
Report from Dagstuhl Seminar 17051

Theory and Applications of Behavioural Types
Edited by
Simon Gay1, Vasco T. Vasconcelos2, Philip Wadler3, and
Nobuko Yoshida4

1 University of Glasgow, GB, simon.gay@glasgow.ac.uk
2 University of Lisbon, PT, vmvasconcelos@ciencias.ulisboa.pt
3 University of Edinburgh, GB, wadler@inf.ed.ac.uk
4 Imperial College London, GB, yoshida@doc.ic.ac.uk

Abstract
This report documents the programme and the outcomes of Dagstuhl Seminar 17051 “Theory
and Applications of Behavioural Types”. Behavioural types describe the dynamic aspects of
programs, in contrast to data types, which describe the fixed structure of data. Perhaps the
most well-known form of behavioural types is session types, which are type-theoretic specifica-
tions of communication protocols. More generally, behavioural types include typestate systems,
which specify state-dependent availability of operations; choreographies, which specify collective
communication behaviour; and behavioural contracts.

In recent years, research activity in behavioural types has increased dramatically, in both
theoretical and practical directions. Theoretical work has explored new relationships between
established behavioural type systems and areas such as linear logic, automata theory, process
calculus testing theory, dependent type theory, and model-checking. On the practical side, there
are several implementations of programming languages, programming language extensions, soft-
ware development tools, and runtime monitoring systems, which are becoming mature enough to
apply to real-world case studies.

The seminar brought together researchers from the established, largely European, research
community in behavioural types, and other participants from outside Europe and from related
research topics such as effect systems and actor-based languages. The questions that we intended
to explore included:

How can we understand the relationships between the foundations of session types in terms
of linear logic, automata, denotational models, and other type theories?
How can the scope and applicability of behavioural types be increased by incorporating ideas
and approaches from gradual typing and dependent type theory?
What is the relationship, in terms of expressivity and tractability, between behavioural types
and other verification techniques such as model-checking?
What are the theoretical and practical obstacles to delivering behavioural types to software
developers in a range of mainstream programming languages?
What are the advantages and disadvantages of incorporating behavioural types into standard
programming languages or designing new languages directly based on the foundations of
session types?
How can we evaluate the effectiveness of behavioural types in programming languages and
software development?

Seminar January 29–3, 2017 – http://www.dagstuhl.de/17051
1998 ACM Subject Classification D.1.1 Applicative (Functional) Programming, D.1.3 Concur-

rent Programming, D.2.4 Software/Program Verification, D.3.1 Formal Definitions and The-
ory, D.3.3 Language Constructs and Features, F.3.2 Semantics of Programming Languages

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Theory and Applications of Behavioural Types, Dagstuhl Reports, Vol. 7, Issue 1, pp. 158–189
Editors: Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/17051
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagstuhl-reports/
http://www.dagstuhl.de

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 159

Keywords and phrases Behavioural Types, Programming Languages, Runtime Verification, Type
Systems

Digital Object Identifier 10.4230/DagRep.7.1.158
Edited in cooperation with Tzu-Chun Chen

1 Executive Summary

Simon Gay
Vasco T. Vasconcelos
Philip Wadler
Nobuko Yoshida

License Creative Commons BY 3.0 Unported license
© Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida

Behavioural types describe dynamic aspects of a program, in contrast to data types, which
describe the fixed structure of data. Behavioural types include session types, typestate,
choreographies, and behavioural contracts. Recent years have seen a substantial increase in re-
search activity, including theoretical foundations, design and implementation of programming
languages and tools, studies of the relationships between different forms of behavioural types,
and studies of the relationships between behavioural types and more general type-theoretic
ideas such as gradual typing and dependent typing. The aim of this seminar was to bring
together researchers on behavioural types and related topics, in order to understand and
advance the state of the art.

Many of the participants have been active in COST Action IC1201: Behavioural Types
for Reliable Large-Scale Software Systems (BETTY), a European research network on
behavioural types. Other participants were invited from related research areas and from
outside Europe, in order to broaden the scope of the seminar and to make connections
between communities.

The programme for the first half of the week was planned in advance, with priority given
to two kinds of presentation: (1) demonstrations of programming language implementations
and tools, and (2) presentations by participants from outside the BETTY community. The
programme for the second half of the week evolved during the seminar, with more emphasis
on group discussion sessions.

The seminar was judged to be a success by all the participants. At least one conference
submission resulted from collaboration started during the week, other existing collaborations
made substantial progress, and several participants planned a submission to the EU RISE
funding scheme. We intend to propose a follow-on seminar on a similar topic in the future.

This report contains the abstracts of the talks and software demonstrations, and summaries
of the group discussion sessions.

17051

http://dx.doi.org/10.4230/DagRep.7.1.158
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

160 17051 – Theory and Applications of Behavioural Types

2 Table of Contents

Executive Summary
Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 159

Overview of Talks
Towards Inferring Session Types
Gul Agha . 163

Effects as Capabilities
Nada Amin . 163

Observed Communication Semantics for Classical Processes
Robert Atkey . 165

Stateful Programming in Idris
Edwin Brady . 165

Behavioral Types, Type Theory, and Logic
Luis Caires . 166

Session Types for Fault-tolerant Distributed Systems
Patrick Thomas Eugster . 166

Statically Detecting (Dead)locks in the Linear Pi-calculus
Adrian Francalanza . 166

Gradual Typing
Ronald Garcia . 167

Practical Affine Types and Typestate-Oriented Programming
Philipp Haller . 167

DCR Tools
Thomas Hildebrandt . 168

Using Session Types for Reasoning About Boundedness in the Pi-Calculus
Hans Hüttel . 168

Session-ocaml: A Session-based Library with Polarities and Lenses
Keigo Imai, Nobuko Yoshida, and Shoji Yuen . 169

Lightweight Functional Session Types
J. Garrett Morris . 169

Composable Actor Behaviour
Roland Kuhn . 169

Adaptive Interaction-Oriented Choreographies in Jolie
Ivan Lanese . 170

Failure-Aware Protocol Programming
Hugo-Andrés López . 170

Chaperone Contracts for Higher-Order Sessions
Hernán Melgratti . 170

Static Deadlock Detection for Go
Nicholas Ng and Nobuko Yoshida . 171

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 161

Session Types with Linearity in Haskell
Dominic Orchard and Nobuko Yoshida . 172

A Simple Library Implementation of Binary Sessions
Luca Padovani . 172

Concurrent TypeState-Oriented Programming
Luca Padovani . 172

Precise Subtyping
Jovanka Pantovic . 173

Concurrent C0
Frank Pfenning . 173

Manifest Sharing with Session Types
Frank Pfenning . 173

Detecting Concurrency Errors of Erlang Programs via Systematic Testing
Konstantinos Sagonas . 174

Lightweight Session Programming in Scala
Alceste Scalas . 174

Programming Protocols with Scribble and Java
Alceste Scalas . 175

Partial Type Equivalences for Verified Dependent Interoperability
Nicolas Tabareau . 175

Gradual Session Types
Peter Thiemann . 176

Choreographies, Modularly: Components for Communication Centred Programming
Hugo Torres Vieira . 176

From Communicating Machines to Graphical Choreographies
Emilio Tuosto . 177

Fencing off Go
Nobuko Yoshida . 177

Undecidability of Asynchronous Session Subtyping
Nobuko Yoshida . 177

Working groups
Group Discussion: Integrating Static and Dynamic Typing
Laura Bocchi . 178

Group Discussion: Behavioural Types in Non-Communication Domains
Simon Gay . 179

Group discussion: Dependent Session Types
Simon Gay . 181

Group Discussion: Future Activities and Funding Possibilities
Simon Gay . 182

Group Discussion: Session Sharing and Races
Simon Gay . 183

17051

162 17051 – Theory and Applications of Behavioural Types

Group Discussion: Standardisation of a Programming Language with Session Types
Simon Gay . 184

Group Discussion: Behavioural Types for Mainstream Software Development
Philipp Haller . 185

Group Discussion: Educational Resources for Behavioural Types
Hugo Torres Vieira . 186

Open problems
A Meta Theory for Testing Equivalences
Giovanni Tito Bernardi . 188

Participants . 189

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 163

3 Overview of Talks

3.1 Towards Inferring Session Types
Gul Agha (University of Illinois – Urbana-Champaign, US)

License Creative Commons BY 3.0 Unported license
© Gul Agha

In sequential systems, programmers are responsible for specifying a total order of events in a
system. This results in overly constraining when events may occur. In contrast, concurrent
systems allow nondeterministic interleaving of actions at autonomous actors. Without
additional constraints on the order of events at participating actors, an interleaving may
lead to incorrect operations – for example, one that results in a deadlock. Moreover, the
correct order of events at an actor is dependent on what interaction it is participating in. For
example, an actor may be in the role of a client in one interaction protocol and the role of a
backup server in another. To facilitate such flexibility, synchronization should be specified
separately from the functional behavior of an actor – in terms of its interface rather than
its representation. I will argue for the use of synchronization constraints as a user friendly
language whose semantics is given by multiparty session types. Moreover, I propose that it
is possible to infer session types with a degree of confidence by analyzing ordering patterns
in traces of program execution: if an ordering pattern is repeatedly observed in such traces,
we can impose the ordering to avoid Heisenbugs that may occur from rarer schedules that
violate the observed order.

3.2 Effects as Capabilities
Nada Amin (EPFL – Lausanne, CH)

License Creative Commons BY 3.0 Unported license
© Nada Amin

Joint work of Fengyun Liu, Nicolas Stucki, Sandro Stucki, Martin Odersky

It seems quite natural that one should track effects by means of a static typing discipline,
similarly to what is done for arguments and results of functions. After all, to understand a
function’s contract and how it can be composed, knowing its effects is just as important as
knowing the types of its arguments and result. Yet after decades of research [3, 4, 6, 5, 7, 8,
11, 13], why are effect systems not as mainstream as type systems?

The static effect discipline with the most widespread use is no doubt Java’s system of
checked exceptions. Ominously, they are now widely regarded as a mistake [2]. One frequent
criticism is about the notational burden they impose. Throws clauses have to be laboriously
threaded through all call chains. All too often, programmers make the burden go away by
catching and ignoring all exceptions that they think cannot occur in practice. In effect, this
disables both static and dynamic checking, so the end result is less safe than if one started
with unchecked exceptions only. Another common problem of Java’s exceptions is lack of
polymorphism: Often we would like to express that a function throws the same exceptions as
the (statically unknown) functions it invokes. Effect polymorphism can be expressed in Java
only at the cost of very heavy notation, so it is usually avoided. Java’s system of checked
exceptions may be an extreme example, but it illustrates the general pitfalls of checking
effects by shifting the burden of tracking effects to the programmer.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

164 17051 – Theory and Applications of Behavioural Types

We are investigating a new approach to effect checking, that flips the requirements around.
The central idea is that instead of talking about effects we talk about capabilities. For
instance, instead of saying a function “throws an IOException” we say that the function
“needs the capability to throw an IOException”. Capabilities are modeled as values of some
capability type. For instance, the aforementioned capability could be modeled as a value of
type CanThrow[IOException]. A function that might throw an IOException needs to have
access to an instance of this type. Typically it takes an argument of the type as a parameter.

It turns out that that the treatment of effects as capabilities gives a simple and natural
way to express “effect polymorphism” – the ability to write a function once, and to have it
interact with arguments that can have arbitrary effects. Since capabilities are just function
parameters, existing language support for polymorphism, such as type abstraction and
subtyping, is readily applicable to them. But there are two areas where work is needed to
make capabilities as effects sound and practical.

First, when implemented naively, capabilities as parameters are even more verbose than
effect declarations such as throws clauses. Not only do they have to be declared, but they
also have to be propagated as additional arguments at each call site. We propose to make
use of the concept of implicit parameters [9, 10, 14] to cut down on the boilerplate. Implicit
parameters make call-site annotations unnecessary, but they still have to be declared just
like normal parameters. To avoid repetition, we propose to investigate a way of abstracting
implicit parameters into implicit function types. With implicits, the approach provides the
common case of propagation for free, and an easy migration path from impure to pure.

Second, there is one fundamental difference between the usual notions of capabilities and
effects: capabilities can be captured in closures. This means that a capability present at
closure construction time can be preserved and accessed when the closure is applied. Effects
on the other hand, are temporal: it generally does make a difference whether an effect occurs
when a closure is constructed or when it is used. We propose to address this discrepancy by
introducing a “pure function” type, instances of which are not allowed to close over effect
capabilities.

In this talk, we report on work in progress, exploring the idea of effects as capabilities in
detail. We have worked on minimal formalizations for implicit parameters and pure functions
and studied encodings of higher-level language constructs into these calculi. Based on the
theoretical modelization we are developing a specification for adding effects to Scala.

References
1 Lewis, Jeffrey R and Launchbury, John and Meijer, Erik and Shields, Mark B. Implicit

parameters: Dynamic scoping with static types. Proceedings of POPL, 2000.
2 Thomas Whitmore. Checked exceptions, Java ’s biggest mistake. Literal Java Blog, 2015.
3 Gifford, David K and Lucassen, John M. Integrating functional and imperative program-

ming. Proceedings of POPL, 1986.
4 Lucassen, John M and Gifford, David K. Polymorphic effect systems. Proceedings of POPL,

1988.
5 Talpin, Jean-Pierre and Jouvelot, Pierre. The type and effect discipline. Information and

computation, 1994.
6 Talpin, Jean-Pierre and Jouvelot, Pierre. Polymorphic type, region and effect inference.

Journal of Functional Programming, 1992.
7 Wadler, Philip and Thiemann, Peter. The marriage of effects and monads. ACM Transac-

tions on Computational Logic, 2003.
8 Filinski, Andrzej. Monads in Action. Proceedings of POPL, 2010.

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 165

9 Odersky, Martin. Poor Man’s Typeclasses. Presentation to IFIP WG 2.8, 2006. http://
lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf

10 Oliveira, Bruno CdS and Moors, Adriaan and Odersky, Martin. Type classes as objects and
implicits. Proceedings of OOPSLA, 2010.

11 Rytz, Lukas and Odersky, Martin and Haller, Philipp. Lightweight polymorphic effects.
Proceedings of ECOOP, 2012.

12 Ben Lippmeier. Type Inference and Optimisation for an Impure World. PhD Thesis, Aus-
tralian National University, 2010.

13 Andrej Bauer and Matija Pretnar. Programming with algebraic effects and handlers. J. Log.
Algebr. Meth. Program. 2015.

14 Oliveira, Bruno C.d.S. and Schrijvers, Tom and Choi, Wontae and Lee, Wonchan and Yi,
Kwangkeun. The Implicit Calculus: A New Foundation for Generic Programming. Proceed-
ings of PLDI, 2012.

3.3 Observed Communication Semantics for Classical Processes
Robert Atkey (University of Strathclyde – Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Robert Atkey

URL http://materials.dagstuhl.de/files/17/17051/17051.RobertAtkey.Slides.pdf

Classical Linear Logic (CLL) has long inspired readings of its proofs as communicating
processes. Wadler’s CP calculus is one of these readings. Wadler gave CP an operational
semantics by selecting a subset of the cut-elimination rules of CLL to use as reduction
rules. This semantics has an appealing close connection to the logic, but does not resolve
the status of the other cut-elimination rules, and does not admit an obvious notion of
observational equivalence. We propose a new operational semantics for CP based on the
idea of observing communication, and use this semantics to define an intuitively reasonable
notion of observational equivalence. To reason about observational equivalence, we use the
standard relational denotational semantics of CLL. We show that this denotational semantics
is adequate for our operational semantics. This allows us to deduce that, for instance, all the
cut-elimination rules of CLL are observational equivalences.

3.4 Stateful Programming in Idris
Edwin Brady (University of St. Andrews, GB)

License Creative Commons BY 3.0 Unported license
© Edwin Brady

I present a library for giving precise types to interactive, stateful programs in Idris, a
dependently typed pure functional programming language. I show how to describe state
transition systems in types, capturing pre- and post-conditions of operations, and dealing
with errors and feedback from the environment. I demonstrate with socket programming,
and an asynchronous server for a simple network protocol.

17051

http://lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf
http://lampwww.epfl.ch/~odersky/talks/wg2.8-boston06.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.RobertAtkey.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

166 17051 – Theory and Applications of Behavioural Types

3.5 Behavioral Types, Type Theory, and Logic
Luis Caires (New University of Lisbon, PT)

License Creative Commons BY 3.0 Unported license
© Luis Caires

Joint work of Luis Caires, Frank Pfenning, Bernardo Toninho, Jorge Perez, Joao Seco

We review a collection of recent work providing a logical Curry-Howard foundation to the
notion of behavioural type, useful to describe intensional usage protocols for state-full objects
such as e.g., sessions. In particular we show how the basic linear logic interpretation discovered
by Caires and Pfenning can be naturally extended to incorporate dependent types, allowing us
to express higher order processes, value dependent behaviour, assertions, and proof carrying
code; polymorphic types, allowing us to express behavioural genericity, and sums, allowing
us to express non-determinism, and other typing constructs, relevant for typing shared state
concurrency. We conclude by arguing that such linear logic interpretations provide a way of
rooting the notion of behavioural type, and the notion of session type in particular, in the
common house of Type Theory, from which the most fundamental programming language
typing concepts have also emerged.

3.6 Session Types for Fault-tolerant Distributed Systems
Patrick Thomas Eugster (TU Darmstadt, DE)

License Creative Commons BY 3.0 Unported license
© Patrick Thomas Eugster

Distributed systems are hard to get right, due to the possibility of partial failures where
certain components or participants fail while others continue to operate. Session types are
an appealing approach to aid programmers in reasoning about complex interaction in the
presence of partial failures, yet have so far focused more on high-level programming models
such as Web Services, where many failures are abstracted. Our contributions to address the
problem in this talk are twofold. First we propose a set of abstractions allowing programmers
to describe the handling of failures of different kinds. Together with information about the
underlying system model we infer how and where to notify participants of failures in order
to achieve a consistent failure handling as described by programmers. Second, we discuss the
integration of failure handling mechanisms with failure masking approaches. In the latter
context, we focus on supporting different broadcast models in order to support redundancy.

3.7 Statically Detecting (Dead)locks in the Linear Pi-calculus
Adrian Francalanza (University of Malta – Msida, MT)

License Creative Commons BY 3.0 Unported license
© Adrian Francalanza

Joint work of Adrian Francalanza, Marco Giunti, Antonio Ravara

We propose an alternative approach to the study of type-based (dead)lock analysis in the
context of the linear pi-calculus. Instead of targeting the class of (dead)lock-free processes, we
study type-based techniques for statically approximating the class of (dead)locked processes.
We develop type-based analyses that return lists of problematic channels on which (dead)locks

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 167

occur once the analysed program is executed. Such information is arguably more useful in
the case of erroneous programs, because it directs the programmer to the source of the error.
Another distinguishing aspect of our work is that the semantic guarantees of our type-based
analysis ensure verdict precision (i.e. the absence of false negatives), but allow for occasionally
classifying erroneous programs as bug-free. This differs from more mainstream static analysis
approaches that tend to favour soundness, but is more useful for automated error resolution
procedures where, ideally, the analysed programs are not be modified unnecessarily.

3.8 Gradual Typing
Ronald Garcia (University of British Columbia – Vancouver, CA)

License Creative Commons BY 3.0 Unported license
© Ronald Garcia

Programming language design has recently exhibited a recurring trend: languages perceived
as “statically typed” are beginning to exhibit “dynamic typing” features, while “dynamically
typed” languages are exhibiting the converse. The theory of Gradual Typing has been
developed to help provide a foundation for languages that wish to exhibit similar combinations
while ensuring sound reasoning principles. This talk gives a high-level introduction to the
concepts underlying gradual typing, with some historical context, some recent work on
developing a general framework for developing gradually typed languages, and a list of open
challenges that pertain to the behavioural types community.

3.9 Practical Affine Types and Typestate-Oriented Programming
Philipp Haller (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Philipp Haller

URL http://materials.dagstuhl.de/files/17/17051/17051.PhilippHaller.Slides1.pdf

Aliasing is a known source of challenges in the context of imperative object-oriented languages,
which have led to important advances in type systems for aliasing control. However, their
large-scale adoption has turned out to be a surprisingly difficult challenge. While new
language designs show promise, they do not address the need of aliasing control in existing
languages.

This talk presents a new approach to isolation and uniqueness in an existing, widely-used
language, Scala. The approach is unique in the way it addresses some of the most important
obstacles to the adoption of type system extensions for aliasing control. First, adaptation of
existing code requires only a minimal set of annotations. Only a single bit of information
is required per class. Surprisingly, the talk shows that this information can be provided
by the object-capability discipline, widely-used in program security. The type system is
implemented for the full Scala language, providing, for the first time, a sound integration
with Scala’s local type inference. Finally, we present an ongoing effort to generalize the type
system to typestates.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.PhilippHaller.Slides1.pdf

168 17051 – Theory and Applications of Behavioural Types

3.10 DCR Tools
Thomas Hildebrandt (IT University of Copenhagen, DK)

License Creative Commons BY 3.0 Unported license
© Thomas Hildebrandt

Joint work of Thomas Hildebrandt, Søren Debois, Tijs Slaats, Morten Marquard
Main reference S. Debois, T.T. Hildebrandt, M. Marquard, T. Slaats, “The DCR Graphs Process Portal”, in Proc.

of the BPM Demo Track 2016, pp. 7–11, 2016.
URL http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper2.pdf

The presentation give a quick tour of the tools for modelling and simulating Dynamic
Condition Response (DCR) graphs. DCR graphs is a declarative process notation for the
modelling of flexible adaptable choreographies developed through a number of research
projects jointly with industry with the aim to support the design, analysis and execution of
flexible and adaptable workflow and business processes. Formally, DCR graphs generalise
labelled event structures to allow (1) finite descriptions of infinite behaviour, (2) represent
mandatory (pending) events that must eventually happen or become in conflict with events
that happened, (3) allow dynamic, asymmetric conflict. Regarding expressiveness, the core
model can express exactly the languages that are a union of regular and omega-regular
languages (if one ignore true concurrency) – but the model maps to true concurrency models
such as event structures. The presentation focus on the tools that have been developed at
the IT University of Copenhagen (http://dcr.tools) and the industry partner Exformatics
(http://dcrgraphs.net). The development of the two tools also demonstrate a model for
transferring research to industry, where the academic tool serves as a means to demonstrate
new developments that later are transferred to the industrial tool.

3.11 Using Session Types for Reasoning About Boundedness in the
Pi-Calculus

Hans Hüttel (Aalborg University, DK)

License Creative Commons BY 3.0 Unported license
© Hans Hüttel

Depth-bounded and name-bounded processes are pi-calculus processes for which some of
the decision problems that are undecidable for the full calculus become decidable. P is
depth-bounded at level k if every reduction sequence for P contains successor processes with
at most k active nested restrictions. P is name-bounded at level k if every reduction sequence
for P contains successor processes with at most k active bound names. We use binary session
types to formulate two type systems that give sound characterizations of these properties: If
a process is well-typed, it is depth-bounded, respectively name-bounded.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper2.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper2.pdf
http://ceur-ws.org/Vol-1789/bpm-demo-2016-paper2.pdf
http://dcr.tools
http://dcrgraphs.net
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 169

3.12 Session-ocaml: A Session-based Library with Polarities and Lenses
Keigo Imai (Gifu University, JP), Nobuko Yoshida (Imperial College London, GB), and
Shoji Yuen (Nagoya University, JP)

License Creative Commons BY 3.0 Unported license
© Keigo Imai, Nobuko Yoshida, and Shoji Yuen

Main reference K. Imai, N. Yoshida, S. Yuen, “Session-ocaml: a session-based library with polarities and lenses”,
Manuscript, 2017.

URL http://www.ct.info.gifu-u.ac.jp/~keigoi/session-ocaml/

We propose session-ocaml, a novel library for session-typed concurrent/distributed program-
ming in OCaml. Our technique is based only on the parametric polymorphism, hence
common to various statically-typed programming languages. The key ideas are follows:
(1) The polarised session types gives an alternative formulation of duality enabling OCaml
to infer the appropriate session type in a session with a reasonable notational overhead.
(2) A parameterized monad with lenses enables full session type implementation including
delegation. We show an application of session-ocaml including an SMTP client and a database
server.

3.13 Lightweight Functional Session Types
J. Garrett Morris (University of Edinburgh, GB)

License Creative Commons BY 3.0 Unported license
© J. Garrett Morris

Joint work of Sam Lindley, J. Garrett Morris
Main reference S. Lindley, J.G. Morris, “Lightweight Functional Session Types”, in “Behavioural Types: from

Theory to Tools”, River Publishers, 2017; pre-print available from author’s webpage.
URL http://homepages.inf.ed.ac.uk/slindley/papers/fst.pdf

Row types provide an account of extensibility that combines well with parametric poly-
morphism and type inference. We discuss the integration of row types and session types in a
concurrent functional programming language, and how row types can be used to describe
extensibility in session-typed communication.

3.14 Composable Actor Behaviour
Roland Kuhn (Actyx AG – München, DE)

License Creative Commons BY 3.0 Unported license
© Roland Kuhn

URL http://materials.dagstuhl.de/files/17/17051/17051.RolandKuhn.Slides.pdf

This presentation focuses on the composition of the behavior of distributed components–
modeled using Actors–from reusable pieces. Allowing abstraction and type-safety to be
applied within these components for operations that are fundamentally non-local is seen as a
prerequisite for offering safe construction of distributed systems in a widely and practically
applicable programming tool.

Please see the linked article for an introduction to the tool (based on Scala and Akka);
pointers to the source code and how to try it out are given towards the end.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.ct.info.gifu-u.ac.jp/~keigoi/session-ocaml/
http://www.ct.info.gifu-u.ac.jp/~keigoi/session-ocaml/
http://www.ct.info.gifu-u.ac.jp/~keigoi/session-ocaml/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://homepages.inf.ed.ac.uk/slindley/papers/fst.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/fst.pdf
http://homepages.inf.ed.ac.uk/slindley/papers/fst.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.RolandKuhn.Slides.pdf

170 17051 – Theory and Applications of Behavioural Types

3.15 Adaptive Interaction-Oriented Choreographies in Jolie
Ivan Lanese (University of Bologna, IT)

License Creative Commons BY 3.0 Unported license
© Ivan Lanese

We will give a demo of AIOCJ, Adaptive Interaction-Oriented Choreographies in Jolie. The
tool is composed by an Eclipse plugin and a running environment to program distributed
applications, and to adapt them at runtime by replacing pre-selected pieces of code with
new code coming from outside the application. Notably, a single program describes the
whole distributed application, and a single adaptation may involve many components. The
application is free from communication races and deadlocks by construction, both before and
after the adaptation.

3.16 Failure-Aware Protocol Programming
Hugo-Andrés López (Technical University of Denmark – Lyngby, DK)

License Creative Commons BY 3.0 Unported license
© Hugo-Andrés López

URL http://materials.dagstuhl.de/files/17/17051/17051.Hugo-Andr%C3%A9sL%C3%B3pez.Slides.pdf

Motivated by challenging scenarios in Cyber-Physical Systems (CPS), we study how cho-
reographic programming can cater for dynamic infrastructures where not all endpoints are
always available. We introduce the Global Quality Calculus (GCq), a variant of choreographic
programming for the description of communication systems where some of the components
involved in a communication might fail. GCq features novel operators for multiparty, partial
and collective communications. In this talk I will study the nature of failure-aware commu-
nication: First, we introduce GCq syntax, semantics and examples of its use. The interplay
between failures and collective communications in a choreography can lead to choreographies
that cannot progress due to absence of resources. In our second contribution, we provide a
type system that ensures that choreographies can be realized despite changing availability
conditions. A specification in GCq guides the implementation of distributed endpoints when
paired with global (session) types. Our third contribution provides an endpoint-projection
based methodology for the generation of failure-aware distributed processes. We show the cor-
rectness of the projection, and that well-typed choreographies with availability considerations
enjoy progress.

3.17 Chaperone Contracts for Higher-Order Sessions
Hernán Melgratti (University of Buenos Aires, AR)

License Creative Commons BY 3.0 Unported license
© Hernán Melgratti

URL http://materials.dagstuhl.de/files/17/17051/17051.Hern%C3%A1nMelgratti.Slides.pdf

Sessions in concurrent programs play the same role of functions and objects in sequential ones.
This calls for a way to describe properties and relationships of messages exchanged in sessions
using behavioral contracts, in the spirit of the design-by-contract approach to software
development. Unlike functions and objects, however, the kind, direction, and properties of

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.Hugo-Andr%C3%A9sL%C3%B3pez.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.Hern%C3%A1nMelgratti.Slides.pdf

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 171

messages exchanged in a session may vary over time, as the session progresses. This feature
of sessions enriches the “behavioral” qualification of session contracts, which must evolve
along with the session they describe.

In this work, we extend to sessions the notion of chaperone contract (roughly, a contract
that applies to a mutable object) and investigate the ramifications of contract monitoring
in a higher-order calculus equipped with a session type system. We give a characterization
of correct module, one that honors the contracts of the sessions it uses, and prove a blame
theorem. Guided by the calculus, we describe a lightweight and portable implementation of
monitored sessions as an OCaml module with which programmers can benefit from static
session type checking and dynamic contract monitoring using an off-the-shelf version of
OCaml.

3.18 Static Deadlock Detection for Go
Nicholas Ng (Imperial College London, GB) and Nobuko Yoshida (Imperial College London,
GB)

License Creative Commons BY 3.0 Unported license
© Nicholas Ng and Nobuko Yoshida

Joint work of Julien Lange, Nicholas Ng, Bernardo Toninho, Nobuko Yoshida
Main reference J. Lange, N. Ng, B. Toninho, N. Yoshida, “Fencing off go: liveness and safety for channel-based

programming”, in Proc. of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL 2017), pp. 748–761, ACM, 2017.

URL http://dx.doi.org/10.1145/3009837.3009847

Go is a production-level statically typed programming language whose design features explicit
message-passing primitives and lightweight threads, enabling (and encouraging) programmers
to develop concurrent systems where components interact through communication more so
than by lock-based shared memory concurrency. Go can only detect global deadlocks at
runtime, but provides no compile-time protection against all too common communication
mismatches or partial deadlocks.

In this talk we present a static verification framework for liveness and safety in Go
programs, able to detect communication errors and partial deadlocks in a general class of
realistic concurrent programs, including those with dynamic channel creation, unbounded
thread creation and recursion. Our approach infers from a Go program a faithful repres-
entation of its communication patterns as a behavioural type. By checking a syntactic
restriction on channel usage, dubbed fencing, we ensure that programs are made up of finitely
many different communication patterns that may be repeated infinitely many times. This
restriction allows us to implement a decision procedure for liveness and safety in types which
in turn statically ensures liveness and safety in Go programs.

Details of our verification tool-chain are available on http://mrg.doc.ic.ac.uk/tools/gong/.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/3009837.3009847
http://dx.doi.org/10.1145/3009837.3009847
http://dx.doi.org/10.1145/3009837.3009847
http://dx.doi.org/10.1145/3009837.3009847
http://mrg.doc.ic.ac.uk/tools/gong/

172 17051 – Theory and Applications of Behavioural Types

3.19 Session Types with Linearity in Haskell
Dominic Orchard (University of Kent – Canterbury, GB) and Nobuko Yoshida (Imperial
College London, GB)

License Creative Commons BY 3.0 Unported license
© Dominic Orchard and Nobuko Yoshida

Main reference D. Orchard, N, Yoshida, “Sessions types with linearity in Haskell”, in Behavioural Types: from
Theory to Tools, River Publishers, 2017.

Type systems with parametric polymorphism can encode communication patterns over
channels, providing part of the power of session types. However, statically enforcing linearity
properties of session types is more challenging. Haskell provides various features that can
overcome this challenge. However, current approaches lead to a programming style which is
either non-idiomatic for Haskell, or types which are too hard to write and read. I’ll demo
an early version of a Haskell library for session types that does it all: session-typed, linear,
idiomatic Haskell with easy-to-read-and-write types.

3.20 A Simple Library Implementation of Binary Sessions
Luca Padovani (University of Turin, IT)

License Creative Commons BY 3.0 Unported license
© Luca Padovani

Main reference L. Padovani, “A simple library implementation of binary sessions”, Journal of Functional
Programming, Vol. 27:e4, 2017.

URL http://dx.doi.org/10.1017/S0956796816000289

This demo is about FuSe, a simple OCaml implementation of binary sessions that supports
delegation, equi-recursive, polymorphic, context-free session types, session subtyping, and
allows the OCaml compiler to perform session type checking and inference.

3.21 Concurrent TypeState-Oriented Programming
Luca Padovani (University of Turin, IT)

License Creative Commons BY 3.0 Unported license
© Luca Padovani

Joint work of Silvia Crafa, Luca Padovani
Main reference S. Crafa, L. Padovani, “The chemical approach to typestate-oriented programming”, in Proc. of

the 2015 ACM SIGPLAN Int’l Conf. on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 2015), pp. 917–934, ACM, 2015.

URL http://dx.doi.org/10.1145/2814270.2814287

This demo is about CobaltBlue, a tool for the static behavioural analysis of Objective Join
Calculus scripts. The tool checks that concurrent objects and actors (modelled as terms in
the Objective Join Calculus) are consistent with – and are used according to – their protocol.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
D. Orchard, N, Yoshida, ``Sessions types with linearity in Haskell'', in Behavioural Types: from Theory to Tools, River Publishers, 2017.
D. Orchard, N, Yoshida, ``Sessions types with linearity in Haskell'', in Behavioural Types: from Theory to Tools, River Publishers, 2017.
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1017/S0956796816000289
http://dx.doi.org/10.1017/S0956796816000289
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2814270.2814287
http://dx.doi.org/10.1145/2814270.2814287
http://dx.doi.org/10.1145/2814270.2814287
http://dx.doi.org/10.1145/2814270.2814287

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 173

3.22 Precise Subtyping
Jovanka Pantovic (University of Novi Sad, RS)

License Creative Commons BY 3.0 Unported license
© Jovanka Pantovic

Joint work of Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, Svetlana Jaksic, Jovanka Pantovic, Alceste Scalas,
Nobuko Yoshida

Main reference M. Dezani-Ciancaglini, S. Ghilezan, S. Jaksic, J. Pantovic, N. Yoshida, “Precise subtyping for
synchronous multiparty sessions”, in Proc. of PLACES 2015, pp. 29–43, 2015.

URL http://dx.doi.org/10.4204/EPTCS.203.3

A subtyping relation is operationally precise if both the soundness and the completeness
with respect to type safety are satisfied. Soundness provides safe replacement of a term of
a smaller type when a term of a bigger type is expected. Is such a relation is the greatest
one, we get the completeness. We discuss the notion of operational preciseness, methodology
for proving the completeness and show how it works on the example of multiparty session
subtyping.

3.23 Concurrent C0
Frank Pfenning (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Frank Pfenning

Joint work of Max Willsey, Rokhini Prabhu, Frank Pfenning
Main reference M. Willsey, R. Prabhu, F. Pfenning, “Design and Implementation of Concurrent C0”, in Proc.

LINEARITY 2016, EPTCS 238, pp. 73–82, 2017.
URL http://dx.doi.org/10.4204/EPTCS.238.8

We give a demo of Concurrent C0, an imperative language extended with session-typed
message-passing concurrency. C0 is a type-safe and memory-safe subset of C, extended with
a layer of contracts, and has been used in teaching introductory programming at Carnegie
Mellon University since 2010. The extension follows the Curry-Howard interpretation of
intuitionistic linear sequent calculus, adapted to the linear setting. Considerable attention
has been paid to programmer-friendly features such as good error messages from the lexer,
parser, and (linear) type-checker. Access to Concurrent C0 can be obtain from the author.
The live-coded of a concurrent append function is available in the additional materials.

3.24 Manifest Sharing with Session Types
Frank Pfenning (Carnegie Mellon University – Pittsburgh, US)

License Creative Commons BY 3.0 Unported license
© Frank Pfenning

Joint work of Stephanie Balzer, Frank Pfenning
Main reference S. Balzer, F. Pfenning, “Manifest Sharing with Session Types”, Technical Report CMU-CS-17-106,

Carnegie Mellon University, 2017.
URL http://materials.dagstuhl.de/files/17/17051/17051.FrankPfenning.Slides.pdf

We report on work in progress to reconcile sharing of resources in logically based session
typed languages. The key idea is to decompose the exponential modality of linear logic
into two adjoint modalities and then give a nonstandard operational interpretation of the
shared layer. As a side effect, it seems we can faithfully interpret the (untyped) asynchronous
pi-calculus, answering a question by Wadler.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.4204/EPTCS.203.3
http://dx.doi.org/10.4204/EPTCS.203.3
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4204/EPTCS.238.8
http://dx.doi.org/10.4204/EPTCS.238.8
http://dx.doi.org/10.4204/EPTCS.238.8
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.FrankPfenning.Slides.pdf
http://materials.dagstuhl.de/files/17/17051/17051.FrankPfenning.Slides.pdf
http://materials.dagstuhl.de/files/17/17051/17051.FrankPfenning.Slides.pdf

174 17051 – Theory and Applications of Behavioural Types

3.25 Detecting Concurrency Errors of Erlang Programs via Systematic
Testing

Konstantinos Sagonas (Uppsala University, SE)

License Creative Commons BY 3.0 Unported license
© Konstantinos Sagonas

Main reference P. Abdulla, S. Aronis, B. Jonsson, K. Sagonas, “Optimal Dynamic Partial Order Reduction”, in
Proc. of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp. 373–384, ACM, 2014. Extended and significantly revised version to appear in the Journal of
the ACM.

URL https://dx.doi.org/10.1145/2535838.2535845

Testing and verification of concurrent programs is an important but also challenging problem.
Effective techniques need to faithfully model the semantics of the language primitives and
have a way to combat the combinatorial explosion of the possible different ways that threads
may interleave (scheduling non-determinism). In this talk we will focus on a particular
verification technique known as stateless model checking (a.k.a. systematic concurrency
testing) and we will present Concuerror, a state-of-the-art tool for finding and reproducing
errors in concurrent Erlang programs. Time permitting, we will briefly review the algorithms
that Concuerror employs in order to examine only an optimal (but sound) subset of all
interleavings.

More information about the tool can be found at http://www.concuerror.com.

3.26 Lightweight Session Programming in Scala
Alceste Scalas (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alceste Scalas

Joint work of Alceste Scalas, Nobuko Yoshida
Main reference A. Scalas, N. Yoshida, “Lightweight Session Programming in Scala”, in Proc. of the 30th European

Conf. on Object-Oriented Programming (ECOOP 2016), LIPIcs, Vol. 56, pp. 21:1–21:28, Schloss
Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.

URL http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21

Designing, developing and maintaining concurrent applications is an error-prone and time-
consuming task; most difficulties arise because compilers are usually unable to check whether
the inputs/outputs performed by a program at runtime will adhere to a given protocol
specification. To address this problem, we propose lightweight session programming in Scala:
we leverage the native features of the Scala type system and standard library, to introduce
(1) a representation of session types as Scala types, and (2) a library, called lchannels,
with a convenient API for session-based programming, supporting local and distributed
communication. We generalise the idea of Continuation-Passing Style Protocols (CPSPs),
studying their formal relationship with session types. We illustrate how session programming
can be carried over in Scala: how to formalise a communication protocol, and represent it
using Scala classes and lchannels, letting the compiler help spotting protocol violations. We
attest the practicality of our approach with a complex use case, and evaluate the performance
of lchannels with a series of benchmarks.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://dx.doi.org/10.1145/2535838.2535845
https://dx.doi.org/10.1145/2535838.2535845
https://dx.doi.org/10.1145/2535838.2535845
https://dx.doi.org/10.1145/2535838.2535845
https://dx.doi.org/10.1145/2535838.2535845
http://www.concuerror.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.21

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 175

3.27 Programming Protocols with Scribble and Java
Alceste Scalas (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Alceste Scalas

Joint work of Raymond Hu, Alceste Scalas, Nobuko Yoshida
Main reference R. Hu, N. Yoshida, “Hybrid Session Verification Through Endpoint API Generation”, in Proc. of

the Int’l Conf. on Fundamental Approaches to Software Engineering (FASE 2016), LNCS,
Vol. 9633, pp. 401–418, Springer, 2016.

URL http://dx.doi.org/10.1007/978-3-662-49665-7_24

I will provide a brief introduction to Scribble – http://www.scribble.org/.
Scribble is both a language for defining global protocols involving multiple participants,

and a tool that can verify the properties of such protocols (in particular: absence of deadlocks
and orphan messages). Scribble can also automatically generate APIs that simplify the
implementation of protocol-abiding programs. Its approach is based on the Multiparty
Session Types framework.

During the talk I will illustrate the Scribble description of the SMTP protocol, and an
SMTP client based on Scribble-generated APIs for Java.

3.28 Partial Type Equivalences for Verified Dependent Interoperability
Nicolas Tabareau (Ecole des Mines de Nantes, FR)

License Creative Commons BY 3.0 Unported license
© Nicolas Tabareau

Joint work of Pierre-Évariste Dagand, Nicolas Tabareau, Éric Tanter
Main reference P.-E. Dagand, N. Tabareau, E. Tanter, “Partial type equivalences for verified dependent

interoperability”, in Proc. of the 21st ACM SIGPLAN Int’l Conf. on Functional Programming
(ICFP 2016), pp. 298–310, ACM, 2016.

URL http://dx.doi.org/10.1145/2951913.2951933

Full-spectrum dependent types promise to enable the development of correct-by-construction
software. However, even certified software needs to interact with simply-typed or untyped
programs, be it to perform system calls, or to use legacy libraries. Trading static guarantees
for runtime checks, the dependent interoperability framework provides a mechanism by which
simply-typed values can safely be coerced to dependent types and, conversely, dependently-
typed programs can defensively be exported to a simply-typed application. In this paper,
we give a semantic account of dependent interoperability. Our presentation relies on and is
guided by a pervading notion of type equivalence, whose importance has been emphasized in
recent works on homotopy type theory. Specifically, we develop the notion of partial type
equivalences as a key foundation for dependent interoperability. Our framework is developed
in Coq; it is thus constructive and verified in the strictest sense of the terms. Using our
library, users can specify domain-specific partial equivalences between data structures. Our
library then takes care of the (sometimes, heavy) lifting that leads to interoperable programs.
It thus becomes possible, as we shall illustrate, to internalize and hand-tune the extraction
of dependently-typed programs to interoperable OCaml programs within Coq itself.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://dx.doi.org/10.1007/978-3-662-49665-7_24
http://www.scribble.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1145/2951913.2951933
http://dx.doi.org/10.1145/2951913.2951933
http://dx.doi.org/10.1145/2951913.2951933
http://dx.doi.org/10.1145/2951913.2951933

176 17051 – Theory and Applications of Behavioural Types

3.29 Gradual Session Types
Peter Thiemann (Universität Freiburg, DE)

License Creative Commons BY 3.0 Unported license
© Peter Thiemann

URL http://materials.dagstuhl.de/files/17/17051/17051.PeterThiemann.Slides.pdf

Session types describe structured communication on heterogeneously typed channels at a high
level. They lift many of the safety claims that come with sound type systems to operations
on communcation channels.

The use of session types requires a fairly rich type discipline including linear types in
the host language. However, web-based applications and micro services are often written on
purpose in a mix of languages, with very different type disciplines in the spectrum between
static and dynamic typing.

Effective use of session typing in this setting requires a mix of static and dynamic type
checking. Gradual session types address this mixed setting by providing a framework which
grants seamless transition between statically typed handling of sessions and any required
degree of dynamic typing.

We propose GradualGV as an extension of the functional session type system GV with
dynamic types and casts. We use AGT as a guideline to obtain a consistent static semantics
which conservatively extends GV. We demonstrate type and communication safety as well
as blame safety, thus extending previous results to functional languages with session-based
communication. Our system differs from previous gradually typed systems in two respects:
the interplay of linearity and dynamic types as well as the necessity to deal with changing
type state requires a novel approach to specifying the dynamics of the language.

3.30 Choreographies, Modularly: Components for Communication
Centred Programming

Hugo Torres Vieira (IMT – Lucca, IT)

License Creative Commons BY 3.0 Unported license
© Hugo Torres Vieira

Joint work of Marco Carbone, Fabrizio Montesi, Hugo Torres Vieira

As communicating systems are becoming evermore complex it is crucial to conceive program-
ming abstractions that support modularity in the development of communicating systems. In
this talk we present a new model for the modular development of component-based software,
following the reactive style, i.e., computations in a component are triggered by the availability
of new data. The key novelty is the mechanism for composing components, which is based
on multiparty protocols given as choreographies. We show how our model can be compiled
to a fully-distributed implementation by translating our terms into a process calculus, and
present a type system for ensuring communication safety, deadlock-freedom, and liveness.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.PeterThiemann.Slides.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 177

3.31 From Communicating Machines to Graphical Choreographies
Emilio Tuosto (University of Leicester, GB)

License Creative Commons BY 3.0 Unported license
© Emilio Tuosto

I will showcase ChorGram (https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home), a
tool for the reconstruction of choreographies from systems consisting of a class of communic-
ating automata. After a very brief and lightweight introduction to the underlying theory, I
will demonstrate how ChorGram can help in designing and analyse communication-centric
applications.

3.32 Fencing off Go
Nobuko Yoshida (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Nobuko Yoshida

URL http://materials.dagstuhl.de/files/17/17051/17051.NobukoYoshida.Preprint.pdf

Go is a production-level statically typed programming language whose design features explicit
message-passing primitives and lightweight threads, enabling (and encouraging) programmers
to develop concurrent systems where components interact through communication more so
than by lock-based shared memory concurrency. Go can only detect global deadlocks at
runtime, but provides no compile-time protection against all too common communication
mis-matches or partial deadlocks. This work develops a static verification framework for
liveness and safety in Go programs, able to detect communication errors and partial deadlocks
in a general class of realistic concurrent programs, including those with dynamic channel
creation, unbounded thread creation and recursion. Our approach infers from a Go program
a faithful representation of its communication patterns as a behavioural type. By checking a
syntactic restriction on channel usage, dubbed fencing, we ensure that programs are made up
of finitely many different communication patterns that may be repeated infinitely many times.
This restriction allows us to implement a decision procedure for liveness and safety in types
which in turn statically ensures liveness and safety in Go programs. We have implemented a
type inference and decision procedures in a tool-chain and tested it against publicly available
Go programs.

3.33 Undecidability of Asynchronous Session Subtyping
Nobuko Yoshida (Imperial College London, GB)

License Creative Commons BY 3.0 Unported license
© Nobuko Yoshida

URL http://materials.dagstuhl.de/files/17/17051/17051.NobukoYoshida1.Preprint.pdf

Asynchronous session subtyping has been studied extensively and applied in the literature.
An open question was whether this subtyping relation is decidable. This paper settles the
question in the negative. To prove this result, we first introduce a new sub-class of two-party
communicating finite-state machines (CFSMs), called asynchronous duplex (ADs), which we
show to be Turing complete. Secondly, we give a compatibility relation over CFSMs, which

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://bitbucket.org/emlio_tuosto/chorgram/wiki/Home
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.NobukoYoshida.Preprint.pdf
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://materials.dagstuhl.de/files/17/17051/17051.NobukoYoshida1.Preprint.pdf

178 17051 – Theory and Applications of Behavioural Types

is sound and complete wrt. safety for ADs, and is equivalent to the asynchronous subtyping.
Then we show that checking whether two CFSMs are in the relation reduces to the halting
problem for Turing machines. In addition, we show the compatibility relation to be decidable
for three sub-classes of ADs.

4 Working groups

4.1 Group Discussion: Integrating Static and Dynamic Typing
Laura Bocchi (University of Kent – Canterbury, GB)

License Creative Commons BY 3.0 Unported license
© Laura Bocchi

Joint work of Approximately half of the seminar participants.

The starting point for the discussion was that most of us have worked or are working on
static typing, some of us on dynamic typing and monitoring, or even on the combination
of static and dynamic verification in a network (but not in the same node), and only a few
have direct experience of gradual and hybrid typing. Gradual/hybrid behavioural typing is
quite a new thread.

The motivation is that run-time monitoring is critical in several contexts (e.g. when
addressing security issues, in untrusted networks, in real-time scenarios where it is harder to
make precise predictions). Run-time mechanisms provide programmers with better access
to the current state of objects, which is often unclear at compile-time. Usability is also a
motivation.

What does it mean to monitor? The notion of monitors is strictly related to the notion of
contract. Monitors are contracts, which are used to check interactions. There are two main
aspects of monitoring: verification (check behaviour and determine blame) and enforcement
(e.g. suppress bad messages).

What does it mean to “go right and wrong”? There is a need for systematic construction
of, and reasoning about, monitors.

Gradual/hybrid typing require a more complex notion of correctness than the usual type
safety given by static typing. Critical to this aim is the role of blame. There are several
views of blame, including at least the following, and any points in between. Blame the the
less precisely-typed code (e.g., when hybrid typing) [1]. Blame anybody who has violated
the contract [2] Blame who originated the first contract violation (implicitly assumed in [3]).

Blame in the case of sharable resources is not obvious. Shared resources may be linked to
“something” linear which makes it not obvious to assign blame. This is a problem that comes
with linearity (affinity would be ok).

There is a general interest in a mathematical model of blame.
Blame is also useful as it introduces a “social process” in the sense that it makes

programmers want to work hard to satisfy their contracts (assuming that contract violations
throws blame on others). This may promote the use of contracts in practice.

There are some limitations of dynamic types. One critical problem is to define the
boundaries between static and dynamic typing. Both static and dynamic typing have
advantages and disadvantages. We focused, in our discussion, on the limitations of dynamic
typing: worse performance (due to overhead), no progress guarantees, in some cases more
expressive but in some other cases less expressive (e.g, when using parametricity or talking

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 179

about multiple runs, to check branching-time properties, limitations like monitorability [3]
when having assertions on message content, loss of transparency in timed scenarios)

References
1 Philip Wadler, Robby Findler. Well-typed programs can’t be blamed. Proceedings of ESOP,

2009.
2 Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, Roberto Zunino. Honesty by Typing.

Logical Methods in Computer Science 12(4), 2016.
3 Laura Bocchi, Tzu-chun Chen, Romain Demangeon, Kohei Honda, Nobuko Yoshida. Mon-

itoring Networks through Multiparty Session Types. Proceedings of FORTE, 2013.
4 Limin Jia, Hannah Gommerstadt, Frank Pfenning Monitors and Blame Assignment for

Higher-Order Session Types. Proceedings of POPL, 2016.
5 Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, Matthias Felleisen. Correct

blame for contracts: no more scapegoating Proceedings of POPL, 2011.
6 Cameron Swords, Amr Sabry, Sam Tobin-Hochstadt. Expressing Contract Monitors as

Patterns of Communication. Proceedings of ICFP, 2015.
7 Tim Disney, Cormac Flanagan, Jay McCarthy. Temporal Higher-Order Contracts. Proceed-

ings of ICFP, 2011.

4.2 Group Discussion: Behavioural Types in Non-Communication
Domains

Simon Gay (University of Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Simon Gay

Joint work of Approximately half of the seminar participants

The discussion focused on three main topics.

What is a behavioural type?

Hans Hüttel quoted the definition “... notions of typing that are also able to describe properties
associated with the behaviour of programs and in this way also describe how a computation
proceeds. This often includes accounting for the notions of causality and choice.” [1]
Examples include session types, type state, effect types, coeffect types, information flow,
intersection types, differential types. In many systems, behavioural types evolve with the
reduction of terms, whereas standard types remain the same. However, consider the functional
programming style based on the GV calculus: the types don’t change with reduction, but
instead due to rebinding – use linearity to encode changing types. The simply-typed lambda
calculus is not an example of a behavioural type system. Whilst this can be translated into
communication [2, 3], simple-types within the lambda calculus are not themselves behavioural.
Computations in one language can be translated into communication in another language,
capturing intensional aspects of a program [2, 4, 5].

Another view is that non-behavioural types characterise the final value of the computation,
whereas behavioural types describe how the computation proceeds. Simple types control
termination, but are not seen as inherently behavioural. We could say that behavioural types
include everything that’s not a simple type. Logical relations give meaning to types, and can
have computational content, e.g. due to effects (trace properties).

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

180 17051 – Theory and Applications of Behavioural Types

In what areas, other than communication, do type-state like constraints occur?

It is interesting to infer type-state specifications for a given API to avoid some undesired
behaviour, e.g. to avoid dereferencing a null, or to infer sequencing constraints. Jonathan
Aldrich’s group have done empirical work on the occurrence of type-state in the wild [6].
It relates strongly to notions of identity and state but a linear discipline allows it to be
decomposed in a copying semantics (e.g. in a pure functional setting). Another empirical
study of programming protocols is in Joshua Sunshine’s thesis, Chapter 3: “Quantitative
study of API protocol usability”.

Several people gave examples.
Hugo López: cyberphysical systems have control events where the connection between

events are unknown (cf. shared memory concurrency) and timing plays a part. In message-
passing concurrency the links between events are much more clear. This is related to
[7].

Keigo Imai: Type-state example: in a smartphone there is a lot of context switching,
involving serialising state, on a low-memory device. Applications are in various active/inactive
states, and this changes the user’s capabilities to interact with each.

Francisco Martins: Related example: different hardware components get turned on and
off or have different capabilities for the purposes of battery saving. Programmers could be
forced to follow the protocols such that a resource’s handles are closed and battery is saved.

Garrett Morris: L4 microkernel off-loads responsibility for memory to user programs.
Programs have to ask kernel to subdivide their heap allocation for subthreads, which then they
give up some capability. Can’t DDOS the kernel by asking for lots of thread control blocks,
because now these are within the purview of the programs. Have to manage the capabilities
yourself. The state of the capabilities is a key part of the kernel/program interaction; the
server can refuse requests that violate previous capability assignments. Microkernel design
could benefit from type state definition.

Dimitrios Kouzapas: Data processing, and private data, e.g. camera photographs and
recognises number plate, if car is speeding the data is kept, if not the data is dropped. This
is a protocol on the data and relates to provenance.

Thomas Hildebrandt: There are legal frameworks for the behaviour of how our data is
processed. We want to mediate between the contracts.

Giovanni Bernardi: The idea of effects generalises the idea of communication, and
mathematically this works out as a model of some kind of modality.

We considered why behavioural and linear types became linked in the first place. There
are behavioural specifications which don’t need linearity. Linearity gives us a way to encode
the state changes. But is this too much? Bhavioural types could help people who write
concurrent data structures. Does this provide a way to explain where locking is and isn’t
needed?

Areas for future research

Consider behavioural types for concurrent data structures and algorithms.
Perhaps we could weaken certain assumptions about shared channels so that protocols of
interaction are more easily distributed and non-binary interactions are expressible, on
shared channels, which may or may not imply locking/mutual exclusion.
Look at the work of Beckman et al. [6] to give us a source of case studies for type-state
systems and see what features can be captured by our current tools.

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 181

Re-examine the assumption that linearity is necessary, or at least re-examine its realisation,
in the light of work such as Frank Pfenning’s talk during the seminar.
Review work on formal theories about the interaction of different behaviours, e.g.,
communication and hardware schedules in FPGA systems [8], probabilities and exceptions
[9], differential types and state.

References
1 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo

Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira and Gianluigi Zavattaro. Foundations of Session Types and Behavioural Contracts.
ACM Computing Surveys 49(1) 3:1–3:36, 2016.

2 Robin Milner. Functions as processes. Proceedings of ICALP, 1990.
3 Bernardo Toninho, Luís Caires and Frank Pfenning. Functions as session-typed processes.

Proceedings of FOSSACS, 2012.
4 Dominic Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. Proceedings

of POPL, 2016.
5 Cameron Swords, Amr Sabry and Sam Tobin-Hochstadt. Expressing Contract Monitors as

Patterns of Communication. Proceedings of ICFP, 2015.
6 Nels Beckman, Duri Kim and Jonathan Aldrich. An Empirical Study of Object Protocols

in the Wild. Proceedings of ECOOP, 2011.
7 Tim Disney, Cormac Flanagan, Jay McCarthy. Temporal Higher-Order Contracts. Proceed-

ings of ICFP, 2011.
8 Xinyu Niu, Nicholas Ng, Tomofumi Yuki, Shaojun Wang, Nobuko Yoshida and Wayne Luk.

EURECA compilation: Automatic optimisation of cycle-reconfigurable circuits. Proceed-
ings of FPL, 2016.

9 Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart and Tarmo
Uustalu. Combining effects and coeffects via grading. Proceedings of ICFP, 2016.

4.3 Group discussion: Dependent Session Types
Simon Gay (University of Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Simon Gay

Joint work of Approximately half of the seminar participants.

Several researchers have studied dependent session types, in which the types of messages
may depend on the values of previous messages. Three lines of work have been produced by
different participants in the seminar.

Frank Pfenning, Luis Caires and Bernardo Toninho have included dependent types in the
linear logic / Curry-Howard approach to session types, and have shown how they can encode
features such as proof-irrelevance.

Conor McBride has developed a general setting for combining dependent types and linear
types, by distinguishing between “consumption” and “contemplation”, that is, value-level
and type-level uses of data. He has used dependent session types as an example of a specific
type theory that can be developed in this setting.

Edwin Brady has embedded session types and related concepts of typestate in his general-
purpose dependently-typed programming language, Idris.

The early part of the discussion focused on understanding the relationships between these
three approaches. Conor McBride emphasised the need to be clear about what it is that a

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

182 17051 – Theory and Applications of Behavioural Types

session type can depend on: in his view it is the traffic on a channel, and this is consistent
with the other approaches; note that dependence on the identity of a channel would be a
different concept.

There was some discussion about the possibility of dependence on the behaviour of a
process. Dependence on traffic is one aspect of this idea, but there could be others. It leads
to the need to define equivalence between processes.

Towards the end of the discussion, areas for further research were identified.
More detailed comparisons between the different approaches to dependent session types.
Further study of process equivalence.
The relationship between intuitionistic and classical formulations of the logical foundation
of session types.
Understanding the possibility of dependence on channel identity.

4.4 Group Discussion: Future Activities and Funding Possibilities
Simon Gay (University of Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Simon Gay

Joint work of Approximately half of the seminar participants.

The background to this discussion is that most of the participants in the seminar were
involved in COST Action IC1201 (BETTY: Behavioural Types for Reliable Large-Scale
Software Systems), which ran for four years from October 2012 to October 2016. The seminar
included participants from outside the BETTY group, in order to bring in relevant ideas
from broader research topics. The end of the COST Action naturally prompted discussion
about future activities for the community, and future funding for research on behavioural
types. These two points are closely linked.

First we discussed future activities, independently of funding. We agreed that another
Dagstuhl seminar would be worthwhile, with an expanded or different combination of people
from related topics. Concurrent Separation Logic was mentioned as a relevant topic. There
were several suggestions for different ways of organising a Dagstuhl seminar, especially in
relation to the choice of discussion topics and the possibility of specifying discussion topics
before the beginning of the seminar. We also noted the possibility of a more focussed meeting
on a topic such as programming language design. Dagstuhl is not the only possible location
for a similar seminar: we could consider the Shonan centre in Japan, or the Banff centre
in Canada. However, Dagstuhl is the most convenient and we agreed to propose another
seminar. The organisers of the present seminar said that they would be willing to organise
another one.

Discussion moved on to the question of funding. Hans Huttel spoke about Horizon 2020
calls, noting that our community had applied unsuccessfully in recent calls. This led to a
discussion about whether we had chosen the right calls, and then the higher-level question of
how the topics of the calls are defined. Antonio Ravara argued that we have been too passive,
and that we should try to get leaders of our community onto the committees that define the
funding calls. Failing that, we should try to influence people who are on the committees.
This requires long-term strategy and it’s too late for Horizon 2020, but we need to start
thinking about the next cycle of research funding. An immediate action, which we agreed
on, is to redevelop the BETTY website in order to raise the profile of the research area and
community.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 183

There was some discussion about specific areas, which have the possibility of funding, in
which to try to apply behavioural types. Some members of our community had applied to
Internet of Things calls, without success. Ivan Lanese noted that if we want to introduce
behavioural types into IoT applications, then we need to work with people who have more
practical experience with IoT; one way to start would be to invite such people to the next
Dagstuhl seminar. Giovanni Bernardi mentioned a specific high-profile systems researcher at
his institution, who might be a useful contact.

The final topic of discussion focussed on national funding schemes. We should all apply
for national projects, and perhaps it would be possible to submit coordinated applications
in more than one country to support a collaborative project. Connecting with the earlier
discussion about adding session types to mainstream languages, people could apply for
national projects to do that. We could also try to systematically take advantage of schemes
for visiting professors and researchers, in order to arrange visits within the community.
Another possibility is to explore industrial funding, such as Google’s faculty grants; it was
also mentioned that Mozilla are funding PhD students at Northeastern University in the
USA. Finally, we in the community could support each other by sharing successful funding
proposals and by providing support for individual fellowship applications from early-career
researchers.

4.5 Group Discussion: Session Sharing and Races
Simon Gay (University of Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Simon Gay

Joint work of Approximately half of the seminar participants.

There was a discussion about the problems posed by allowing sharing and races within session
type systems, and various approaches to controlling these generalisations of the classical
session type systems. The group produced a list of relevant references.

References
1 Damiano Mazza. The true concurrency of differential interaction nets. Mathematical Struc-

tures in Computer Science, 2016.
2 Stephen Brookes, Peter O’Hearn. Concurrent Separation Logic. ACM SIGLOG News, 2016.
3 Ilya Sergey. Concurrent Separation Logic family tree. http://ilyasergey.net/other/

CSL-Family-Tree.pdf
4 Ralf Jung et al. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reas-

oning. Proceedings of POPL, 2015.
5 Tzu-chun Chen, Kohei Honda. Specifying stateful asynchronous properties for distributed

programs. Proceedings of CONCUR, 2012.
6 Lindsey Kuper, Ryan Newton. LVars: lattice-based data structures for deterministic paral-

lelism. Proceedings of FHPC, 2013.
7 Filipe Militão, Jonathan Aldrich, Luís Caires. Composing Interfering Abstract Protocols.

Proceedings of ECOOP, 2016
8 Filipe Militão, Jonathan Aldrich, Luís Caires. Rely-Guarantee Protocols. Proceedings of

ECOOP, 2014.
9 Luís Caires, João Costa Seco. The type discipline of behavioural separation. Proceedings

of POPL, 2013.

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://ilyasergey.net/other/CSL-Family-Tree.pdf
http://ilyasergey.net/other/CSL-Family-Tree.pdf

184 17051 – Theory and Applications of Behavioural Types

4.6 Group Discussion: Standardisation of a Programming Language
with Session Types

Simon Gay (University of Glasgow, GB)

License Creative Commons BY 3.0 Unported license
© Simon Gay

Joint work of Most of the seminar participants.

At dinner the previous evening, there was a discussion between the seminar organisers (Phil
Wadler, Nobuko Yoshida, Simon Gay, Vasco Vasconcelos) together with Mariangiola Dezani
and Frank Pfenning. We agreed to suggest a project to integrate session types into Haskell,
OCaml, Rust and Scala. This would include working with the language developers to add
support for linear types in order to avoid the need for all the coding tricks we have seen in
Haskell, OCaml and Scala.

The general discussion involved 30 people, who between them represented most of the
topics and approaches that had been presented during the seminar. Phil Wadler opened the
discussion by summarising the situation that led to the development of Haskell as a standard
lazy functional language: several languages were being developed by different research groups,
and the community decided that it would be productive to adopt a single common language
as a platform for exploring and promoting lazy functional programming.

The group agreed that there are two distinct possibilities for developing a standard
language that includes session types: (1) we develop a new language, similarly to the
development of Haskell; (2) we pick an existing language (or several languages) and work
with its developers to put session types into it. There was also discussion about whether
standardising a programming language is the right level to work at. An alternative would be
to follow the Imperial College group in using Scribble as a standard language-independent
formalism for describing protocols.

Each approach has advantages and disadvantages, which were discussed thoroughly. The
main advantage of working with an existing language (or languages) is that they already
have programmers and communities who would be able to take advantage of session types in
a familiar setting. The main disadvantage is that it might not be straightforward to combine
session types, especially the necessary linear typing, with a full range of existing language
features such as polymorphism. This problem could be reduced by working with Rust, which
already has affine types. Frank Pfenning explained that he has already made contact with
Mozilla about integrating session types into Rust, although he doesn’t yet have a concrete
proposal for a language extension. It was also noted that extending an existing language and
getting the extension into the main release would require deep involvement in that language’s
community.

The main advantage of developing a new language is that the design is not constrained
by existing features. Frank Pfenning has developed two small languages based on session
types: SILL, and Concurrent C0. The latter was demonstrated during the seminar. The
main disadvantage of developing a new language is that a great deal of engineering work is
required to produce a usable full-spectrum language. This can be reduced to some extent by
building on the runtime system of an existing language, as Scala did with Java. Perhaps
Erlang woudl be an interesting base. Conor McBride took the view, based on his experience
with dependently-typed programming and the relationship between Haskell and languages
such as Agda, that the aim should not be to achieve widespread adoption of a new language;
instead, success consists of features being stolen by mainstream languages.

There is a question of whether session types are a sufficiently foundational feature to
justify a new language design. Concurrency is a cross-cutting concern, orthogonal to the

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 185

main language paradigm, so it seems that a new language design would have to commit to
one of the existing main paradigms and this decision would provoke disagreement before
any work is done on session typing features. Countering this point could be the argument
that session-typed concurrent programming, based on pi calculus, could be a paradigm for
controlling massively parallel architectures.

It was noted that a language design from our community should have a well-specified
formal semantics. Derek Dreyer (not present at the seminar) has an ERC grant to formally
study the semantics and type system of Rust; we agreed that it would be useful to involve
him in future meetings.

There was some discussion about the advantages and disadvantages of full type inference,
with significant support for the idea that we should not aim for it. In relation to a session-
typed methodology for developing distributed systems, it makes more sense to start with
explicitly declared types as part of the system design. Interactive programming guided by
session types has some attractions.

In the end, there was enthusiasm from around half of the people present, for the idea of
developing a new language based on session types. More detailed discussion will follow in
the future, and other interested people will be able to join in. It was noted that Dagstuhl
has the possibility of small focussed meetings, as well as full seminars, and this could be a
way of proceeding with a language design effort.

4.7 Group Discussion: Behavioural Types for Mainstream Software
Development

Philipp Haller (KTH Royal Institute of Technology – Stockholm, SE)

License Creative Commons BY 3.0 Unported license
© Philipp Haller

Joint work of Approximately half of the seminar participants.

The starting point of the discussion was the question: how to support software development
using behavioral types? Practical software development requires the use of widely-used
programming languages, such as Scala, OCaml, or Haskell. Several approaches to encoding
session types in the type systems of these languages were presented during the seminar.
Thus, a natural question to ask was whether these existing implementations are “enough”, or
whether they have fundamental limitations that should be addressed in future work by the
community. It was noted that current implementations already improve upon programming
models used in industry; it would thus be worthwhile to create industrial-strength systems
building upon the approaches of existing session type implementations.

Two principal approaches were identified to implementing session types for existing
languages: the first approach encodes session types in the type system of an existing
language; this approach requires the host language to have a sufficiently powerful type
system. The second approach directly extends an existing language. It was mentioned
that widely-used languages have developed to include features which support more direct
encodings than are possible today in Haskell, OCaml, or Scala. For example, Rust has
support for affine types, and there is at least one implementation of session types in Rust.

An important limitation of existing implementations of session types was identified,
namely, useful and informative type error messages. Luca Padovani pointed out that in his
OCaml implementation, if a developer does not implement an end point correctly, error
messages are informative, and error locations are precise. However, when connecting two

17051

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

186 17051 – Theory and Applications of Behavioural Types

end points and a type error exists, the error may occur “far away” from where the actual
problem is. It was also noted that type inference may be a source of difficulties. Making
types explicit typically improves type error messages, for example, in the existing Scala
library implementations. Finally, Gul Agha pointed out that most informative would be
error traces corresponding to session types.

A group of discussion participants identified development tools as important for the
adoption of session types by practitioners. It was noted that session types appear related to
UML sequence diagrams, widely used in practice. Simon Gay pointed out that the generation
of code templates can guide developers during the implementation of communication protocols.
Code generation could also be integrated with modern IDEs.

On a less technical level, it was noted that establishing good feedback channels between
software developers and designers of languages and libraries for programming with session
types is a challenge. In this context, interaction with open-source maintainers may be
an effective way to receive valuable feedback. In addition, integrating session types into
open-source projects could demonstrate their value to software developers.

Education and training were also identified as important for the adoption of session types
by the broader software development community. It was suggested that curricula at colleges
and universities helped adoption of functional programming languages like Haskell. As a
possible route discussion participants suggested the collection of patterns, inspired by the
Gang-of-Four book, showing how session types or linearity help address common issues in
software development. These patterns could then be taught at universities.

Modularity and reuse of session types was identified as a topic requiring further research.
While FSMs are often natural for expressing the communication patterns of individual
processes, their complexity can easily explode in the context of several participants. Gul
Agha had explained this challenge in his presentation earlier during the seminar. Both Gul
Agha and Luca Padovani pointed out that in different contexts, the same concurrent object
might be used with different protocols/session types. Thus, modular specifications of session
types are required which separate protocols from concurrent objects.

The discussion participants identified the following future directions. First, the develop-
ment of compelling use cases that mirror modern software development; these use cases must
be “complex enough” to showcase the power of session types. Second, the development of
design patterns in the style of the Gang-of-Four book. Third, work on suitable abstractions,
beyond state machines, that are provided to developers. Fourth, the development of a system-
atic approach to evaluate session types in the context of professional software development
(taking open source software into account). Fifth, exchanges between industry and academia,
and collaboration with industrial research labs. Finally, development of suitable concepts
and curricula for teaching and education.

4.8 Group Discussion: Educational Resources for Behavioural Types
Hugo Torres Vieira (IMT – Lucca, IT)

License Creative Commons BY 3.0 Unported license
© Hugo Torres Vieira

Joint work of Approximately half of the seminar participants.

The discussion started with a short description of past experiences of teaching courses related
to behavioural types.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 187

At Imperial College London a course on concurrent programming uses LTSA (https:
//www.doc.ic.ac.uk/ltsa/) for the verification of systems modelled as a set of interacting
finite state machines, and Java for the actual implementation. A gap between the high-level
modelling and the Java implementations was identified as an issue for the students’ learning
experience, both conceptually and at the level of tool support.

At the University of Leicester more than one course on concurrent programming was
mentioned, an optional module based on Java (offered to 3rd year BSc and MSc students)
and notably an MSc course (core to several MSc degrees) that uses choreographies for system
specification. CFSMs are used the model the global interaction scenario which are then
used in a top-down style to obtain the local implementations. Students reacted positively
to the inclusion of some encompassing theory in the latest edition, and tool support with
ChorGram is a goal for the next one.

At CMU some courses related to behavioural types were mentioned, most of which
using C0 http://c0.typesafety.net. In particular, the introductory course on imperative
programming uses behavioural type like specifications to provide contracts written in the
language itself. Some other courses that address data structures in a concurrency setting
were also mentioned.

At IMT Lucca a PhD level module on type-based verification was mentioned, where
behavioural types were the topic of the last few lectures.

At the University of British Columbia, at the EPFL, and at the University of Strathclyde
the reported experiences with courses related to type-based verification mostly concerned
sequential languages, and the relationship with behavioural types is a topic of interest for
further developments.

After the report on past and ongoing experiences, some desirable future goals for our
community were discussed.

Obtaining language and tool support for reducing the gap between specifications and
implementations.

Creating a repository for the exchange of existing solutions to example scenarios in the
existing approaches (the repository created by the ABCD project at Glasgow University,
Edinburgh University and Imperial College London was mentioned as an existing resource).

Creating a repository with related documentation of courses taught at various places to
serve as a reference for complementary courses. For instance, courses on designing/model-
ling based on behavioural types may refer to courses/material on programming based on
behavioural types

Establishing a common agreement on the principles to be taught in courses related to
behavioural types so that training can lead to the desired effect of creating a community
of programmers with the specialized know-how (a mention to Benjamin Pierce’s Software
Foundations course was made, as a reference for future courses).

In the discussion it was noted that tool support in a module requires to spend time on the
usability of tools. However, this time can be compensated if some tools offer some automatic
marking features.

17051

https://www.doc.ic.ac.uk/ltsa/
https://www.doc.ic.ac.uk/ltsa/
http://c0.typesafety.net

188 17051 – Theory and Applications of Behavioural Types

5 Open problems

5.1 A Meta Theory for Testing Equivalences
Giovanni Tito Bernardi (University Paris-Diderot, FR)

License Creative Commons BY 3.0 Unported license
© Giovanni Tito Bernardi

Main reference Giovanni Bernardi, Matthew Hennessy, “Mutually Testing Processes”, Logical Methods in
Computer Science, 11(2:1), 2015.

URL http://dx.doi.org/10.2168/LMCS-11(2:1)2015

Testing equivalences are an alternative to bisimulation equivalence that provide in a natural
way semantic models for session types. In this talk we will recall the chief ideas behind
testing equivalences, along with part of the state of the art. We will also present an open
problem, hopefully spurring discussion.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.2168/LMCS-11(2:1)2015
http://dx.doi.org/10.2168/LMCS-11(2:1)2015
http://dx.doi.org/10.2168/LMCS-11(2:1)2015

Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida 189

Participants
Gul Agha

University of Illinois –
Urbana-Champaign, US

Nada Amin
EPFL – Lausanne, CH

Robert Atkey
University of Strathclyde –
Glasgow, GB

Giovanni Tito Bernardi
University Paris-Diderot, FR

Laura Bocchi
University of Kent –
Canterbury, GB

Edwin Brady
University of St. Andrews, GB

Luis Caires
New University of Lisbon, PT

Marco Carbone
IT University of
Copenhagen, DK

Ilaria Castellani
INRIA Sophia Antipolis, FR

Tzu-chun Chen
TU Darmstadt, DE

Mariangiola Dezani
University of Turin, IT

Patrick Thomas Eugster
TU Darmstadt, DE

Adrian Francalanza
University of Malta – Msida, MT

Ronald Garcia
University of British Columbia –
Vancouver, CA

Simon Gay
University of Glasgow, GB

Philipp Haller
KTH Royal Institute of
Technology – Stockholm, SE

Thomas Hildebrandt
IT University of
Copenhagen, DK

Hans Hüttel
Aalborg University, DK

Keigo Imai
Gifu University, JP

Dimitrios Kouzapas
University of Glasgow, GB

Roland Kuhn
Actyx AG – München, DE

Ivan Lanese
University of Bologna, IT

Hugo-Andrés López
Technical University of Denmark
– Lyngby, DK

Francisco Martins
University of Lisbon, PT

Conor McBride
University of Strathclyde –
Glasgow, GB

Hernán Melgratti
University of Buenos Aires, AR

Fabrizio Montesi
University of Southern Denmark –
Odense, DK

J. Garrett Morris
University of Edinburgh, GB

Nicholas Ng
Imperial College London, GB

Dominic Orchard
University of Kent –
Canterbury, GB

Luca Padovani
University of Turin, IT

Jovanka Pantovic
University of Novi Sad, RS

Frank Pfenning
Carnegie Mellon University –
Pittsburgh, US

Antonio Ravara
Universidade Nova de Lisboa, PT

Konstantinos Sagonas
Uppsala University, SE

Alceste Scalas
Imperial College London, GB

Nicolas Tabareau
Ecole des Mines de Nantes, FR

Peter Thiemann
Universität Freiburg, DE

Hugo Torres Vieira
IMT – Lucca, IT

Emilio Tuosto
University of Leicester, GB

Vasco T. Vasconcelos
University of Lisbon, PT

Philip Wadler
University of Edinburgh, GB

Nobuko Yoshida
Imperial College London, GB

Shoji Yuen
Nagoya University, JP

17051

	Executive Summary Simon Gay, Vasco T. Vasconcelos, Philip Wadler, and Nobuko Yoshida
	Table of Contents
	Overview of Talks
	Towards Inferring Session Types Gul Agha
	Effects as Capabilities Nada Amin
	Observed Communication Semantics for Classical Processes Robert Atkey
	Stateful Programming in Idris Edwin Brady
	Behavioral Types, Type Theory, and Logic Luis Caires
	Session Types for Fault-tolerant Distributed Systems Patrick Thomas Eugster
	Statically Detecting (Dead)locks in the Linear Pi-calculus Adrian Francalanza
	Gradual Typing Ronald Garcia
	Practical Affine Types and Typestate-Oriented Programming Philipp Haller
	DCR Tools Thomas Hildebrandt
	Using Session Types for Reasoning About Boundedness in the Pi-Calculus Hans Hüttel
	Session-ocaml: A Session-based Library with Polarities and Lenses Keigo Imai, Nobuko Yoshida, and Shoji Yuen
	Lightweight Functional Session Types J. Garrett Morris
	Composable Actor Behaviour Roland Kuhn
	Adaptive Interaction-Oriented Choreographies in Jolie Ivan Lanese
	Failure-Aware Protocol Programming Hugo-Andrés López
	Chaperone Contracts for Higher-Order Sessions Hernán Melgratti
	Static Deadlock Detection for Go Nicholas Ng and Nobuko Yoshida
	Session Types with Linearity in Haskell Dominic Orchard and Nobuko Yoshida
	A Simple Library Implementation of Binary Sessions Luca Padovani
	Concurrent TypeState-Oriented Programming Luca Padovani
	Precise Subtyping Jovanka Pantovic
	Concurrent C0 Frank Pfenning
	Manifest Sharing with Session Types Frank Pfenning
	Detecting Concurrency Errors of Erlang Programs via Systematic Testing Konstantinos Sagonas
	Lightweight Session Programming in Scala Alceste Scalas
	Programming Protocols with Scribble and Java Alceste Scalas
	Partial Type Equivalences for Verified Dependent Interoperability Nicolas Tabareau
	Gradual Session Types Peter Thiemann
	Choreographies, Modularly: Components for Communication Centred Programming Hugo Torres Vieira
	From Communicating Machines to Graphical Choreographies Emilio Tuosto
	Fencing off Go Nobuko Yoshida
	Undecidability of Asynchronous Session Subtyping Nobuko Yoshida

	Working groups
	Group Discussion: Integrating Static and Dynamic Typing Laura Bocchi
	Group Discussion: Behavioural Types in Non-Communication Domains Simon Gay
	Group discussion: Dependent Session Types Simon Gay
	Group Discussion: Future Activities and Funding Possibilities Simon Gay
	Group Discussion: Session Sharing and Races Simon Gay
	Group Discussion: Standardisation of a Programming Language with Session Types Simon Gay
	Group Discussion: Behavioural Types for Mainstream Software Development Philipp Haller
	Group Discussion: Educational Resources for Behavioural Types Hugo Torres Vieira

	Open problems
	A Meta Theory for Testing Equivalences Giovanni Tito Bernardi

	Participants

