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Abstract
Inspired by a recent approach for genome reconstruction from incomplete data, we consider a
variant of the longest common subsequence problem for the comparison of two sequences, one of
which is incomplete, i.e. it has some missing elements. The new combinatorial problem, called
Longest Filled Common Subsequence, given two sequences A and B, and a multisetM of symbols
missing in B, asks for a sequence B∗ obtained by inserting the symbols ofM into B so that B∗
induces a common subsequence with A of maximum length.

First, we investigate the computational and approximation complexity of the problem and
we show that it is NP-hard and APX-hard when A contains at most two occurrences of each
symbol. Then, we give a 3

5−approximation algorithm for the problem. Finally, we present a
fixed-parameter algorithm, when the problem is parameterized by the number of symbols inserted
in B that “match” symbols of A.
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1 Introduction

The comparison of sequences via Longest Common Subsequence (LCS) has been applied in
several contexts where we want to retrieve the maximum number of elements that appear in
the same order in two or more sequences. There are well-known fields of application of LCS
like scheduling and data compression, a notable example is the diff utility to compute the
differences between two files.

The extraction of common subsequences has been widely applied to compare molecular
sequences in bioinformatics [17, 14]. For example, the comparison of biological sequences
provides a measure of their similarities and differences, aiming at understanding whether
they encode similar/different functionalities. Different approaches for the comparison of two
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14:2 The Longest Filled Common Subsequence Problem

genomes based on LCS have been considered in the last years, leading to variants of the longest
common subsequence problem, like the constrained longest common subsequence [13, 8, 18,
11, 4] or the repetition-free longest common subsequence and variants thereof [7, 1, 6, 12].

The approaches based on LCS for genome comparison assume that the input sequences
are complete, that is there are no missing data. However, while Next Generation Sequencing
technologies are able to produce a huge amount of DNA/RNA fragments, the cost of
reconstructing a complete genome is still high [10]. Hence, released genomes often contain
errors or are incomplete. These incomplete genomes are called scaffolds. One approach to the
reconstruction of genome is to fill scaffolds with missing genes, based on the comparison of an
incomplete genome with a reference genome [16, 15, 9, 19]. Given an incomplete genome B, a
set of missing genes (symbols)M and a reference genome A, the goal is to insert the missing
symbols in B so that the number of common adjacencies between the resulting genome B∗
and A is maximized. We have a common adjacency when two genes a, b are consecutive
both in A and B∗, independently from the order. We mention briefly that there is also a
variant of the scaffold filling approach that compares two incomplete genomes [15, 9].

Inspired by methods for genome comparison based on LCS and by the scaffold filling
approach, we introduce a new variant of the LCS problem, called the Longest Filled Common
Subsequence problem, for the comparison of a complete genome A and an incomplete genome
B. The goal of the problem is to find the maximum number of genes that appear in the
same order in both genomes. However, since some of the genes in B are missing (a multiset
M of symbols), we have to compute a longest common subsequence of A and of a filling
B∗ of B, that is of a sequence obtained from B by inserting the symbols of M into B.
Notice that while the scaffold filling problem aims to reconstruct a complete genome from an
incomplete one by maximizing the number of common adjacencies, here we aim to infer only
those elements (genes) that appear in the same order in the complete genome A and in the
completed genome B∗.

In this paper, we investigate different algorithmic and complexity aspects of the Longest
Filled Common Subsequence problem. First, in Section 3 we prove that it is NP-hard and
APX-hard, even when genome A contains at most two occurrences of each symbol. Notice
that bounding the maximum number of occurrences of symbols in a sequence is relevant in
this case, as usually the number of copies of a gene inside a genome is bounded. Then, in
Section 4 we present a polynomial-time approximation algorithm of factor 3

5 . In Section 5,
we give a fixed-parameter algorithm, where the parameter is the number of inserted symbols
that lead to a “match” with symbols of sequence A. Such a parameter can be of interest
when the number of missing elements, and in particular those that lead to a “match” with
symbols of A, is moderate, as the complexity of the algorithm depends exponentially only on
this parameter.

Some of the proofs are omitted due to page limit.

2 Preliminaries

In this section we introduce some basic definitions that will be useful in the rest of the paper
and we give the formal definition of the Longest Filled Common Subsequence problem. Let
S be a sequence over an alphabet Σ, we denote by |S| the length of S. Given a position i,
with 1 ≤ i ≤ |S|, we denote by S[i] the symbol in position i of S. Given two positions i, j
in S, with 1 ≤ i ≤ j ≤ |S|, we denote by S[i, j] the substring of S that starts at position i
and ends at position j. Given two sequences S and T , we denote by S · T the sequence that
results by concatenating S and T .
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Figure 1 The threading schema of two sequences A and B: lines connect matched positions of A

and B.

A subsequence of S is a sequence S′ that is obtained from S by deleting some symbols
(possibly none). A common subsequence S of two sequences A and B is a subsequence of
both A and B. A longest common subsequence of A and B is a common subsequence of A
and B having maximum length.

Given two sequences A and B, a common subsequence can be defined by aligning A and
B and by connecting two positions of A and B containing an identical symbol with a line,
such that there is no pair of crossing lines. This is called a threading schema (see Fig. 1).
Given a threading schema for sequences A, B, a connection between two symbols in A and B,
respectively, is called a match and the two positions incident in a line are said to be matched.

Given a sequence S and a multiset of symbolsM, we define a filling of S withM as a
sequence S′ obtained by inserting a subsetM′ of symbols ofM into S. Notice that in a
filling of S withM not all the symbols ofM have to be inserted in S. Informally, we may
not insert those symbols that do not induce matches, to simplify the algorithms we describe
in Section 4 and in Section 5. Now, we are ready to present the formal definition of Longest
Filled Common Subsequence.

I Problem 1. Longest Filled Common Subsequence (LFCS)
Instance: two sequences A and B over an alphabet Σ, and a multisetM over Σ.
Solution: a filling B∗ of B withM.
Measure: the length of a longest common subsequence of A and B∗ (to be maximized).

Given two sequences A, B and a multiset M over Σ, let B∗ be a filling of B with M.
Consider a common subsequence of A and B∗, and their corresponding threading schema. A
position of A can have two possible kinds of matches (see Fig. 2): a match with a position
of B∗ that contains a symbol of M inserted in B, called match by insertion, or a match
with a position of B∗ not involved in an insertion, called match by alignment. We can easily
compute in polynomial-time two upper bounds on the number of positions of A that can
be matched by alignment and by insertion, that will be useful in Section 4. The first upper
bound is related to a longest common subsequence L of A and B, which can be computed in
polynomial time. In fact, the maximum number of positions of A (and of a filling B∗ of B
withM) that are matched by alignment is at most the length of L.

Next we show how to compute in polynomial-time an upper bound on the number of
positions of a sequence A that can be matched by insertion. First, given a multisetM of
symbols, we define an ordering of M as a sequence obtained by defining an order among
each element ofM, that is each occurrence of a symbol ofM.

Consider the positions of A and of a filling B∗ of B withM that are matched by insertion;
the positions of A induce a subsequence A′ of A, while the positions of B∗ induce an ordering
M of a subsetM′ ⊆M. An upper bound on the length ofM can be computed in polynomial
time with the following greedy algorithm.

CPM 2017



14:4 The Longest Filled Common Subsequence Problem
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Figure 2 A filling B∗ of sequence B in Fig. 1, computed by inserting a symbol in position 2
(symbol b) and a symbol in position 3 (symbol c), both in grey. A subsequence of A and B∗ is
induced by the threading schema of A and B∗, where straight lines represent matches by alignment,
dashed lines represent matches by insertion.

Algorithm 1:
Data: A,M
Result: a subsequence A′ of A that matches the maximum number of symbols of a

sequence M obtained by orderingM
1 i := 1;
2 A′ is an empty sequence;
3 while i ≤ |A| do
4 if α ∈M with A[i] = α then
5 A′ := A′ · α;
6 M :=M\ {α};
7 i := i+ +;

Next, we prove the correctness of Algorithm 1.

I Lemma 1. Given a sequence A, a multisetM on Σ, and a substring A[1, i] of A, Algorithm 1
computes a subsequence of A[1, i] that matches the maximum number of symbols of an ordering
M ofM.

3 Complexity of LFCS

In this section, we investigate the computational (and approximation) complexity of the
LFCS problem, and we prove that it is APX-hard when A contains at most two occurrences
of each symbol in Σ (we denote this restriction of LFCS by 2-LFCS). We prove the result
by an L-reduction from the Maximum Independent Set problem on Cubic Graphs (Max-ISC),
which is known to be APX-hard [2](see [5] for details on L-reduction). Max-ISC, given a
cubic graph G = (V,E)1, asks for a maximum cardinality subset V ′ ⊆ V such that given
vi, vj ∈ V ′ it holds {vi, vj} /∈ E.

Given a cubic graph G = (V,E), with V = {v1, v2, . . . , vn} and |E| = m, in the following
we show how to construct an instance (A,B,M) of 2-LFCS. Define an order on the edges
incident on a vertex vi ∈ V assuming {vi, vj} < {vi, vh} if j < h. Given a vertex vi, and the
edges {vi, vj}, {vi, vh}, {vi, vz} ∈ E, with j < h < z, we say that {vi, vj} ({vi, vh}, {vi, vz},
respectively) is the first (second, third, respectively) edge incident on vi.

First, we define the alphabet Σ:

Σ = {xi,j : vi ∈ V, 1 ≤ j ≤ 3}∪{yi,j : vi ∈ V, 1 ≤ j ≤ 2}∪{zi,j : 1 ≤ i ≤ n+m−1, 1 ≤ j ≤ 4} .

1 We recall that a cubic graph is an undirected graph where each vertex has degree exactly three.
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The input sequences A and B are built by concatenating several substrings.
For each vi ∈ V , we define the following substrings of the input sequences A, B:

A(vi) = yi,1yi,2xi,1xi,2xi,3 B(vi) = xi,1xi,2xi,3yi,1yi,2 .

For each {vi, vj} ∈ E, with i < j (which is the p-th edge, 1 ≤ p ≤ 3, incident on vi and the
q-th edge, 1 ≤ q ≤ 3, incident on vj), define the following substrings of A, B:

A({vi, vj}) = xi,pxj,q B({vi, vj}) = xj,qxi,p .

Finally, define 2(n+m− 1) additional substrings SA,1, SA,2, . . . , SA,m+n−1, SB,1, SB,2, . . . ,

SB,m+n−1 where SA,i, SB,i, with 1 ≤ i ≤ m+ n− 1, are defined as follows:

SA,i = SB,i = zi,1zi,2zi,3zi,4.

Now, we are able to define the input sequences A and B, by concatenating the substrings
previously defined, where substrings associated with edges of G are concatenated assuming
some edge ordering (we assume that {v1, vw} is the first edge, while {vr, vt} is the last edge
according to the ordering):

A = A(v1) ·SA,1 ·A(v2) · · · · ·SA,n−1 ·A(vn) ·SA,n ·A({v1, vw}) · · · · ·SA,n+m−1 ·A({vr, vt}) ,

B = B(v1) ·SB,1 ·B(v2) · · · · ·SB,n−1 ·B(vn) ·SB,nB({v1, vw}) · · · · ·SB,n+m−1 ·B({vr, vt}) .

Notice that each substring associated with an edge {vi, vj} appears exactly once in both
A and B.
M (in this case is a set) is defined as follows: M = {xi,t : vi ∈ V, 1 ≤ t ≤ 3}.
First, we prove that (A,B,M) is an instance of 2-LFCS, that is we prove that each

symbol has at most two occurrences in A.

I Lemma 2. Each symbol of Σ occurs at most twice in A.

Proof. Notice that each symbol appearing in a substring SA,i, 1 ≤ i ≤ m + n − 1, does
not appear in any other subsequence of A. Now, consider a symbol yi,t, 1 ≤ i ≤ n and
1 ≤ t ≤ 2, appearing in substring A(vi); yi,t does not appear in any other substring of A.
Finally, consider a symbol xi,t, 1 ≤ i ≤ n and 1 ≤ t ≤ 3; xi,t has one occurrence in exactly
two subsequences of A: subsequence A(vi) and subsequence A({vi, vj}) (where {vi, vj} is the
t-th edges incident on vi). J

Let B∗ be a solution of 2-LFCS over instance (A,B,M). We denote by SB∗,i (B∗(vi),
B∗({vi, vj}), respectively), the substring of a solution B∗ corresponding (after some insertion)
to the substring SB,i (B(vi),B({vi, vj}), respectively), of B.

Next, we show that we can assume that in a solution B∗ of 2-LFCS over instance
(A,B,M), a longest common subsequence of A and B∗ matches by alignment a position of
a subsequence SA,i, 1 ≤ i ≤ m+ n− 1, only with a position of SB∗,i, 1 ≤ i ≤ m+ n− 1.

I Lemma 3. Given a cubic graph G, let (A,B,M) be the corresponding instance of 2-LFCS,
and B∗ a solution of 2-LFCS over (A,B,M). Then a longest common subsequence of A
and B∗ contains each symbol zt,q, with 1 ≤ t ≤ m+ n− 1 and 1 ≤ q ≤ 4.

Proof. Consider a solution B∗ of 2-LFCS over instance (A,B,M) and assume that it does
not contain a symbol zt,q, with 1 ≤ t ≤ m+ n− 1 and 1 ≤ q ≤ 4. By construction a longest
common subsequence of B∗ and A matches by alignment a position of A(vi) either with a
position of B(vi) or with a position of B({vi, vj}).

CPM 2017
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First, we prove that a longest common subsequence between A and B∗ matches by
alignment a position of A(vi) only with a position of B(vi). Assume that i is the minimum
value such that a longest common subsequence S of A and B∗ matches by alignment a
position of A(vi) and a position of B∗({vi, vj}). Notice that, by construction of (A,B,M),
no position of SA,i can be matched. Now, starting from S we can compute a common
subsequence S′ of A and B∗, with |S′| > |S|, by modifying the alignment of S as follows: (i)
match by alignment the positions of A(vi) and the positions of B∗(vi) containing symbols
yi,1, yi,2; (ii) match by alignment the positions of subsequences SA,i containing symbol
zi,q with position of subsequences SB,i containing symbol zi,q; (iii) any other match is not
modified. It follows that the number of positions in A(vi) matched by S′ with respect to S is
decreased by at most three, since eventually positions of A(Vi) containing symbols xi,1, xi,2,
xi,3 will not be matched. The number of positions in SA,i matched by S′ with respect to S
is increased by at least 4, since each position of SA,i is not matched by S and it is matched
by S′. By iterating this procedure, we eventually find a longest common subsequence S′ of
A and B∗ where if each position of A(Vi) is matched by alignment, then it is matched with
a position of B(vi). By the maximality of S′, this implies that each position of A containing
a symbol zt,q, with 1 ≤ t ≤ m+ n− 1 and 1 ≤ q ≤ 4, matches a position of B∗ containing
symbol zt,q. J

Consider a vertex vi ∈ V and the corresponding substrings A(vi), B(vi) of A and B.
Moreover, let {vi, vj}, {vi, vh}, {vi, vz} ∈ E be the three edges of G incident on vi and consider
the corresponding substrings A({vi, vj}), A({vi, vh}), A({vi, vz}) (B({vi, vj}), B({vi, vh}),
B({vi, vz}), respectively), of A (of B, respectively). Informally, the reduction shows that
there are essentially two possible configurations (called I-configuration and C-configuration)
of the substring B∗(vi) (and possibly B∗({vi, vj}), B∗({vi, vh}) and B∗({vi, vz})) of a filling
B∗ of B. A substring B∗(vi) having an I-configuration is related to the vertex vi in an
independent set of G, while a substring B∗(vi) having a C-configuration is related to the
vertex vi in a vertex cover of G.

We define now the two possible configurations, called I-configuration and C-configuration,
for B∗(vi) and, possibly, for the substrings B∗({vi, vj}), B∗({vi, vh}) and B∗({vi, vz}) of a
filling B∗ of B. An I-configuration for the substrings B∗(vi), B∗({vi, vj}), B∗({vi, vh}) and
B∗({vi, vz}) is defined as follows:

B∗(vi) = B(vi) (hence there is no insertion in B(vi)).
For each {vi, vt}, with t ∈ {j, h, z}, where {vi, vt} is the p-th edge incident on vi, 1 ≤ p ≤ 3,
and the q-th edge incident on vt, 1 ≤ q ≤ 3, B∗({vi, vt}) = xi,pxj,qxi,p (hence xi,p is
inserted in B({vi, vt})).

If B∗(vi), B∗({vi, vj}), B∗({vi, vh}), B∗({vi, vz}) have an I-configuration, a longest
common subsequence of B∗(vi) and A(vi) has length three (it matches the positions containing
xi,1, xi,2, xi,3), and a longest common subsequence of A({vi, vt}) and B∗({vi, vt}), with
t ∈ {j, h, z}, has length two (it matches the positions containing xi,p, xj,q).

A C-configuration for the substring B∗(vi) is defined as follows:
B∗(vi) = xi,1xi,2xi,3yi,1yi,2xi,1xi,2xi,3 (hence B∗(vi) = B(vi) · xi,1xi,2xi,3).

If B∗(vi) has a C-configuration, a longest common subsequence of B∗(vi) and A(vi) has
length five, it matches the positions containing yi,1, yi,2, xi,1, xi,2, xi,3.

Next, we present the main lemmata of this section.

I Lemma 4. Let G be a cubic graph, instance of Max-ISC, and let (A,B,M) be the
corresponding instance of 2-LFCS. Then, given an independent set I of G, we can compute
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in polynomial time a solution B∗ of 2-LFCS over instance (A,B,M) inducing a longest
common subsequence with A of length 4(m+ n− 1) + 6|I|+ 5(n− |I|) +m.

Proof. Consider an independent set I and define a solution B∗ of 2-LFCS over instance
(A,B,M) as follows. For each vi ∈ I, with {vi, vj}, {vi, vh}, {vi, vz} ∈ E the three edges of G
incident on vi, define an I-configuration for B∗(vi), B∗({vi, vj}), B∗({vi, vh}), B∗({vi, vz}).
For each vi ∈ V \ I, define a C-configuration for B∗(vi). For each edge {vi, vj} ∈ E if
vi, vj ∈ V \ I, then B∗({vi, vj}) = B({vi, vj}); notice that in this case a longest common
subsequence of A({vi, vj}) and B∗({vi, vj}) has length one, as it matches exactly one
position containing either xi,p or xj,q. Finally, each position of A in the substring SA,i, with
1 ≤ i ≤ m+ n− 1, is matched by alignment with the corresponding position of SB∗,i.

Notice that the solution B∗ is well-defined, as each B∗({vi, vj}), with {vi, vj} ∈ E, can
belong to an I-configuration of at most one of B∗(vi) and B∗(vj), since at most one of vi, vj

belongs to I.
Now, consider a longest common subsequence S of A and B∗. S matches 4(m+ n− 1)

positions in substrings SA,1, . . . , SA,m+n−1, since all the positions of these substrings are
matched and, by construction, the overall length of SA,1, . . . , SA,m+n−1 is 4(m + n − 1).
Moreover, by definition of I-configuration and C-configuration, for each vi ∈ I, S matches 3
positions of A(vi) and 2 positions of each A({vi, vj}), with {vi, vj} ∈ E; for each vi ∈ V \ I,
S matches 5 positions of A(vi); for each {vi, vj} ∈ E, with vi, vj ∈ V \ I, S matches one
position of A({vi, vt}). Hence, S matches 4(m+ n− 1) + 6|I|+ 5(n− |I|) +m positions of A
and B∗. J

Based on Lemma 3, we can prove the following result.

I Lemma 5. Let G be a cubic graph, instance of Max-ISC, and let (A,B,M) be the
corresponding instance of 2-LFCS. Then, given a solution B∗ of 2-LFCS over instance
(A,B,M) of length 4(m+ n− 1) + 6p+ 5(n− p) +m, we can compute in polynomial time
an independent set of G of size at least p.

By Lemmata 4 and 5, and by the APX-hardness of Max-ISC [2] we can conclude that
the 2-LFCS problem is APX-hard.

I Theorem 6. 2-LFCS is APX-hard.

4 Approximating LFCS

In this section we give a polynomial-time approximation algorithm for LFCS of factor 3
5 .

The approximation algorithm picks the largest number of matched positions returned by two
polynomial-time algorithms, Approx-Algorithm-1 and Approx-Algorithm-2. Notice that each
algorithm does not return a filling of B withM, but two disjoint subsets of positions of A
that have to be matched by alignment and by insertion, respectively, by a subsequence of A
and of a filling of B withM. We can easily compute in polynomial time a filling B∗ of B
withM so that there exists a common subsequence of A and B∗ that matches these two
subsets of positions.

Both algorithms consist of two phases.

Approx-Algorithm-1. In the first phase, Approx-Algorithm-1 computes in polynomial time
a longest common subsequence of A and B. Denote by R1,a the positions of A matched
by alignment in the first phase and by A′ the subsequence of A obtained by removing the
positions of R1,a. The second phase greedily computes in polynomial time a set R1,i of

CPM 2017
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Figure 3 The input sequence A and the positions matched by solution R1 (dashed) and by
solution R2 (in grey). In the upper part, brackets represent the subsets R1,a and R1,i of R1, and
R2,a and R2,i of R2. In the lower part, the brackets represent the positions matched by OP T .

positions of A′ of maximum size that matchesM by insertion, applying Algorithm 1 on
(A′,M). Denote by R1 = R1,a∪R1,i the set of positions returned by Approx-Algorithm-1.

Approx-Algorithm-2. In the first phase, Approx-Algorithm-2 computes a subset R2,i of
positions of A of maximum size that matchesM by insertion applying Algorithm 1 on
(A,M). Denote by A′′ the subsequence of A obtained by removing the positions of R2,i.
The second phase computes a longest common subsequence of B and A′′; denote by R2,a

the set of positions of A′′ (and A) matched by this phase. Denote by R2 = R2,a ∪R2,i

the set of positions returned by Approx-Algorithm-2.

Next, we show that the maximum number of positions matched by one of Approx-
Algorithm-1 and Approx-Algorithm-2 gives a 3

5 -approximated solution. First, we introduce
some notations (see Fig. 3). Let Bopt be an optimal solution of LFCS on instance (A,B,M),
and let OPT be a longest common subsequence of A and Bopt. We consider the following
sets of positions of OPT . Denote by OPTa the set of positions of A matched by alignment
in OPT and by OPTi the set of positions of A matched by insertion in OPT . Notice that
by construction it holds OPTa ∩OPTi = ∅.

Define OPTa,o = OPTa ∩ (R1,a ∪ R2,i) and OPTi,o = OPTi ∩ (R1,a ∪ R2,i). Moreover,
define OPTa,e = OPTa \OPTa,o and OPTi,e = OPTi \OPTi,o. Informally, OPTa,e (OPTi,e,
respectively) is the set of positions of A matched by alignment (by insertion, respectively)
in OPT that is not matched in the first phase by Approx-Algorithm-1 (in the second
phase by Approx-Algorithm-2, respectively). Finally, define OPT ′i,o = OPTi,o \ R1,a and
OPT ′a,o = OPTa,o \R2,i.

By definition of OPT , OPTa,o, OPTi,o, OPTa,e and OPTi,e, it holds |OPT | = |OPTa,o|+
|OPTa,e|+ |OPTi,o|+ |OPTi,e|.

We will show that the largest set between R1 and R2 gives a 3
5 -approximate solution,

that is max(|R1|, |R2|) ≥ 3
5 |OPT |. We start by showing two bounds on OPTi and OPTa.

I Lemma 7. |R1,a| ≥ |OPTa| and |R2,i| ≥ |OPTi|.

Proof. First, we prove that |R1,a| ≥ |OPTa|. Consider the set of positions in OPTa. Since
each position in OPTa is a position of A matched by alignment, it follows that the set OPTa

induces a common subsequence of A and B. Since the set R1,a of positions of A induces a
longest common subsequence of A and B, it follows that |R1,a| ≥ |OPTa|.

Now, we prove that |R2,i| ≥ |OPTi|. Consider the set of positions in OPTi. Each position
in OPTi is matched by insertion, hence it is matched with an inserted symbol of M. By
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Lemma 1, R2,i is a set of positions of A of maximum cardinality that can be matched by
insertion with symbols ofM, hence |R2,i| ≥ |OPTi|. J

As a consequence of Lemma 7, it follows that |R1,a|+ |R2,i| ≥ |OPTi|+ |OPTa| ≥ |OPT |.
Hence the maximum of R1, R2 is (at least) 1

2 |OPT |. In the following, we show with a more
refined analysis that the maximum of |R1|, |R2| is at least 3

5 |OPT |.
We prove some bounds on R1,i and R2,a, then we consider three cases depending on the

values of OPTa,o, OPTi,o, OPTa,e, OPTi,e, OPT ′i,o and OPT ′a,o. First, the following result
holds.

I Lemma 8. |R1,i| ≥ |OPT ′i,o|+ |OPTi,e| and |R2,a| ≥ |OPT ′a,o|+ |OPTa,e|.

Now, in the analysis of the approximation factor of Approx-Algorithm-1 and Approx-
Algorithm-2, we consider three cases, depending on the values of OPTi,e, OPTi,o, OPT ′i,o.

Case 1
Assume that |OPTi,e|+ |OPT ′i,o| ≥ 1

2 |OPTi,o|, we show the following result.

I Lemma 9. Assume that |OPTi,e|+ |OPT ′i,o| ≥ 1
2 |OPTi,o|, then |R1| ≥ 3

5 |OPT |.

Proof. Since |R1,i| ≥ |OPT ′i,o|+ |OPTi,e| by Lemma 8, it follows that

|R1,a|+ |R1,i| ≥ |R1,a|+ |OPT ′i,o|+ |OPTi,e| ≥

3
5(|R1,a|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o|.

By Lemma 7 it follows that |R1,a| ≥ |OPTa| and, since |OPTa| = |OPTa,o| + |OPTa,e|, it
follows that |R1,a| ≥ |OPTa,o|+ |OPTa,e|, hence

3
5(|R1,a|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o| ≥

3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o|.

Hence, it holds

|R1,a|+ |R1,i| ≥
3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o|. (1)

Notice that |R1,a|+ |OPT ′i,o| ≥ |OPTi,o|, since, by construction, each position in OPTi,o is
either in OPT ′i,o or in R1,a. Then,

2
5(|R1,a|+ |OPT ′i,o|) ≥

2
5 |OPTi,o|. (2)

Since we are assuming that |OPTi,e|+ |OPT ′i,o| ≥ 1
2 |OPTi,o|, it holds

2
5(|OPTi,e|+ |OPT ′i,o|) ≥

1
5 |OPTi,o|. (3)

Combining Inequalities 2 and 3 with Inequality 1, we can conclude that, under the hypothesis
|OPTi,e|+ |OPT ′i,o| ≥ 1

2 |OPTi,o|, it holds

|R1,a|+ |R1,i| ≥
3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPTi,e|) + |OPT ′i,o| ≥
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3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,e|) + 2

5(|R1,a|+ |OPT ′i,o|) + 2
5(|OPTi,e|+ |OPT ′i,o|) ≥

3
5(|OPTa,o|+ |OPTa,e|+ |OPTi,o|+ |OPTi,e|).

It follows that, under the hypothesis |OPTi,e| + |OPT ′i,o| ≥ 1
2 |OPTi,o|, it holds |R1| ≥

3
5 |OPT |. J

Case 2

Assume that |OPTa,e| + |OPT ′a,o| ≥ 1
2 |OPTa,o|. Similarly to Case 1, we can prove the

following result.

I Lemma 10. Assume that |OPTa,e|+ |OPT ′a,o| ≥ 1
2 |OPTa,o|, then |R2| ≥ 3

5 |OPT |.

Case 3

Assume that both Case 1 and Case 2 do not hold. Then,

|OPTi,e|+ |OPT ′i,o| <
1
2 |OPTi,o| and |OPTa,e|+ |OPT ′a,o| <

1
2 |OPTa,o|.

Since |OPTi,e| + |OPT ′i,o| < 1
2 |OPTi,o|, it follows that |OPTi,e| < 1

2 |OPTi,o| and, since
|OPTa,e| + |OPT ′a,o| < 1

2 |OPTa,o|, it follows that |OPTa,e| < 1
2 |OPTa,o|. But then, since

|OPT | = |OPTa,o|+ |OPTi,o|+ |OPTa,e|+ |OPTi,e|, it follows that

|OPT | ≤ 3
2(|OPTa,o|+ |OPTi,o|)

We show that |R1| ≥ |OPTa,o|+ |OPTi,o|, thus implying that |R1| ≥ 3
5 |OPT |.

I Lemma 11. |R1,a ∪R1,i| ≥ |OPTa,o|+ |OPTi,o|.

By Lemma 11, |R1,a ∪R1,i| ≥ |OPTa,o|+ |OPTi,o|. Since in this case we have shown that
|OPT | ≤ 3

2 (|OPTa,o|+ |OPTi,o|), it follows that |R1| = |R1,a ∪ R1,i| ≥ 2
3 |OPT | ≥

3
5 |OPT |.

From Lemma 9, Lemma 10 and Lemma 11, it follows the main result of this section.

I Theorem 12. Given an instance (A,B,M) of LFCS, the largest solution returned by
Approx-Algorithm-1 and Approx-Algorithm-2 is an approximate solution of factor 3

5 .

Proof. From Lemma 9, Lemma 10 and Lemma 11, it follows that max(|R1|, R2|) ≥ 3
5 |OPT |.

We can compute a filling B1 of B withM that matches at least |R1| positions with A as
follows: we consider the positions in R1,a as matched by alignment, we insert symbols ofM
in B in order to match by insertion the positions in R1,i. It follows that a longest common
subsequence of A and B1 matches at least |R1| positions.

Similarly, we can compute a filling B2 of B withM that matches at least |R2| positions
of A. We insert symbols ofM in B so that the positions in R1,i are matched by insertion.
Consider the subsequence A′′ obtained after the removal of positions in R1,i; a longest
common subsequence of A′′ and B matches at least |R2,a| positions. It follows that a longest
common subsequence of A and B2 matches at least |R2| positions. J
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5 An FPT Algorithm

In this section, we present an FPT algorithm for LFCS parameterized by the number k of
positions of A matched by insertions. Notice that k < |M|. Here we assume that the input
sequences A and B have been extended by adding two symbols $A, $B /∈ Σ, respectively, in
position 0 of A and B, respectively. Hence we assume that position 0 of A and of a filling
B∗ of B withM is not matched by alignment or by insertion by any solution of LFCS of
length greater than zero.

The algorithm we present is based on the color-coding technique [3]. Next, we present
the definition of perfect families of hash functions for a multiset of symbols, on which our
color-coding approach is based.

I Definition 13. LetM be a multiset of positions and let F be a family of hash functions
fromM to a set {c1, . . . , ck} of colors. F is called perfect if for any subset W ⊆ M, such
that |W | = k, there exists a function f ∈ F which is injective on W .

A perfect family F of hash functions fromM to {c1, . . . , ck}, having size O(log |M|2O(k)),
can be constructed in time O(2O(k)|M| log |M|) (see [3]).

Consider a perfect family of hash functions F : M → {c1, . . . , ck}. Let f ∈ F be
an injective function, and define L[i, j, C, l], with C ⊆ {c1, . . . , ck}, 0 ≤ i, l ≤ |A| and
0 ≤ j ≤ |B|, as follows:

L[i, j, C, l] = 1 if and only if there exists a common subsequence of A[0, i] and of a filling
B∗ of B[0, j] withM having length l, such that there exist |C| symbols ofM inserted in
B[0, j], each one associated with a distinct color of C and matched by insertion with a
position of A
else L[i, j, C, l] = 0.

Next, we define the recurrence to compute L[i, j, C, l], where i ≥ 1 and j ≥ 0.

L[i, j, C, l] = max



L[i− 1, j, C, l]
L[i, j − 1, C, l] if j ≥ 1
L[i− 1, j − 1, C, l − 1] if A[i] = B[j] and j ≥ 1
L[i− 1, j, C \ {c}, l − 1] if A[i] = α and there exists

α ∈M with f(α) = c ∈ C

(4)

For the base case, since we have extended A and B so that position 0 in A and in the
filling of B cannot be matched by insertions or by alignment, it holds L[0, 0, C, l] = 1, if
C = ∅ and l = 0, else L[0, 0, C, l] = 0. Next, we prove the correctness of the recurrence.

I Lemma 14. Let F : M → {c1, . . . , ck} be a perfect family of hash functions, let f ∈ F
be an injective function and let C be a subset of {c1, . . . , ck}. Then there exists a common
subsequence of length l, l ≥ 0, of A[0, i], 0 ≤ i ≤ |A|, and of a filling of B[0, j], 0 ≤ j ≤ |B|,
withM′ ⊆M such that each symbol ofM′ matched by insertion is associated with a distinct
color in C if and only if L[i, j, C, l] = 1.

Now, we are able to prove the main result of this section.

I Theorem 15. Let A, B be two sequences andM a mutliset of symbols. Then it is possible
to compute in time 2O(k)poly(|A|+ |B|+ |M|) if there exists a solution B∗ of LFCS over
instance (A,B,M) such that a longest common subsequence S of A and B∗ has length l and
it matches by insertion k positions of A.
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Proof. The correctness of the algorithm follows from Lemma 14 and from the fact that entry
L[|A|, |B|, C, l] = 1 if and only if there exists a solution of LFCS over instance (A,B,M)
having length l that matches by insertion k positions of A.

Next, we consider the time complexity of the algorithm. A perfect family of hash functions
that color-codes the symbols of M can be computed in time 2O(k)poly(|M|). Then, the
algorithm iterates through 2O(k)poly(|M|) color-codings. For each color-coding, the table
L[i, j, C, l] is computed in time O(2k|A|2|B|k) (where l ≤ |A|), since for each of the at most
O(2k|A|2|B|) entries we need to look for at most k possible entries. The overall complexity
is then 2O(k)poly(|A|+ |B|+ |M|). J

6 Conclusion

We have introduced a variant of the LCS problem, called Longest Filled Common Subsequence
(LFCS), to compare a sequence A with an incomplete sequence B to be filled with a multiset
M of symbols. We have shown that the problem is APX-hard (hence NP-hard), even
when each symbol occurs at most twice in the input sequence A. Then, we have given an
approximation algorithm of factor 3

5 and a fixed-parameter algorithm, where the parameter
is the number of symbols inM matched by insertion.

There are some interesting open problems related to LFCS. It would be interesting to
extend LFCS to the comparison of two incomplete sequences, similar to what has been
done for Scaffold Filling [15]. Moreover, it would be interesting to design more efficient
parameterized algorithms for LFCS, for example by considering the algebraic technique used
for the repetition-free longest common subsequence [6]. Another open problem is whether
LFCS is NP-hard on a constant size alphabet.
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