
Representing the Suffix Tree with the CDAWG
Djamal Belazzougui1 and Fabio Cunial2

1 CERIST (Research Centre for Scientific and Technical Information), Algiers,
Algeria
dbelazzougui@cerist.dz

2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany
cunial@mpi-cbg.de

Abstract
Given a string T , it is known that its suffix tree can be represented using the compact directed
acyclic word graph (CDAWG) with eT arcs, taking overall O(eT + eT ) words of space, where T
is the reverse of T , and supporting some key operations in time between O(1) and O(log logn)
in the worst case. This representation is especially appealing for highly repetitive strings, like
collections of similar genomes or of version-controlled documents, in which eT grows sublinearly
in the length of T in practice. In this paper we augment such representation, supporting a number
of additional queries in worst-case time between O(1) and O(logn) in the RAM model, without
increasing space complexity asymptotically. Our technique, based on a heavy path decomposition
of the suffix tree, enables also a representation of the suffix array, of the inverse suffix array, and
of T itself, that takes O(eT ) words of space, and that supports random access in O(logn) time.
Furthermore, we establish a connection between the reversed CDAWG of T and a context-free
grammar that produces T and only T , which might have independent interest.
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1 Introduction

Given a string T of length n, the compressed suffix tree [21, 18] and the compressed suffix
array can take an amount of space that is bounded by the k-th order empirical entropy of T ,
but such measure of redundancy is known not to be meaningful when T is very repetitive
[11], e.g. a collection of similar genomes. The space taken by such compressed data structures
also includes a o(n) term, typically O(n/polylog(n)), which can become an obstacle when
T is very compressible. Rather than compressing the suffix array, we could compress a
differentially encoded suffix array [12], which stores at every position the difference between
two consecutive positions of the suffix array. Previous approaches have compressed such
differential array using grammar or Lempel-Ziv compression [12], and the same methods
can be used to compress the suffix tree topology and the LCP array [1, 17]. Such heuristics,
however, have either no theoretical guarantee on their performance [1, 17], or weak ones [12].

In previous research [4] we described a representation of the suffix tree of T that takes
space proportional to the size of the compact directed acyclic word graph (CDAWG) of T ,
and that supports a number of operations in time between O(1) and O(log logn) in the worst
case (see Table 2). If T is highly repetitive, the size of the CDAWG of T is known to grow
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7:2 Representing the Suffix Tree with the CDAWG

Table 1 Time complexity of the operations on the suffix tree of a string T described in this paper
(n = |T |).

leftmostLeaf selectLeaf, lca SA[i..j] T [i..j] depth
rightmostLeaf SA[i], ISA[i], LCP[i] ISA[i..j] ancestor

PLCP[i], T [i] LCP[i..j] strAncestor
1 O(1) O(logn) O(logn+ j − i) O(logn+ j−i

logσ n
) O(logn)

2 O(1) O(logn) O(logn+ j − i) O(logn+ j−i
logσ n

)

Table 2 Complexity of the operations on the suffix tree of a string T described in [4] (n = |T |).

Space stringDepth isAncestor parent suffixLink weinerLink
(words) nLeaves, height leafRank nextSibling

locateLeaf
firstChild, child

1 O(eT + e
T

) O(1) O(1) O(log logn) O(log logn) O(log logn)
2 O(eT ) O(1) O(log logn) O(1)

sublinearly in the length of T in practice (see e.g. [4]). Being related to maximal repeats,
the size of the CDAWG is also a natural measure of redundancy for very repetitive strings.
Moreover, since the difference between consecutive suffix array positions is the same inside
isomorphic subtrees of the suffix tree, and since such isomorphic subtrees are compressed by
the CDAWG, the CDAWG itself can be seen as a grammar that produces the differential
suffix array, and the suffix tree can be seen as the parse tree of such grammar: this provides
a formal substrate to heuristics that grammar-compress the differential suffix array.

In this paper we further exploit the compression of isomorphic subtrees of a suffix tree
induced by the CDAWG, augmenting the representation of the suffix tree described in [4] with
a number of additional operations that take between O(1) and O(logn) time in the worst
case (see Table 1), without increasing space complexity asymptotically. We also describe
CDAWG-based representations of the suffix array, of the inverse suffix array, of the LCP
array, and of T itself, with O(logn) random access time.

Our approach is related to the work of Bille et al [7], in which a straight-line program
(effectively a DAG) that produces the balanced parentheses representation of a tree with n
nodes, is used to support operations on the topology of the tree in O(logn) time. Applying
such compression to the suffix tree achieves the space bounds of this paper, but it only
supports operations on the topology of the tree, and it supports each operation in O(logn)
time, whereas we achieve either constant or O(log logn) time for some key primitives.

2 Preliminaries

We work in the RAM model with word length at least logn bits, where n is the length of a
string that is implicit from the context, and we index strings and arrays starting from one.

2.1 Graphs
We assume the reader to be familiar with the notions of tree and of directed acyclic graph
(DAG). By lca(u, v) we denote the lowest common ancestor of nodes u and v in a tree. By
weighted tree we mean a tree with nonnegative weights on the edges, and we use ω(u, v) to
denote the weight of edge (u, v). Weighted DAGs are defined similarly. In this paper we only
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deal with ordered trees and DAGs, in which there is a total order among the out-neighbors
of every node. The i-th leaf of a tree is its i-th leaf in depth-first order, and to every node v
of a tree we assign the compact interval [sp(v)..ep(v)], in depth-first order, of all leaves that
belong to the subtree rooted at v. In this paper we use the expression DAG also for directed
acyclic multigraphs, allowing distinct arcs to have the same source and destination nodes. In
what follows we consider just DAGs with exactly one source and one sink.

We denote by T (G) the tree generated by DAG G with the following recursive procedure:
the tree generated by the sink of G consists of a single node; the tree generated by a node
v of G that is not the sink, consists of a node whose children are the roots of the subtrees
generated by the out-neighbors of v in G, taken in order, and connected to their parent by
edges whose weight, if any, is identical to the weight of the corresponding arc of G. Note that:
(1) every node of T (G) is generated by exactly one node of G; (2) a node of G different from
the sink generates one or more internal nodes of T (G), and the subtrees of T (G) rooted at
all such nodes are isomorphic; (3) the sink of G can generate one or more leaves of T (G); (4)
there is a bijection, between the set of root-to-leaf paths in T (G) and the set of source-to-sink
paths in G, such that every path v1, . . . , vk in T (G) is mapped to a path v′1, . . . , v′k in G, and
such that ω(vi, vi+1) = ω(v′i, v′i+1) for all i ∈ [1..k − 1] if T (G) is weighted. Symmetrically,
given any tree T , merging all subtrees with identical topology and edge weights produces a
DAG G such that T (G) = T : we denote such DAG by G(T ). Clearly G(T (G)) = G.

Given nodes v and w of T (G) such that v is an ancestor of w, let nLeaves(v) be the
number of leaves in the subtree rooted at v, and let left(v, w) (respectively, right(v, w))
be the number of leaves in the subtree rooted at v that precede (respectively, follow) in
depth-first order the leaves in the subtree rooted at w. A heavy path decomposition of T (G)
[14] is the following marking: for every node u, we mark exactly one edge (u, v) as heavy if
nLeaves(v) is the largest among all children of u, with ties broken arbitrarily (Figure 1a).
We call light an edge that is not heavy, and we call heavy path a maximal sequence of nodes
v1, . . . , vk such that (vi, vi+1) is heavy for all i ∈ [1..k − 1]. Note that vk is a leaf, every
node of T (G) belongs to exactly one heavy path, distinct heavy paths are connected by light
edges, and every path from the root to a leaf contains O(logN) light edges, or equivalently
intersects O(logN) heavy paths, where N is the number of leaves of T (G). Heavy paths are
disjoint in T (G), but their corresponding paths in G form a spanning tree τ(G), with O(n)
nodes and edges, rooted at the sink of G, where n is the number of nodes of G (Figure 1b).

2.2 Strings
Let Σ = [1..σ] be an integer alphabet, let # = 0 /∈ Σ be a separator, and let T ∈ [1..σ]n−1#
be a string. Given a string W ∈ [1..σ]k, we call the reverse of W the string W obtained
by reading W from right to left. For a string W ∈ [1..σ]k# we abuse notation, and we
denote by W the string W [1..k]#. Given a substring W of T , let PT (W ) be the set of all
starting positions of W in the circular version of T . A repeat W is a string that satisfies
|PT (W )| > 1. We denote by Σ`

T (W ) the set of characters {a ∈ [0..σ] : |PT (aW )| > 0} and
by Σr

T (W ) the set of characters {b ∈ [0..σ] : |PT (Wb)| > 0}. A repeat W is right-maximal
(respectively, left-maximal) iff |ΣrT (W )| > 1 (respectively, iff |Σ`T (W )| > 1). It is well known
that T can have at most n− 1 right-maximal repeats and at most n− 1 left-maximal repeats.
A maximal repeat of T is a repeat that is both left- and right-maximal. It is also well known
that a maximal repeat W ∈ [1..σ]m of T is the equivalence class of all the right-maximal
strings {W [1..m], . . . ,W [k..m]} such that W [k + 1..m] is left-maximal, and W [i..m] is not
left-maximal for all i ∈ [2..k].

For reasons of space we assume the reader to be familiar with the notion of suffix tree
STT of T (see e.g. [13] for an introduction), which we do not define here. We denote by `(γ),
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or equivalently by `(u, v), the string label of edge γ = (u, v) ∈ E, and we denote by `(v) the
string label of node v ∈ V . It is well known that a substring W of T is right-maximal iff
W = `(v) for some internal node v of the suffix tree. We assume the reader to be familiar
with the notion of suffix link connecting a node v with `(v) = aW for some a ∈ [0..σ] to a
node w with `(w) = W . Here we just recall that inverting the direction of all suffix links
yields the so-called explicit Weiner links.

Finally, we assume the reader to be familiar with the notion and uses of the Burrows-
Wheeler transform of T (see e.g. [10]). In this paper we use BWTT to denote the BWT of
T , and we use range(W ) = [sp(W )..ep(W )] to denote the lexicographic interval of a string
W in a BWT that is implicit from the context. As customary, we denote by C[0..σ] the
array such that C[a] equals the number of occurrences of characters lexicographically smaller
than a in T . For a node v of STT , we use the shortcut range(v) = [sp(v)..ep(v)] to denote
range(`(v)). We say that BWTT [i..j] is a run iff BWTT [k] = c ∈ [0..σ] for all k ∈ [i..j], and
moreover if any substring BWTT [i′..j′] such that i′ ≤ i, j′ ≥ j, and either i′ 6= i or j′ 6= j,
contains at least two distinct characters. We denote by RT the set of all triplets (c, i, j) such
that BWTT [i..j] is a run of character c. Given a string T ∈ [1..σ]n−1#, we call run-length
encoded BWT (RLBWTT ) any representation of BWTT that takes O(|RT |) words of space,
and that supports the well known rank and select operations: see for example [15, 16, 23].
It is easy to implement a version of RLBWTT that supports rank in O(log logn) time and
select in O(log logn) time [4].

2.3 CDAWG
The compact directed acyclic word graph of a string T (denoted by CDAWGT in what follows)
is the minimal compact automaton that recognizes the suffixes of T [8, 9]. We denote by
eT the number of arcs in CDAWGT . The CDAWG of T can be seen as the minimization of
STT , in which all leaves are merged to the same node (the sink) that represents T itself,
and in which all nodes except the sink are in one-to-one correspondence with the maximal
repeats of T [20]. Every arc of CDAWGT is labeled by a substring of T , and the out-neighbors
w1, . . . , wk of every node v of CDAWGT are sorted according to the lexicographic order of
the distinct labels of arcs (v, w1), . . . , (v, wk). Since there is a bijection between the nodes
of CDAWGT and the maximal repeats of T , the node v′ of CDAWGT with `(v′) = W is
the equivalence class of the nodes {v1, . . . , vk} of STT such that `(vi) = W [i..|W |] for all
i ∈ [1..k], and such that vk, vk−1, . . . , v1 is a maximal unary path of explicit Weiner links.
The subtrees of STT rooted at all such nodes are isomorphic, and T (CDAWGT ) = STT
(Figure 1b). It follows that the set of right-maximal strings that belong to the equivalence
class of a maximal repeat can be represented by a single integer k, and a right-maximal
string can be identified by the maximal repeat W it belongs to, and by the length of the
corresponding suffix of W . Similarly, a suffix of T can be identified by a length relative to
the sink of CDAWGT .

In BWTT , the right-maximal strings in the same equivalence class of a maximal repeat
enjoy the following properties:

I Property 1 ([4]). Let {W [1..m], . . . ,W [k..m]} be the right-maximal strings that belong to
the equivalence class of maximal repeat W ∈ [1..σ]m of a string T , and let range(W [i..m]) =
[pi..qi] for i ∈ [1..k]. Then: (1) |qi − pi + 1| = |qj − pj + 1| for all i and j in [1..k]; (2)
BWTT [pi..qi] = W [i − 1]qi−pi+1 for i ∈ [2..k]. Conversely, BWTT [p1..q1] contains at least
two distinct characters. (3) pi−1 = C[c] + rankc(BWTT , pi) and qi−1 = pi−1 + qi − pi for
i ∈ [2..k], where c = W [i − 1] = BWTT [pi]. (4) pi+1 = selectc(BWTT , pi − C[c]) and
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Figure 1 The data structures used in this paper for string T = AGAGCGAGAGCGCGC#. (a) The
suffix tree of T . Edges to leaves are labelled by just the first character of their string. The weight
of edge (u, v) is sp(v)− sp(u). Heavy edges according to the number of leaves are bold. (b) The
CDAWG of T . Just the first character of each arc label is shown. Arc weights are from (a). Arcs in
the spanning tree τ are bold. (c) The reverse CDAWG. Arc (u, v) is labelled by pair (x, y), where
x is the order of v among the out-neighbors of u, and y is the weight in (b). (d) The compacted
version of (c). (e) The weighted tree generated from (d), and the corresponding grammar.

qi+1 = pi+1 + qi − pi for i ∈ [1..k − 1], where c = W [i] is the character that satisfies
C[c] < pi ≤ C[c + 1]. (5) Let c ∈ [0..σ], and let range(W [i..m]c) = [xi..yi] for i ∈ [1..k].
Then, xi = pi + x1 − p1 and yi = pi + y1 − p1.

Character c in Property 1.4 can be computed in O(log logn) time using a predecessor
data structure that uses O(σ) words of space [26]. Moreover, the equivalence class of a
maximal repeat is related to the equivalence classes of its in-neighbors in the CDAWG in the
following way:

I Property 2 ([4]). Let w be a node in CDAWGT with `(w) = W ∈ [1..σ]m, and let
Sw = {W [1..m], . . . , W [k..m]} be the right-maximal strings that belong to the equivalence
class of node w. Let {v1, . . . , vt} be the in-neighbors of w in CDAWGT , and let {V 1, . . . , V t}
be their labels. Then, Sw is partitioned into t disjoint sets S1

w, . . . ,Stw such that Siw =
{W [xi + 1..m],W [xi + 2..m], . . . ,W [xi + |Svi |..m]}, and the right-maximal string V i[p..|V i|]
labels the parent of the locus of the right-maximal string W [xi + p− 1..m] in STT .

Property 2 applied to the sink v of CDAWGT partitions T into x left-maximal factors,
where x is the number of in-neighbors of v (Figure 1e). Moreover, by Property 2, it is natural
to say that in-neighbor vi of node w is smaller than in-neighbor vj of node w iff xi < xj ,
or equivalently if the strings in Siw are longer than the strings in Sjw. We call CDAWGT the
ordered DAG obtained by applying this order to the reverse of CDAWGT , i.e. to the DAG
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obtained by inverting the direction of all arcs of CDAWGT (Figure 1c). Note that CDAWGT
is not the same as CDAWGT , although there is a bijection between their sets of nodes. Note
also that some nodes of CDAWGT can have just one out-neighbor: for brevity we denote
by CDAWGT the graph obtained by collapsing every such node v, i.e. by adding the weight
(if any) of the only outgoing arc from v to the weights of all incoming arcs to v, and by
redirecting such incoming arcs to the out-neighbor of v (Figure 1d). This can be done in
linear time by an inverse topological sort of CDAWGT that starts from its sink.

The source of CDAWGT is the sink of CDAWGT , which is the equivalence class of all
suffixes of T in string order, and there is a bijection between the distinct paths of CDAWGT
and the suffixes of T . It follows that:

I Property 3. The i-th leaf of T (CDAWGT ) in depth-first order corresponds to the i-th suffix
of T in string order.

Thus, T (CDAWGT ) can be seen as the parse tree of a context-free grammar that generates
T and only T , and CDAWGT can be seen as such grammar (Figure 1e). This implies a lower
bound on the size of the CDAWG:

I Lemma 1. Let f be the function that maps the length of a string to the size of its CDAWG,
and let g be the function that maps the length of a string T to the size of the smallest grammar
that produces T and only T . Then, f ∈ Ω(g).

In some classes of strings the size of the CDAWG is asymptotically the same as the size
of the smallest grammar that produces the string, but in other classes the ratio between the
two sizes reaches its maximum, O(n/ logn): see Section 2.1 in [4].

Let G be an ordered DAG, let γ = (v, w) be an edge of T (G), and assume that we assign
to γ a weight equal to the offset sp(w)− sp(v) between the first leaf in the leaf interval of w
and the first leaf in the leaf interval of v (Figure 1a). Thus, we can compute the depth-first
order of a leaf of T (G) by summing the weights of all edges in its root-to-leaf path. Note
that edges (v, w) and (v′, w′) in T such that v and v′ correspond to the same node v′′ in G,
and such that w and w′ correspond to the same node w′′ in G, have the same weight: in the
case of CDAWGT and STT , this is equivalent to Property 1.5, and weights are offsets between
the starting positions of nested BWT intervals (Figure 1b). Assume that every such weight
is stored inside arc (v′′, w′′) of CDAWGT , and that weights are preserved when building
CDAWGT . Then, one plus the sum of all weights in the source-to-sink path of CDAWGT that
corresponds to suffix T [i..|T |] is the lexicographic rank of suffix T [i..|T |] (see e.g. Figures 1d
and 1e). Equivalently:

I Property 4. Let arc (u, v) of CDAWGT be weighted by sp(v′)−sp(u′), where v′ (respectively,
u′) is a node of STT that belongs to the equivalence class of v (respectively, u), and v′ is
a child of u′ in STT . Then, the lexicographic rank of suffix T [i..|T |] is one plus the sum
of all weights in the path from the root of T (CDAWGT ) to the i-th leaf of T (CDAWGT ) in
depth-first order.

2.4 Representing the suffix tree with the CDAWG
It is known that Properties 1 and 2 enable two encodings of STT that take O(eT + eT ) words
of space each, and that support the operations in Table 2 with the specified time complexities
[4]. Since the rest of this paper builds on the representation described in [4], we summarize
it here for completeness.

It is known that |RT | is at most the number of arcs in CDAWGT [4], thus augmenting
CDAWGT with RLBWTT does not increase space asymptotically. For every node v of
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CDAWGT , we store: |`(v)| in a variable v.length; the number v.size of right-maximal
strings that belong to its equivalence class; the interval [v.first..v.last] of `(v) in BWTT ;
a linear-space predecessor data structure [26] on the boundaries induced on the equivalence
class of v by its in-neighbors (Property 2); and pointers to the in-neighbor that corresponds
to the interval associated with each boundary. For every arc γ = (v, w) of CDAWGT , we
store the first character of `(γ) in a variable γ.char, and the number of characters of the
right-extension implied by γ in a variable γ.right. We also add to the CDAWG all arcs
(v, w, c) such that w is the equivalence class of the destination of a Weiner link from v

labeled by character c in STT , and the reverse of all explicit Weiner link arcs. We represent
a node v of STT as a tuple id(v) = (v′, |`(v)|, i, j), where v′ is the node in CDAWGT
that corresponds to the equivalence class of v, and [i..j] is the interval of `(v) in BWTT .
Implementing operations stringDepth(id(v)), nLeaves(id(v)) (which returns the number
of leaves of the subtree of STT rooted at a given node), isAncestor(id(v), id(w)) (which
returns true iff a node v of STT is an ancestor of another node w of STT ), suffixLink(id(v)),
weinerLink(id(v)), locateLeaf(id(v)) (which returns the position in T of a leaf v of STT )
and leafRank(id(v)) (which returns the position of a leaf v of STT in lexicographic order) is
straightforward using Properties 1.3 and 1.4, and implementing parent(id(v)), child(id(v))
and nextSibling(id(v)) is easy using Properties 2 and 1.5.

Removing all implicit Weiner link arcs from our data structure achieves O(eT ) words of
space, and still supports all queries except following implicit Weiner links. We can further
drop RLBWTT and remove from id(v) the interval of `(v) in BWTT , still supporting most of
the original queries in the same amount of time, and suffixLink in constant time. The data
structure after such removals corresponds to the second row of Table 2. Conversely, storing
also the RLBWT of T , and the interval in such RLBWT of the reverse of the maximal repeat
that corresponds to every node of the CDAWG, allows one to also read the label of an edge
γ of STT in O(log logn) time per character, for the same asymptotic space complexity.

3 Additional suffix tree operations

In this paper we augment the representation of the suffix tree described in Section 2.4,
enabling it to support a number of additional suffix tree operations in O(logn) time without
increasing space complexity asymptotically. At the core of our methods lies a heavy path
decomposition of CDAWGT along the lines of [7], which we summarize in what follows to
keep the paper self-contained.

I Definition 2 (Smooth function). Let T be a tree, let v1, v2, . . . , vN be its N leaves in
depth-first order, let f be a function that assigns a real number to every leaf, and let F [1..N ]
be the array that stores at position i the value of f(vi). We say that f is smooth with respect
to T iff F [sp(v)..ep(v)] = F [sp(w)..ep(w)] for every pair of internal nodes v, w of T that are
generated by the same node of G(T ).

For example, let T be the parse tree of a string S generated by a context-free grammar:
the function that assigns character T [i] to every position i of T is smooth.

I Lemma 3 ([7]). Let G be a DAG with n arcs such that every node has exactly two out-
neighbors, let f be a smooth function with respect to T (G), and let N be the number of
leaves of T (G). There is a data structure that, given a number i ∈ [1..N ], returns f(ui) in
O(logN) time, where ui is the i-th leaf of T (G) in depth-first order. Moreover, given two
integers 1 ≤ i ≤ j ≤ N , the data structure returns in O(logN) time the node of G that
corresponds to lca(ui, uj), and it returns in O(logN + j − i) time the sequence of values
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7:8 Representing the Suffix Tree with the CDAWG

f(ui), f(ui+1), . . . , f(uj), where uh is the h-th leaf of T (G) in depth-first order. Such data
structure takes O(n) words of space.

Proof Sketch. For each heavy path v1, . . . , vk of T (G), we store at v1 values nLeaves(v1),
left(v1, vk), f(vk), a predecessor data structure on the set of values {left(v1, vi) : i ∈ [2..k]},
and a predecessor data structure on the set of values {right(v1, vi) : i ∈ [2..k]}. If we query
v1 with the position i1 of a leaf in the subtree rooted at v1, such data structures allow us to
detect the largest j ∈ [1..k] such that vj is an ancestor of the query leaf. If j = k we return
f(vk), otherwise we take the light edge (vj , w) and we recur on w, which is itself the first
node of a heavy path. This solution takes O(logN) queries to prefix-sum data structures,
but the total size of all prefix-sum data structures can be O(N2).

Note that a predecessor query on the left and right predecessor data structures stored at
the first node v1 of a heavy path of T (G) can be implemented with a weighted ancestor query1
on τ(G), if we assign to each arc (v, w) of G that also belongs to τ(G) a left weight equal to
zero if w is the left successor of v, and equal to the number of leaves in the left successor of v
otherwise (the right weight is defined similarly). Using a suitable data structure for weighted
ancestor queries allows one to achieve O(n) words of space and overall O(logN · log logN)
query time after O(n) preprocessing of G. More advanced data structures that implement
weighted ancestor queries on τ(G) allow one to achieve the claimed bounds [7].

Given T (G), we proceed as follows to extract the values of all leaves in a depth-first
interval [i..j]. Inside every node v of a heavy path, we store an auxiliary right pointer to the
closest descendant of v in the heavy path whose right child is light. We symmetrically store
an auxiliary left pointer. Then, we traverse T (G) top-down as described above, but searching
for both the i-th leaf ui and the j-th leaf uj at the same time: when the nodes w and w′ of
G that result from such searches are different, we know that one is a descendant of the other
in τ(G), and the node of G that corresponds to lca(ui, uj) in T (G) is the one whose number
of leaves equals max{nLeaves(w), nLeaves(w′)}. Then we continue the search for the two
leaves separately: during the search for ui (respectively, uj) we follow all right (respectively,
left) auxiliary pointers in all heavy paths, and we concatenate the corresponding nodes in a
left (respectively, right) linked list. The size of such lists is O(j− i), and computing sequence
f(ui), . . . , f(uj) from the lists takes O(j − i) time. The same approach can be applied to G,
at the cost of O(n) preprocessing time and space. J

Since a node v of T (G) can be uniquely identified by an interval of leaves in depth-first
order, Lemma 3 effectively implements a map from the identifier of a node in T (G) to the
identifier of its corresponding node in G.

I Lemma 4. Lemma 3 holds also for a DAG in which all nodes have out-degree at least two.

Proof. We expand every node v with out-degree d > 2 into a binary directed tree, with d− 1
artificial internal nodes, whose d leaves are the out-neighbors of v in G. We also store in
each artificial internal node w a pointer w.real = v. The size of such expanded DAG G′ is
still O(n), where n is the number of arcs of G, T (G′) is a binary tree with the same number
of leaves as T (G), there is a bijection between the leaves of T (G) and the leaves of T (G′)
such that the i-th leaf in depth-first order in T (G) corresponds to the i-th leaf in depth-first
order in T (G′), and the extension of f to the leaves of T (G′) induced by such bijection is

1 A weighted ancestor query (v, k) on a tree with weights on the edges asks for the lowest ancestor u of a
node v such that the sum of weights in the path from u to v is at least k [2].
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smooth with respect to T (G′). Note that, if Lemma 3 returns an artificial node w as the
result of a lowest common ancestor query, it suffices to return w.real instead. J

Lemma 3 can be adapted to support queries on another class of functions:

I Definition 5 (Telescoping function). Let f be a function that assigns a real number to any
path of any weighted graph. We say that f is telescoping iff:
1. Given a path P = v1, v2, . . . , vk, f(P ) = g(ω(v1, v2)) ◦ · · · ◦ g(ω(vk−1, vk)), where ω(vi, vj)

is the weight of edge or arc (vi, vj), g is a function that can be computed in constant time,
and x ◦ y is a binary associative operator with identity element I that can be computed
in constant time.

2. f(v1, . . . , vk) ≥ f(v1, . . . , vi) for all i < k, and f(v1, . . . , vk) ≥ f(vi, . . . , vk) for all i > 1.
3. For every path v1, . . . , vi, . . . , vj , . . . , vk, f(vi, . . . , vj) can be computed in constant time

given f(v1, . . . , vi) and f(v1, . . . , vj), or given f(vi, . . . , vk) and f(vj , . . . , vk).

We call y the inverse of x with respect to ◦ iff x ◦ y = y ◦ x = I. For example, the sum
of edge weights in a path is telescoping, I = 0, and the inverse of x is −x. Note that a
telescoping function is not necessarily smooth.

I Lemma 6. Let G be a weighted DAG with n arcs in which every node has at least two
out-neighbors, let f be a telescoping function, and let N be the number of leaves of T (G).
There is a data structure that, given a number i ∈ [1..N ], evaluates f in O(logN) time on
the path from the root of T (G) to the i-th leaf in depth-first order. Moreover, given two
numbers 1 ≤ i ≤ j ≤ N , the data structure:
1. Evaluates f in O(logN) time on the path from the root of T (G) to lca(ui, uj), where ui

and uj are the i-th and j-th leaf of T (G) in depth-first order.
2. Returns in O(logN + j − i) time the sequence of values f(ui), f(ui+1), . . . , f(uj), where

f(uh) is the value of function f evaluated on the path from the root of T (G) to the h-th
leaf in depth-first order.

3. If [i..j] is the identifier of node v in T (G), given a nonnegative number k, returns in
O(logN) time the node of G that corresponds to the highest ancestor w of v in T (G)
such that f , evaluated on the path from the root of T (G) to w, is at least k (weighted
ancestor query).

Such data structure takes O(n) words of space.

Proof. If a node v in the DAG has out-degree greater than two, we expand it as described
in Lemma 4, assigning weight I to all arcs that end in an artificial internal node of the
expanded DAG, and assigning the weight of arc (v, w) to the arc that connects an artificial
internal node to out-neighbor w of v in G. We also store a pointer to v inside each artificial
internal node. Let G′ be the expanded version of G. At every node v of G′ we store variable
v.count = f(P (v)), where P (v) is the path from v to the sink of G′ that uses only arcs in
the spanning tree τ(G′). We traverse G′ as described in Lemma 3: at the current node u,
we compute its highest ancestor v in τ(G′) that lies in the path, from the source of G′ to
the sink of G′, that corresponds to the i-th leaf of T (G′). We use u.count and v.count to
evaluate f in constant time on the path from u to v along τ(G′), and we cumulate such value
to the output. For each arc (v, w) that does not belong to τ(G′), we compute g(ω(v, w)) and
we cumulate it to the output.

To evaluate f on the path from the root of T (G) to lca(vi, vj), we follow the extraction
strategy described in Lemma 3, using in the last step u.count and v.count, where u is the
current node and v is the (possibly artificial) node of G′ that corresponds to lca(vi, vj) in
T (G′). We use the extraction strategy of Lemma 3 also to evaluate f on all leaves of T (G)
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in the depth-first interval [i..j]: every time we take a right pointer or a left pointer (u, v), we
cumulate weight u.count ◦ y to the current value of f , where y is the inverse of v.count, and
we start from such value of f when visiting the subgraph of G′ that starts at v.

To support weighted ancestor queries on f and T (G), we build a data structure that
supports level ancestor queries on τ(G′): given a node v and a path length d, such data
structure returns the ancestor u of v in τ(G′) such that the path from the root of τ(G′) to u
contains exactly d nodes. The level ancestor data structure described in [5, 6] takes O(n)
words of space and it answers queries in constant time. We search again for the i-th and
j-th leaf in parallel, cumulating f using the weights of light arcs and of heavy paths as done
before. Let u be the current node in this search, and let x be the current value of f : if x < k,
but the value of f is at least k at the next node v such that the path from u to v in G′

belongs to τ(G′), we binary search the nodes w on the path from u to v, using level ancestor
queries from u and comparing x ◦ u.count ◦ y to k, where y is the inverse of w.count. The
result of the binary search is not an artificial node. J

Let [i..j] be the identifier of a node of T (G), and let [i′..j′] be the identifier of its weighted
ancestor. Since it is easy to transform the node of G that corresponds to [i′..j′] into interval
[i′..j′] itself, Lemma 6 effectively implements a map from [i..j] to [i′..j′] in O(logN) time.

Applying Lemma 6 to CDAWGT is all we need to support the additional operations in
Table 1 efficiently:

I Theorem 7. Let T ∈ [1..σ]n−1# be a string. There are two representations of STT that
support the operations in Table 1 and in Table 2 with the specified time and space complexities.

Proof. Operation selectLeaf(i) returns an identifier of the i-th leaf of STT in lexicographic
order. Recall from Section 2.4 that we store in a variable γ.right the number of characters
of the right extension implied by arc γ of CDAWGT . Thus, the length of the suffix associated
with a leaf of STT (or equivalently, the position of that leaf in right-to-left string order) is the
sum of all weights in the source-to-sink path of CDAWGT that corresponds to the leaf. Since
the sum of such weights is a telescoping function, we use the data structures in Lemma 6,
built on these weights, to compute the value s of the sum in O(logn) time, and we return
tuple (v, s, i, i), where v is the sink of CDAWGT . Returning |T | − s+ 1 instead is enough to
implement SAT [i]. Since Lemma 6 supports also the extraction of all values of a telescoping
function inside a depth-first range of leaves [i..j], implementing SAT [i..j] is straightforward.

Operation lca(i, j) returns the identifier of the lowest common ancestor, in STT , of
the i-th and the j-th leaf in lexicographic order. We use Lemma 6 to compute both the
node v of CDAWGT that corresponds to such common ancestor, and its string depth s,
returning tuple (v, s, x, y), where the range [x..y] ⊇ [i..j] of the lowest common ancestor
is computed during the top-down traversal of CDAWGT using the weighted ancestor data
structure on τ(CDAWGT ). A similar approach allows one to return LCP[i], and a slight
variation of the approach used to compute SAT [i..j] supports also LCP[i..j]. Operation
depth(id(v)) returns the depth of the node v of STT whose identifier is id(v). Since
id(v) contains the range [i..j] of v in BWTT , we can proceed as in operation lca(i, j), and
return the length of the path that the search traversed from the source of CDAWGT to
the node of CDAWGT that corresponds to v. Operation leftmostLeaf(id(v)) returns the
identifier of the smallest leaf in lexicographic order in the subtree of STT rooted at node
v. Let id(v) = (v′, `, i, j), and let W be the longest maximal repeat in the equivalence
class of node v′. Then, leftmostLeaf(id(v)) = (w′, ` + v′.left, i, i), where w′ is the sink
of CDAWGT , and v′.left is the string length of the path, in STT , that goes from the
node of STT with string label W to its leftmost leaf. We store v′.left at every node
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v′ of the CDAWG. Operation rightmostLeaf can be handled symmetrically. Operation
stringAncestor(id(v), d) (respectively, ancestor(id(v), d)) returns the identifier of the
highest ancestor of v in STT whose string depth (respectively, depth) is at least d. This can
be implemented with the weighted ancestor query provided by Lemma 6, where the weight
of arc γ of CDAWGT is γ.right (respectively, one).

Finally, by Property 4, we support access to the value of the inverse suffix array at string
position i by building the data structures of Lemma 6 on the compacted CDAWGT , with arc
weights corresponding to offsets between nested BWT intervals, and with a weighted ancestor
data structure on τ(CDAWGT ) based on offsets between string positions. Note that all arcs
that end at the same node of the compacted CDAWGT have distinct weights. Then, we
evaluate the sum of edge weights from the root of T (CDAWGT ) to its i-th leaf in depth-first
order. Implementing ISAT [i..j] is also straightforward, and PLCP[i] can be supported using
ISAT [i]. Assume that, while building CDAWGT , we keep the first character of the label of
every arc of CDAWGT that starts from the root, we propagate it during compaction, and
we store it at the nodes as described in Lemma 3. Then, since T (CDAWGT ) is a parse tree
of T , we can also return T [i] in O(logn) time and T [i..j] in O(logn + j − i) time. Since
the compacted reversed CDAWG is a grammar for T , the time for extracting T [i..j] can be
reduced to O(logn+ (j − i)/ logσ n) by using the access query described in [3]. J

I Corollary 8. Given a string T ∈ [1..σ]n−1#, there is a representation of the suffix array
of T , of the inverse suffix array of T , of the LCP array of T , of the permuted LCP array of
T , and of T itself, that takes O(eT ) words of space, and that supports random access to any
position in O(logn) time.

Note that Corollary 8 yields immediately a representation of the compressed suffix array
of T [22] that takes O(eT ) words of space.

4 Extensions and conclusion

Our data structures provide immediate support for a number of queries of common use
in pattern matching, in addition to those listed in Tables 1 and 2. For example, recall
that an internal pattern matching query (i, j) asks for all the occ starting positions of
T [i..j] inside a string T of length n. We can support such query in O(logn + occ) time,
by combining an inverse suffix array query, a string ancestor query, and the extraction
strategy of Lemma 6. Similarly, combining an inverse suffix array query with a lowest
common ancestor query and a string depth query, allows one to compute the longest
common prefix between two given suffixes of T in O(logn) time. Along the same lines,
operation letter(id(v), i), which returns the i-th character of the label of node v of the
suffix tree, can be supported in O(logn) time. We can also implement in constant time
operation deepestNode(id(v)), which returns the identifier of the first node with largest
depth (or string depth) in the subtree of the suffix tree rooted at v [19]. If we choose
not to store the BWT intervals of the nodes of the CDAWG as in the second row of
Tables 1 and 2, we can implement in O(logn) time operation suffixLink(id(v), i), which
returns the identifier of the node of the suffix tree that is reachable from v after taking i
suffix links. This can be done by computing lca(id(u), id(w)), where id(v) = (v′, k, a, b),
id(u) = (z, e, x, x), id(w) = (z, f, y, y), z is the sink of the CDAWG, e = |T |− (SA[a]+ i)+1,
f = |T |−(SA[b]+i)+1, x = ISA[SA[a]+i] and y = ISA[SA[b]+i]. By using the representation
described in [7], we can also support in O(logn) time operations like preorderSelect(i),
postorderSelect(i), preorderRank(v), postorderRank(v), treeLevelSuccessor(v) and
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treeLevelPredecessor(v). However, some operations on the topology of the suffix tree are
not yet implemented by our data structures (see e.g. [19]): it would be interesting to know
whether they can be supported efficiently within the same space budget.

Recall from Section 2.4 that our current representation of the suffix tree supports reading
the label of an arc in O(log logn) time per character, using the RLBWT of T . It would be
interesting to know whether this bound can be improved, and whether the RLBWT of T can
be dropped. Another question for further research is whether the ubiquitous O(logn) term
in Table 1 can be reduced while keeping the same asymptotic space budget, or whether a
lower bound makes it impossible, along the lines of [25].

On the applied side, it is not yet clear whether there is a subset of our algorithms that is
practically applicable, and whether it could achieve competitive tradeoffs with respect to
state-of-the-art suffix tree representations for highly repetitive collections. It would also be
interesting to try and use our data structures for tuning specific applications to repetitive
strings in practice, like matching statistics and substring kernels. For example, it turns
out that some weighting functions used in substring kernels are telescoping [24]. Since our
data structures support matching statistics [4], and since the computation of some substring
kernels can be mapped onto matching statistics [24], we can compute some substring kernels
between a fixed T and a query string of length m in O(m logn) time, using a data structure
that takes just O(eT ) words of space.
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