
µPuppet: A Declarative Subset of the Puppet
Configuration Language∗

Weili Fu1, Roly Perera2, Paul Anderson3, and James Cheney4

1 School of Informatics, University of Edinburgh, Edinburgh, UK
weili.fu@ed.ac.uk

2 School of Informatics, University of Edinburgh, Edinburgh, UK
roly.perera@ed.ac.uk
School of Computing Science, University of Glasgow, Glasgow, UK
roly.perera@glasgow.ac.uk

3 School of Informatics, University of Edinburgh, Edinburgh, UK
dcspaul@ed.ac.uk

4 School of Informatics, University of Edinburgh, Edinburgh, UK
jcheney@inf.ed.ac.uk

Abstract
Puppet is a popular declarative framework for specifying and managing complex system con-
figurations. The Puppet framework includes a domain-specific language with several advanced
features inspired by object-oriented programming, including user-defined resource types, ‘classes’
with a form of inheritance, and dependency management. Like most real-world languages, the
language has evolved in an ad hoc fashion, resulting in a design with numerous features, some of
which are complex, hard to understand, and difficult to use correctly.

We present an operational semantics for µPuppet, a representative subset of the Puppet
language that covers the distinctive features of Puppet, while excluding features that are either
deprecated or work-in-progress. Formalising the semantics sheds light on difficult parts of the
language, identifies opportunities for future improvements, and provides a foundation for future
analysis or debugging techniques, such as static typechecking or provenance tracking. Our se-
mantics leads straightforwardly to a reference implementation in Haskell. We also discuss some
of Puppet’s idiosyncrasies, particularly its handling of classes and scope, and present an initial
corpus of test cases supported by our formal semantics.

1998 ACM Subject Classification D.2.9 [Software Engineering] Management – Software config-
uration management

Keywords and phrases configuration languages; Puppet; operational semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2017.12

1 Introduction

Managing a large-scale data center consisting of hundreds or thousands of machines is a
major challenge. Manual installation and configuration is simply impractical, given that
each machine hosts numerous software components, such as databases, web servers, and

∗ Fu was supported by a Microsoft Research PhD studentship. Perera and Cheney were supported by
the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number
FA8655-13-1-3006. The U.S. Government and University of Edinburgh are authorised to reproduce and
distribute reprints for their purposes notwithstanding any copyright notation thereon. Perera was also
supported by UK EPSRC project EP/K034413/1.

© Weili Fu, Roly Perera, Paul Anderson, and James Cheney;
licensed under Creative Commons License CC-BY

31st European Conference on Object-Oriented Programming (ECOOP 2017).
Editor: Peter Müller; Article No. 12; pp. 12:1–12:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 µPuppet: A Declarative Subset of the Puppet Configuration Language

middleware. Hand-coded configuration scripts are difficult to manage and debug when
multiple target configurations are needed. Moreover, misconfigurations can potentially affect
millions of users. Recent empirical studies [22, 11] attribute a significant proportion of
system failures to misconfiguration rather than bugs in the software itself. Thus better
support for specifying, debugging and verifying software configurations is essential to future
improvements in reliability [21].

A variety of configuration frameworks have been developed to increase the level of
automation and reliability. All lie somewhere on the spectrum between “imperative” and
“declarative”. At the imperative end, developers use conventional scripting languages to
automate common tasks. It is left to the developer to make sure that steps are performed
in the right order, and that any unnecessary tasks are not (potentially harmfully) executed
anyway. At the declarative end of the spectrum, the desired system configuration is specified
in some higher-level way and it is up to the configuration framework to determine how to
realise the specification: that is, how to generate a compliant configuration, or adapt an
already-configured system to match a new desired specification.

Most existing frameworks have both imperative and declarative aspects. Chef [13],
CFEngine [23], and Ansible [8] are imperative in relation to dependency management; the
order in which tasks are run must be specified. Chef and CFEngine are declarative in that a
configuration is specified as a desired target state, and only the actions necessary to end up
in a compliant state are executed. (This is called convergence in configuration management
speak.) The Puppet framework [18] lies more towards the declarative end, in that the order
in which configuration tasks are carried out is also left mostly to the framework. Puppet
also provides a self-contained configuration language in which specifications are written,
in contrast to some other systems. (Chef specifications are written in Ruby, for example,
whereas Ansible is YAML-based.)

Configuration languages often have features in common with general-purpose programming
languages, such as variables, expressions, assignment, and conditionals. Some, including
Puppet, also include “object-oriented” features such as classes and inheritance. However,
(declarative) configuration languages differ from regular programming or scripting languages
in that they mainly provide mechanisms for specifying, rather than realising, configurations.
While some “imperative” features that can directly mutate system state are available in
Puppet, their use is generally discouraged.

Like most real-world languages, configuration languages have largely evolved in an ad hoc
fashion, with little attention paid to their semantics. Given their infrastructural significance,
this makes them an important (although challenging) target for formal study: a formal
model can clarify difficult or counterintuitive aspects of the language, identify opportunities
for improvements and bug-fixes, and provide a foundation for static or dynamic analysis
techniques, such as typechecking, provenance tracking and execution monitoring. In this
paper, we investigate the semantics of the configuration language used by the Puppet
framework. Puppet is a natural choice because of its DSL-based approach, and the fact
that it has seen widespread adoption. The 2016 PuppetConf conference attracted over 1700
Puppet users and developers and sponsorship from over 30 companies, including Cisco, Dell,
Microsoft, Google, Amazon, RedHat, VMWare, and Citrix.

An additional challenge for the formalisation of real-world languages is that they tend
to be moving targets. For example, Puppet 4.0, released in March 2015, introduced several
changes that are not backwards-compatible with Puppet 3, along with a number of non-
trivial new features. In this paper, we take Puppet 4.8 (the version included with Puppet
Enterprise 2016.5) as the baseline version of the language, and define a subset called µPuppet

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:3

Server (Puppet Master)

manifest

 catalog

compile

Node (Puppet Agent)

 catalog

compliant
 state

apply

facts

catalog

status report

Figure 1 Puppet overview.

(pronounced “muppet”) that includes the established features of the language that appear
most important and distinctive; in particular, it includes the constructs node, class, and
define. These are used in almost all Puppet programs (called manifests). We chose to
exclude some features that are either deprecated or not yet in widespread use, or whose
formalisation would add complication without being particularly enlightening, such as regular
expressions and string interpolation.

The main contributions of this paper are:

1. a formalisation of µPuppet, a subset of Puppet 4.8;
2. a discussion of simple metatheoretic properties of µPuppet such as determinism, mono-

tonicity and (non-)termination;
3. a reference implementation of µPuppet in Haskell;
4. a corpus of test cases accepted by our implementation;
5. a discussion of the more complex features not handled by µPuppet.

We first give an overview of the language via some examples (Section 2), covering some of
the more counterintuitive and surprising parts of the language. Next we define the abstract
syntax and a small-step operational semantics of µPuppet (Section 3). We believe ours
to be the first formal semantics a representative subset of Puppet; although recent work
by Shambaugh et al. [17] handles some features of Puppet, they focus on analysis of the
“realisation” phase and do not present a semantics for the node or class constructs or for
inheritance (although their implementation does handle some of these features). We use a
small-step operational semantics (as opposed to large-step or denotational semantics) because
it is better suited to modelling some of the idiosyncratic aspects of Puppet, particularly
the sensitivity of scoping to evaluation order. We focus on unusual or novel aspects of the
language in the main body of the paper; the full set of rules are given in the appendix of the
extended paper [7]. Section 4 discusses some properties of µPuppet, such as determinism and
monotonicity, that justify calling it a ‘declarative’ subset of Puppet. Section 5 describes our
implementation and how we validated our rules against the actual behaviour of Puppet, and
discusses some of the omitted features. Sections 6 and 7 discuss related work and present
our conclusions.

2 Overview of Puppet

Puppet uses several terms – especially compile, declare, and class – in ways that differ from
standard usage in programming languages and semantics. We introduce these terms with
their Puppet meanings in this section, and use those meanings for the rest of the paper.

ECOOP 2017

12:4 µPuppet: A Declarative Subset of the Puppet Configuration Language

To aid the reader, we include a glossary of Puppet terms in the appendix of the extended
paper [7].

The basic workflow for configuring a single machine (node) using Puppet is shown in
Figure 1. A Puppet agent running on the node to be configured contacts the Puppet master
running on a server, and sends a check-in request containing local information, technically
called facts, such as the name of the operating system running on the client node. Using this
information, along with a centrally maintained configuration specification called the manifest,
the Puppet master compiles a catalog specific to that node. The manifest is written in a
high-level language, the Puppet programming language (often referred to simply as Puppet),
and consists of declarations of resources, along with other program constructs used to define
resources and specify how they are assigned to nodes. A resource is simply a collection
of key-value pairs, along with a title, of a particular resource type; “declaring” a resource
means specifying that a resource of that type exists in the target configuration. The catalog
resulting from compilation is the set of resources computed for the target node, along with
other metadata such as ordering information among resources. The Puppet master may fail
to compile a manifest due to compilation errors. In this case, it will not produce a compiled
catalog. If compilation succeeds, the agent receives the compiled catalog and applies it to
reconfigure the client machine, ideally producing a compliant state. Puppet separates the
compilation of manifests and the deployment of catalogs. After deploying the catalog, either
the changed configuration meets the desired configuration or there are some errors in it that
cause system failures. Finally, the agent sends a status report back to the master indicating
success or failure.

Figure 1 depicts the interaction between a single agent and master. In a large-scale
system, there may be hundreds or thousands of nodes configured by a single master. The
manifest can describe how to configure all of the machines in the system, and parameters
that need to be coordinated among machines can be specified in one place. A given run of
the Puppet manifest compiler considers only a single node at a time.

2.1 Puppet: key concepts
We now introduce the basic concepts of the Puppet language – manifests, catalogs, resources,
and classes – with reference to various examples. We also discuss some behaviours which
may seem surprising or unintuitive; clarifying such issues is one reason for pursuing a formal
definition of the language. The full Puppet 4.8 language has many more features than
presented here. A complete list of features and the subset supported by µPuppet are given
in the appendix of the extended paper [7].

2.1.1 Manifests and catalogs
Figure 2 shows a typical manifest, consisting of a node definition and various classes declaring
resources, which will be explained in Section 2.1.4 below. Node definitions, such as the one
starting on line 1, specify how a single machine or group of machines should be configured.
Single machines can be specified by giving a single hostname, and groups of machines by
giving a list of hostnames, a regular expression, or default (as in this example). The
default node definition is used if no other definition applies.

In this case the only node definition is default, and so compiling this manifest for any
node results in the catalog on the right of Figure 2. In this case the catalog is a set of
resources of type file with titles config1, config2 and config3, each with a collection of
attribute-value pairs. Puppet supports several persistence formats for catalogs, including

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:5

YAML; here we present the catalog using an abstract syntax which is essentially a sub-
language of the language of manifests. The file resource type is one of Puppet’s many
built-in resource types, which include other common configuration management concepts
such as user, service and package.

2.1.2 Resource declarations
Line 11 of the manifest in Figure 2 shows how the config1 resource in the catalog was
originally declared. The path attribute was specified explicitly as a string literal; the other
attributes were given as variable references of the form $x. Since a resource with a given
title and type is global to the entire catalog, it may be declared only once during a given
compilation. A compilation error results if a given resource is declared more than once. Note
that what Puppet calls a “compilation error” is a purely dynamic condition, and so is really
a runtime error in conventional terms.

The ordering of attributes within a resource is not significant; by default they appear
in the catalog in the order in which they were declared. Optionally they can be sorted (by
specifying ordering constraints) or randomised. Sorting is usually recommended over relying
on declaration order [16].

2.1.3 Variables and strict mode
Puppet lacks variable declarations in the usual sense; instead variables are implicitly declared
when they are assigned to. A compilation error results if a given variable is assigned to more
than once in the same scope. As we saw above, unqualified variables, whether being read or
assigned to, are written in “scripting language” style $x.

Puppet allows variables to be used before they are assigned, in which case their value is a
special “undefined” value undef, analogous to Ruby’s nil or JavaScript’s undefined. By
default, attributes only appear in the compiled output if their values are defined. Consider
the variables $mode and $checksum introduced by the assignments at lines 7 and 20 in the
manifest in Figure 2. The ordering of these variables relative to the file resource config1
is significant, because it affects whether they are in scope. Since $mode is defined before
config1, its value can be read and assigned to the attribute mode. In the compiled catalog,
mode thus appears as an attribute of config1. On the other hand $checksum is assigned after
config1, and is therefore undefined when read by the code which initialises the checksum
attribute. Thus checksum is omitted from the compiled version of config1.

Since relying on the values of undefined variables is often considered poor practice, Puppet
provides a strict mode which treats the use of undefined variables as an error. For similar
reasons, and also to keep the formal model simple, µPuppet always operates in strict mode.
We discuss the possibility of relaxing this in Section 5.3.

2.1.4 Classes and includes
Resource declarations may be grouped into classes. However, Puppet “classes” are quite
different from the usual concept of classes in object-oriented programming – they define
collections of resources which can be declared together by including the class. This is
sometimes called declaring the class, although there is a subtle but important distinction
between “declaring” and “including” which we will return to shortly.

In Figure 2, it is the inclusion into the node definition of class service1 which explains
the appearance of config1 in the catalog, and in turn the inclusion into service1 of class

ECOOP 2017

12:6 µPuppet: A Declarative Subset of the Puppet Configuration Language

1 node default {
2 $source = "/ source "
3 include service1
4 }
5
6 class service1 {
7 $mode = 123
8
9 include service2

10
11 file { " config1 ":
12 path => " path1 ",
13 source => $source ,
14 mode => $mode ,
15 checksum => $checksum ,
16 provider => $provider ,
17 recurse => $recurse
18 }
19
20 $checksum = "md5"
21 }
22
23 class service2 inherits service3 {
24 $recurse = true
25
26 file { " config2 ":
27 path => " path2 ",
28 source => $source ,
29 mode => $mode ,
30 checksum => $checksum ,
31 provider => $provider ,
32 recurse => $recurse
33 }
34 }
35
36 class service3 {
37 $provider = posix
38
39 file { " config3 ":
40 path => " path3 ",
41 mode => $mode ,
42 checksum => $checksum ,
43 recurse => $recurse
44 }
45 }

1 file { " config3 ":
2 path => " path3 "
3 }
4 file { " config2 ":
5 path => " path2 ",
6 source => "/ source ",
7 provider => " posix ",
8 recurse => true
9 }

10 file { " config1 ":
11 path => " path1 ",
12 source => "/ source ",
13 mode => 123
14 }

Figure 2 Example manifest (left); compiled catalog (right).

service2 which explains the appearance of config2. (The fact that config3 also appears
in the output relates to inheritance, and is discussed in Section 2.1.6 below.) Inclusion is
idempotent: the same class may be included multiple times, but doing so only generates a
single copy of the resources in the catalog. This allows a set of resources to be included into
all locations in the manifest which depend on them, without causing errors due to duplicate
declarations of the same resource.

To a first approximation, including a class into another class obeys a lexical scope
discipline, meaning names in the including class are not visible in the included class. However
inclusion into a node definition has a quite different behaviour: it introduces a containment
relation between the node definition and the class, meaning that names scoped to the node
definition are visible in the body of the included class. Thus in Figure 2, although the
variable $mode defined in service1 is not in scope inside the included class service2 (as per
lexical scoping), the $source variable defined in the node definition is in scope in service1,
because service1 is included into the node scope.

This is similar to the situation in Java where a class asserts its membership of a package
using a package declaration, except here the node definition pulls in the classes it requires.

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:7

Top scope

Node scope

Class scope Class scopeinherits Class scopeinherits

Figure 3 Two aspects of scope: parent scopes (shown as containment), and inheritance chains.

The subtlety is that it is actually when a class is declared (included for the first time,
dynamically speaking) that any names in the body of the class are resolved. If the usage of
a class happens to change so that it ends up being declared in so-called top scope (the root
namespace usually determine at check-in time), it may pick up a different set of bindings.
Thus including a class, although idempotent, has a “side effect” – binding the names in the
class – making Puppet programs potentially fragile. More of the details of scoping are given
in the language reference manual [1].

2.1.5 Qualified names
A definition which is not in scope can be accessed using a qualified name, using a syn-
tax reminiscent of C++ and Java, with atomic names separated by the token ::. For
example, in Figure 4 above, $::osfamily refers to a variable in the top scope, while
$::ssh::params::sshd_package is an absolute reference to the $sshd_package variable of
class ssh::params.

Less conventionally, Puppet also allows the name of a class to be a qualified name, such
as ssh::params in Figure 4. Despite the suggestive syntax, which resembles a C++ member
declaration, this is mostly just a convention used to indicate related classes. In particular,
qualified names used in this way do not require any of the qualifying prefixes to denote an
actual namespace. (Although see the discussion in Section 5.3 for an interaction between
this feature and nested classes, which µPuppet does not support.)

2.1.6 Inheritance and class parameters
Classes may inherit from other classes; the inheriting class inherits the variables of the parent
class, including their values. In the earlier example (Figure 2), service2 inherits the value of
$provider from service3. Including a derived class implicitly includes the inherited class,
potentially causing the inherited class to be declared (in the Puppet sense of the word) when
the derived class is declared:

When you declare a derived class whose base class hasn’t already been declared, the base
class is immediately declared in the current scope, and its parent assigned accordingly.
This effectively “inserts” the base class between the derived class and the current scope.
(If the base class has already been declared elsewhere, its existing parent scope is not
changed.)

This explains why config3 appears in the compiled catalog for Figure 2.
Since the scope in which a class is eventually declared determines the meaning of the

names in the class (Section 2.1.4 above), inheritance may have surprising (and non-local)

ECOOP 2017

12:8 µPuppet: A Declarative Subset of the Puppet Configuration Language

1 class ssh :: params {
2 case $:: osfamily {
3 " Debian ": { $sshd_package = "ssh" }
4 " RedHat ": { $sshd_package = "openssh - server " }
5 default : { fail (" SSH class not supported ") }
6 }
7 }
8 class ssh ($ssh_pkg = $:: ssh :: params :: sshd_package) inherits ssh :: params {
9 package { $ssh_pkg :

10 ensure => installed
11 }
12 }
13 node "ssh. example .com" {
14 include ssh
15 }

Figure 4 Example manifest showing recommended use of inheritance for setting default paramet-
ers.

consequences. At any rate, the use of inheritance for most use cases is now discouraged.1
The main exception is the use of inheritance to specify default values; this is the scenario
illustrated in Figure 4.

Line 1 of Figure 4 introduces class ssh::params, which assigns to variable $sshd_package
a value conditional on the operating system name $::osfamily (line 2). The class ssh
(line 8) inherits from ssh::params. It also defines a class parameter $ssh_pkg (before the
inherits clause), and uses the value of the $sshd_package variable in the inherited class as
the default value for the parameter. Because an inherited class is processed before a derived
class, the value of $sshd_package is available at this point.

The value of the parameter $ssh_pkg is then used as the title of the package resource
declared in the ssh class (line 9) specifying that the relevant software package exists in the
target configuration. The last construct is a node definition specifying how to configure the
machine with hostname ssh.example.com. If host ssh.example.com is a Debian machine,
the result of compiling this manifest is a catalog containing the following package resource:
1 package { "ssh" : ensure => installed }

2.1.7 Class statements
Figure 5 defines a class c with three parameters. The class statement (line 31) can be used
to include a class and provide values for (some of) the parameters. In the resulting catalog,
the from_class resource has backup set to true (from the explicit argument), mode set to
123 (because no mode argument is specified), and source set to ’/default’ (because the
path variable is undefined at the point where the class is declared (line 31)).

However, the potential for conflicting parameter values means that multiple declarations
with parameters are not permitted, and the class statement must be used instead (which
only allows a single declaration).

2.1.8 Defined resource types
Defined resource types are similarly to classes, but provide a more flexible way of introducing
a user-defined set of resources. Definition d (line 14) in Figure 5 introduces a defined resource

1 https://docs.puppet.com/puppet/latest/style_guide.html, section 11.1.

https://docs .puppet.com/puppet/latest/style_guide.html

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:9

1 class c (
2 $backupArg = false ,
3 $pathArg = "/ default ",
4 $modeArg = 123) {
5
6 file { " from_class ":
7 backup => $backupArg ,
8 source => $pathArg ,
9 path => $path ,

10 mode => $modeArg
11 }
12 }
13
14 define d (
15 $backupArg = false ,
16 $pathArg = "/ default ",
17 $modeArg = 123) {
18
19 file { " from_define ":
20 backup => $backupArg ,
21 source => $pathArg ,
22 path => $path ,
23 mode => $modeArg
24 }
25 }
26
27 node default {
28
29 $backup = true
30
31 class { c:
32 backupArg => $backup ,
33 pathArg => $path
34 }
35
36 d { " service3 ":
37 backupArg => $backup ,
38 pathArg => $path
39 }
40
41 $path = "/ path"
42 }

1 file { " from_class ":
2 backup => true ,
3 source => "/ default ",
4 mode => 123
5 }
6 file { " from_define ":
7 path => "/ path",
8 backup => true ,
9 source => "/ default ",

10 mode => 123
11 }

Figure 5 Manifest with class parameters and defined resource types (left); catalog (right).

type. The definition looks very similar to a class definition, but the body is a macro which
can be instantiated (line 36) multiple times with different parameters.

Interestingly, the path attribute in the from_class file is undefined in the result, ap-
parently because the assignment $path = ’/path’ follows the declaration of the class —
however, in the from_define file, path is defined as ’/path’! The reason appears to be that
defined resources are added to the catalog and re-processed after other manifest constructs.2

3 µPuppet

We now formalise µPuppet, a language which captures many of the essential features of
Puppet. Our goal is not to model all of Puppet’s idiosyncrasies, but instead to attempt
to capture the ‘declarative’ core of Puppet, as a starting point for future study. As we
discuss later, Puppet also contains several non-declarative features whose behaviour can be
counterintuitive and surprising; their use tends to be discouraged in Puppet’s documentation
and by other authors [16].

2 http://puppet-on-the-edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html

ECOOP 2017

http://puppet-on-the- edge.blogspot.co.uk/2014/04/getting-your-puppet-ducks-in-row.html

12:10 µPuppet: A Declarative Subset of the Puppet Configuration Language

Expression e ::= i | w | true | false | $x | $::x | $::a::x
| e1 + e2 | e1 − e2 | e1/e2 | e1 > e2 | e1 = e2 | e1 and e2 | e1 or e2 | ! e | . . .
| {H} | [e1, . . . , en] | e1[e2] | e ? {M}

Array A ::= ε | e,A
Hash H ::= ε | k ⇒ e,H

Case c ::= e | default
Matches M ::= ε | c⇒ e,M

Statement s ::= e | s1␣s2 | $x = e | unless e {s} | if e {s} else {s} | case e {C} | D
Cases C ::= ε | c : {s}␣C
Declaration D ::= t {e : H} | u {e : H} | class {a : H} | include a

Manifest m ::= s | m1␣m2 | node Q {s} | define u (ρ) {s} | class a {s} | class a (ρ) {s}
| class a inherits b {s} | class a (ρ) inherits b {s}

Node spec Q ::= N | default | (N1, . . . , Nk) | r ∈ RegExp
Parameters ρ ::= ε | x, ρ | x = e, ρ

Figure 6 Abstract syntax of µPuppet.

3.1 Abstract syntax
The syntax of µPuppet manifests m is defined in Figure 6, including expressions e and
statements s. Constant expressions in µPuppet can be integer literals i, string literals
w, or boolean literals true or false. Other expressions include arithmetic and boolean
operations, variable forms $x, $::x and $::a::x. Here, x stands for variable names and a

stands for class names. Selectors e ? {M} are conditional expressions that evaluate e and
then conditionally evaluate the first matching branch in M . Arrays are written [e1, . . . , en]
and hashes (dictionaries) are written {k ⇒ e, . . .} where k is a key (either a constant number
or string). A reference e1[e2] describes an array, a hash or a resource reference where e1 itself
can be a reference. When it is a resource reference, e1 could be a built-in resource type.
Full Puppet includes additional base types (such as floating-point numbers) and many more
built-in functions that we omit here.

Statements s include expressions e (whose value is discarded), composite statements
s1␣s2, assignments $x = e, and conditionals unless, if, case, which are mostly standard.
(Full Puppet includes an elsif construct that we omit from µPuppet.) Statements also
include resource declarations t {e : H} for built-in resource types t, resource declarations
u {e : H} for defined resource types u, and class declarations class {a : H} and include a.

Manifestsm can be statements s; composite manifestsm1␣m2, class definitions class a {s}
with or without parameters ρ and inheritance clauses inherits b; node definitions node Q {s};
or defined resource type definitions define u (ρ) {s}. Node specifications Q include literal
node names N , default, lists of node names, and regular expressions r (which we do not
model explicitly).

Sequences of statements, cases, or manifest items can be written by writing one statement
after the other, separated by whitespace, and we write ␣ when necessary to emphasise that
this whitespace is significant. The symbol ε denotes the empty string.

3.2 Operational Semantics
We now define a small-step operational semantics for µPuppet. This is a considered choice:
although Puppet is advertised as a declarative language, it is not a priori clear that manifest
compilation is a terminating or even deterministic process. Using small-step semantics allows
us to translate the (often) procedural descriptions of Puppet’s constructs directly from the

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:11

Catalog vC ::= ε | vR␣vC

Value v ::= i | w | true | false | {vH} | [v1, . . . , vn] | t[v]
Hash value vH ::= ε | k ⇒ v, vH

Resource value vR ::= t {w : vH}

Scope α ::= :: | ::a | ::nd | α def

Statement s ::= ... | scope α s | skip

Figure 7 Auxiliary constructs: catalogs and scopes.

documentation.
The operational semantics relies on auxiliary notions of catalogs vC, scopes α, variable

environments σ, and definition environments κ explained in more detail below. We employ
three main judgements, for processing expressions, statements, and manifests:

σ, κ, vC, e
α−→ e′ σ, κ, vC, s

α−→s σ
′, κ′, v′

C, s
′ σ, κ, vC,m

N−→m σ′, κ′, v′
C,m

′

Here, σ, κ, and vC are the variable environment, definition environment, and catalog
beforehand, and their primed versions are the corresponding components after one compilation
step. The parameter α for expressions and statements represents the ambient scope; the
parameter N for manifests is the target node name.

The main judgement is −→m, which takes a µPuppet manifest m and a node name
N and compiles it to a catalog vC, that is, a list of resource values vR for that node.
Given initial variable environments σ (representing data provided by the client) and κ

(containing any predefined classes or resource definitions), execution of manifest m begins
with an empty catalog and terminates with catalog vC when the manifest equals skip, i.e.
σ, κ, ε,m

N−→m · · ·
N−→m σ′, κ′, vC, skip.

3.2.1 Auxiliary definitions: catalogs, scopes and environments

Before defining compilation formally, we first define catalogs (Section 3.2.1.1), the result of
compiling manifests; scopes (Section 3.2.1.2), which explicitly represent the ambient scope
used to resolve unqualified variable references; variable environments (Section 3.2.1.3), which
store variable bindings; and definition environments (Section 3.2.1.4), which store class and
resource definitions.

3.2.1.1 Catalogs

The syntax of catalogs is given in Figure 7. A catalog vC is a sequence of resource values,
separated by whitespace; a resource value vR = t {w : vH} is a resource whose title is a string
value and whose content is a hash value; a hash value vH is an attribute-value sequence in
which all expressions are values; and finally a value v is either an integer literal i, string
literal w, boolean literal true or false, hash {vH}, array [v1, . . . , vn] or a reference value
t[v]. In a well-formed catalog, there is at most one resource with a given type and title;
attempting to add a resource with the same type and title as one already in the catalog is an
error.

ECOOP 2017

12:12 µPuppet: A Declarative Subset of the Puppet Configuration Language

3.2.1.2 Scopes

As discussed in Section 2, Puppet variables can be assigned in one scope and referenced in a
different scope. For example, in Figure 4, the parent scope of class scope ssh is class scope
ssh::params. To model this, we model scopes and parent-child relations between scopes
explicitly. Scope :: represents the top scope, ::a is the scope of class a, ::nd is the active node
scope, and α def is the scope of a resource definition that is executed in ambient scope α.

The scope for defined resources takes another scope parameter α in order to model
resource definitions that call other resource definitions. The top-level, class, and node scopes
are persistent, while α def is cleared at the end of the corresponding resource definition;
thus these scopes can be thought of as names for stack frames. The special statement form
scope α s is used internally in the semantics to model scope changes. An additional internal
statement form skip, unrelated to scopes, represents the empty statement. Neither of these
forms are allowed in Puppet manifests.

As discussed earlier, there is an ancestry relation on scopes, which governs the order
in which scopes are checked when dereferencing an unqualified variable reference. We use
mutually recursive auxiliary judgments α parentofκ β to indicate that α is the parent scope
of β in the context of κ and α baseofκ β to indicate that α is the base scope of β. The base
scope is either ::, indicating that the scope is the top scope, or ::nd, indicating that the scope
is being processed inside a node definition. We first discuss the rules for parentofκ:

:: parentofκ ::nd
PNode

β baseofκ α def

:: parentofκ α def
PDefRes

κ(a) = DeclaredClass(α)
α parentofκ ::a

PClass

The PNode rules says that the top-level scope is the parent scope of node scope. The
PDefRes rule says that the parent scope of the defined resource type scope is its base
scope. Thus, a resource definition being declared in the toplevel will have parent ::, while
one being declared inside a node definition will have parent scope ::nd. The PClass rule
defines the scope of the (declared) parent class b to be the scope α that is recorded in the
DeclaredClass(α) entry. The rules for class inclusion and declaration in the next section show
how the DeclaredClass(α) entry is initialised; this also uses the baseofκ relation. The rules
defining baseofκ are as follows:

:: baseofκ ::
BTop

::nd baseofκ ::nd
BNode

α baseofκ β
α baseofκ β def

BDefRes

κ(a) = DeclaredClass(β) α baseofκ β
α baseofκ ::a

BClass

These rules determine whether the ambient scope α in which the class is declared is inside
or outside a node declaration. The base scope of toplevel or node scope is toplevel or node
scope respectively. The base scope of β def is the base scope of β, while the base scope of a
class scope ::a is the base scope of its parent scope as defined in the definition environment
κ. (We will only try to obtain the base scope of a class that has already been declared.)

3.2.1.3 Variable environments

During the compilation of a manifest, the values of variables are recorded in variable
environments σ which are then accessed when these variables are referenced in the manifest.
(We call these variable environments, rather than plain environments, since “environment”

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:13

has a specific technical meaning in Puppet; see the glossary in the appendix of the extended
paper [7].) As discussed in section 2.1.3, Puppet allows variables to be referenced before
being defined, whereas the variable environment is designed in the way not to allow it. A
variable can only be referenced in the environment if its value has been stored. Thus the
undefined variables in the manifest in Figure 2 are not legal in µPuppet.

Formally, a variable environment is defined as a partial function σ : Scope×Var → Value
which maps pairs of scopes and variables to values. The scope component indicates the
scope in which the variable was assigned. We sometimes write σα(x) for σ(α, x). Updating a
variable environment σ with new binding (α, x) to v is written σ[(α, x) : v], and clearing an
environment (removing all bindings in scope α) is written clear(σ, α).

3.2.1.4 Definition environments

Some components in Puppet, like classes and defined resource types, introduce definitions
which can be declared elsewhere. To model this, we record such definitions in definition
environments κ. Formally, a definition environment is a partial function κ : Identifier →
Definition mapping each identifier to a definition D. Evaluation of the definition only begins
when a resource is declared which uses that definition.

Definitions are of the following forms:

D ::= ClassDef(copt, ρ, s) | DeclaredClass(α) | ResourceDef(ρ, s)
copt ::= c | ⊥

The definition form ClassDef(copt, ρ, s) represents the definition of a class (before it has been
declared); copt is the optional name of the class’s parent, ρ is the list of parameters of the
class (with optional default values), and s is the body of the class. The definition form
DeclaredClass(α) represents a class that has been declared; α is the class’s parent scope and
ρ and s are no longer needed. In Puppet, the definition of a class can appear before or after
its declaration, as we saw in the manifest in Figure 2, whereas the definition environment is
designed to require that a class is defined before it is declared. Thus the inclusion of class
service1 in Figure 2 will be not evaluated in µPuppet. Moreover, a class can be declared
only once in Puppet, and when it is declared its definition environment entry is changed to
DeclaredClass(copt). Finally, the definition form ResourceDef(ρ, s) represents the definition of
a new resource type, where ρ and s are as above.

3.2.2 Expression evaluation
Expressions are the basic computational components of µPuppet. The rules for expression
forms such as primitive operations are standard. The rules for selector expressions are also
straightforward. Since variable accessibility depends on scope, the variable evaluation rules
are a little more involved:

x ∈ dom(σα)
σ, κ, vC, $x

α−→ σα(x)
LVar

x /∈ dom(σα) σ, κ, vC, $x
β−→ v β parentofκ α

σ, κ, vC, $x
α−→ v

PVar

x ∈ dom(σ::)
σ, κ, vC, $::x α−→ σ::(x)

TVar
x ∈ dom(σ::a)

σ, κ, vC, $::a :: x α−→ σ::a(x)
QVar

The LVar looks up the value of an unqualified variable in the current scope, if present.
The PVar rule handles the case of an unqualified variable that is not defined in the current

ECOOP 2017

12:14 µPuppet: A Declarative Subset of the Puppet Configuration Language

scope; its value is the value of the variable in the parent scope. The TVar and QVar
rules look up fully-qualified variables in top scope or class scope, respectively. (There is no
qualified syntax for referencing variables in node scope from other scopes.)

µPuppet also includes array and hash expressions. An array is a list of expressions in
brackets and a hash is a list of keys and their expression assignments in braces. When the
expressions are values, an array or a hash is also a value. Each expression in them can
be dereferenced by the array or hash followed by its index or key in brackets. The rules
for constructing and evaluating arrays and hashes are straightforward, and included in the
appendix of the extended paper [7].

Resource references of the form t[v] are allowed as values, where t is a built-in resource
name and v is a (string) value. Such references can be used as parameters in other resources
and to express ordering relationships between resources. Resource references can be used to
extend resources or override inherited resource parameters; we do not model this behaviour.
A resource reference can also (as of Puppet 4) be used to access the values of the resource’s
parameters. This is supported in µPuppet as shown in the following example.

1 file {" foo.txt ":
2 owner => " alice "
3 }
4 $y = "foo.txt"
5 $x = File[$y]
6 file {" bar.txt ":
7 owner => $x [" owner "]
8 }

In this example, we first declare a file resource, with an owner parameter "alice", then
we assign y the filename and $x a resource reference (value) File["foo.txt"]. Then in
defining a second file resource we refer to the "owner" parameter of the already-declared
file resource via the reference File["foo.txt"]. This declaration results in a second file
resource with the same owner as the first.

The rules for dereferencing arrays, hashes, and resource references are as follows:

σ, κ, vC, d
α−→ d′

σ, κ, vC, d[e] α−→ d′[e]
DeRefExp

σ, κ, vC, e
α−→ e′

σ, κ, vC, v[e] α−→ v[e′]
DeRefIndex

σ, κ, vC, [v0, . . . , vn, . . . , vm][n] α−→ vn
DeRefArray

k = kn

σ, κ, vC, {k1 = v1, . . . , kn = vn, . . . , km = vm}[k] α−→ vn
DeRefHash

σ, κ, vC, e
α−→ e′

σ, κ, vC, t[e]
α−→ t[e′]

RefRes
lookupC(vC, t, w, k) = v

σ, κ, vC, t[w][k] α−→ v
DeRefRes

In the rule DeRefExp the expression e is evaluated to an array or a hash value. The
rule DeRefIndex evaluates the index inside the brackets to a value. Rule DeRefArray
accesses the value in an array at the index n while rule DeRefHash accesses the hash value
by searching its key k. There could be a sequence of reference indexes in a reference. As we
can see, such reference is evaluated in the left-to-right order of the index list. Rule ResRef
evaluates the index and in the DeRefRec rule, the function lookupC looks up the catalog
for the value of the attribute k of the resource t[v].

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:15

3.2.3 Statement evaluation
As with expressions, some of the statement forms, such as sequential composition, conditionals
(if, unless), and case statements have a conventional operational semantics, shown in the
appendix of the extended paper [7]. An expression can occur as a statement; its value is
ignored. Assignments, like variable references, are a little more complex. When storing the
value of a variable in an assignment in σ, the compilation rule binds the value to x in the
scope α:

σ, κ, vC, e
α−→ e′

σ, κ, vC, $x = e
α−→s σ, κ, vC, $x = e′ AssignStep

x /∈ dom(σα)
σ, κ, vC, $x = v

α−→s σ[(α, x) : v], κ, vC, skip
Assign

Notice that Puppet does not allow assignment into any other scopes, only the current scope
α.

We now consider scope α s statements, which are internal constructs (not part of the
Puppet source language) we have introduced to track the scope that is in effect in different
parts of the manifest during execution. The following rules handle compilation inside scope
statements and cleanup when execution inside such a statement finally terminates.

α ∈ {::, ::a, ::nd} σ, κ, vC, s
α→s σ

′, κ′, v′
C, s

′

σ, κ, vC, scope α s α′

−→s σ
′, κ′, v′

C, scope α s′
ScopeStep

σ, κ, vC, s
α def−−−→s σ

′, κ′, v′
C, s

′

σ, κ, vC, scope (α def) s α−→s σ
′, κ′, v′

C, scope (α def) s′ DefScopeStep

α ∈ {::, ::a, ::nd}

σ, κ, vC, scope α skip
β−→s σ, κ, vC, skip

ScopeDone

σ, κ, vC, scope (α def) skip α−→s clear(σ, α def), κ, vC, skip
DefScopeDone

The ScopeStep and ScopeDef rules handle compilation inside a scope; the ambient
scope α′ is overridden and the scope parameter α is used instead. The ScopeDone rule
handles the end of compilation inside a “persistent” scope, such as top-level, node or class
scope, whose variables persist throughout execution, and the DefScopeDone rule handles
the temporary scope of defined resources, whose locally-defined variables and parameters
become unbound at the end of the definition. (In contrast, variables defined in toplevel,
node, or class scopes remain visible throughout compilation.)

Resource declarations are compiled in a straightforward way; the title expression is
evaluated, then all the expressions in attribute-value pairs in the hash component are
evaluated. Once a resource is fully evaluated, it is appended to the catalog:

σ, κ, vC, e : H α−→R e
′ : H ′

σ, κ, vC, t {e : H} α−→s σ, κ, vC, t {e′ : H ′}
ResStep

σ, κ, vC, vR
α−→s σ, κ, vC␣vR, skip

ResDecl

ECOOP 2017

12:16 µPuppet: A Declarative Subset of the Puppet Configuration Language

Defined resource declarations look much like built-in resources:
1 apache :: vhost {" homepages ":
2 port => 8081 ,
3 docroot => "/ var/www - testhost ",
4 }

When a defined resource type declaration is fully evaluated, it is expanded (much like a
function call).

σ, κ, vC, {e : H} α−→R {e′ : H ′}
σ, κ, vC, u {e : H} α−→s σ, κ, vC, u {e′ : H ′}

DefStep

κ(u) = ResourceDef(ρ, s) s′ = merge(ρ, vH)
σ, κ, vC, u {w : vH}

α−→s σ, κ, vC, scope (α def) {$title = w␣s′␣s}
Def

The merge function returns a statement s′ assigning the parameters to their default values
in ρ or overridden values from vH. Notice that we also add the special parameter binding
$title = w; this is because in Puppet, the title of a defined resource is made available in the
body of the resource using the parameter $title. The body of the resource definition s is
processed in scope α def. Class declarations take two forms: include-like and resource-like
declarations.

The statement include a is an include-like declaration of a class a. (Puppet includes
some additional include-like declaration forms such as contain and require). Intuitively,
this means that the class body is processed (declaring any ancestors and resources inside
the class), and the class is marked as declared; a class can be declared at most once. The
simplest case is when a class has no parent, covered by the first two rules below:

κ(a) = ClassDef(⊥, ρ, s) s′ = merge(ρ, ε) β baseofκ α
σ, κ, vC, include a α−→s σ, κ[a : DeclaredClass(β)], vC, scope (::a) s′␣s

IncU

κ(a) = DeclaredClass(β)
σ, κ, vC, include a α−→s σ, κ, vC, skip

IncD

κ(a) = ClassDef(b, ρ, s) κ(b) = ClassDef(copt, ρ′, s′)
σ, κ, vC, include a α−→s σ, κ, vC, include b include a

IncPU

κ(a) = ClassDef(b, ρ, s) κ(b) = DeclaredClass(β) s′ = merge(ρ, ε)
σ, κ, vC, include a α−→s σ, κ[a : DeclaredClass(::b)], vC, scope (::a) {s′␣s}

IncPD

In the IncU rule, the class has not been declared yet, so we look up its body and default
parameters and process the body in the appropriate scope. (We use the merge function again
here to obtain a statement initialising all parameters which have default values.) In addition,
we modify the class’s entry in κ to DeclaredClass(β), where β baseofκ α. As described in
Section 2, this aspect of Puppet scoping is dynamic: if a base class is defined outside a node
definition then its parent scope is ::, whereas if it is declared during the processing of a node
definition then its parent scope is ::nd. (As discussed below, if a class inherits from another,
however, the parent scope is the scope of the parent class no matter what). If this sounds
confusing, this is because it is; this is the trickiest aspect of Puppet scope that is correctly
handled by µPuppet. This complexity appears to be one reason that the use of node-scoped
variables is discouraged by some experts [16].

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:17

In the IncD rule, the class a is already declared, so no action needs to be taken. In the
IncPU rule, we include the parent class so that it (and any ancestors) will be processed first.
If there is an inheritance cycle, this process loops; we have confirmed experimentally that
Puppet does not check for such cycles and instead fails with a stack overflow. In the IncPD
rule, the parent class is already declared, so we proceed just as in the case where there is no
parent class.

The rules for resource-like class declarations are similar:

κ(a) = ClassDef(copt, ρ, S) σ, κ, vC, H
α−→H H

′

σ, κ, vC, class {a : H} α−→s σ, κ, vC, class {a : H ′}
CDecStep

κ(a) = ClassDef(⊥, ρ, s) s′ = merge(ρ, vH) β baseofκ α
σ, κ, vC, class {a : vH}

α−→s σ, κ[a : DeclaredClass(β)], vC, scope (::a) s′␣s
CDecU

κ(a) = ClassDef(b, ρ, s) κ(b) = ClassDef(copt, ρ′, s′)
σ, κ, vC, class {a : vH}

α−→s σ, κ, vC, include b class {a : vH}
CDecPU

κ(a) = ClassDef(b, ρ, s) κ(b) = DeclaredClass(β) s′ = merge(ρ, vH)
σ, κ, vC, class {a : vH}

α−→s σ, κ[a : DeclaredClass(::b)], vC, scope (::a) {s′␣s}
CDecPD

There are two differences. First, because resource-like class declarations provide parameters,
the rule CDecStep provides for evaluation of these parameters. Second, there is no rule
analogous to IncD that ignores re-declaration of an already-declared class. Instead, this is
an error. (As with multiple definitions of variables and other constructs, however, we do not
explicitly model errors in our rules.)

3.2.4 Manifest compilation

At the top level, manifests can contain statements, node definitions, resource type definitions,
and class definitions. To compile statements at the top level, we use the following rule:

σ, κ, vC, s
::−→s σ

′, κ′, v′
C, s

′

σ, κ, vC, s
N−→m σ′, κ′, v′

C, s
′

TopScope

The main point of interest here is that we change from the manifest judgement (with the
node name parameter N) to the statement judgement (with toplevel scope parameter ::).
The node name parameter is not needed for processing statements, and we (initially) process
statements in the toplevel scope. Of course, the statement s may well itself be a scope
statement which immediately changes the scope.

A manifest in Puppet can configure all the machines (nodes) in a system. A node
definition describes the configuration of one node (or type of nodes) in the system. The
node declaration includes a specifier Q used to match against the node’s hostname. We
abstract this matching process as a function nodeMatch(N,Q) that checks if the name N of
the requesting computer matches the specifier Q. If so (NodeMatch) we will compile the
statement body of N . Otherwise (NodeNoMatch) we will skip this definition and process
the rest of the manifest.

ECOOP 2017

12:18 µPuppet: A Declarative Subset of the Puppet Configuration Language

nodeMatch(N,Q)

σ, κ, vC, node Q {s} N−→m σ, κ, vC, scope (::nd) s
NodeMatch

¬nodeMatch(N,Q)

σ, κ, vC, node Q {s} N−→m σ, κ, vC, skip
NodeNoMatch

Resource type definitions in Puppet are used to design new, high-level resource types,
possibly by declaring other built-in resource types, defined resource types, or classes. Such a
definition includes Puppet code to be executed when the a resource of the defined type is
declared. Defined resource types can be declared multiple times with different parameters,
so resource type definitions are loosely analogous to procedure calls. The following is an
example of a defined resource type:
1 define apache :: vhost (Integer $port) {
2 include apache
3 file { "host ":
4 content => template (’ apache /vhost - default .conf.erb ’),
5 owner => ’www ’
6 }
7 }

The compilation rule for defining a defined resource type is:

u /∈ dom(κ)

σ, κ, vC, define u (ρ) {s} N−→m σ, κ[u : ResourceDef(ρ, s)], vC, skip
RDef

The definition environment is updated to map u to ResourceDef(ρ, s) containing the para-
meters and statements in the definition of u. The manifest then becomes skip.

A class definition is used for specifying a particular service that could include a set of
resources and other statements. Classes are defined at the top level and are declared as part
of statements, as described earlier. Classes can be parameterised; the parameters are passed
in at declaration time using the resource-like declaration syntax. The parameters can be
referenced as variables in the class body. A class can also inherit directly from one other
class. The following rules handle the four possible cases:

a /∈ dom(κ)

σ, κ, vC, class a {s} N−→m σ, κ[a : ClassDef(⊥, ε, s)], vC, skip
CDef

a /∈ dom(κ)

σ, κ, vC, class a inherits b {s} N−→m σ, κ[a : ClassDef(b, ε, s)], vC, skip
CDefI

a /∈ dom(κ)

σ, κ, vC, class a (ρ) {s} N−→m σ, κ[a : ClassDef(⊥, ρ, s)], vC, skip
CDefP

a /∈ dom(κ)

σ, κ, vC, class a (ρ) inherits b {s} N−→m σ, κ[a : ClassDef(b, ρ, s)], vC, skip
CDefPI

In the simples case (CDef) we add the class definition to the definition environment with no
parent and no parameters. The other three rules handle the cases with inheritance, with
parameters, or with both.

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:19

4 Metatheory

Because Puppet has not been designed with formal properties in mind, there is relatively
little we can say formally about the “correctness” of µPuppet. Instead, the main measure of
correctness is the degree to which µPuppet agrees with the behaviour of the main Puppet
implementation, which is the topic of the next section. Here, we summarise two properties of
µPuppet that guided our design of the rules, and provide some justification for the claim that
µPuppet is ‘declarative’. First, evaluation is deterministic: a given manifest can evaluate in
at most one way.

I Theorem 1 (Determinism). All of the evaluation relations of µPuppet are deterministic:
If σ, κ, vC, e

α−→ e′ and σ, κ, vC, e
α−→ e′′ then e′ = e′′.

If σ, κ, vC, s
α−→s σ

′, κ′, v′
C, s

′ and σ, κ, vC, s
α−→s σ

′′, κ′′, v′′
C, s

′′ then σ′ = σ′′, κ′ = κ′′,
v′

C = v′′
C and s′ = s′′.

If σ, κ, vC, s
N−→m σ′, κ′, v′

C,m
′ and σ, κ, vC,m

N−→m σ′′, κ′′, v′′
C,m

′′ then σ′ = σ′′, κ′ = κ′′,
v′

C = v′′
C and m′ = m′′.

Proof. Straightforward by induction on derivations. J

Second, in µPuppet, evaluation is monotonic in the sense that:
Once a variable binding is defined in σ, its value never changes, and it remains bound
until the end of the scope in which it was bound.
Once a class or resource definition is defined in κ, its definition never changes, except
that a class’s definition may change from ClassDef(copt, ρ, s) to DeclaredClass(β).
Once a resource is declared in vC, its title, properties and values never change.

We can formalise this as follows.

I Definition 2. We define orderings v on variable environments, definition environments
and catalogs as follows:

σ v σ′ when x ∈ dom(σα) implies that either σα(x) = σ′
α(x) or α = β def for some β

and x 6∈ dom(σ′
α).

κ v κ′ when a ∈ dom(κ) implies either κ(a) = κ′(a) or κ(a) = ClassDef(copt, ρ, s) and
κ′(a) = DeclaredClass(β).
vC v v′

C when there exists v′′
C such that vC␣v′′

C = v′
C.

(σ, κ, vC) v (σ′, κ′, v′
C) when σ v σ′, κ v κ′ and vC v v′

C.

I Theorem 3 (Monotonicity). The statement and manifest evaluation relations of µPuppet
are monotonic in σ, κ, vC:

If σ, κ, vC, s
α−→s σ

′, κ′, v′
C, s

′ then (σ, κ, vC) v (σ′, κ′, v′
C).

If σ, κ, vC, s
N−→m σ′, κ′, v′

C,m
′ then (σ, κ, vC) v (σ′, κ′, v′

C).

Proof. Straightforward by induction. The only interesting cases are the rules in which σ, κ
or vC change; in each case the conclusion is immediate. J

These properties are not especially surprising or difficult to prove; nevertheless, they
provide some justification for calling µPuppet a ‘declarative’ language. However, µPuppet
does not satisfy some other desirable properties. For example, as we have seen, the order in
which variable definitions or resource or class declarations appear can affect the final result.
Likewise, there is no notion of ‘well-formedness’ that guarantees that a µPuppet program
terminates successfully: compilation may diverge or encounter a run-time error. Furthermore,
full Puppet does not satisfy monotonicity, because of other non-declarative features that we

ECOOP 2017

12:20 µPuppet: A Declarative Subset of the Puppet Configuration Language

have chosen not to model. Further work is needed to identify and prove desirable properties
of the full Puppet language, and identify subsets of (or modifications to) Puppet that make
such properties valid.

5 Implementation and Evaluation

We implemented a prototype parser and evaluator µPuppet in Haskell (GHC 8.0.1). The
parser accepts source syntax for features of µPuppet as described in the Puppet documentation
and produces abstract syntax trees as described in Section 3.2. The evaluator implements
µPuppet compilation based on the rules shown in the appendix of the extended paper [7].
The implementation constitutes roughly 1300 lines of Haskell code. The evaluator itself is
roughly 400 lines of code, most of which are line-by-line translations of the inference rules.

We also implemented a test framework that creates an Ubuntu 16.04.1 (x86_64) virtual
machine with Puppet installed, and scripts which run each example using both µPuppet and
Puppet and compare the resulting messages and catalog output.

5.1 Test cases and results

During our early investigations with Puppet, we constructed a test set of 52 manifests that
illustrate Puppet’s more unusual features, including resources, classes, inheritance, and
resource type definitions. The tests include successful examples (where Puppet produces
a catalog) and failing examples (where Puppet fails with an error); we found both kinds
of tests valuable for understanding what is possible in cases where the documentation was
unspecific.

We used these test cases to guide the design of µPuppet, and developed 16 additional test
cases along the way to test corner cases or clarify behaviour that our rules did not originally
capture correctly. We developed further tests during debugging and to check the behaviour
of Puppet’s (relatively) standard features, such as conditionals and case statements, arrays,
and hashes. We did not encounter any surprises there so we do not present these results in
detail.

We summarise the test cases and their results in Table 1. The “Feature” column describes
the classification of features present in our test set. The “#Tests” and “#Pass” columns
show the number of tests in each category and the number of them that pass. A test that
is intended to succeed passes if both Puppet and µPuppet succeed and produce the same
catalog (up to reordering of resources); a test that is intended to fail passes if both Puppet
and µPuppet fail. The “#Unsupported” column shows the number of test cases that involve
features that µPuppet does not handle. All of the tests either pass or use features that
are not supported by µPuppet. Features that µPuppet (by design) does not support are
italicised.

All of the examples listed in the above table are included in the supplementary material,
together with the resulting catalogs and error messages provided by Puppet.

5.2 Other Puppet examples

A natural source of test cases is Puppet’s own test suite or, more generally, other Puppet
examples in public repositories. Puppet does have a test suite, but it is mostly written in
Ruby to test internal functionality. We could find only 43 Puppet language tests in the

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:21

Table 1 Summary of test cases. Features in italics are not supported in µPuppet.

Feature #Tests #Pass #Unsupported
Statements 11 11 0
Assignment 2 2 0
Case 1 1 0
If 4 4 0
Unless 4 4 0

Resources 18 11 7
Basics 2 2 0
Variables 3 3 0
User defined resource types 5 5 0
Virtual resources 1 0 1
Default values 1 0 1
Resource extension 4 0 4
Ordering Constraints 2 1 1

Classes 32 22 10
Basics 4 4 0
Inheritance 3 3 0
Scope 2 2 0
Variables & classes 6 6 0
Class Parameters 6 6 0
Overriding 5 0 5
Nesting and redefinition 6 1 5

Nodes 8 8 0
Resource Collectors 9 0 9
Basics 1 0 1
Collectors, references & variables 3 0 3
Application order 5 0 5

Puppet repository on GitHub3. These tests appear to be aimed at testing parsing and lexing
functionality; they are not accompanied by descriptions of the desired catalog result. Some
of the tests also appear to be out of date: five fail in Puppet 4.8. Of the remaining test cases
that Puppet 4.8 can run, 20 run correctly in µPuppet (with minor modifications) while 18
use features not yet implemented in µPuppet.

We also considered harvesting realistic Puppet configurations from other public repositor-
ies; however, this is not straightforward since real configurations typically include confidential
or security-critical parameters so are not publicly available. An alternative would be to
harvest Puppet modules from publicly available sources such as PuppetForge, which often
include test manifests to show typical usage. However, these test cases usually do not come
with sample results; they are mainly intended for illustration.

We examined the top 10 Puppet modules (apache, ant, concat, firewall, java, mysql, ntp,
postgresql, puppetdb, and stdlib) on the official PuppetForge module site and searched for
keywords and other symbols in the source code to estimate the number of uses of Puppet
features such as classes, inheritance, definitions, resource collectors/virtual resources, and

3 https://github.com/puppetlabs/puppet/tree/master/spec/fixtures/unit/parser/lexer

ECOOP 2017

https://github.com/puppetlabs/puppet/tree/master/spec/fixtures/unit/parser/lexer

12:22 µPuppet: A Declarative Subset of the Puppet Configuration Language

ordering constraints. Classes occurred in almost all modules, with over 200 uses overall, and
over 50 uses of inheritance. Resource type definitions were less frequent, with only around 40
uses, while uses of resource collectors and virtual resources were rare: there were only 10 uses
overall, distributed among 5 packages. Ordering constraints were widely used, with over 90
occurrences in 8 packages. Due to the widespread use of ordering constraints, as well as other
issues such as the lack of support for general strings and string interpolation in µPuppet,
we were not able to run µPuppet on these Puppet modules. This investigation suggests
that to develop tools or analyses for real Puppet modules based on µPuppet will require
both conceptual steps (modelling ordering constraints and non-declarative features such as
resource collectors) as well as engineering effort (e.g. to handle Puppet’s full, idiosyncratic
string interpolation syntax).

5.3 Unsupported features

Our formalisation handles some but not all of the distinctive features of Puppet. As mentioned
in the introduction, we chose to focus effort on the well-established features of Puppet that
appear closest to its declarative aspirations. In this section we discuss the features we
chose not to support and how they might be supported in the future, in increasing order of
complexity.

String interpolation. Puppet supports a rich set of string operations including string
interpolation (i.e. variables and other expression forms embedded in strings). For example,
writing "Hello ${planet[’earth’]}!" produces "Hello world!" if variable planet is a
hash whose ’earth’ key is bound to ’World’. String interpolation is not conceptually
difficult but it is widely used and desugaring it correctly to plain string append operations is
an engineering challenge.

Dynamic data types. Puppet 4 also supports type annotations, which are checked dy-
namically and can be used for automatic validation of parameters. For example, writing
Integer $x = 5 in a parameter list says that x is required to be an integer and its de-
fault value is 5. Types can also express constraints on the allowed values: for example,
5 =~ Integer[1,10] is a valid expression that evaluates to true because 5 is an integer
between 1 and 10. Data types are themselves values and there is a type Type of data types.

Undefined values and strict mode. By default, Puppet treats an undefined variable as
having a special “undefined value” undef. Puppet provides a “strict” mode that treats an
attempt to dereference an undefined variable as an error. We have focused on modelling
strict semantics, so our rules get stuck if an attempt is made to dereference an undefined
variable; handling explicit undefined values seems straightforward, by changing the definitions
of lookup and related operations to return undef instead of failing.

Functions, iteration and lambdas. As of version 4, Puppet allows function definitions to
be written in Puppet and also includes support for iteration functions (each, slice, filter,
map, reduce, with) which take lambda blocks as arguments. The latter can only be used
as function arguments, and cannot be assigned to variables, so Puppet does not yet have
true first-class functions. We do see no immediate obstacle to handling these features, using
standard techniques.

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:23

Nested constructs and multiple definitions. We chose to consider only top-level definitions
of classes and defined resources, but Puppet allows nesting of these constructs, which also
makes it possible for classes to be defined more than once. For example:
1 class a {
2 $x1 = "a"
3 class b {
4 $y1 = "b"
5 }
6 }
7
8 class a::b {
9 $y2 = "ab"

10 }
11 include a
12 include a::b

Surprisingly, both line 4 and line 9 are executed (in unspecified order) when a::b is declared,
so both $::a::b::y1 and $::a::b::y2 are in scope at the end. Our impression is that
it would be better to simply reject Puppet manifests that employ either nested classes or
multiple definitions, since nesting of class and resource definitions is explicitly discouraged
by the Puppet documentation.

Dynamically-scoped resource defaults. Puppet also allows setting resource defaults. For
example one can write (using the capitalised resource type File):
1 File { owner => " alice " }

to indicate that the default owner of all files is alice. Defaults can be declared in classes, but
unlike variables, resourced defaults are dynamically scoped; for this reason, the documentation
and some authors both recommend using resource defaults sparingly. Puppet 4 provides an
alternative way to specify defaults as part of the resource declaration.

Resource extension and overriding. In Puppet, attributes can be added to a resource
which has been previously defined by using a reference to the resource, or removed by setting
them to undef.
1 class main {
2 file { "file ": owner => " alice " }
3 File [" file "] { mode => "0755" }
4 }

However, it is an error to attempt to change the value of an already-defined resource, unless
the updating operation is performed in a subclass of the class in which the resource was
originally declared. For example:
1 class main :: parent {
2 file { "file ":
3 owner => "bob",
4 source => "the source "
5 }
6 }
7 class main inherits main :: parent {
8 File [" file "] {
9 owner => " alice ",

10 source => undef
11 }
12 }

This illustrates that code in the derived class is given special permission to override any
resource attributes that were set in the base class. Handling this behaviour seems to require
(at least) tracking the classes in which resources are declared.

ECOOP 2017

12:24 µPuppet: A Declarative Subset of the Puppet Configuration Language

Resource collectors and virtual resources. Resource collectors allow for selecting, and also
updating, groups of resources specified via predicates. For example, the following code
declares a resource and then immediately uses the collector File <|title == file"|>" to
modify its parameters.
1 class main {
2 file { "file ": owner => " alice " }
3 File <| title == "file" |> {
4 owner => "bob",
5 group => "the group ",
6 }
7 }

Updates based on resource collectors are unrestricted, and the scope of the modification is
also unrestricted: so for example the resource collector File<|owner=’root’|> will select all
files owned by root, and potentially update their parameters in arbitrary ways. The Puppet
documentation recommends using resource collectors only in idiomatic ways, e.g. using the
title of a known resource as part of the predicate. Puppet also supports virtual resources,
that is, resources with parameter values that are not added to the catalog until declared or
referenced elsewhere. Virtual resources allow a resource to be declared in one place without
the resource being included in the catalog. The resource can then be realised in one or more
other places to include it in the catalog. Notice that you can realise virtual resources before
declaring them:
1 class main {
2 realize User [" alice "]
3 @user { " alice ": uid => 100 }
4 @user { "bob ": uid => 101 }
5 realize User [" alice "]
6 }

As Shambaugh et al. [17] observe, these features can have global side-effects and make
separate compilation impossible; the Puppet documentation also recommends avoiding them
if possible. We have not attempted to model these features formally, and doing so appears
to be a challenging future direction.

Ordering constraints. By default, Puppet does not guarantee to process the resources in
the catalog in a fixed order. To provide finer-grained (and arguably more declarative) control
over ordering, Puppet provides several features: special metaparameters such as ensure,
require, notify, and subscribe, chaining arrows -> and ~> that declare dependencies
among resources, and the require function that includes a class and creates dependencies
on its resources. From the point of view of our semantics, all of these amount to ways
to define dependency edges among resources, making the catalog into a resource graph.
Puppet represents the chaining arrow dependencies using metaparameters, so we believe this
behaviour can be handled using techniques similar to those for resource parameter overrides
or resource collectors. The rules for translating the different ordering constraints to resource
graph edges can be expressed using Datalog rules [17] and this approach may be adaptable
to our semantics too.

6 Related work

Other declarative configuration frameworks include LCFG [2], a configuration management
system for Unix, and SmartFrog [9], a configuration language developed by HP Labs. Of
these, only SmartFrog has been formally specified; Herry and Anderson [4] propose a
formal semantics and identify some complications, including potential termination problems

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:25

exhibited by the SmartFrog interpreter. Their semantics is presented in a denotational style,
in contrast to the small-step operational semantics presented here for Puppet. Other systems,
such as Ponder [5], adopt an operational approach to policies for distributed systems.

Beyond this, there are relatively few formal studies of configuration languages, and we
are aware of only two papers on Puppet specifically. Vanbrabant et al. [20] propose an access
control technique for an early version of Puppet based on checking whether the changes
to the catalog resulting from a change to the manifest are allowed by a policy. Catalogs
are represented as XML files and allowed changes are described using path expressions.
Shambaugh et al. [17] present a configuration verification tool for Puppet called Rehearsal.
Their tool is concerned primarily with the “realisation” stage of a Puppet configuration, and
focuses on the problem of determinacy analysis: that is, determining whether a proposed
reconfiguration leads to a unique result state. Shambaugh et al. consider a subset of Puppet as
a source language, including resources, defined resources, and dependencies. However, some
important subtleties of the semantics were not investigated. Compilation of definitions and
ordering constraints was described at a high level but not formalised; classes and inheritance
were not mentioned, although their implementation handles simple cases of these constructs.
Our work complements Rehearsal: Rehearsal analyses the determinacy of the realisation
stage, while our work improves understanding of the compilation stage.

The present work continues a line of recent efforts to study the semantics of programming
and scripting languages “in the wild”. There have been efforts to define semantics for
JavaScript [12, 10], R [14], PHP [6], and Python [15]. Work on formal techniques for
Ruby [19] may be especially relevant to Puppet: Puppet is implemented in Ruby, and plugins
can be written in Ruby, so modelling the behaviour of Puppet as a whole may require
modelling both the Puppet configuration language and the Ruby code used to implement
plugins, as well as other tools such as Hiera4 that are an increasingly important component
of the Puppet toolchain. However, Puppet itself differs significantly from Ruby, and Puppet
“classes” in particular bear little relation to classes in Ruby or other object-oriented languages.

7 Conclusions

Rigorous foundations for configuration frameworks are needed to improve the reliability of
configurations for critical systems. Puppet is a popular configuration framework, and is
already being used in safety-critical domains such as air traffic control.5

Even if each individual component of such a system is formally verified, misconfiguration
errors can still lead to failures or vulnerabilities, and the use of these tools at scale means
that the consequences of failure are also potentially large-scale. The main contribution of
this paper is an operational semantics for a subset of Puppet, called µPuppet, that covers the
distinctive features of Puppet that are used in most Puppet configurations, including resource,
node, class, and defined resource constructs. Our rules also model Puppet’s idiosyncratic
treatment of classes, scope, and inheritance, including the dynamic treatment of node scope.

We presented some simple metatheoretic properties that justify our characterisation of
µPuppet as a ‘declarative’ subset of Puppet, and we compared µPuppet with the Puppet
4.8 implementation on a number of examples. We also identified idiosyncrasies concerning
evaluation order and scope where our initial approach differed from Puppet’s actual behaviour.
Because Puppet is a work in progress, we hope that these observations will contribute to the

4 https://docs.puppet.com/hiera/.
5 https://archive.fosdem.org/2011/schedule/event/puppetairtraffic.html.

ECOOP 2017

https://docs.puppet.com/hiera/
https://archive.fosdem.org/2011/schedule /event/puppetairtraffic.html

12:26 µPuppet: A Declarative Subset of the Puppet Configuration Language

evolution and improvement of the Puppet language. In future work, we plan to investigate
more advanced features of Puppet and develop semantics-based analysis and debugging
techniques; two natural directions for future work are investigating Puppet’s recently-added
type system, and developing provenance techniques that can help explain where a catalog
value or resource came from, why it was declared, or why manifest compilation failed [3].

Acknowledgments. We also gratefully acknowledge Arjun Guha for comments on an early
version of this paper and Henrik Lindberg for discussions about Puppet’s semantics and
tests.

References
1 Puppet 4.8 reference manual, 2016. https://docs.puppet.com/puppet/4.8/index.html.
2 Paul Anderson. LCFG: a Practical Tool for System Configuration, volume 17 of Short

Topics in System Administration. Usenix Association, 2008.
3 Paul Anderson and James Cheney. Toward provenance-based security for configuration

languages. In Umut A. Acar and Todd J. Green, editors, 4th Workshop on the Theory and
Practice of Provenance, TaPP’12, Boston, MA, USA, June 14-15, 2012. USENIX Asso-
ciation, 2012. URL: https://www.usenix.org/conference/tapp12/workshop-program/
presentation/anderson.

4 Paul Anderson and Herry Herry. A formal semantics for the smartfrog configuration lan-
guage. J. Network Syst. Manage., 24(2):309–345, 2016. doi:10.1007/s10922-015-9351-y.

5 Nicodemos Constantinou Damianou. A policy framework for management of distributed
systems. PhD thesis, Imperial College London, UK, 2002. URL: http://ethos.bl.uk/
OrderDetails.do?uin=uk.bl.ethos.252293.

6 Daniele Filaretti and Sergio Maffeis. An executable formal semantics of PHP. In Richard
Jones, editor, ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes in
Computer Science, pages 567–592. Springer, 2014. doi:10.1007/978-3-662-44202-9_23.

7 Weili Fu, Roly Perera, Paul Anderson, and James Cheney. µPuppet: A declarative subset
of the Puppet configuration language. ArXiv e-prints, August 2016. URL: http://adsabs.
harvard.edu/abs/2016arXiv160804999A, arXiv:1608.04999.

8 Jeff Geerling. Ansible for DevOps: Server and configuration management for humans.
Midwestern Mac, LLC, 2015.

9 Patrick Goldsack, Julio Guijarro, Steve Loughran, Alistair N. Coles, Andrew Farrell, Ant-
onio Lain, Paul Murray, and Peter Toft. The smartfrog configuration management frame-
work. Operating Systems Review, 43(1):16–25, 2009. doi:10.1145/1496909.1496915.

10 Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. The essence of JavaScript. In
ECOOP, pages 126–150, Berlin, Heidelberg, 2010. Springer-Verlag. URL: http://dl.acm.
org/citation.cfm?id=1883978.1883988.

11 Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,
Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F. Lukman,
Vincentius Martin, and Anang D. Satria. What bugs live in the cloud? A study
of 3000+ issues in cloud systems. In Ed Lazowska, Doug Terry, Remzi H. Arpaci-
Dusseau, and Johannes Gehrke, editors, Proceedings of the ACM Symposium on Cloud
Computing, Seattle, WA, USA, November 03 - 05, 2014, pages 7:1–7:14. ACM, 2014.
doi:10.1145/2670979.2670986.

12 Sergio Maffeis, John C. Mitchell, and Ankur Taly. An operational semantics for javas-
cript. In G. Ramalingam, editor, Programming Languages and Systems, 6th Asian Sym-
posium, APLAS 2008, Bangalore, India, December 9-11, 2008. Proceedings, volume 5356

https://docs.puppet.com/puppet/4.8/index.html
https://www.usenix.org/conference/tapp12/workshop-program/presentation/anderson
https://www.usenix.org/conference/tapp12/workshop-program/presentation/anderson
http://dx.doi.org/10.1007/s10922-015-9351-y
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252293
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252293
http://dx.doi.org/10.1007/978-3-662-44202-9_23
http://adsabs.harvard.edu/abs/2016arXiv160804999A
http://adsabs.harvard.edu/abs/2016arXiv160804999A
http://arxiv.org/abs/1608.04999
http://dx.doi.org/10.1145/1496909.1496915
http://dl.acm.org/citation.cfm?id=1883978.1883988
http://dl.acm.org/citation.cfm?id=1883978.1883988
http://dx.doi.org/10.1145/2670979.2670986

W. Fu, R. Perera, P. Anderson, and J. Cheney 12:27

of Lecture Notes in Computer Science, pages 307–325. Springer, 2008. doi:10.1007/
978-3-540-89330-1_22.

13 Matthias Marschall. Chef Infrastructure Automation Cookbook. Packt Publishing, 2013.
14 Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating the design of

the R language - objects and functions for data analysis. In James Noble, editor, ECOOP
2012 - Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-
16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer Science, pages 104–131.
Springer, 2012. doi:10.1007/978-3-642-31057-7_6.

15 Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,
Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: the full monty. In
Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA,
October 26-31, 2013, pages 217–232. ACM, 2013. doi:10.1145/2509136.2509536.

16 Jo Rhett. Learning Puppet 4: A guide to configuration management and automation.
O’Reilly Media, 2016.

17 Rian Shambaugh, Aaron Weiss, and Arjun Guha. Rehearsal: a configuration verification
tool for puppet. In Chandra Krintz and Emery Berger, editors, Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 416–430. ACM, 2016. doi:10.
1145/2908080.2908083.

18 James Turnbull. Pulling Strings with Puppet: Configuration Management Made Easy.
Apress, September 2008.

19 Katsuhiro Ueno, Yutaka Fukasawa, Akimasa Morihata, and Atsushi Ohori. The es-
sence of ruby. In Jacques Garrigue, editor, Programming Languages and Systems -
12th Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings,
volume 8858 of Lecture Notes in Computer Science, pages 78–98. Springer, 2014. doi:
10.1007/978-3-319-12736-1_5.

20 Bart Vanbrabant, Joris Peeraer, and Wouter Joosen. Fine-grained access control for
the Puppet configuration language. In LISA, December 2011. URL: https://lirias.
kuleuven.be/handle/123456789/316070.

21 Tianyin Xu and Yuanyuan Zhou. Systems approaches to tackling configuration errors: A
survey. ACM Comput. Surv., 47(4):70:1–70:41, 2015. doi:10.1145/2791577.

22 Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N. Bairavasundaram, and
Shankar Pasupathy. An empirical study on configuration errors in commercial and open
source systems. In Ted Wobber and Peter Druschel, editors, Proceedings of the 23rd ACM
Symposium on Operating Systems Principles 2011, SOSP 2011, Cascais, Portugal, October
23-26, 2011, pages 159–172. ACM, 2011. doi:10.1145/2043556.2043572.

23 Diego Zamboni. Learning CFEngine 3: Automated system administration for sites of any
size. O’Reilly Media, 2012.

ECOOP 2017

http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-540-89330-1_22
http://dx.doi.org/10.1007/978-3-642-31057-7_6
http://dx.doi.org/10.1145/2509136.2509536
http://dx.doi.org/10.1145/2908080.2908083
http://dx.doi.org/10.1145/2908080.2908083
http://dx.doi.org/10.1007/978-3-319-12736-1_5
http://dx.doi.org/10.1007/978-3-319-12736-1_5
https://lirias.kuleuven.be/handle/123456789/316070
https://lirias.kuleuven.be/handle/123456789/316070
http://dx.doi.org/10.1145/2791577
http://dx.doi.org/10.1145/2043556.2043572

	Introduction
	Overview of Puppet
	Puppet: key concepts
	Manifests and catalogs
	Resource declarations
	Variables and strict mode
	Classes and includes
	Qualified names
	Inheritance and class parameters
	Class statements
	Defined resource types

	Puppet
	Abstract syntax
	Operational Semantics
	Auxiliary definitions: catalogs, scopes and environments
	Expression evaluation
	Statement evaluation
	Manifest compilation

	Metatheory
	Implementation and Evaluation
	Test cases and results
	Other Puppet examples
	Unsupported features

	Related work
	Conclusions

