
IceDust 2: Derived Bidirectional Relations and
Calculation Strategy Composition∗

Daco C. Harkes1 and Eelco Visser2

1 Delft University of Technology, Delft, The Netherlands
d.c.harkes@tudelft.nl

2 Delft University of Technology, Delft, The Netherlands
e.visser@tudelft.nl

Abstract
Derived values are values calculated from base values. They can be expressed with views in
relational databases, or with expressions in incremental or reactive programming. However,
relational views do not provide multiplicity bounds, and incremental and reactive programming
require significant boilerplate code in order to encode bidirectional derived values. Moreover, the
composition of various strategies for calculating derived values is either disallowed, or not checked
for producing derived values which will be consistent with the derived values they depend upon.

In this paper we present IceDust2, an extension of the declarative data modeling language
IceDust with derived bidirectional relations with multiplicity bounds and support for statically
checked composition of calculation strategies. Derived bidirectional relations, multiplicity bounds,
and calculation strategies all influence runtime behavior of changes to data, leading to hundreds
of possible behavior definitions. IceDust2 uses a product-line based code generator to avoid
explicitly defining all possible combinations, making it easier to reason about correctness. The
type system allows only sound composition of strategies and guarantees multiplicity bounds.
Finally, our case studies validate the usability of IceDust2 in applications.

1998 ACM Subject Classification D.3.2 Data-flow languages

Keywords and phrases Incremental Computing, Data Modeling, Domain Specific Language

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.14

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.1

1 Introduction

Derived values are values computed from base values. Base values are provided by the users
of an application. When base values change, derived values should change accordingly. A
key concern in implementing systems with derived values is minimizing the computational
effort that is spent to re-compute derived values after updates to base values. A key concern
in modeling systems with derived values is minimizing the programming effort to realize
such minimal computations. Ideally, one declaratively specifies how values are derived from
base values; from such a specification an efficient update strategy is generated automatically.
Declarative programming with derived values is an old idea, going back at least to incremental
computation of views in relational databases [12]. More recently it has seen much attention
in new fields. Incremental programming [13, 14, 15, 24, 31] uses previously calculated values

∗ This research was funded by the NWO VICI Language Designer’s Workbench project (639.023.206).

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Daco C. Harkes and Eelco Visser;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 14; pp. 14:1–14:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.14
http://dx.doi.org/10.4230/DARTS.3.2.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

field

directionality

unidirectional
(attribute)

bidirectional
(relation)

inverse
multiplicity ub

1 n

derivation
type

normal default derived

calculation
strategy

on-demand incremental eventual

expressionmultiplicity
upper bound

1 n

default implies unidirectional
unidirectional and not normal implies expression
normal implies no expression
normal implies incremental
incremental flow implies incremental
eventual flow implies incremental or eventual

or

mandatory

optional

multiplicity
lower bound

0 1

ordering

ordered unordered

ordering

ordered unordered

inverse
multiplicity lb

0 1

flows

alternative

calculation
strategy

on-demand
flow

incremental
flow

eventual
flow

Figure 1 Feature model for configuration of a field in IceDust and IceDust2.

to efficiently compute new ones. In (functional) reactive programming [7, 22, 23, 28] base
values are modeled as time-varying signals, and derived values are modeled as signals that
are automatically updated when the values of dependent signals change.

These techniques vary in expressiveness and in static guarantees for consistency. Derived
bidirectional relations can be expressed directly in the relational paradigm, but the relational
paradigm provides no guarantees on multiplicity bounds for derived values. On the other
hand, multiplicity bounds can be directly expressed with Option and Collection types in
incremental and reactive programming, but only unidirectional relations can be expressed
without encoding. Moreover, the composition of strategies for calculating derived values
is either disallowed [15], or composition is not statically checked to guarantee that derived
values will be consistent with the values they depend upon [23, 28]. For example, the
(accidental) dependency of incremental computations on on-demand computations can lead
to inconsistencies in incrementally computed values.

The IceDust data modeling language [15] supports declarative specification of derived
value attributes through separation of concerns. An IceDust data model definition consists
of entities with attributes and bidirectional relations between entities. Fields of entities
comprise attributes and the ends of bidirectional relations. IceDust fields vary independently
in multiplicity lower-bound and upper-bound, directionality (unidirectional or bidirectional),
derivation type (user value, default value, or calculated value), and calculation strategy. A
bidirectional field also defines a multiplicity bound for its inverse. This variability is captured
by the feature model1 in Figure 1. IceDust is a configuration language for this feature model.
Each field in a data model is a selection of features complying with this feature model.
However, the language does not support full orthogonality of feature selection. First, the
choice of calculation strategy is global, i.e. the chosen calculation strategy applies to all fields
in a data model; choosing different strategies for different fields is not supported. Second,
only attribute values can be derived; derivation of relation values is not supported.

In this paper we present IceDust2, an extension of IceDust with fully orthogonal configu-
ration selection supporting the following features:

1 A feature model is a compact representation of all the products of a software product line (SPL)[18]. A
product configuration is determined by a selection of features satisfying the constraints of the feature
model.

D.C. Harkes and E. Visser 14:3

Student

name : String

Assignment

name
question
deadline
minimum
avgGrade
passPerc

Submission

name
answer
deadline
finished
onTime
grade
pass

parent ?

children *

submissions * assignment 1 student 1 submissions *

children *

parent ?

: String
: String
: Datetime?
: Float?
: Float?
: Float?

: String
: String?
: Datetime?
: Datetime?
: Boolean
: Float?
: Boolean

Figure 2 Running example class diagram. Bidirectional relations are denoted by→←, and dotted
lines express derived relations.

In addition to derived value attributes, IceDust2 supports derived bidirectional relations.
Derived relations are computed incrementally or eventually, which requires incremental
maintenance of bidirectional relations.
Derived relations have multiplicity bounds. The type system statically checks that derived
relation computations are guaranteed to satisfy these bounds.
While IceDust only supports global selection of calculation strategies, IceDust2 sup-
ports local selection or composition of calculation strategies, which allows tuning the
re-calculation behavior of individual fields.
Not all combinations of strategies yield consistent re-calculation of derived values. The
IceDust2 type system checks that selected strategy compositions are sound.
While the selection of features in a data model specification is orthogonal, each combination
of features requires a specialized implementation in order to produce consistent results.
We address the combinatorial explosion of specializations using a product-line approach
to reduce the size of the compiler and make reasoning about its correctness feasible.

The paper is structured as follows. In the next section we examine IceDust and its
limitations and introduce IceDust2 for specifying derived bidirectional relations with mul-
tiplicity bounds and composition of calculation strategies. In Section 3 we analyze the
run-time interaction between derived values, bidirectional relations, multiplicity bounds, and
various calculation strategies. In Section 4 we define the operational semantics covering
all possible feature combinations. In Section 5 we describe the type system guaranteeing
sound composition of calculation strategies. In Section 6 we discuss two implementations of
IceDust2. In Section 7 we evaluate the expressiveness of the language with case studies. In
Section 8 we analyze the limitations entailed by static multiplicity checks on derived relations.
In Section 9 we compare IceDust2 to other approaches to declarative data modeling.

2 Declarative Data Modeling by Feature Selection

In this section we summarize the features of the IceDust data modeling language, analyze
its variability limitations, and introduce IceDust2, an extension of IceDust with orthogonal
feature selection.

2.1 Running Example.
To illustrate data modeling in IceDust and IceDust2, we use a simplified learning management
system as running example (Figures 2-4). Assignments are structured as a tree. For example,
the math assignment consists of an exam and a lab (Figure 3 center). Students submit
Submissions to these assignments. These submissions form trees as well, mirroring the

ECOOP 2017

14:4 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

alice : Student
name = “Alice”

bob : Student
name = “Bob”

math : Assign
name = “Math”
minimum = 6.0
deadline = 13-1-’17
avgGrade = …
passPerc = …

mathAlice : Sub
name = …
deadline = …
grade = …
pass = …

exam : Assign
name = “Exam”
question = “1+1=?”
minimum = 5.0
avgGrade = …
passPerc = …

lab : Assign
name = “Practical”
question = “1/0=?”
minimum = 5.0
avgGrade = …
passPerc = …

mathBob : Sub
name = …
deadline=1-2-’17
grade = …
pass = …

examAlice : Sub
name = …
answer = “Good”
deadline = …
finished = 7-1-’17
onTime = …
grade = 7.0
pass = …

labAlice : Sub
name = …
answer = “Great”
deadline = …
finished = 3-1-’17
onTime = …
grade = 8.0
pass = …

labBob : Sub
name = …
answer = “Perfect”
deadline = …
finished = 28-1-’17
onTime = …
grade = 10.0
pass = …

examBob : Sub
name = …
answer = “Bad”
deadline = …
finished=7-1-’17
onTime = …
grade = 3.0
pass = …

children

children children

submissions submissions

Figure 3 Running example data. References are denoted by →, bidirectional relation values are
denoted by →←, derived references are dotted arrows, and derived attribute values are dots.

module example (incremental)
entity Assignment (eventual) {

name : String
question : String?
deadline : Datetime?
minimum : Float
avgGrade : Float? = avg(submissions.grade)
passPerc : Float? = count(submissions.filter(x=>x.pass)) / count(submissions)

}
entity Student {

name : String
}
entity Submission {

name : String = assignment.name + " " + student.name (on−demand)
answer : String?
deadline : Datetime? = assignment.deadline <+ parent.deadline (default)
finished : Datetime?
onTime : Boolean = finished <= deadline <+ true
grade : Float? = if(conj(children.pass)) avg(children.grade) (default)
pass : Boolean = grade >= assignment.minimum && onTime <+ false

}
relation Submission.student 1 <−> * Student.submissions
relation Submission.assignment 1 <−> * Assignment.submissions
relation Assignment.parent ? <−> * Assignment.children
relation Submission.parent ? =

assignment.parent.submissions.find(x => x.student == student)
<−> * Submission.children

Figure 4 Running example IceDust2 specification.

D.C. Harkes and E. Visser 14:5

assignment tree (see Alice’s and Bob’s submission trees in Figure 3). The tree structure of
submissions is derived in order to avoid redundant data, which can lead to inconsistencies.

Assignments have optional deadlines. Student submissions inherit their deadline from
the assignment or from their parent submission, unless the deadline is overridden by the
instructor to provide a personal deadline for a student. For example, mathBob’s deadline in
Figure 3 is supplied by the instructor, while mathAlice’s deadline is the assignment deadline.
Leaf submissions are graded by assigning a grade to the grade attribute (overriding the
default value), while the grades of non-leaf submissions depend on the grades of their child
submissions. Note that students only receive a grade for a collection-submission if all of
the child submissions are pass, and a submission is only a pass when its grade is above
the minimum assignment grade and all its children pass. Finally, every assignment has an
average grade and pass percentage.

Most derived values in this example are calculated incrementally, providing fast per-
formance for reads. The course statistics are calculated eventually, providing better
performance on writes to grades. Student grades need to be up-to-date, but statistics can
be (temporarily) outdated. The submission name is calculated on-demand as it need not be
cached. This example is interesting as it has a derived bidirectional relation (Submission’s
parent-children) with a multiplicity bound on parent. Moreover, the derived relation is
used in both directions in other derived values: parent is used in inheriting deadlines and
children is used in calculating grades.

2.2 Orthogonality of Field Configurations in IceDust
An IceDust data model definition consists of entities with fields. Instantiations of entities
are objects that assign values to fields. A field declaration specifies the type of values that
can be assigned to the field and several other configuration elements. We analyze IceDust’s
configurability in terms of the feature model of Figure 1.

Multiplicities. A source of boilerplate code in regular programming languages are nullable
values and explicit collections used to encode the cardinality of values. Instead of encoding
cardinalities in (collection) types, IceDust supports the specification of multiplicities as a
separate, orthogonal concern, following the work of Steinmann [29] and Harkes et al. [16].
Multiplicity modifiers on types express that a field has exactly one value (1), zero or one
value (?), zero or more values (*), or one or more values (+). All operators are defined for all
cardinalities of operands. For example, an expression calculating average grades based on
children (implicit collection) and grade (implicitly nullable) is specified as:

mathAlice // : Submission ~ 1
mathAlice.children // : Submission ~ *
mathAlice.children.grade // : Float ~ *
mathAlice.children.grade.avg() // : Float ~ ?

Directionality. There are two kinds of fields. Attributes such as grade refer to a (collection
of) primitive value(s). Reference fields refer to a (collection of) object(s). In object-oriented
languages bidirectional relations between entities are modeled by a reference field on each side
of the relation. Keeping such a relation consistent requires work. That is, when assigning to a
field on one side of the relation, the other side should be made consistent with that assignment
(as we will discuss in more detail in the next section). To avoid the associated boilerplate
code, IceDust provides ‘native’ bidirectional relations between entities. For example, the
following relation defines a tree structure for submissions:

ECOOP 2017

14:6 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

w rcalc

w calc r

w

calc

r

On-demand

Incremental

Eventual

call

return

flag dirty

w write base value

r read derived value

calc calculate derived value

Figure 5 Thread activation diagrams for different calculation strategies.

entity Submission { }
relation Submission.children * <−> ? Submission.parent

IceDust guarantees that the reference fields that implement a relation are kept consistent at
run time. Thus, IceDust supports unidirectional primitive valued attributes and bidirectional
relations between entities. Note that multiplicities apply equally to attributes and the
endpoints of relations.

Derivation Type. The values of normal attributes are directly assigned by (the users of)
an application. Similarly, normal relations are constructed by an application. A derived
value attribute specifies an expression that calculates the attribute’s value from the values of
other attributes and relations. For example, the grade attribute is defined as the average of
the grades of the children’s grades:

entity Submission {
grade : Float? = children.grade.avg()

}
relation Submission.children * <−> ? Submission.parent

Derived and user-defined attributes can be combined in a default-valued attribute. If a
value is explicitly assigned to such an attribute, that value is returned. Otherwise, the
calculated (default) value is returned. For example, a submission grade can be calculated
from its children’s grades, but it can also be set by the instructor:

grade : Float? = children.grade.avg() (default)

Calculation Strategies. In object-oriented languages, calculated values can be specified
with getter methods, encoding an on-demand calculation strategy; the value is calculated
each time it is read. Switching to a cached implementation strategy requires invasive code
changes. Derived value attributes in IceDust can be configured with different calculation
strategies orthogonally to the expression of the calculation. The difference between the
different calculation strategies is the point in time at which derived values are calculated.
Figure 5 shows the differences by means of thread activation diagrams in response to incoming
reads and writes. The on-demand strategy calculates derived values when they are read.
This means that writes to base values, on which derived values can depend, will be fast,
but reads of derived values will be slow. The incremental strategy recalculates all derived
values that transitively depend on base value directly after an update to a base value. Writes
will be slow, but reads will be fast. Finally, the eventual strategy schedules recalculating on
a separate thread. Writes and reads will be fast, but consistency is not guaranteed: possibly
outdated derived values might be read.

D.C. Harkes and E. Visser 14:7

2.3 Generalizing Data Modeling with IceDust
IceDust limits the possible configurations of the feature model. First, only unidirectional
fields (attributes) can be derived, not bidirectional relations. Second, all fields in an IceDust
program are required to have the same calculation strategy. In this paper we relax these
constraints to enable a more general combination of features.

Derived Relations. In the relational model, derived bidirectional relations can be expressed
directly in relational terms. For example, the derived relation in Figure 2 is expressed in
Datalog as follows:

submissionParent(?s1, ?s2) :−
submissionAssignment(?s1, ?a1),
submissionAssignment(?s2, ?a2),
assignmentParent (?a1, ?a2),
submissionStudent (?s1, ?st),
submissionStudent (?s2, ?st).

However, the relational paradigm specifies no multiplicity bounds: a Submission can have
[0, n) parents. (Which is a problem if a submission should inherit its parent deadline, and
there might be multiple parents.) On the other hand, in reactive or incremental programming,
for example with REScala [28], a multiplicity bound of [0, 1] can be specified (the type is
Option[Submission]):

class Submission {
val parent: DependentSignal[Option[Submission]] = Signal {
assignment().flatMap(_.parent()).map(_.submissions()).getOrElse(Nil)

.find(_.student() == student())
}

}

However, this only specifies a unidirectional relation. Making this relation bidirectional
in REScala requires defining a children signal, keeping track of the previous parent, and
updating the children signal on parent change events:

val children : VarSynt[List[Submission]] = Var(Nil)
var oldParent : Option[Submission] = None
val parentChanged: Event[Option[Submission]] = parent.changed
parentChanged += ((newParent: Option[Submission]) => {

oldParent.foreach { o => o.children() = o.children.get.filter(_ != this) }
newParent.foreach { n => n.children() = this :: n.children.get }
oldParent = newParent

})

To avoid such boilerplate and provide multiplicity bounds we generalize IceDust’s derived
values to apply to relations and attributes, rather than just attributes. A derived relation is
expressed in IceDust2 as

relation Entity1.field1 multiplicity = expr <−> multiplicity Entity2.field2

where the expression defines how to compute the left-hand side of the relation. The parent-
child relation of submissions in our example can be expressed as follows:

relation Submission.parent ? =
assignment.parent.submissions.find(x => x.student == student)
<−> * Submission.children

Figures 2-3 show the model and some example data for this derived relation respectively.
The derived relation is specified on the left-hand side, but can be used inversely, from the
right-hand side, as well. For example, using children in calculating the average grade:

ECOOP 2017

14:8 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

entity Submission {
grade : Float? = children.grade.avg()

}

Composition of Calculation Strategies. We extend IceDust with composition of calculation
strategies. Strategy composition enables using different strategies for different parts of the
program. For example, in our running example, student grades are always required to be
consistent, but course statistics may be out of date (temporarily) for better performance.
We can express this by calculating student grades incrementally, while calculating course
statistics eventually:

entity Assignment {
avgGrade : Float? = submissions.grade.avg() (eventual)

}
entity Submission {

grade : Float? = children.grade.avg() (incremental)
}
relation Submission.children * <−> ? Submission.parent
relation Assignment.submissions * <−> 1 Submission.assignment

The calculation strategies can be specified on modules, entities, and individual fields. If a
strategy is not specified, the field inherits it from its entity or module. The default strategy
is incremental, as all other strategies can depend on it (see Section 5 for more details).

Constraints on Feature Composition. IceDust2 allows almost all combinations of features
in Figure 1, but we impose three restrictions. First, we disallow unsound composition of
calculation strategies as we will discuss in Section 5.

Second, derived relations can only be used inversely if they are materialized (incremental
and eventual calculation). Navigating inversely in on-demand would require either materi-
alizing or coming up with an inverse expression. Consider the following derived relation:

relation Submission.root 1 = parent.root<+this <−> * Submission.rootDescendants

It defines the root for each submission in the tree. Reading root in on-demand is trivial:
execute the expression parent.root <+ this (take your parent’s root, or take yourself). The
inverse for this bidirectional relation is rootDescendants: for the root, all its descendants, and
for all non-root nodes, nothing. In incremental and eventual we can use the materialized
rootDescendants for reads. But, in on-demand the compiler would need to come up with
an expression that computes exactly the inverse of root which is non-trivial:

relation Submission.descendants * = this ++ children.descendants
<−> * Submission.ancestors

relation Submission.rootDescendants*= if(count(parent)==0) descendants else null
<−> 1 Submission.root

In this example we need a helper relation to compute the transitive closure.
Third, we disallow default derived relations since their behavior is unexpected. Consider

the following example:
entity Student { }
entity Committee { }
relation Committee.members * <−> * Student.committees
relation Committee.mailingList * = members (default) <−> * Student.subscriptions

We have specified the mailingList of a Committee to be its members by default. Now, if
a member is added, and there is no user-provided value, the member will be added to the
mailing list. But, if some student had also subscribed, the user-provided value will be used,

D.C. Harkes and E. Visser 14:9

which will not be updated with the new member. Better would be to get the desired behavior
by combining the committee members and the mailing list in a new derived value:

relation Committee.members * <−> * Student.committees
relation Committee.mailingList * <−> * Student.subscriptions
relation Committee.fullMailingList * = members ++ mailingList

<−> * Student.allSubscriptions

3 Run-Time Feature Interaction

In the previous section we generalized the configurability of fields in IceDust2 data models.
As a result, features can be combined independently (up to semantic soundness). While
the selection of features in a data model specification is orthogonal, each combination of
multiplicity, directionality, derivation type, and calculation strategy requires a specialized
implementation to produce consistent results. In this section we examine the nature of this
run-time feature interaction before addressing the resulting complexity in the next section.

Incrementality and Bidirectional Updates. Maintaining bidirectionality and updating
incremental derived values happen on writes and are mutually recursive. In Figure 3,
consider executing lab.setParent(exam), moving the lab from math to exam. Bidirectional
maintenance will update math.children and exam.children. This will trigger incremental
updates for Submission.children fields, which will in turn update Submission.parent
fields, which will trigger updates for Submission.deadline fields, etcetera. Thus, it is not
possible to define incrementality behavior orthogonally to the bidirectional maintenance
behavior.

Multiplicities Guide Bidirectional Updates. When maintaining bidirectionality, multi-
plicity bounds have to be respected. Multiplicity upper bounds are respected by implic-
itly removing old values if needed. For example, executing exam.addToChildren(lab)
will implicitly remove math as parent from lab. The behavior is identical to executing
lab.setParent(exam). Figure 6 shows the result of writes to bidirectional relations while
preserving bidirectionality and respecting multiplicity upper bounds. Behavior 7 is executed
on lab.setParent(exam), and behavior 10 on exam.addToChildren(lab). Both will im-
plicitly remove the old parent of lab. The alternative to implicitly removing old values
would be to fail when calling exam.addToChildren(lab). This is what the Booster language
does [5]; it only updates objects referenced explicitly in the update operation. But, it
would be verbose to have to call math.removeFromChildren(lab) first. Multiplicity lower
bounds are respected by failing the operation on a violation, as implicitly adding relations
with arbitrary objects is undesirable. For example, on deleting exam, the multiplicity lower
bounds of examAlice.assignment and examBob.assignment are violated. But, implicitly
setting examAlice.assignment to lab is undesirable. The behavior of bidirectional mainte-
nance varies with multiplicity bounds. Thus, it is not possible to define the bidirectional
maintenance behavior orthogonally to the behavior for respecting multiplicity bounds.

Minimizing Setter Calls for Incrementality. For incrementality it is important to minimize
the (internal) calls to setters, as duplicate setter calls will duplicate dirty flagging of derived
values that depend on it. If we look at Figure 6, behavior 2, then we should not first call
b2.setA(null) and subsequently b2.setA(a1) during bidirectional maintenance. So, rather
than first removing a2-><-b2 and subsequently adding a1-><-b2, the algorithm should

ECOOP 2017

14:10 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

A B1 1
b a

a1.setB(b2)

A B1 *
b as

a1.setB(b2)

A B* 1
bs a

a1.addToBs(b2)

A B* *
bs as

a1.addToBs(b2)

a1 b1

a2 b2

b1a1

b2a2

b1a1

b2a2

b1a1

b2a2

dynamic
multiplicity

static
multiplicity

entity

object

reference

set / add

remove

Figure 6 Update a bidirectional relation and preserve both bidirectionality and multiplicity upper
bounds. Left column shows class diagram with multiplicity bounds, the top row shows starting
object graph, and 1-16 show the object graph after update.

update a1.b, a2.b, and b2.a directly. The behavior maintaining bidirectionality needs to
trigger the minimal number of incremental updates.

Only Trigger Updates on Observable Changes. An additional way to minimize incremental
update computation is updating only on observable changes. The various derivation types
influence this. If a normal attribute is assigned the same value as it previously had, there
is no need to trigger updates. Default values have various scenarios in which updates are
not observable. Suppose we would ‘override’ the grade of mathAlice with a 7.5 in Figure 3.
This should not trigger any updates, as the default value was 7.5 already (the average of 7.0
and 8.0). If we change the grade of examAlice to a 9.0 after that, we trigger an update for
mathAlice.grade. But we can stop propagating at that point because the new average (8.5)
is not visible; we overrode the grade with 7.5. When writing to a field, an update should
only be triggered when the change is observable. Thus, the incremental update behavior
cannot be defined orthogonally to the derivation type behavior.

Only Trigger Updates for Incremental and Eventual. Finally, updates only need to be
triggered for derived value fields that are updated on writes (incremental and eventual).
Fields only referenced in on-demand derived value fields do not need to send update triggers
(for example Assignment.name in Figure 4). Note that if we would change Submission.name
to incremental, Assignment.name does need to send update triggers. Thus, the calculation
strategy behavior of a field can not be defined orthogonally to the calculation strategy
behaviors of the fields that reference it.

Summary. In summary, derived values, bidirectional relations, multiplicity bounds, and
calculation strategies all interact with each other. These interactions are hidden from the

D.C. Harkes and E. Visser 14:11

setget

val cache dirty

cacheSetflagDirty updateCache

field

method

call / read / write

Figure 7 General overview for the semantics of a single field in IceDust2.

language users in the getters and setters of fields. Because all these features interact, they
cannot be implemented separately. Creating different specialized getters and setters for
all possible feature combinations is also not an option; the feature model has 384 valid
configurations. (The number of configurations, without any restrictions, and ignoring flow
calculation strategies, is 6 ∗ 7 ∗ 3 ∗ 3 ∗ 2 ∗ 2 = 1512. With the implies restrictions it is 384.)
With about 20 to 100 lines of code generated for getters and setters, specifying all specialized
getters and setters would be roughly 20000 lines of code. This amount of code would pose
a serious maintenance problem, and would make it impossible to reason about correctness.
Our solution is to implement this as a compact product-line for each field. We discuss this in
the next section.

4 Operational Semantics

An IceDust2 data model consists of entities with fields, representing attributes and relations.
The public API of such a data model consists of entity instantiation, object deletion, reading
the value of a field (get), and changing the value of a field (set). The previous section showed
that IceDust2’s features are not compositional, leading to over 300 different configurations
for fields with as many getter/setter definitions. In this section we define the operational
semantics for these getters and setters by factoring out variability into mutually dependent
auxiliary methods. Moreover, we argue that all these behaviors maintain bidirectionality,
respect multiplicity bounds, and maintain caches for incrementality.

Figure 7 gives an overview of the semantics of a single field. A field is represented at
runtime by at most three fields: a user value, a derived value cache, and a dirty flag. The
getter is responsible for returning the correct value on a read. The setter is responsible for
maintaining bidirectionality and multiplicity bounds in the userValue. Moreover, it calls
flagDirty on observable changes. The cacheSetter does the same for cacheValues. The
incremental update algorithm (not shown in Figure 7, as it is global) reads the dirtyFlags,
and calls updateCache to maintain derived value caches. How these fields and methods are
implemented varies based on the configurations in the feature model.

We specify the operational semantics of IceDust2 using big-step semantics. The reduction
rules modify a store. The store can contain a user value, a cached value, and a dirty flag for
every field in every object (Figure 8). We omit the store in a rule when it is not directly
used in the rule. When we omit the store, it is implicitly threaded from left to right. Note
that in list comprehensions the store is threaded as well. For conciseness, all rules operate
on lists of values, even if fields have a multiplicity upper bound of 1. In the rules, we use ‘∈’
for testing whether a field has a certain configuration in the feature model. For example,
‘f ∈ incremental’ is true if the field uses the incremental calculation strategy. We use ‘.’ for
accessing related information. For example, ‘f.expr’ denotes the expression of field f , and
‘f.inverse’ denotes the inverse field of a bidirectional relation.

ECOOP 2017

14:12 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

Σ ∈ Store : EntityReference× F ield 7→ (val 7→ [V alue], cache 7→ [V alue], dirty 7→ Boolean)
V alue : EntityRerence | P rimitiveV alue

Figure 8 The store maps combinations of references and field names to tuples of three: user
value, cached value, and dirty flag.

f ∈ normal

o.get(f)/Σ ⇓ Σ[o, f].val/Σ
[Get1]

f ∈ default Σ[o, f].val = V 6= []

o.get(f)/Σ ⇓ V/Σ
[Get2]

f ∈default Σ[o, f].val=[] o.getCalc(f)⇓V

o.get(f)/Σ ⇓ V/Σ
[Get3]

f ∈ derived o.getCalc(f) ⇓ V

o.get(f) ⇓ V
[Get4]

V.get*(f) ⇓ [v|v∈V2, o.get(f)⇓V2, o∈V]
[Get∗]

f ∈ on-demand o.calc(f) ⇓ V

o.getCalc(f) ⇓ V

[GetCalc1]

f ∈ incremental

o.getCalc(f)/Σ ⇓ Σ[o, f].cache/Σ
[GetCalc2]

o ` (f.expr) ⇓ V

o.calc(f) ⇓ V
[Calc]

Figure 9 Getter evaluation rules.

Getter. Figure 9 defines the evaluation rules for getters. Method get behaves differently
depending on the derivation type. The rule for normal just reads the user value of the field
[Get1]. The rule for default reads the user value [Get2], but if that is not present (empty list
of values), the calculated value is returned [Get3]. (It is not possible to override a calculated
value with an absent user value.) The rule for derived returns the calculated value [Get4].
Method get* maps a getter over a collection of objects, which is used in the compilation of
expressions. The rules for getCalc call calculate for on-demand [GetCalc1], but read the
cached value for incremental [GetCalc2]. Finally, calculate calculates a value using the
expression of the field. Note that in expression evaluation (o ` this ⇓ [o]) the o before the
turnstyle binds this. We omit the rules for expression evaluation as they are standard.

The on-demand and incremental calculation strategies should return the same values
on field reads. (Except for cyclic definitions, which we will discuss later.) When the getter
is called, incremental (default or derived) fields should have a cached value equal to
re-evaluating the expression, and there should be no dirty flags:
I Invariant 1 (Incrementality). ∀ E.f ∈ incremental, ∀o∈E, Σ[o, f,dirty]=false ⇒

∀ E.f ∈ incremental, ∀ o : E, o.calc(f) ⇓ Σ[o, f, cache]
If the cached value contains the exact value that calculate would compute if executed,

then the incremental getter will return the same value as the on-demand getter. The setter
and update algorithm should keep the cached value up-to-date.

Setter. Figure 10 defines the evaluation rules for setters. Method set is responsible for
maintaining bidirectionality and multiplicity upper bounds. For attributes, set does not have
to maintain bidirectionality so it passes the call through to setIncr [Set1]. For relations,
set’s behavior varies depending on multiplicity bounds [Set2]. References on V.(f.inverse)
are removed by addIncr if the multiplicity upper bound is 1 [AddIncr1]. The inverses of
these references are implicitly removed by remInv [RemInv2]. This realizes the behavior
visualized in Figure 6. Method setIncr is responsible for dirty flagging on observable changes
[SetIncr2]. Method cacheSet is identical to the set method, updating cache values rather
than user values.

D.C. Harkes and E. Visser 14:13

f /∈ bidir f ∼ [_, u] |V | ≤ u

o.setIncr(f, V) ⇓

o.set(f, V) ⇓
[Set1]

f ∈ bidir f ∼ [_, u] |V | ≤ u

Vold = Σ[o, f].val
Vadd = V \ Vold

Vrem = Vold \ V

[vadd.remInv(f.inverse) ⇓ | vadd ∈ Vadd]
o.setIncr(f, V) ⇓
[vrem.remIncr(f, o) ⇓ | vrem ∈ Vrem]
[vadd.addIncr(f, o) ⇓ | vadd ∈ Vadd]

o.set(f, V) ⇓
[Set2]

f ∼ [_, 1] Σ[o, f].val = []

o.remInv(f)/Σ ⇓ /Σ
[RemInv1]

f ∼ [_, 1] Σ[o, f].val = [v]
v.setIncr(f.inverse, [])/Σ ⇓ /Σ2

o.remInv(f)/Σ ⇓ /Σ2

[RemInv2]

f ∼ [_, n)

o.remInv(f) ⇓
[RemInv3]

f ∼ [_, 1] o.setIncr(f, [v]) ⇓

o.addIncr(f, v) ⇓
[AddIncr1]

f ∼ [_, n) V =Σ[o, f].val++[v]
o.setIncr(f, V)/Σ ⇓ /Σ2

o.addIncr(f, v)/Σ ⇓ /Σ2

[AddIncr2]

o.setIncr(f, Σ[o, f].val\v)/Σ ⇓ /Σ2

o.remIncr(f, v)/Σ ⇓ /Σ2

[RemIncr]

f ∈ incremental o.get(f)/Σ ⇓ V2
Σ2=Σ[o,f,val 7→V] o.get(f)/Σ2 ⇓ V2

o.setIncr(f, V)/Σ ⇓ /Σ2

[SetIncr1]

f ∈ incremental o.get(f)/Σ ⇓ V2
Σ2=Σ[o,f,val 7→V] o.get(f)/Σ2 ⇓ V3
V2 6= V3 o.dirtyFlows(f)/Σ2 ⇓ /Σ3

o.setIncr(f, V)/Σ ⇓ /Σ3

[SetIncr2]

Figure 10 Setter evaluation rules.

[v.flagDirty(f2) ⇓ | v∈V, o`expr⇓V,
f2∈ incremental, expr.f2∈f.flows]

o.dirtyFlows(f) ⇓
[DirtyFlows] Σ2 = Σ[o, f, dirty 7→ true]

o.flagDirty(f)/Σ ⇓ /Σ2

[FlagDirty]

Figure 11 Flag dirty evaluation rules.

o.calc(f) ⇓ V o.cacheSet(f, V) ⇓

o.update(f) ⇓
[Update]

[o.update(f) ⇓ | o ∈ V]

V.update*(f) ⇓
[Update∗]

V = [o | Σ[o, f, dirty] = true]
V.clean*(f)/Σ ⇓ /Σ2
V.update*(f)/Σ2 ⇓ /Σ3

updateCache*(f)/Σ ⇓ /Σ3

[UpdateCache∗]

Σ2 = Σ[o, f, dirty 7→ false]

v.clean(f)/Σ ⇓ /Σ2

[Clean]

[v.clean(f) ⇓ |v ∈ V]

V.clean*(f) ⇓
[Clean∗]

[o | Σ[o, f, dirty]=true] 6= []

hasDirty*(f)/Σ ⇓ true/Σ
[HasDirty∗1]

[o | Σ[o, f, dirty]=true] = []

hasDirty*(f)/Σ ⇓ false/Σ
[HasDirty∗2]

Figure 12 Update evaluation rules.

ECOOP 2017

14:14 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

[maintGroup*(g) | g ∈ p.topo]

maintCache*(p) ⇓
[MaintCache∗]

[updateCache*(f) | f ∈ g]
∀f ∈g, ¬hasDirty*(f)

maintGroup*(g) ⇓
[MaintGroup∗1]

[updateCache*(f)| f ∈ g]
∃f ∈g, hasDirty*(f)
maintGroup*(g) ⇓

maintGroup*(g) ⇓
[MaintGroup∗2]

Figure 13 Update algorithm evaluation rules.

For each object, for each field that is bidirectional, it should hold that if the field refers
to another object, the other object also refers back to this object from the inverse field:

I Invariant 2 (Bidirectionality). ∀ E.f ∈ bidir, ∀ o1 :E, o2∈o1.f1 ⇒ o1∈o2.(f.inverse)

Moreover, a read from a field should always return a list of values the size of which is smaller
than or equal to the multiplicity upper bound:

I Invariant 3 (Multiplicity Upper Bound). ∀ E.f ∼ [_, u], ∀ o : E, |o.f | ≤ u

The rules for set satisfy these two properties by construction; they generalize Figure 6 to
work on collections of values. The setter is also partially responsible for Invariant 1. Whenever
get of a field returns a different value, setIncr will call dirtyFlows. If dirtyFlows sets
all dependent values dirty, and all dirty values are updated, Invariant 1 holds.

Flag Dirty. Whenever a value is observably changed, all incremental derived values that
depend on it are flagged dirty. Figure 11 defines the evaluation rules for dirty flagging.
Method dirtyFlows traverses the data-flow expressions, and calls flagDirty to flag the
appropriate field dirty. Note that dirtyFlows only calls flagDirty for flows that end in a
field that is incremental, as on-demand does not require dirty flagging. The data flows are
obtained by path-based abstract interpretation. The basic idea is that all fields referenced in
an expression are dependencies, and that the inversion of these dependencies determines the
data flow. (For more details on data flow, see the IceDust paper [15].)

The flagDirty method is also partially responsible for Invariant 1. Method dirtyFlows
flags all derived values dirty that depend on the changed value. If the incremental update
algorithm updates all cached values that are dirty, Invariant 1 holds.

Update Cache. After changes, the caches have to maintained, so that reads return up-to-
date values. Figure 12 defines the evaluation rules for cache updates. Method update is
responsible for updating the cache of a single field for a single object. Method updateCache*
updates the field in all objects that have this field dirty. Together with updateCache*,
hasDirty is the API for the cache maintenance algorithm.

These methods are partially responsible for Invariant 1 as well. Method cacheUpdate
ensures that Invariant 1 hold for a single field of a single object after its execution. However,
updating the cache of a field might invalidate the cache of another. So, the incremental
update algorithm calls updateCache* until hasDirty* evaluates to false for all fields.

Incremental Update Algorithm. The update algorithm is responsible for cleaning all
caches. The evaluation rules for the update algorithm are defined in Figure 13. The data-flow
analysis provides a topological ordering which can be used for scheduling updates [15].
Method maintCache* invokes maintGroup* for each connected component in topological
order. Method maintGroup* invokes itself recursively as long as the group hasDirty*.

D.C. Harkes and E. Visser 14:15

Invariant 1 is now satisfied by the fact that groups can only dirty flag fields in their own
group or later groups, and each group is updated until no more dirty flags remain.

Note that in this operational semantics, transactions have to be managed manually. First
constructors, set and delete are invoked, then maintainCache* has to be invoked, and
only then get and get* are guaranteed to return values that are up-to-date. Transactions
can be made implicit by invoking maintainCache* directly from set.

Object Creation and Deletion. On object creation all incremental fields of that object
are dirty flagged. Before object deletion, all fields are set to null (or empty collections)
to ensure bidirectionality and incrementality are maintained for the fields of other objects.
Creation and deletion behavior do not vary based on different field features.

Multiplicity Lower Bounds. So far we have ignored multiplicity lower bounds:

I Invariant 4 (Multiplicity Lower Bound). ∀ E.f ∼ [l,_], ∀ o : E, |o.f | ≥ l

These are checked at the end of transactions. (We have omitted transactions from the
evaluation rules for conciseness.) If any of the multiplicity lower bounds is violated, the
whole transaction is reverted.

Eventual Calculation Strategy. We have also omitted the eventual calculation strategy in
the semantics. The eventual calculation strategy is implemented by taking the incremental
update algorithm, but running this in a separate thread, and updating a single field of a single
object at the time. To keep track of the dirty flags for eventual calculation, a fourth element
in the store tuples is required: dirtyEventual. (In the implementation dirtyEventual flags
are shared across all threads while dirty flags are thread-local.) The dirty flags for eventual
calculation do not have to be cleaned before ending a transaction. But, when all dirty flags
are cleaned, then all eventually calculated values are up-to-date:

I Invariant 5 (Eventuality). ∀ E.f ∈ incremental, ∀o∈E, Σ[o, f,dirty]=false ∧
∀ E.f ∈ eventual, ∀o∈E, Σ[o, f,dirtyEventual]=false ⇒
∀ E.f ∈ eventual, ∀ o : E, o ` f.expr ⇓ Σ[o, f, cache]

Discussion: Computation Cycles. The on-demand and incremental calculation strategy
produce the same values locally. But, in cyclic data flow their behavior is different. Consider
the following program:

entity Foo {
a : Int
b : Int = a <+ c // if(count(a) > 0) a else c
c : Int = b

}

If a is not set, and c is read, on-demand will not terminate, but incremental will return
null. If a is set, and c is read, both strategies will return the same value. If after that, a is
set to null and c is read again, incremental will still return the previous value of c as it is
cached in both b and c, while on-demand will not terminate again.

The incremental calculation strategy satisfies Invariant 1, as all derived values are
consistent with each other. Invariant 1 is the same as the property guaranteed by synchronous
reactive programming [22, 28]. In incremental computing with Adapton, a stronger property
is guaranteed: incremental computation returns identical results to from-scratch computation
[13, 14]. Note that in Adapton cyclic programs cannot be expressed, as cyclic computations

ECOOP 2017

14:16 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

cannot be constructed. For acyclic data flows, IceDust2 satisfies the same property as
Adapton: incremental calculation returns the same value as on-demand calculation.

5 Sound Composition of Calculation Strategies

In this section we examine how different calculation strategies can be composed. In com-
position the strategies need to evaluate to the right answers, and do so within their time
constraints. Moreover, we introduce a type system that statically checks the safety of the
composition of calculation strategies in an IceDust2 program.

Some systems for computing derived values allow composing various calculation strategies.
However, the composition is not always checked for correctly calculating derived values.
Derived values should be consistent with the values they depend on. On-demand values
are not aware of changes to their dependencies, and they do not notify the derived values
depending on them of changes. For example, in REScala on-demand values can be accidentally
referenced in reactive values, causing reactive values not to be updated on changes to their
dependencies. Take the following example:

class Student {
val name :VarSynt[String] = Var("") //reactive
val city :VarSynt[String] = Var("") //reactive
val street :VarSynt[String] = Var("") //reactive
def address:String = street.get + " " + city.get //on−demand
val summary:DependentSignal[String]= Signal{name() + " " + address}//reactive

}

A change to name will trigger an update to summary, so summary will be consistent with
name. Accessing address will read the latest values from city and street, so it will be
consistent with its dependencies as well. But, summary is not updated after a change to city
or street, so summary is not consistent with all its dependencies.

In IceDust, letting an incremental field depend on an on-demand field would have the
same problem. Changing the incremental strategy to reevaluate on-demand referenced
fields would make reads of incremental fields slower. (A cache read is O(1), reevaluating
might be expensive.) We designed IceDust2 to have predictable performance, so we chose to
prevent the above situation by a type system.

Type Checking Strategy Composition. IceDust2 features three calculation strategies:
on-demand, incremental, and eventual (Figure 5). The on-demand strategy is pull-based,
while the incremental and eventual strategies are push-based. Push-based derived values
are recalculated on changes to base values, while pull-based derived values are calculated
when they are read. Pull-based derived values can depend on push-based derived values, but
not the other way around, as pull-based values would not notify the push-based values of
changes. Within the push-based strategies, eventual can depend on incremental, but not
the other way around. An incremental derived value depending on an eventual derived
value would be eventually calculated rather than be up-to-date. An on-demand derived
value depending on an eventual derived value is not always up-to-date, so we create a
new strategy, on-demand eventual, to reflect this. Finally, any calculation strategy can
depend on values entered by users, so we also create a new strategy base-value for that.
We combine these five strategies in a lattice such that strategies in the lattice can depend on
strategies below them (Figure 14, right).

This lattice is used to check the composition of calculation strategies in IceDust2 programs.
The general idea is to check what strategy is used for each sub-expression of derived values,

D.C. Harkes and E. Visser 14:17

* ordered

+ ordered

null

error

Int Float StringBoolean Datetime Entities

1

?

+

* unordered

unordered

on-demand eventual

eventual

incremental

on-demand

base-value

Figure 14 IceDust2’s type lattice (left), multiplicity and ordering lattice (middle), and composition
of calculation strategies lattice (right).

Expression Strategy Composition Γ ` Expr ⇑ S

c is constant

c ⇑ base-value
[Const]

this ⇑ base-value
[This]

¬Γ(m) f.stratComp = s

Γ ` f ⇑ s
[NavStart]

e ⇑ s1 f.stratComp = s2

e . f ⇑ s1 t s2
[Nav]

⊕ ∈ UnOp e ⇑ s

⊕ e ⇑ s
[UnOp]

⊕ ∈ BinOp e1 ⇑ s1 e2 ⇑ s2

e1 ⊕ e2 ⇑ s1 t s2

[BinOp]

e1 ⇑ s1 e2 ⇑ s2 e3 ⇑ s3

e1 ? e2 : e3 ⇑ s1 t s2 t s3

[TenOp]

Γ ` e1 ⇑ s1 Γ[x 7→ s1] ` e2 ⇑ s2

Γ ` e1.filter(x => e2) ⇑ s1 t s2

[Filter]

Γ ` x ⇑ Γ(x)
[Var]

Field and Program Strategy Composition F ield|P rog ⇑

f.stratComp = sdef ∅ ` f.expr ⇑ sexpr sdef w sexpr

f ∈ F ield ⇑
[Field]

∀e∈p.entities, ∀f ∈{f | f.expr, f ∈ e.fields}, f ⇑

p ∈ P rog ⇑
[Prog]

Figure 15 Strategy composition rules.

and whether these are lower in the lattice than the definition of the derived value specifies.
The reduction rules for the strategy composition type system are defined in Figure 15. The
environment (Γ) maps variable names to strategies.

Constants [Const] and this [This] are base values. Field dereference on this has the
strategy of the field definition [NavStart]. If the field has derivation type normal, it is a
base value. The strategy of a field dereference on an object is the least-upper-bound of the
strategy of the sub-expression and strategy of the field definition [Nav]. Unary operators pass
on their strategy [UnOp], and both binary and ternary operators take the least-upper-bound
of their sub-expression strategies [BinOp, TenOp]. The filter stores the strategy of the
variable in the environment [Filter], and variables read their strategy from the enviroment
[Var]. A field is sound if its expression calculation strategy is less than or equal to its defined
calculation strategy [Field], and finally, a program is sound if all entity fields with expressions
are sound [Prog].

ECOOP 2017

14:18 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

Example. Lets apply these rules to an example. Suppose we extend Submission with:
summary : String =

name + (if(pass) " pass" else " fail") + " grade = " + (grade <+ "none") +
" (average = " + (assignment.avgGrade <+ "none") + ")"

Type checking sub-expressions yields the following:
name // on−demand
pass // incremental
" pass" // base−value, idem all literals
(if(pass) " pass" else " fail") // incremental
name + (if(pass) " pass" else " fail") // on−demand
grade // incremental
assignment // incremental
assignment.avgGrade // eventual
assignment.avgGrade <+ "none" // eventual
name + ... + (assignment.avgGrade <+ "none") // on−demand eventual

The sub-expression name is on-demand, and the sub-expression assignment.avgGrade
is eventual. These two strategies are propagated through the operators until they meet
in a + operator. The + operator takes the least-upper-bound of both strategies, which is
on-demand eventual. So the definition of summary needs to be annotated with (on-demand
eventual).

It is possible to perform strategy inference instead of checking consistency of annotations.
However, it is not clear whether that would improve usability or not. In our example, the
programmer might not notice that the inferred strategy is on-demand eventual, and assume
that the summary would always be up-to-date. So, we require annotating derived value fields
with their calculation strategy, or inheriting the strategy from the entity or module.

6 Implementations

We discuss two IceDust2 compilers. The first compiler closely matches the operational
semantics in Section 4. It compiles to single threaded, in-memory, plain old Java objects.
The second compiler serves a more complicated context. It compiles to an object-relational
mapper with transaction semantics.

Compilation to Java. The compilation to Java closely matches the semantics in Section 4.
It does not feature transactions (no multiplicity lower-bound runtime checks), and does not
feature eventual calculation (it is single threaded). The translation from semantics to a code
generator for Java code is straightforward. The store (fields, caches, and dirty flags) are
compiled to fields in classes, and the arrows to methods. However, the compiler is not a
literal translation of the operational semantics: the compiler makes multiplicity, calculation
strategy and derivation-type choices at compile time, and leaves the remaining behavior to
run time. Moreover, the compiler specializes types for various multiplicities.

An example of this compile-time/run-time split is the code generation for get (Figure 16).
The semantics has two rules for the default-value behavior [Get2, Get3], but the compiler
defers this decision to run time by compiling to an if statement. Another example is the
code generator for the set method. The compiler makes bidirectionality and multiplicity
upper bound choices, so it has six implementations. For these six implementations, it inlines
rule [RemInv], or omits it if it has no effect. Figure 17 shows two of the implementations.
The first variation is specialized to multiplicities with an upper bound of 1, so it has to deal
with null values. The second variation is a literal translation of [Set2] without the [RemInv]
calls. (The multiplicity upper-bounds of n never force implicit removals of references.)

D.C. Harkes and E. Visser 14:19

fieldname−to−java−classbodydec: x_name −> get
x_get := $[get[<ucfirst>x_name]];
x_getCalculated := $[getCalculated[<ucfirst>x_name]];
t := <type−and−mult−to−java−type>x_name;
switch id
case is−normal: get := cbd |[

public ~type:t x_get(){ return x_name; }
]|
case is−default: get := cbd |[

public ~type:t x_get(){
if(x_name!=null && !x_name.equals(new HashSet<~type:t>())) return x_name;
return x_getCalculated();

}
]|
case is−derived: get := cbd |[

public ~type:type x_get(){ return x_getCalculated();}
]|

end

Figure 16 Java code generation for get(). The cbd|[]| parses a Java class body declaration
with meta-variables for types (∼type:...) and identifiers (x_...). For normal fields, the getter
returns the user value. For default fields, it returns the user value if it is set, and the calculated
value otherwise. For derived fields, it always returns the calculated value.

case is−normal−default; is−bidirectional; is−to−one; inverse−is−to−one: set := |[
public void x_set(x_type other){
if(x_name != null) x_name.x_inverseSetIncr(null);
if(other != null){

x_inverseType v = other.x_inverseName;
if(v != null) v.x_setIncr(null);
other.x_inverseSetIncr(this);

}
this.x_setIncr(other);

}
]|
case is−normal−default; is−bidirectional; is−to−many; inverse−is−to−many: set:= |[

public void x_set(Collection<x_type> others){
Collection<x_type> toAdd = new HashSet<x_type>();
toAdd.addAll(others); toAdd.removeAll(x_name);
Collection<x_type> toRem = new HashSet<x_type>();
toRem.addAll(x_name); toRem.removeAll(others);
for(x_type n : toRem) n.x_inverseRemoveIncr(this);
for(x_type n : toAdd) n.x_inverseAddIncr(this);
x_setIncr(others);

}
]|

Figure 17 Two cases from the set() Java code generation. The case for 1 to 1 relations removes
previous references to both objects (this and other) and sets the references of both objects to each
other. The case for n to n relations removes the references from previously related objects toRem to
this, adds new references from toAdd to this, and updates the references of this.

ECOOP 2017

14:20 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

case (is−left; is−normal−default; is−zeroormore−unordered)
+ (is−left; is−default; is−oneormore−unordered): ebd_field* := ebd* |[
x_name : Set<srt_type> (inverse=x_inverseEntityName.x_inverseName)

]|
case is−left; is−normal; is−oneormore−unordered: ebd_field* := ebd* |[

x_name : Set<srt_type> (inverse=x_inverseEntityName.x_inverseName,
validate(x_get().length != 0, "" + e_name + " is required."))

]|

Figure 18 Two of the twelve cases for userField WebDSL code generation. Types are specialized
for [_, 1] to single values, for [_, n) ordered to Lists, and for [_, n) unordered to Sets. The
left-hand side of relations specify inverses. A validator checks the multiplicity lower-bound of 1 at
runtime for normal-valued (not default-valued) fields.

fieldname−to−webdsl−entitybodydeclarations: x_name −> ebd_setIncr*
x_set := $[set[<ucfirst>x_name]];
x_flagFlows := $[flagFlows[<ucfirst>x_name]];
srt_multType := <type−and−mult−to−webdsl−srt>x_name;
stat_flows* := <flows;filter(where(expr−last;is−incr−even);to−webdsl)>x_name;
switch id

case is−normal−default; where(not([] := stat_flows*)): ebd_setIncr* := ebd* |[
extend function x_set(newValue : srt_multType){

if(x_name != newValue){ x_flagFlows(); }
}

]|
otherwise: ebd_setIncr* := []

end

Figure 19 WebDSL setter-hook code generation. If the field has any data-flow to an incremental
or eventual field, generate a setter-hook that flags the cache dirty if the value changed.

The to-Java compiler supports specifying test data, and expressions for execution. This
enables us to use IceDust2 as a glorified spreadsheet, and to write automated tests for
IceDust2 specifications.

Compilation to WebDSL. The second compiler compiles IceDust2 to WebDSL, a domain-
specific language for building web applications [32]. The to-WebDSL compiler features all
IceDust2 features, including multiplicity lower-bound runtime checks, and the eventual
calculation strategy. WebDSL differs from Java. WebDSL persists its data in a relational
database and maps it to memory with an object relational mapper. The object-relational
mapper provides transaction semantics. WebDSL already has a language feature for bidirec-
tional relations, including the interaction with ‘multiplicities’ (single values or lists). This
means the to-WebDSL compiler need not generate any code for that. However, this built-in
support complicates the interaction with IceDust2 incrementality.

Figure 18 shows two cases of the code generator for fields. The WebDSL field code
generation touches many IceDust2 features. Bidirectionality in WebDSL is defined by
inverse annotations, which should be specified on one field of the relation. For a quality
object-relational mapping, ordered fields are compiled to Lists, unordered fields are compiled
to Sets, and single values to single values. Finally, the checks for multiplicity bounds should
be specified on the field definitions as well. Together, three possible types, an optional inverse,
and an optional validator make twelve possible field definitions.

For incremental updates, the to-WebDSL compiler generates incremental setters. To
escape the bidirectionality abstraction, and get access to updates on both sides of the relation,

D.C. Harkes and E. Visser 14:21

entity Conference {
name : String
rootName : String = root.name
numComittees : Int = count(committees)

}
relation Conference.parent ? <−> * Conference.children
relation Conference.root 1 = parent.root <+ this <−> * Conference.rootDescendants

entity Person {
name : String

}
entity Profile {

name : String = person.name + " in " + conference.name
numComittees : Int = count(committees)

}
relation Profile.conference 1 <−> * Conference.profiles
relation Profile.person 1 <−> * Person.profiles

entity Committee {
name : String
fullName : String = conference.name + " " + name

}
relation Committee.conference 1 <−> * Conference.committees
relation Committee.members * <−> * Person.committees
relation Profile.committees * =

person.committees.filter(x => x.conference == this.conference)
<−> * Committee.profiles

Figure 20 Mini conference management system IceDust2 specification. A Conference can be
a sub-conference of a parent conference. A Person has a separate Profile for each conference
(s)he participates in. A conference is organized by multiple Committees. A person can be member of
committees in various conferences.

WebDSL provides setter hooks, similar to aspect-oriented pointcuts [19]. Figure 19 shows
the implementation of the setter hook. These hooks only intercept calls, they do not update
the fields. Thus, it cannot test for observable changes (by calling get before and after
changing the field [SetIncr]). It approximates this by checking whether the value changes.

The to-WebDSL compiler is used in web applications. It enables specifying the business
logic in derived values, and enables changing the calculation strategy of fields without much
effort to tune the performance of web applications.

7 Case Studies

We discuss the application of IceDust2 to two representative applications, a conference
management system, and an online learning management system (the running example).

Conference Management System. Figure 20 shows a mini version of a conference website
management system. In this system multiple Conferences can be managed. A Person can
be part of multiple conferences, and has a Profile for each. The conference system contains
various derived values. For this paper, the most interesting ones are derived relations.

The mini system contains two derived relations. The first derived relation is the root of
a conference tree (Figure 20, line 7). Conferences can have sub-conferences, and these can
have sub-conferences again. For presentation purposes it is important to display the context
of a sub-conference: the root conference. The inverse of the root field, rootDescendants,

ECOOP 2017

14:22 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

entity Assignment { }
entity Submission {

grade : Float? = groupSubmission.grade <+ children.grade.avg() (default)
}
entity Group { }
entity GroupSubmission {

grade : Float?
}
relation Group.members * <−> * Student.groups
relation Submission.assignment 1 <−> * Assignment.submissions
relation GroupSubmission.assignment 1 <−> * Assignment.groupSubmissions
relation GroupSubmission.group 1 <−> * Group.submissions
relation Submission.groupSubmission ? =

assignment.groupSubmissions.find(x => x.group.members.contains(student))
<−> * GroupSubmission.individualSubmissions

Figure 21 Learning management system specification for group submissions. If a student is part
of a group that has submitted to a certain assignment, his individual grade will be taken from the
group grade by default. The individual grade of a student can still be overridden by the instructor.

relation Submission.children * (ordered) =
assignment.children.submissions.filter(x => x.student == student)

<−> ? Submission.parent
relation Submission.next ? =

parent.children.elemAt(parent.children.indexOf(this) + 1)
<−> ? Submission.previous

Figure 22 Bidirectional relation next and previous is derived from the children’s ordering.

does not have a practical use in the application specification. However, it is used by the
compiler to incrementally maintain rootName on name changes to the root conference. It
is possible to omit the name rootDescendants. The IceDust2 compiler will then invent a
name for the field itself (rootInverse in this case).

The second derived relation is the committees a person is a member of in a specific
conference: Profile.committees (Figure 20, bottom). It is similar in structure to the
submission parent-children relation in Figure 4. Both navigate the object graph to a
collection of objects, and subsequently filter this collection. The committee membership
derived relation is used bidirectionally: a committee page links to the profile pages of its
members.

Learning Management System. Our running example (Figure 4) is a partial model of a
learning management system, which we have specified in IceDust2. The production system
is much more complicated. We will cover some interesting aspects of its specification.

Figure 21 shows a part of the specification that deals with group submissions. In some
courses students get graded in groups. Moreover, in some labs the groups change during the
semester. To calculate correct grades for individual students, their individual submissions are
connected to the group submissions (Submission.groupSubmission). The student grade
for a single assignment (Submission.grade) is the group grade, if it exists, and otherwise
the normal individual student grade.

Figure 22 revisits the submission parent-child relation. We use the ordering of children to
define next and previous for submissions, which are used for navigation in the user interface.
Note that both of the derived bidirectional relations in Figure 22 have a multiplicity bound
[0, 1] on the right-hand side. This is disallowed by the IceDust2 compiler, as these bounds
cannot be statically guaranteed. We will discuss this in the next section.

D.C. Harkes and E. Visser 14:23

In our running example (Figure 4) we have used composition of calculation strategies to
get good performance on changes to data, while always reading up-to-date student grades.
In the full learning management system we have used the same approach: incremental for
individual student data, and eventual for statistics. This approach works great with our
to-WebDSL compiler. Often multiple students send changes to their submissions concurrently.
These changes influence just their own grades. Incrementally updating the grades for single
students is fine, as the cache updates will not overlap. However, course statistics cannot be
updated incrementally in a concurrent setting, as the aggregated values would get update
conflicts when multiple students concurrently get a new grade. In future work it might be
worth investigating whether the calculation strategies can be automatically determined based
on the partitioning of data between application users (students in this case).

In both case studies the orthogonal nature of the features for fields in IceDust2 turned
out to be advantageous. Changing the derivation type, for example from a user value to a
derived value, only requires adding or removing an expression. Changing the calculation
strategy is a matter of changing a single keyword, and if any changes of calculation strategies
in other fields are required for consistency, the type system will tell. Changing a multiplicity,
for example making a field optional (?), rather than required, is a matter of changing a single
character. Here as well, the type system will signal any places where semantic changes are
required (for example the read of that field where a value with multiplicity of 1 is required).
If these changes were to be made to a program expressed in a general purpose language, they
would require all kinds of boilerplate changes, on top of the semantic changes. This has been
argued before for multiplicities [29], bidirectional relation maintenance [16], and calculation
strategy switching [15] individually. But combined, it is certainly true as well.

8 Multiplicity Bounds for the Right-Hand Side of Derived Relations

Derived bidirectional relations in IceDust2 specify multiplicity bounds both for the left-hand
and right-hand side. The multiplicity bound on the left-hand side is checked by checking the
multiplicity of the expression. The multiplicity bound on the right-hand side is only allowed
to be [0, n), as IceDust2 features no static checks for the right-hand side multiplicity bound.

We can view a bidirectional relation as a function, where the left-hand side is the domain
and the right-hand side is the codomain. A derived relation is a total function (the expression
can be executed for all objects in the domain), and each element in the domain maps to zero
or more elements in the codomain (restricted to the multiplicity bound of the expression).
To get guarantees for the right-hand side multiplicity bound, this function needs to satisfy
certain properties. For a multiplicity upper-bound of 1, the function needs to be injective:
at most one element in the domain will refer to to each element in the codomain. For a
multiplicity lower-bound of 1, the function needs to be surjective: at least one element in
the domain will refer to each element in the codomain. IceDust2’s type system does not
include reasoning about this. We can only safely assume the function is not injective and
not surjective, and give the right-hand side a multiplicity bound of [0, n).

However, our case studies revealed two useful derived bidirectional relations that would
benefit from a more strict multiplicity bound on the right-hand side. Figure 22 shows them.
If the inverses are actually within the specified multiplicity bound, the runtime works fine for
these derived relations. Our type system rejects these derived relations, but the programmer
can disable the error if he is confident the inverse is within the multiplicity bound.

Disabling the error is not sound, the programmer might be mistaken. If the programmer
makes an error, IceDust2 cannot statically guarantee one of the following three properties:

ECOOP 2017

14:24 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

n1

object

reference

derived reference

n2

n3 n4

n1 n2

n3 n4

n1 n2

n3 n4

a b cNode

Node

* down

up* parent

children*

?

entity

Figure 23 Contradictory specification solutions: (a) give up multiplicity bounds, (b) give up
bidirectionality, or (3) give up derivation semantics.

multiplicity bounds, bidirectionality, or derivation semantics. Consider the following program:
entity Node { }
relation Node.down * <−> * Node.up
relation Node.children * = down <−> ? Node.parent

If some object refers to two other objects in up, it should have two parents as well, violating
the multiplicity bound (Invariant 3). To satisfy the multiplicity bound, either bidirectionality
(Invariant 2) or derivation semantics (Invariant 1) has to be given up. Figure 23 shows
the three solutions by giving up one of the three invariants. This example implemented in
REScala (in the same way we implemented submission parent-children in Section 2) does
not preserve bidirectionality (Figure 23b). The parents of n3 and n4 would first be set to
one of the objects n1 and n2, and then to the other. The IceDust2 implementation gives
up derivation semantics in this situation (Figure 23c). Either object n1 or n2 will not have
any children, even though evaluating the derivation expression would yield children. We do
not argue one is better than the other, both violate an invariant. In future work we will
investigate creating a type system that rejects the above example, but accepts Figure 22.

In conclusion, in our case studies we only encountered this one example where a non-[0, n)
multiplicity on the right-hand side of a relation was required. The rest of the case studies
could all be specified in a way that guarantees Invariants 1-3. If the programmer correctly
specifies a right-hand side multiplicity, Invariants 1-3 are still guaranteed. Nonetheless, it is
still worth to move the responsibility of checking the right-hand side multiplicities for derived
relations from the programmer to the type system, in future work.

9 Related Work

The related work is organized along the lines of the various language features. We cover
bidirectional relations, incremental and eventual computation, and the use of product lines
in language engineering.

Derived Bidirectional Relations. Various languages feature bidirectional relations as a
language feature. Rumer [3], RelJ [4], Relations [16], and IceDust [15] all feature bidirectional
relations as language feature, but do not support derived bidirectional relations. They vary
in multiplicity bound behavior: Rumer and RelJ enforce multiplicities at runtime, while
Relations and IceDust feature multiplicities in the type system. IceDust2’s behavior for
maintaining multiplicity upper bounds is similar to RelJ’s: it implicitly removes references.

Derived bidirectional relations can be described as views in relational and logic databases.
They can be incrementalized by materializing the views [11]. Traditional algorithms for
materialized views limit recursive aggregation [12]. Some forms of recursive aggregation can
be incrementalized [26, 27], but until now the community has not converged to a recursive

D.C. Harkes and E. Visser 14:25

aggregation technique [10]. LogiQL [9] has rudimentary support for recursive aggregation
(behind a compiler flag). Most databases that feature materialized views also feature non-
materialized views, enabling composition of incremental and on-demand calculation strategies.
Database languages do not allow specification of multiplicity bounds, thus all derived values
have a multiplicity of [0, n). IceDust2 does feature multiplicity constraints, includes an
eventual calculation strategy, and admits recursive aggregation.

i3QL [24], Materialized Object Query Language (OQL) [8], and MOVIE [2] support
materialized views in object-oriented languages. The data is in memory, rather than persisted
on disk. Strategy composition can be done by using the framework for incremental derived
values, and the host language for on-demand derived values. As these systems are relational,
they have the same limitations as databases: no multiplicity bounds, no eventual calculation
strategy, and limited support for recursion (except for i3QL, it features fixpoint recursion).

IncQuery [31] features incremental graph queries. These can be scheduled by a query
planner, but provide no multiplicity bounds. In IceDust2 derived relations are specified as
expressions, which provides a multiplicity bound for the left-hand side of the derived relation.
For derived primitive values IncQuery has an escape hatch to Java. This makes it Turing
complete, but only the dependencies and results are cached, not the internal computation.
On the other hand, IceDust2 is not Turing complete (its memory footprint is bounded by
the total number of fields of all objects), but the full computation is incrementalized.

Alloy [17] (with operational semantics Alchemy [20]) and Booster [5] feature bidirectional
derived relations as well. These systems use constraints for describing derived values and
multiplicity bounds. On changes to fields, other fields are updated to maintain the constraints.
In constraints, all field references can function as inputs and outputs, so for predictability, only
values mentioned in update operations are updated. In contrast, IceDust2 can predictably
update any value, as it uses expressions for derived values, not constrains. The fields
referenced in an expression are input, the field the expression is for, is output.

Incremental Computation without Bidirectional Relations. Various programming styles
and languages that can be used for incremental computation do not support derived bidirec-
tional relations. These can only be used for derived unidirectional relations.

Functional reactive programming (FRP) [7], with for example REScala [28], or Scala.React
[22] can be used for incremental computation. Wrapping expressions in signal macros realizes
incremental behavior, reevaluating the expression when one of its dependencies is changed.
FRP maintains dependencies at runtime, causing memory overhead. In contrast, IceDust2
uses static dependency information. However, FRP frameworks do support any language
feature as long as it is pure, while IceDust2 restricts its expression language to be able to
statically analyze its dependencies. FRP allows strategy composition by modeling incremental
derived values in FRP, and using the host language for on-demand derived values. However,
the safety of compositions is not checked, and can result in inconsistencies.

Self-adjusting computation (SAC) [1] and Adapton [14] also use dependency tracking
for incremental computation. Adapton features a demand-driven incremental calculation
strategy: dirty flag transitively on writes, and recompute transitively on reads if dirty.
IceDust2 features on-demand, incremental, and eventual calculation strategies. We might
add Adapton’s calculation strategy to IceDust2 in future work, it would fit in the general
IceDust2 approach without requiring invasive changes to the architecture. Adapton works
only on algebraic data types, but Nominal Adapton [13] is better suited for object graphs, it
allows identifying caches. In Nominal Adapton’s terms, the derived value caches in IceDust2’s
runtime can be identified ‘objectIdentifier+fieldName’. Adapton allows strategy composition

ECOOP 2017

14:26 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

by modeling incremental derived values in Adapton, and the on-demand derived values in
the host language. The safetey of strategy composition of is checked in Adapton. Adapton
does not feature eventual calculation, bidirectional relations, or data persistence.

Incremental Java Query Language (JQL) [34], and Demand-Driven Incremental Object
Queries (DDIOQ) [21] enable specifying derived values as queries in Java. They transform
imperative code to a relational calculus, and use the relational model to generate code that
incrementally maintains caches. In contrast, IceDust2 uses path-based abstract interpretation
instead of a relational calculus to generate maintenance code.

Attribute grammars (AGs) feature a declarative style of specifying derived primitive
values similar to IceDust. Attribute values can also be incrementally computed [6]. Reference
attribute grammars (RAGs) support derived relations [30]. RAGs only support trees as input
(graphs can only be derived values), while IceDust2 works with graphs. As AGs and RAGs
are designed for use in compilers they do not feature an eventual calculation strategy.

Eventual Calculation without Bidirectional Relations. Reactive programming (RP), with
for example RX [23], features a programming model similar to FRP. However, RP provides an
eventual instead of an incremental calculation strategy by asynchronously processing updates.
RP enables composition with eventual and on-demand calculation strategies by using the
host language for on-demand calculation. Note that on-demand calculation is eventual
on-demand if it depends on eventual calculation, as in our approach (see Figure 14).

Software Product Lines and Language Engineering. Völter and Visser have investigated
the combination of software product lines (SPLs) and domain-specific languages (DSLs)
[33]. In their taxonomy, IceDust2 falls in the category ‘Variations in the Transformation
or Execution’. The IceDust2 operational semantics vary in execution, and the IceDust2
compilers vary in transformation based on the field properties. Behavior is chosen based on
presence conditions. IceDust2 falls in the sub category ‘Negative Variablility via Removal’ by
only retaining the behavior satisfying the presence conditions out of all possible behaviors.

The Dana language [25] enables switching features at run time. In order to be able to
switch at run time, the various options for a feature need to have the same public API,
and they need to share a set of transfer fields. Unfortunately, this is not possible with the
IceDust2 runtime, as the public API varies based on the features selected. We would like to
investigate switching calculation strategies at runtime in future work.

10 Summary and Future Work

In this paper we have presented IceDust2, a declarative data modeling language that supports
composition of derivation calculation strategies and bidirectional derived relations with
multiplicity bounds. Because updating derived values with various strategies, maintaining
bidirectionality, and keeping multiplicity bounds all interact, the IceDust2 semantics for
individual fields is structured as a product line, which can be instantiated in two compilers.
One that compiles to plain old Java objects, and one that compiles to an object-relational
mapper. Finally, our case studies validated the usability of IceDust2 in applications: derived
values can be specified declaratively and concisely, independent of their complex runtime.

This work also raises open research questions. First, is it possible to provide static
guarantees for multiplicity bounds for the right-hand side of derived bidirectional relations?
Second, what calculation strategies can be added to IceDust2, and (more importantly) how
can these strategies be composed in a sound way? Finally, is it possible to automatically assign

D.C. Harkes and E. Visser 14:27

calculation strategies to derived values based on high level directives, such as partitioning
data between application users?

References
1 Umut A. Acar. Self-adjusting computation: (an overview). In Germán Puebla and Germán

Vidal, editors, Proceedings of the 2009 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, PEPM 2009, Savannah, GA, USA, January
19-20, 2009, pages 1–6. ACM, 2009. doi:10.1145/1480945.1480946.

2 M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton. Movie: An incremen-
tal maintenance system for materialized object views. Data & Knowledge Engineering,
47(2):131–166, 2003. doi:10.1016/S0169-023X(03)00048-X.

3 Stephanie Balzer. Rumer: a Programming Language and Modular Verification Technique
Based on Relationships. PhD thesis, ETH, Zürich, 2011. doi:10.3929/ethz-a-007086593.

4 Gavin M. Bierman and Alisdair Wren. First-class relationships in an object-oriented lan-
guage. In Andrew P. Black, editor, ECOOP 2005 - Object-Oriented Programming, 19th
European Conference, Glasgow, UK, July 25-29, 2005, Proceedings, volume 3586 of Lecture
Notes in Computer Science, pages 262–286. Springer, 2005. doi:10.1007/11531142_12.

5 Jim Davies, James Welch, Alessandra Cavarra, and Edward Crichton. On the generation of
object databases using booster. In 11th International Conference on Engineering of Com-
plex Computer Systems (ICECCS 2006), 15-17 August 2006, Stanford, California, USA,
pages 249–258. IEEE Computer Society, 2006. doi:10.1109/ICECCS.2006.1690374.

6 Alan J. Demers, Thomas W. Reps, and Tim Teitelbaum. Incremental evaluation for at-
tribute grammars with application to syntax-directed editors. In Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, Williams-
burg, Virginia, January 26-28, 1981, pages 105–116, 1981. doi:10.1145/567532.567544.

7 Conal M. Elliott. Push-pull functional reactive programming. In Stephanie Weirich, edi-
tor, Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell, Haskell 2009, Edin-
burgh, Scotland, UK, 3 September 2009, pages 25–36. ACM, 2009. doi:10.1145/1596638.
1596643.

8 Dieter Gluche, Torsten Grust, Christof Mainberger, and Marc H. Scholl. Incremental
updates for materialized oql views. In François Bry, Raghu Ramakrishnan, and Ko-
tagiri Ramamohanarao, editors, Deductive and Object-Oriented Databases, 5th Interna-
tional Conference, DOOD 97, Montreux, Switzerland, December 8-12, 1997, Proceed-
ings, volume 1341 of Lecture Notes in Computer Science, pages 52–66. Springer, 1997.
doi:10.1007/3-540-63792-3_8.

9 Todd J. Green. Logiql: A declarative language for enterprise applications. In Tova Milo
and Diego Calvanese, editors, Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015,
pages 59–64. ACM, 2015. doi:10.1145/2745754.2745780.

10 Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao Zhou. Datalog and
recursive query processing. Foundations and Trends in Databases, 5(2):105–195, 2013. doi:
10.1561/1900000017.

11 Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems,
techniques, and applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

12 Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views in-
crementally. In Peter Buneman and Sushil Jajodia, editors, Proceedings of the 1993 ACM
SIGMOD International Conference on Management of Data, Washington, D.C., May 26-
28, 1993, pages 157–166. ACM Press, 1993. doi:10.1145/170035.170066.

13 Matthew A. Hammer, Joshua Dunfield, Kyle Headley, Nicholas Labich, Jeffrey S. Foster,
Michael W. Hicks, and David Van Horn. Incremental computation with names. In Jonathan

ECOOP 2017

http://dx.doi.org/10.1145/1480945.1480946
http://dx.doi.org/10.1016/S0169-023X(03)00048-X
http://dx.doi.org/10.3929/ethz-a-007086593
http://dx.doi.org/10.1007/11531142_12
http://dx.doi.org/10.1109/ICECCS.2006.1690374
http://dx.doi.org/10.1145/567532.567544
http://dx.doi.org/10.1145/1596638.1596643
http://dx.doi.org/10.1145/1596638.1596643
http://dx.doi.org/10.1007/3-540-63792-3_8
http://dx.doi.org/10.1145/2745754.2745780
http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1561/1900000017
http://dx.doi.org/10.1145/170035.170066

14:28 IceDust 2: Derived Bidirectional Relations and Calculation Strategy Composition

Aldrich and Patrick Eugster, editors, Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 748–766.
ACM, 2015. doi:10.1145/2814270.2814305.

14 Matthew A. Hammer, Yit Phang Khoo, Michael Hicks, and Jeffrey S. Foster. Adapton:
composable, demand-driven incremental computation. In Michael F. P. O’Boyle and Ke-
shav Pingali, editors, ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 18.
ACM, 2014. doi:10.1145/2594291.2594324.

15 Daco Harkes, Danny M. Groenewegen, and Eelco Visser. Icedust: Incremental and eventual
computation of derived values in persistent object graphs. In Shriram Krishnamurthi and
Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented Programming,
ECOOP 2016, July 18-22, 2016, Rome, Italy, volume 56 of LIPIcs. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ECOOP.2016.11.

16 Daco Harkes and Eelco Visser. Unifying and generalizing relations in role-based data mod-
eling and navigation. In Benoît Combemale, David J. Pearce, Olivier Barais, and Jurgen J.
Vinju, editors, Software Language Engineering - 7th International Conference, SLE 2014,
Västeras, Sweden, September 15-16, 2014. Proceedings, volume 8706 of Lecture Notes in
Computer Science, pages 241–260. Springer, 2014. doi:10.1007/978-3-319-11245-9_14.

17 Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering Methodology, 11(2):256–290, 2002. doi:10.1145/505145.505149.

18 Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer Peter-
son. Feature-oriented domain analysis (foda) feasibility study. Technical report, DTIC
Document, 1990.

19 Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Videira Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Aksit
and Satoshi Matsuoka, editors, ECOOP 97 - Object-Oriented Programming, 11th European
Conference, Jyväskylä, Finland, June 9-13, 1997, Proceedings, volume 1241 of Lecture Notes
in Computer Science, pages 220–242. Springer, 1997. doi:10.1007/BFb0053381.

20 Shriram Krishnamurthi, Kathi Fisler, Daniel J. Dougherty, and Daniel Yoo. Alchemy:
transmuting base alloy specifications into implementations. In Mary Jean Harrold and
Gail C. Murphy, editors, Proceedings of the 16th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA, November 9-14,
2008, pages 158–169. ACM, 2008. doi:10.1145/1453101.1453123.

21 Yanhong A. Liu, Jon Brandvein, Scott D. Stoller, and Bo Lin. Demand-driven incre-
mental object queries. In James Cheney and Germán Vidal, editors, Proceedings of
the 18th International Symposium on Principles and Practice of Declarative Program-
ming, Edinburgh, United Kingdom, September 5-7, 2016, pages 228–241. ACM, 2016.
doi:10.1145/2967973.2968610.

22 Ingo Maier and Martin Odersky. Higher-order reactive programming with incremental
lists. In Giuseppe Castagna, editor, ECOOP 2013 - Object-Oriented Programming -
27th European Conference, Montpellier, France, July 1-5, 2013. Proceedings, volume 7920
of Lecture Notes in Computer Science, pages 707–731. Springer, 2013. doi:10.1007/
978-3-642-39038-8_29.

23 Erik Meijer. Reactive extensions (rx): curing your asynchronous programming blues. In
ACM SIGPLAN Commercial Users of Functional Programming, page 11. ACM, 2010. doi:
10.1145/1900160.1900173.

24 Ralf Mitschke, Sebastian Erdweg, Mirko Köhler, Mira Mezini, and Guido Salvaneschi. i3ql:
language-integrated live data views. In Andrew P. Black and Todd D. Millstein, editors,
Proceedings of the 2014 ACM International Conference on Object Oriented Programming

http://dx.doi.org/10.1145/2814270.2814305
http://dx.doi.org/10.1145/2594291.2594324
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2016.11
http://dx.doi.org/10.1007/978-3-319-11245-9_14
http://dx.doi.org/10.1145/505145.505149
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1145/1453101.1453123
http://dx.doi.org/10.1145/2967973.2968610
http://dx.doi.org/10.1007/978-3-642-39038-8_29
http://dx.doi.org/10.1007/978-3-642-39038-8_29
http://dx.doi.org/10.1145/1900160.1900173
http://dx.doi.org/10.1145/1900160.1900173

D.C. Harkes and E. Visser 14:29

Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR,
USA, October 20-24, 2014, pages 417–432. ACM, 2014. doi:10.1145/2660193.2660242.

25 Barry Porter, Matthew Grieves, Roberto Vito Rodrigues Filho, and David Leslie. Rex: A
development platform and online learning approach for runtime emergent software systems.
In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016, pages 333–348. USENIX Association, 2016.

26 Raghu Ramakrishnan, Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. Efficient
incremental evaluation of queries with aggregation. In Workshop on Design and Impl. of
Parallel Logic Programming Systems, pages 204–218, 1994.

27 Kenneth A. Ross and Yehoshua Sagiv. Monotonic aggregation in deductive databases. In
Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 2-4, 1992, San Diego, California, pages 114–126. ACM Press,
1992. doi:10.1145/137097.137852.

28 Guido Salvaneschi, Gerold Hintz, and Mira Mezini. Rescala: bridging between object-
oriented and functional style in reactive applications. In Walter Binder, Erik Ernst, Achille
Peternier, and Robert Hirschfeld, editors, 13th International Conference on Modularity,
MODULARITY ’14, Lugano, Switzerland, April 22-26, 2014, pages 25–36. ACM, 2014.
doi:10.1145/2577080.2577083.

29 Friedrich Steimann. Content over container: object-oriented programming with multiplic-
ities. In Antony L. Hosking, Patrick Th. Eugster, and Robert Hirschfeld, editors, ACM
Symposium on New Ideas in Programming and Reflections on Software, Onward! 2013,
part of SPLASH ’13, Indianapolis, IN, USA, October 26-31, 2013, pages 173–186. ACM,
2013. doi:10.1145/2509578.2509582.

30 Emma Söderberg and Görel Hedin. Incremental evaluation of reference attribute grammars
using dynamic dependency tracking. Technical Report 98, Department of Computer Science,
Lund University, 2012.

31 Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó, István Ráth,
Zoltán Szatmári, and Dániel Varró. Emf-incquery: An integrated development environment
for live model queries. Science of Computer Programming, 98:80–99, 2015. doi:10.1016/
j.scico.2014.01.004.

32 Eelco Visser. WebDSL: A case study in domain-specific language engineering. In Ralf
Lämmel, Joost Visser, and João Saraiva, editors, Generative and Transformational Tech-
niques in Software Engineering II, International Summer School, GTTSE 2007, volume
5235 of Lecture Notes in Computer Science, pages 291–373, Braga, Portugal, 2007. Springer.
doi:10.1007/978-3-540-88643-3_7.

33 Markus Völter and Eelco Visser. Product line engineering using domain-specific languages.
In Eduardo Santana de Almeida, Tomoji Kishi, Christa Schwanninger, Isabel John, and
Klaus Schmid, editors, Software Product Lines - 15th International Conference, SPLC
2011, Munich, Germany, August 22-26, 2011, pages 70–79. IEEE, 2011. doi:10.1109/
SPLC.2011.25.

34 Darren Willis, David J. Pearce, and James Noble. Caching and incrementalisation in
the java query language. In Gail E. Harris, editor, Proceedings of the 23rd Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2008, October 19-23, 2008, Nashville, TN, USA, pages 1–18. ACM, 2008.
doi:10.1145/1449764.1449766.

ECOOP 2017

http://dx.doi.org/10.1145/2660193.2660242
http://dx.doi.org/10.1145/137097.137852
http://dx.doi.org/10.1145/2577080.2577083
http://dx.doi.org/10.1145/2509578.2509582
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1016/j.scico.2014.01.004
http://dx.doi.org/10.1007/978-3-540-88643-3_7
http://dx.doi.org/10.1109/SPLC.2011.25
http://dx.doi.org/10.1109/SPLC.2011.25
http://dx.doi.org/10.1145/1449764.1449766

	Introduction
	Declarative Data Modeling by Feature Selection
	Running Example.
	Orthogonality of Field Configurations in IceDust
	Generalizing Data Modeling with IceDust

	Run-Time Feature Interaction
	Operational Semantics
	Sound Composition of Calculation Strategies
	Implementations
	Case Studies
	Multiplicity Bounds for the Right-Hand Side of Derived Relations
	Related Work
	Summary and Future Work

