sebastian Nowizin introduced variational autoencoders, amortized inference, and the repara-
meterization trick. He said that kernel MMD is a good way to introduce non-probabilistic
practitioners to the probabilistic way of doing things, because all you need to do is simply
add noise to the input of whatever generative procedure and a diversity term on pairs of
outputs to the loss. He says it’s a lot easier to implement and get to work than GAN training.

Arthur, Ilya and Bernhard had a long discussion about the relationships between kernel
MMD, VAEs and GANs. Ilya suggests that there is an opportunity for theoreticians to clean
up and organize all the tricks that are required for training GANs.

Sebastian makes the point that modeling natural images is mainly interesting of a proxy
task for modeling high-dimensional densities, and it’s a task where humans can evaluate the
quality of samples.

We talked about how the blurry images of VAEs can be address by using more sophisticated
likelihoods, as in https://arxiv.org/pdf/1611.05013v1.pdf.

Krikamol asks if we can incorporate MCMC into VAEs or GANs, and I mention that
Max Welling has a paper that does this: https://arxiv.org/abs/1410.6460.

We also talked about a paper by Roger Grosse that attempts to properly evaluate the
predictive probability of VAEs and GANs: https://openreview.net/pdf?id=B1M8JF9xx.

I also suggest there might be room for kernel people to help with the new “Operator
Variational Inference” method: https://arxiv.org/pdf/1610.09033.pdf.

Then we broke for coffee.
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4.2 Limitations of GPs / non-Gaussian-Processes
Stefan Harmeling (Universität Düsseldorf, DE)

License Creative Commons BY 3.0 Unported license
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Participants: Carl Rasmussen, Hannes Nickisch, Manfred Opper, Marc Deisenroth Maren
Mahsereci, Mark van der Wilk, Michael Osborne, Philipp Hennig, Roman Garnett, Simo
Särkkä, Stefan Harmeling, Stephen Roberts.

1. Question: Are stacked or deep GPs useful extensions of GPs?
Answer: Yes, stacked or deep GPs are working and they are useful, since they bring new
possibilities a GP has not. Their deep structure might also lead to fewer parameters.
However, learning the parameters of stacked or deep GPs might require lots of data.

2. Question: How can we formulate non-GPs on functions spaces?
Answer: (i) The concatenation of two function-valued random variables is usually not
a GP distribution. Or even simpler, (ii) a function-valued random variable can be
concatenated with a nonlinear function to obtain a function-valued random variable that
follows no longer a GP distribution. With such tricks we can impose constraints on
function distributions such as monotonicity, convexity, non-negativity, etc. However, for
lots of data the posterior GP might fulfill the constraints with high probability.
We can also apply nonlinear functionals to the GPs (as Hilbert space elements), e.g., we
can use GPs as inputs to nonlinear ordinary or partial differential equations to create
non-Gaussian process outputs. The scaled mixtures of probability measures is one way
which leads to e.g. Student-t and related processes. Using stochastic processes as inputs
to other processes (as in deep GPs) also leads to non-Gaussian processes.

3. Question: In practice a large number of hyper-parameters make inference harder. Can
we tie parameters to the rescue?
Answer: It might help as is suggested by deep learning, where even randomly tying
parameters can improve performance. Another difficulty of inference might be a situation,
in which the input data lies on a low-dimensional manifold. This could lead to uncertainty
off the manifold which might be sometimes problematic. Deep learning suggests the
intuition that increasing the number of parameters can actually make optimisation of
those parameters easier. While this might hold for Gaussian process models with lots of
hyperparameters, we don’t have much assurance that this wouldn’t result in overfitting.

4. Question: What is a simple example of a family of functions that a GP can not model
properly?
Answer: The set of step functions (i.e. with exactly one step at an unknown location) can
not be the support of a GP distribution in function space. So using covariance functions
(kernels) to specify distributions in function space is limited. It is either that a GP
spreads its mass too thinly, or spreads it too wide.

One other point: Perhaps certain prior distributions are hard to model using Gaussian
processes. However, as data comes in, the posterior of a non-Gaussian process might be easy
to model using a GP. This has the flavour of variational inference and has more desirable
properties than relying on the data to constrain a GP prior.
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Summary

1. Stacked and deep GPs are useful!
2. Create non-GPs e.g. by concatenation.
3. Lots of parameters make inference harder.
4. There is no GP for step functions.

4.3 The separation between Kernels/GPs and Deep Learning
Sebastian Nowozin (Microsoft Research UK – Cambridge, GB)

License Creative Commons BY 3.0 Unported license
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Motivation: what are the known success cases and failure modes of kernels and deep learning
methods? Which applications are they best suited for?

Practical Observations. Bayesian probabilistic models provide a clean framework for think-
ing about applications such as one-shot learning and transfer learning; increasingly deep
learning methods attempt to achieve the same applications where uncertainty is important,
often successfully.

Gaussian processes are well established for regression problems, in particular in the
small data setting. For example, in sample-efficient reinforcement learning. Similarly, in
spatio-temporal modeling they work well.

Building kernels for high-dimensional input data (d>10 or d>100) or heterogeneous data
is difficult. For Gaussian processes, performing hyperparameter optimization is challenging
when there are a large number of hyperparameters. Perhaps stochastic optimization methods
or variational inference for the hyperparameters can improve this.

Deep learning offer a flexible framework of overparameterized functions. They place
representation learning first in terms of an explicit feature map, which allows representation
to be useful for different applications.

Kernel methods still dominate in testing, such as with maximum mean discrepancy
(MMD), because guarantees are important in hypothesis testing. Kernel methods are also
popular in structured input settings, where we handle strings or graph structures, for example
in bioinformatics.

In Bayesian optimization Gaussian processes are successful but other probabilistic models
are possible. Bayesian neural networks may be an alternative but there are computational
issues as well.

The deep learning community also spends a good amount of engineering and efficient
implementation; does the GP community spend the same amount of effort?

Kernel methods provide mathematical tools to potentially prove guarantees within control
applications.

Kernel methods are also easy to automate and predictable both in runtime and in the
influence of parameters.

Computational Issues. Deep learning methods are perhaps also really successful because
they are scalable; therefore, computational issues may be an important aspect of practical
success.
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Fast GPs scale with a flexible parameters, the number of inducing points. The variational
approach is one approach but there are perhaps more efficient approaches. Yet, they remain
much less scalable than deep learning methods.

Kernel methods (e.g. SVM) have also achieved better scalability and now can be used for
up to 10M data points with controlled and guaranteed approximation guarantees. Popular
packages such as scikit-learn also scales to 500k points without practical difficulties.

Representation power of functions: deep learning can represent complicated functions,
sparse GPs with inducing points cannot. Perhaps there are interesting extensions of the
inducing point approach to enhance the representational power of GPs.

Prediction: neural network prediction is fast, but for GPs prediction is expensive.
Dataset size: small data is good for kernel methods, big data is good for deep learning.

Theoretical Limitations. Standard Gaussian processes have some known limitations.
What guarantees can be provided for the error bars of a GP? They correspond to posterior

credible intervals, but therefore are conditioned on the assumed model class. Non-parametric
uncertainty quantification is not possible in general (results of Richard Nickl). Do we care
about the prediction accuracy or about the calibration properties of the error bard? Are
error bars sufficient in practice, even if we know the model assumptions to be wrong? From
the Bayesian viewpoint error bars depend only on the modeling assumptions, so we need to
question modeling assumptions if we are not satisfied with the quality of the error bars.

Why does deep learning work in very high dimensions? Are there fundamental assumptions
about real world densities that we have not understood yet?

Classification is still difficult with Gaussian process models.
There are two additional observations regarding kernel methods versus deep learning:

1. Degree-of-freedom bottleneck: a GP has effective N parameters to determine a function,
where N is the number of samples. A deep network has a potentially larger number.

2. Kernel-information-bottleneck: a kernel consists of N*N scalars. If every instance contains
a large amount of information (e.g. a megapixel image), more information flows to a deep
neural network system than to a kernel method.

Deep Kernel Methods versus Deep Learning. Kernel methods typically use a handcrafted
kernel, whereas deep learning methods learn the representation by data.

Practical advantages of non-parametric methods are most likely not existing; the advantage
is in theory, being able to prove how to increase function class as the data grows in order to
guarantee the right function is recovered.

Deep learning methods can also represent uncertainty either by directly fitting a variance
or by using Bayesian neural networks.

Main difficulties in deep kernel methods is in scalability. Main disadvantage compared to
deep neural networks is the difficulty of running them on GPU, for example for computing
covariance matrices as part of performing a deep kernel computation, or for computing the
posterior variance for a given data point. Do deep GPs scale to many layers? This is unclear.

Optimization problems arising in deep neural networks and in deep learning are the same,
for example initialization and optimization.
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4.4 Connections and Differences between Kernels and GPs
Dino Sejdinovic (University of Oxford, GB)
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The discussion recognized that there are shared mathematical foundations of the frequentist
kernel methods and Gaussian Processes (GP). These foundations are based on the theory
of Gaussian Hilbert spaces and the fact that the notions of orthogonality and independence
coincide on the L2-spaces of gaussian random variables. There is a need for a dictionary
translating different concepts within these two communities using this shared mathematical
framework – there is potentially lots to be gained from these different interpretations. As an
example, we discussed the frequentist interpretation of the standard GP posterior covariance.
It turns out this can be viewed as an inner product between the component of features
orthogonal to the data subspace, i.e. similarity not explained by the data. There is also a
“worst-case error” over the reproducing kernel Hilbert space (a specified class of functions
with the encoded regularity) interpretation, which can be used to quantify uncertainty.
Similar connection exists between maximum mean discrepancy (MMD) and the GP posterior
variance in Bayesian quadrature.

Main similarities arise in standard supervised learning settings (e.g. kernel ridge regression
and GP regression are closely related) but the connections in unsupervised settings are less
well understood. For example, are there Bayesian counterparts to kernel PCA or density
estimation using infinite dimensional exponential families? How are they related?

Another point of discussion revolved around the result that the samples from GP almost
surely do not lie in the RKHS with the corresponding covariance kernel, even though the
posterior mean does. This has important implications on model specification within the two
frameworks. What are useful ways to think about this?

It was also reiterated that the two frameworks have different philosophies, with the
frequentist focus on risk and the GP framework focusing on describing posterior measures
and being oblivious to the task that follows it. Thus, there are important differences in
the decision making process and since the two frameworks generally do different things
with the same mathematical objects and interpret them differently – a caution should be
exercised when translating these mathematical objects and this process may in some cases
be misleading.
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