
Synchronizability of Communicating Finite State
Machines is not Decidable∗

Alain Finkel1 and Etienne Lozes2

1 LSV, ENS Cachan, CNRS, Cachan, France
finkel@lsv.fr

2 LSV, ENS Cachan, CNRS, Cachan, France
lozes@lsv.fr

Abstract
A system of communicating finite state machines is synchronizable [1, 4] if its send trace semantics,
i.e. the set of sequences of sendings it can perform, is the same when its communications are
FIFO asynchronous and when they are just rendez-vous synchronizations. This property was
claimed to be decidable in several conference and journal papers [1, 4, 3, 2] for either mailboxes
(∗-1) or peer-to-peer (1-1) communications, thanks to a form of small model property. In this
paper, we show that this small model property does not hold neither for mailbox communications,
nor for peer-to-peer communications, therefore the decidability of synchronizability becomes an
open question. We close this question for peer-to-peer communications, and we show that syn-
chronizability is actually undecidable. We show that synchronizability is decidable if the topology
of communications is an oriented ring. We also show that, in this case, synchronizability implies
the absence of unspecified receptions and orphan messages, and the channel-recognizability of
the reachability set.

1998 ACM Subject Classification F.1.2 Modes of Computation

Keywords and phrases verification, distributed system, asynchronous communications, choreo-
graphies

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.122

1 Introduction

Asynchronous distributed systems are error prone not only because they are difficult to
program, but also because they are difficult to execute in a reproducible way. The slack
of communications, measured by the number of messages that can be buffered in a same
communication channel, is not always under the control of the programmer, and even when
it is, it may be delicate to choose the right size of the communication buffers.

Slack elasticity of a distributed system with asynchronous communications is the property
that the “observable behaviour” of the system is the same whatever the slack of commu-
nications is. There are actually as many notions of slack elasticity as there are notions of
observable behaviours (and of distributed systems). Slack elasticity has been studied in various
contexts: for hardware design [16], with the goal of ensuring that some code transformations
are semantic-preserving, for parallel programming in MPI [18, 19], for ensuring the absence
of deadlocks and other bugs, or more recently for web services and choreographies [1, 4, 2],
for verifying various properties, among which choreography realizability [3].

∗ This is a proceedings version. The full version is [11], https://arxiv.org/abs/1702.07213.

EA
T

C
S

© Alain Finkel and Etienne Lozes;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 122; pp. 122:1–122:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.122
https://arxiv.org/abs/1702.07213
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

122:2 Synchronizability of Communicating Finite State Machines is not Decidable

This paper focuses on synchronizability [1], a special form of slack elasticity that was
defined by Basu and Bultan for analyzing choreographies. Synchronizability is the slack
elasticity of the send trace semantics of the system: a system of communicating finite state
machines is synchronizable if any asynchronous trace can be mimicked by a synchronous
one that contains the same send actions in the same order. Synchronizability was claimed
decidable first for mailbox communications [4], where each peer stores all incoming messages in
a unique mailbox in a FIFO fashion. Later, the decidability claim was extended to peer-to-peer
communications [2], where there is a FIFO queue for every pair of peers. Synchronizability
seemed to contrast with many other properties of systems of communicating finite state
machines (including deadlock-freedom, absence of orphan messages, boundedness, etc) that
are undecidable for systems of just two machines [6]. The proof relied on the claim that
synchronizability would be the same as 1-synchronizability, which states that any 1-bounded
trace can be mimicked by a synchronous trace.

In this paper, we show that the two claims are actually false: 1-synchronizability does not
imply synchronizability, and at least for peer-to-peer communications, synchronizability is
undecidable. We also show that the two claims hold, however, if we restrict to systems where
the communication topology is an oriented, unidirectional ring, in particular the topology of a
system with two peers only. While proving that 1-synchronizability implies synchronizability
for ring topologies we also show that 1-synchronizability implies the absence of unspecified
receptions and orphan messages, and that the reachability set is channel-recognizable.

Outline. The paper focuses on the peer-to-peer communication model. Section 2 introduces
all notions of communicating finite state machines and synchronizability. In Section 3, we show
that synchronizability is undecidable. Section 4 shows the decidability of synchronizability
on ring topologies. Section 5 concludes with discussions and open problems about other
communication models, in particular the mailbox communication model that was the first
and the most studied model in previous works on synchronizability. Due to space constraints,
several proofs are omitted and can be found in a companion long version [11].

Related Work. The analysis of systems of communicating finite state machines has always
been a very active topic of research. Systems with channel-recognizable (aka QDD [5]
representable) reachability sets are known to enjoy a decidable reachability problem [17].
Heussner et al developed a CEGAR approach based on regular model-checking [13]. Classific-
ations of communication topologies according to the decidability of the reachability problems
are known for FIFO, FIFO+lossy, and FIFO+bag communications [8, 9]. In [15, 14], the
bounded context-switch reachability problem for communicating machines extended with
local stacks modeling recursive function calls is shown decidable under various assumptions.
Session types dialects have been introduced for systems of communicating finite state ma-
chines [10], and were shown to enforce various desirable properties. Existentially-bounded
systems are systems of communicating finite state machines that were studied in a language-
theoretic perspective: in [12], in particular, correspondences have been established among
message sequence charts languages defined on the one hand by (universally/existentially
bounded) systems of communicating machines and on the other hand by monadic second
order logic over partial orders and automata Whether a system of communicating machines
is existentially bounded, respectively existentially k-bounded for a fixed k, is undecidable
in the general case, but it is unknown whether it remains undecidable for systems that are
non-blocking.

A. Finkel and E. Lozes 122:3

2 Preliminaries

Messages and topologies. A message set M is a tuple 〈ΣM , p, src, dst〉 where ΣM is a finite
set of letters (more often called messages), p ≥ 1 and src, dst are functions that associate
to every letter a ∈ Σ naturals src(a) 6= dst(a) ∈ {1, . . . , p}. We often write ai→j for a
message a such that src(a) = i and dst(a) = j; we often identify M and ΣM and write for
instance M = {ai1→j1

1 , ai2→j2
2 , . . . } instead of ΣM = . . . , or w ∈ M∗ instead of w ∈ Σ∗M .

The communication topology associated to M is the graph GM with vertices {1, . . . , p} and
with an edge from i to j if there is a message a ∈ ΣM such that src(a) = i and dst(a) = j.
GM is an oriented ring if the set of edges of GM is {(i, j) | i+ 1 = j mod p}.

Traces. An action λ over M is either a send action !a or a receive action ?a, with a ∈ ΣM .
The peer peer(λ) of action λ is defined as peer(!a) = src(a) and peer(?a) = dst(a). We write
Acti,M for the set of actions of peer i and ActM for the set of all actions over M . A M -trace τ
is a finite (possibly empty) sequence of actions. We write Act∗M for the set of M -traces, ε for
the emptyM -trace, and τ1 ·τ2 for the concatenation of twoM -traces. We sometimes write !?a
for !a · ?a. A M -trace τ is a prefix of υ, τ ≤pref υ if there is θ such that υ = τ · θ. The prefix
closure ↓ S of a set of M -traces S is the set {τ ∈ Act∗M | there is υ ∈ S such that τ ≤pref υ}.
For a M -trace τ and peer ids i, j ∈ {1, . . . , p} we write

send(τ) (resp. recv(τ)) for the sequence of messages sent (resp. received) during τ , i.e.
send(!a) = a, send(?a) = ε, and send(τ1 · τ2) = send(τ1) · send(τ2) (resp. recv(!a) = ε,
recv(?a) = a, and recv(τ1 · τ2) = recv(τ1) · recv(τ2)).
onPeeri(τ) for the M -trace of actions λ in τ such that peer(λ) = i.
onChanneli→j(τ) for the M -trace of actions λ in τ such that λ ∈ {!a, ?a} for some a ∈M
with src(a) = i and dst(a) = j.
bufferi→j(τ) for the word w ∈ M∗, if it exists, such that send(onChanneli→j(τ)) =
recv(onChanneli→j(τ)) · w.

A M -trace τ is FIFO (resp. a k-bounded FIFO, for k ≥ 1) if for all i, j ∈ {1, . . . , p}, for all
prefixes τ ′ of τ , bufferi→j(τ ′) is defined (resp. defined and of length at most k). A M -trace
is synchronous if it is of the form !?a1 · !?a2 · · · !?ak for some k ≥ 0 and a1, . . . , ak ∈M . In
particular, a synchronous M -trace is a 1-bounded FIFO M -trace (but the converse is false).
A M -trace τ is stable if bufferi→j(τ) = ε for all i 6= j ∈ {1, . . . , p}.

Two M -traces τ, υ are causal-equivalent τ causal∼ υ if
1. τ, υ are FIFO, and
2. for all i ∈ {1, . . . , p}, onPeeri(τ) = onPeeri(υ).
The relation causal∼ is a congruence with respect to concatenation. Intuitively, τ causal∼ υ if τ is
obtained from υ by iteratively commuting adjacent actions that are not from the same peer
and do not form a “matching send/receive pair”.

Peers, systems, configurations. A system (of communicating machines) over a message
set M is a tuple S = 〈P1, . . . ,Pp〉 where for all i ∈ {1, . . . , p}, the peer Pi is a finite state
automaton 〈Qi, q0,i,∆i〉 over the alphabet Act

,i,M and with (implicitly) Qi as the set of
accepting states. We write L(Pi) for the set of M -traces that label a path in Pi starting at
the initial state q0,i.

Let the system S be fixed. A configuration γ of S is a tuple (q1, . . . , qp, w1,2, . . . , wp−1,p)
where qi is a state of Pi and for all i 6= j, wi,j ∈ M∗ is the content of channel i → j. A
configuration is stable if wi,j = ε for all i, j ∈ {1, . . . , p} with i 6= j.

ICALP 2017

122:4 Synchronizability of Communicating Finite State Machines is not Decidable

q0,1 q1,1 q2,1 q3,1P1
!a1→2 !a1→2 !b1→3

q0,2

q1,2 q2,2 q3,2

q4,2 q5,2P2

?a1→2

?a1→2 ?c3→2

?c3→2 !d2→1
q0,3 q1,3 q2,3P3

?b1→3 !c3→2

Figure 1 System of Example 1 and Theorem 3.

Let γ = (q1, . . . , qp, w1,2, . . . , wp−1,p), γ′ = (q′1, . . . , q′p, w′1,2, . . . , w′p−1,p) and m ∈M with
src(m) = i and dst(m) = j. We write γ !m−−→S γ′ (resp. γ

?m−−→S γ′) if (qi, !m, q′i) ∈ ∆i (resp.
(qj , ?m, q′j) ∈ ∆j), w′i,j = wi,j ·m (resp. wi,j = m ·w′i,j) and for all k, ` with k 6= i (resp. with
k 6= j), qk = q′k and w′k,` = wk,` (resp. w′`,k = w`,k). If τ = λ1 · λ2 · · ·λn, we write τ−→S for
λ1−→S

λ2−→S . . .
λn−−→S . We often write τ−→ instead of τ−→S when S is clear from the context. The

initial configuration of S is the stable configuration γ0 = (q0,1, . . . , q0,p, ε, . . . , ε). A M -trace
τ is a trace of system S if there is γ such that γ0

τ−→ γ. Equivalently, τ is a trace of S if
1. it is a FIFO trace, and
2. for all i ∈ {1, . . . , p}, onPeeri(τ) ∈ L(Pi).
For k ≥ 1, we write Tracesk(S) for the set of k-bounded traces of S, Traces0(S) for the set of
synchronous traces of S, and Tracesω(S) for

⋃
k≥0 Tracesk(S).

I Example 1. Consider the message set M = {a1→2, b1→3, c3→2, d2→1} and the system
S = 〈P1,P2,P3〉 where P1,P2,P3 are as depicted in Fig. 1. Then

L(P1) = ↓ {!a1→2 · !a1→2 · !b1→3}
L(P2) = ↓ {?a1→2 · ?a1→2 · ?c3→2 , ?c3→2 · !d2→1}
L(P3) = ↓ {?b1→3 · !c3→2}.

An example of a stable trace is !a1→2 · !a1→2 · !?b1→3 · !c3→2 · ?a1→2 · ?a1→2 · ?c3→2. Let
τ =!a1→2 · !a1→2 · !?b1→3 · !?c3→2 · !d2→1. Then τ ∈ Traces2(S) is a 2-bounded trace of the
system S, and γ0

τ−→ (q3,1, q5,2, q2,3, a
1→2a1→2, ε, d2→1, ε, ε, ε).

Two traces τ1, τ2 are S-equivalent, τ1
S∼ τ2, if τ1, τ2 ∈ Tracesω(S) and there is γ such

that γ0
τi−→ γ for both i = 1, 2. It follows from the definition of causal∼ that if τ1

causal∼ τ2 and
τ1, τ2 ∈ Tracesω(S), then τ1

S∼ τ2.

Synchronizability. Following [4], we define the observable behaviour of a system as its set
of send traces enriched with their final configurations when they are stable. Formally, for
any k ≥ 0, we write Jk(S) and Ik(S) for the sets

Jk(S) = {send(τ) | τ ∈ Tracesk(S)}
Ik(S) = Jk(S) ∪ {(send(τ), γ) | γ0

τ−→ γ, γ stable, τ ∈ Tracesk(S)}.

Synchronizability is then defined as the slack elasticity of these observable behaviours.

I Definition 2 (Synchronizability [1, 4]). A system S is synchronizable if I0(S) = Iω(S). S
is called language synchronizable if J0(S) = Jω(S).

For convenience, we also introduce a notion of k-synchronizability: for k ≥ 1, a system S
is k-synchronizable if I0(S) = Ik(S), and language k-synchronizable if J0(S) = Jk(S). A
system is therefore (language) synchronizable if and only if it is (language) k-synchronizable
for all k ≥ 1.

A. Finkel and E. Lozes 122:5

I Theorem 3. There is a system S that is 1-synchronizable, but not synchronizable.

Proof. Consider again the system S of Example 1. Let γijk := (qi,1, qj,2, qk,3, ε, . . . , ε). Then

J0(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2}
J1(S) = J0(S)
J2(S) = ↓ {a1→2 · a1→2 · b1→3 · c3→2 · d2→1}
Ik(S) = Jk(S) ∪ Stab for all k ≥ 0

where Stab = {(ε, γ0), (a1→2, γ101), (a1→2 ·a1→2, γ202), (a1→2 ·a1→2 ·b1→3, γ312), (a1→2 ·a1→2 ·
b1→3 · c3→2, γ323)}. J

This example contradicts Theorem 4 in [2], which stated that J0(S) = J1(S) implies
J0(S) = Jω(S). This also shows that the decidability of synchronizability for peer-to-peer
communications is open despite the claim in [2]. The next section closes this question.

I Remark. In Section 5, we give a counter-example that addresses communications with
mailboxes, i.e. the first communication model considered in all works about synchronizability,
and we list several other published theorems that our counter-example contradicts.

3 Undecidability of Synchronizability

In this section, we show the undecidability of synchronizability for systems with at least
three peers. The key idea is to reduce a decision problem on a FIFO automaton A, i.e.
an automaton that can both enqueue and dequeue messages in a unique channel, to the
synchronizability of a system SA. The reduction is quite delicate, because synchronizability
constrains a lot the way SA can be defined (a hint for that being that SA must involve three
peers). It is also delicate to reduce from a classical decision problem on FIFO automata
like e.g. the reachability of a control state, and we first establish the undecidability of a
well-suited decision problem on FIFO automata, roughly the reception of a message m with
some extra constraints. We can then construct a system S ′′A,m such that the synchronizability
of S ′′A,m is equivalent to the non-reception of the special message m in A.

A FIFO automaton is a finite state automaton A = 〈Q,ActΣ,∆, q0〉 over an alphabet
of the form ActΣ for some finite set of letters Σ with all states being accepting states. A
FIFO automaton can be thought as a system with only one peer, with the difference that,
according to our definition of systems, a peer can only send messages to peers different from
itself, whereas a FIFO automaton enqueues and dequeues letters in a unique FIFO queue,
and thus, in a sense, “communicates with itself”. All notions we introduced for systems
are obviously extended to FIFO automata. In particular, a configuration of A is a tuple
γ = (q, w) ∈ Q × Σ∗, it is stable if w = ε, and the transition relation γ

τ−→ γ′ is defined
exactly the same way as for systems. For technical reasons, we consider two mild restrictions
on FIFO automata:
(R1) for all γ0

τ−→ (q, w), either τ = ε or w 6= ε (in other words, all reachable configurations
are unstable, except the initial one);

(R2) for all (q0, λ, q) ∈ ∆, λ =!a for some a ∈ Σ (in other words, there is no receive action
labeling a transition from the initial state).

I Lemma 4. The following decision problem is undecidable.
Input A FIFO automaton A that satisfies (R1) and (R2), and a message m.
Question Is there a M -trace τ such that τ · ?m ∈ Tracesω(A)?

ICALP 2017

122:6 Synchronizability of Communicating Finite State Machines is not Decidable

Proof. This kind of result is often considered folklore, but it seems it could be informative
to detail a possible construction. We reduce from the existence of a finite tiling given a set
of tiles and a pair of initial and final tiles. Intuitively, we construct a FIFO automaton that
outputs the first row of the tiling, storing it into the queue, and then for all next row i+ 1,
the automaton outputs the row tile after tile, popping a tile of row i in the queue in between
so as to check that each tile of row i+ 1 vertically coincides with the corresponding tile of row
i. Consider a tuple T = 〈T, t0, tF , H, V 〉 where T is a finite set of tiles t0, tF ∈ T are initial
and final tiles, and H,V ⊆ T ×T are horizontal and vertical compatibility relations. Without
loss of generality, we assume that there is a “padding tile” � such that (t,�) ∈ H ∩ V for all
t ∈ T . For a natural n ≥ 1, a n-tiling is a function f : N× {1, . . . , n} → T such that
1. f(0, 0) = t0,
2. there are (iF , jF) ∈ N× {1, . . . , n} such that f(iF , jF) = tF ,
3. (f(i, j), f(i, j + 1)) ∈ H for all (i, j) ∈ N× {1, . . . , n− 1}, and
4. (f(i, j), f(i+ 1, j)) ∈ V for all (i, j) ∈ N× {1, . . . , n}.
The problem of deciding, given a tuple T = 〈T, t0, tF , H, V 〉, whether there is some n ≥ 1 for
which there exists a n-tiling, is undecidable.1 Let T = 〈T, t0, tF , H, V 〉 be fixed. We define
the FIFO automaton AT = 〈Q,Σ,∆, q0〉 with Q = {qt,0, q↓=t, q←=t, q←=t,↓=t′ | t ∈ T, t′ ∈
T ∪ {$}} ∪ {q0, q1}, Σ = T ∪ {$}, and ∆ ⊆ Q× ActΣ ×Q, with

∆ = {(q0, !t0, qt0,0)} ∪ {(qt,0, !t′, qt′,0) | (t, t′) ∈ H} ∪ {(qt,0, !$, q1) | t ∈ T}
∪ {(q1, ?t, q↓=t) | t ∈ T)} ∪ {(q↓=t, !t′, q←=t′) | (t, t′) ∈ V }
∪ {(q←=t, ?t′, q←=t,↓=t′) | t ∈ T, t′ ∈ T ∪ {$}}
∪ {(q←=t,↓=t′ , !t′′, q←=t′′) | (t, t′′) ∈ H and (t′, t′′) ∈ V }
∪ {(q←=t,↓=$, !$, q1) | t ∈ T}

Therefore, any execution of AT is of the form

!t1,1 · !t1,2 · · ·!t1,n · !$ · ?t1,1 · !t2,1 · ?t1,2 · !t2,2 · · ·!t2,n · ?$ · !$ · ?t2,1 · !t3,1 · · ·

where t1,1 = t0, (ti,j , ti+1,j) ∈ V and (ti,j , ti,j+1) ∈ H. The following two are thus equivalent:
1. there is n ≥ 1 such that T admits a n-tiling
2. there is a trace τ ∈ Tracesω(A) that contains ?tF . J

Let us now fix a FIFO automaton A = 〈QA,ActΣ,∆A, q0〉 that satisfies (R1) and (R2).
Let M = M1 ∪M2 ∪M3 be such that all messages of Σ can be exchanged among all peers in
all directions but 2→ 1, i.e.

M1 = {a1→2, a1→3, a3→1 | a ∈ Σ}
M2 = {a3→2, a1→2, a2→3 | a ∈ Σ}
M3 = {a1→3, a3→1, a3→2, a2→3 | a ∈ Σ}

P1 P2

P3

Intuitively, we want P1 to mimick A’s decisions and the channel 1→ 2 to mimick A’s queue
as follows. When A would enqueue a letter a , peer 1 sends a1→2 to peer 2, and when A
would dequeue a letter a, peer 1 sends to peer 2 via peer 3 the order to dequeue a, and
waits for the acknowledgement that the order has been correcly executed. Formally, let
P1 = 〈Q1, q0,1,∆1〉 be defined by Q1 = QA] {qδ | δ ∈ ∆A} and ∆1 = {(q, !a1→2, q′) |

1 Note that, due to the presence of the padding tile, this problem is equivalent to the problem of the
existence of a finite rectangular tiling that contains t0 at the beginning of the first row and tF anywhere
in the rectangle, which in turn is equivalent to the termination of a Turing machine.

A. Finkel and E. Lozes 122:7

A

!a !m

?a, ?m
P1

!a1→2 !m1→2

!a1→3?a3→1

!m1→3?m3→1

P2
?a3→2

?a3→2 ?a1→2

!a2→3

?m3→2

?m3→2
?m1→2

!m2→3

P3 ?a1→3 !a3→2

?a2→3!a3→1

?m1→3!m3→2

?m2→3 !m3→1

P ′2
?a1→2, ?m1→2 ?a1→2, ?m1→2

?a3→2

?a1→2, ?m1→2

!a2→3

?a3→2

Figure 2 The FIFO automaton A of Example 5 and its associated systems SA = 〈P1,P2,P3〉

and S ′A,m = 〈P1,P ′2,P3〉. The sink state q⊥ and the transitions q
?m3→2

−−−−−→ q⊥ are omitted in the
representation of P ′2.

(q, !a, q′) ∈ ∆A} ∪ {(q, !a1→3, qδ), (qδ, ?a3→1, q′) | δ = (q, ?a, q′) ∈ ∆A}. The roles of peers
2 and 3 is then rather simple: peer 3 propagates all messages it receives, and peer 2
executes all orders it receives and sends back an acknowledgement when this is done. Let
P2 = 〈Q2, q0,2,∆2〉 and P3 = 〈Q3, q0,3,∆3〉 be defined as we just informally described, with
a slight complication about the initial state of P2 (this is motivated by technical reasons that
will become clear soon).

Q2={q0,2, q1,2} ∪ {qa,1, qa,2 | a ∈ Σ} Q3= {q0,3} ∪ {qa,1, qa,2, qa,3 | a ∈ Σ}
∆2= {(q0,2, ?a3→2, qa,1), (q1,2, ?a3→2, qa,1), (qa,1, ?a1→2, qa,2), (qa,2, !a2→3, q1,2) | a ∈ Σ}
∆3= {(q0,3, ?a1→3, qa,1), (qa,1, !a3→2, qa,2), (qa,2, ?a2→3, qa,3), (qa,3, !a3→1, q0,3) | a ∈ Σ}

I Example 5. Consider Σ = {a,m} and the FIFO automaton A = 〈{q0, q1},ActΣ,∆, q0〉
with transition relation ∆A = {(q0, !a, q0), (q0, !m, q1), (q1, ?a, q0), (q1, ?m, q0)}. Then A and
the peers P1,P2,P3 are depicted in Fig. 2.

Let SA = 〈P1,P2,P3〉. There is a tight correspondence between the k-bounded traces of
A, for k ≥ 1, and the k-bounded traces of SA: every trace τ ∈ Tracesk(A) induces the trace
h(τ) ∈ Tracesk(SA) where h : Act∗Σ → ActM is the homomorphism from the traces of A to
the traces of SA defined by h(!a) =!a1→2 and h(?a) =!?a1→3 · !?a3→2 · ?a1→2 · !?a2→3 · !?a3→1.
The converse is not true: there are traces of SA that are not prefixes of a trace h(τ) for some
τ ∈ Tracesk(A). This happens when P1 sends an order to dequeue a1→3 that correspond
to a transition ?a that A cannot execute. In that case, the system blocks when P2 has to
execute the order.

I Lemma 6. For all k ≥ 0, Tracesk(SA) =↓ {h(τ) | τ ∈ Tracesk(A)}∪ ↓ {h(τ) · !?a1→3 ·
!?a3→2 | τ ∈ Tracesk(A), (q0, ε)

τ−→ (q, w), (q, ?a, q′) ∈ ∆}.

Since A satisfies (R1), all stable configurations that are reachable in SA are reachable by
a synchronous trace, and since it satisfies (R2), the only reachable stable configuration is
the initial configuration. Moreover, J0(SA) = {ε} and Jk(SA) 6= {ε} for k ≥ 1 (provided A
sends at least one message). As a consequence, SA is not synchronizable.

Let us fix now a special message m ∈ Σ. We would like to turn SA into a system that is
synchronizable, except for the send traces that contain m2→3. Note that, by Lemma 6, SA

ICALP 2017

122:8 Synchronizability of Communicating Finite State Machines is not Decidable

has a send trace that contains m2→3 if and only if there are traces of A that contain ?m.
Roughly, we need to introduce new behaviours for the peer 2 that will “flood” the system
with many synchronous traces. Let S ′A,m = 〈P1,P ′2,P3〉 be the system SA in which the peer
P2 is replaced with the peer P ′2 = 〈Q′2, q0,2,∆′2〉 defined as follows.

Q′2 = {q0,2, q
′
0,2} ∪ {q′a,1 | a ∈ Σ, a 6= m, } ∪ {q⊥}

∆′2 = {(q0,2, ?a1→2, q′0,2), (q, ?a1→2, q) | a ∈ Σ, q 6= q0,2}
∪ {(q0,2, ?a3→2, q′a,1), (q′0,2, ?a3→2, q′a,1), (q′a,1, !a2→3, q′0,2), | a ∈ Σ, a 6= m}
∪ {(q, ?m3→2, q⊥) | q ∈ Q′2}

I Example 7. For Σ = {a,m}, and A as in Example 5, P ′2 is depicted in Fig. 2 (omitting
the transitions to the sink state q⊥).

Intuitively, P ′2 can always receive any message from peer P1. Like P2, it can also receive
orders to dequeue from peer P3, but instead of executing the order before sending an
acknowledgement, it ignores the order as follows. If P ′2 receives the order to dequeue a
message a1→2 6= m1→2, P ′2 acknowledges P3 but does not dequeue in the 1 → 2 queue. If
the order was to dequeue m, P ′2 blocks in the sink state q⊥. The system S ′A = 〈P1,P ′2,P3〉
contains many synchronous traces: any M -trace τ ∈ L(P1) labeling a path in automaton P1
can be lifted to a synchronous trace τ ′ ∈ Traces0(SA,m) provided !m1→3 does not occur in τ .
However, if P1 takes a !m1→3 transition, it gets blocked for ever waiting for m3→1. Therefore,
if !a1→3 occurs in a synchronous trace τ of S ′A,m, it must be in the last four actions, and this
trace leads to a deadlock configuration in which both 1 and 3 wait for an acknowledgement
and 2 is in the sink state.

Let Lm(A) be the set of traces τ recognized by A as a finite state automaton (over the
alphabet ActΣ) such that either ?m does not occur in τ , or it occurs only once and it is the
last action of τ . For instance, with A as in Example 5, Lm(A) =↓

(
!a∗ · !m · ?a

)∗ · !a∗ · !m · ?m.
Let h′ : Act∗Σ → Act∗M be the morphism defined by h′(!a) =!?a1→2 for all a ∈ Σ, h′(?a) =
!?a1→3 · !?a3→2 · !?a2→3 · !?a3→1 for all a 6= m, and h′(?m) =!?m1→3 · !?m3→2.

I Lemma 8. Traces0(S ′A,m) =↓ {h′(τ) | τ ∈ Lm(A)}.

Let us now consider an arbitrary trace τ ∈ Tracesω(S ′A,m). Let h′′ : Act∗M → Act∗M be
such that h′′(!a1→2) =!?a1→2, h′′(?a1→2) = ε, and h′′(λ) = λ otherwise. Then h′′(τ) ∈
Traces0(S ′A,m) and τ

S∼ h′′(τ) for S = S ′A,m. Indeed, τ and h′′(τ) are the same up to
insertions and deletions of receive actions ?a1→2, and every state of P ′2 (except the initial
one) has a self loop ?a1→2. Therefore,

I Lemma 9. S ′A,m is synchronizable.

Let us now consider the system S ′′A,m = 〈P1,P2 ∪ P ′2,P3〉, where P2 ∪ P ′2 = 〈Q2 ∪
Q′2, q02,∆2 ∪ ∆′′2〉 is obtained by merging the initial state q0,2 of P2 and P ′2. Note that
Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m), because q0,2 has no incoming edge in P2 ∪ P ′2.

I Lemma 10. Let k ≥ 1. The following two are equivalent:
1. there is τ such that τ · ?m ∈ Tracesk(A);
2. Ik(S ′′A,m) 6= I0(S ′′A,m).

Proof. Let k ≥ 1 be fixed.
(1) =⇒ (2) Let τ be such that τ · ?m ∈ Tracesk(A). By Lemma 6, there is υ ∈ Ik(SA) such

that m2→3 occurs in υ (take υ = send(h(τ · ?m))). By Lemma 6, υ 6∈ I0(SA) = ∅, and by
Lemma 8, υ 6∈ I0(S ′A,m). Therefore υ ∈ Ik(S ′′A,m) \ I0(S ′′A,m).

A. Finkel and E. Lozes 122:9

(2) =⇒ (1) By contraposite. Let Tracesk(A\?m) = {τ ∈ Tracesk(A) |?m does not oc-
cur in τ}, and let us assume ¬(1), i.e. Tracesk(A\?m) = Tracesk(A). Let us show
that Ik(S ′′A,m) = I0(S ′′A,m). From the assumption ¬(1) and Lemma 6, it holds that
Tracesk(SA) =

↓ {h(τ) | τ ∈ Tracesk(A\?m)}
∪ ↓ {h(τ) · !?a1→3 · !?a3→2 | τ ∈ Tracesk(A\?m), (q0, ε)

τ−→ (q, w), (q, ?a, q′) ∈ ∆}.

By send(h(τ)) = send(h′(τ)) and Tracesk(A\?m) ⊆ Lm(A), we get that

Ik(SA) ⊆ ↓ {send(h′(τ)) | τ ∈ Lm(A)}

and therefore, by Lemma 8, Ik(SA) ⊆ I0(S ′A,m). Since Ik(S ′′A,m) = Ik(SA) ∪ Ik(S ′A,m)
and since by Lemma 9 Ik(S ′A,m) = I0(S ′A,m), we get that Ik(S ′′A,m) ⊆ I0(S ′′Am), and thus
Ik(S ′′A,m) = I0(S ′′Am). J

I Theorem 11. Synchronizability (resp. language synchronizability) is undecidable.

Proof. Let a FIFO automaton A satisfying (R1) and (R2) and a message m be fixed. By
Lemma 10, S ′′A,m is non synchronizable iff there is a trace τ such that τ · ?m ∈ Tracesω(A).
By Lemma 4, this is an undecidable problem. J

4 The case of oriented rings

In the previous section we established the undecidability of synchronizability for systems
with (at least) three peers. In this section, we show that this result is tight, in the sense that
synchronizability is decidable if GM is an oriented ring, in particular if the system involves
two peers only. This relies on the fact that 1-synchronizability implies synchronizability for
such systems. This property is highly non-trivial, and below we only sketch the main steps
of the proof, identifying when the hypothesis on the ring topology becomes necessary.

The starting point is a confluence property on arbitrary 1-synchronizable systems.

I Lemma 12. Let S be a 1-synchronizable system. Let τ ∈ Traces0(S) and a, b ∈M be such
that
1. τ · !a ∈ Traces1(S),
2. τ · !b ∈ Traces1(S), and
3. src(a) 6= src(b).
If υ1, υ2 are any two of the six different shuffles of !a · ?a with !b · ?b, then τ · υ1 ∈ Tracesω(S),
τ · υ2 ∈ Tracesω(S) and τ · υ1

S∼ τ · υ2.

causal∼

!a !b

!b
?a

!a
?b

!b ?a ?b !a

?b ?a

I Remark. This lemma should not be misunderstood as a consequence of causal equivalence.
Observe indeed that the square on top of the diagram is the only square that commutes
for causal equivalence. The three other squares only commute with respect to S∼, and they
commute for causal∼ only if some extra assumptions on a and b are made. For instance, the left
square does commute for causal∼ if and only if dst(a) 6= src(b).

ICALP 2017

122:10 Synchronizability of Communicating Finite State Machines is not Decidable

Lemma 12 then generalizes to arbitrary sequences of send actions with rather technical
arguments.

I Lemma 13. Let S be a 1-synchronizable system. Let a1, . . . , an, b1, . . . bm ∈ M and
τ ∈ Traces0(S) be such that
1. τ · !a1 · · · !an ∈ Tracesn(S),
2. τ · !b1 · · · !bm ∈ Tracesm(S), and
3. src(ai) 6= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
Then for any two different shuffles υ1, υ2 of !?a1 · !?a2 · · · !?an with !?b1 · !?b2 · · · !?bm, it holds
that τ · υ1 ∈ Tracesω(S) , τ · υ2 ∈ Tracesω(S) and τ · υ1

S∼ τ · υ2.

For the rest of the proof, the hypothesis on the communication topology being an oriented
ring becomes necessary. We follow the rough idea in [4], also used for half-duplex systems [7],
and show a trace normalization property.

I Definition 14 (Normalized trace). A M -trace τ is normalized if there is a synchronous
M -trace τ0, n ≥ 0, and messages a1, . . . , an such that τ = τ0 · !a1 · · · !an.

I Lemma 15 (Trace Normalization). Assume M is such that the communication topology
GM is an oriented ring. Let S = 〈P1, . . . ,Pp〉 be a 1-synchronizable M-system. For all
τ ∈ Tracesω(S), there is a normalized trace norm(τ) ∈ Tracesω(S) such that τ S∼ norm(τ).

τ

!m1 · · · !mk

τ0

Proof. By induction on τ . Let τ = τ ′ · λ, be fixed. Let us assume by induction hypothesis
that there is a normalized trace norm(τ ′) ∈ Tracesω(S) such that τ ′ S∼ norm(τ ′). Let us
reason by case analysis on the last action λ of τ . The easy case is when λ is a send action:
then, norm(τ ′) · λ is a normalized trace, and norm(τ ′) · λ S∼ τ ′ · λ by right congruence of
S∼. The difficult case is when λ is ?a for some a ∈ M . Let i = src(a), j = dst(a), i.e.
i+ 1 = j mod p. By the definitions of a normal trace and causal∼ , there are τ ′0 ∈ Traces0(S),
a1, . . . , an, b1, . . . , bm ∈M such that

norm(τ ′) causal∼ τ ′0 · !a1 · · · !an · !b1 · · · !bm

with src(ak) = i for all k ∈ {1, . . . , n} and src(bk) 6= i for all k ∈ {1, . . . ,m}. Since GM is an
oriented ring, dst(a1) = j, therefore a1 = a (because by hypothesis j may receive a in the
configuration that norm(τ ′) leads to). Let norm(τ) = τ ′0 · !a · ?a · !b1 · · ·!bm · !a2 · · · !an and let
us show that norm(τ) ∈ Tracesω(S) and τ S∼ norm(τ).

Since norm(τ ′) ∈ Tracesω(S), we have in particular that τ ′0 · !a ∈ Traces1(S) and τ ′0 ·
!b1 · · ·!bn ∈ Tracesω(S). Consider the two traces

υ1 = τ ′0 · !a · ?a · !b1 · · ·!bn · ?b1 · · ·?bn
υ2 = τ ′0 · !a · !b1 · · ·!bn · ?a · ?b1 · · ·?bn.

By Lemma 13, υ1, υ2 ∈ Tracesω(S) and both lead to the same configuration, and in particular
to the same control state q for peer j. The actions ?b1, ?b2, . . .?bn are not executed by peer
j (because src(m) 6= i implies dst(m) 6= j on an oriented ring), so the two traces

υ′1 = τ ′0 · !a · ?a · !b1 · · ·!bn
υ′2 = τ ′0 · !a · !b1 · · ·!bn · ?a

A. Finkel and E. Lozes 122:11

lead to two configurations γ′1, γ′2 with the same control state q for peer j as in the configuration
reached after υ1 or υ2. On the other hand, for all k 6= j, onPeerk(υ′1) = onPeerk(υ′2), therefore
υ′1
S∼ υ′2. Since τ ′0 ·!a·!a2 · · ·!an ∈ Tracesn(S), and onPeeri(τ ′0 ·!a) = onPeeri(υ′1) = onPeeri(υ′2),

the two traces

υ′′1 = τ ′0 · !a · ?a · !b1 · · ·!bn · !a2 · · ·!an
υ′′2 = τ ′0 · !a · !b1 · · ·!bn · ?a · !a2 · · ·!an

belong to Tracesω(S) and υ′′1
S∼ υ′′2 . Consider first υ′′1 : this is norm(τ) as defined above,

therefore norm(τ) ∈ Tracesω(S), and norm(τ) S∼ υ′′2 . Consider now υ′′2 . By definition,
υ′′2

causal∼ norm(τ ′) · ?a. By hypothesis, norm(τ ′) S∼ τ ′, therefore norm(τ ′) · ?a causal∼ τ . To sum
up, norm(τ) S∼ υ′′2

causal∼ norm(τ ′) · ?a S∼ τ , therefore norm(τ) S∼ τ . J

As a consequence of Lemma 15, 1-synchronizability implies several interesting properties
on the reachability set.

I Definition 16 (Channel-recognizable reachability set [17, 7]). Let S = 〈P1, . . . ,Pp〉 with
Pi = 〈Qi,∆i, q0,i〉. The (coding of the) reachability set of S is the language Reach(S) over the
alphabet (M ∪

⋃p
i=1Qi)∗ defined as {q1 · · · qp · w1 · · ·wp | γ0

τ−→ (q1, . . . , qp, w1, . . . , wp), τ ∈
Tracesω(S)}. Reach(S) is channel-recognizable (or QDD representable [5]) if it is a recognizable
(and rational) language.

I Theorem 17. Let M be a message set such that GM is an oriented ring, and let S be a
M -system that is 1-synchronizable. Then
1. the reachability set of S is channel recognizable,
2. for all τ ∈ Tracesω(S), for all γ0

τ−→ γ, there is a stable configuration γ′, n ≥ 0 and
m1, . . .mn ∈M such that γ ?m1···?mn−−−−−−−→ γ′.

In particular, S neither has orphan messages nor unspecified receptions [7].

Proof. 1. Let S be the set of stable configurations γ such that γ0
τ−→ γ for some τ ∈

Traces0(S); S is finite and effective. By Lemma 15, Reach(S) =
⋃
{Reach!(γ) | γ ∈

S}, where Reach!(γ) = {q1 · · · qp · w1 · · ·wp | γ
!a1···!an−−−−−→ (q1, . . . , qp, w1, . . . , wp), n ≥

0, a1, . . . an ∈M} is an effective rational language.
2. Assume γ0

τ−→ γ. By Lemma 15, γ0
τ0·!m1···!mr−−−−−−−−→ γ for some τ0 ∈ Traces0(S). Then

τ0 · !m1 · · · !mr
causal∼ τ0 · τ1 where τ1 :=!a1 · · · !an · b1 · · · bm for some a1, . . . , an, b1, bm

such that src(ai) 6= src(bj) for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. By Lemma 13,
τ0 ·τ1 ·τ1 ∈ Tracesω(S) (where τ1 =?a1 · · · ?an ·?b1 · · · ?bm), and therefore γ0

τ0·τ1−−−→ γ
τ1−→ γ′

for some stable configuration γ′.
J

I Theorem 18. Let M be a message set such that GM is an oriented ring. For any M -system
S, S is 1- synchronizable if and only if it is synchronizable.

τ

?m1 · · · ?mk

synch(τ)

In order to prove Theorem 18, we prove by induction on the length of τ that τ ·
?m1 · · · ?mk

S∼ synch(τ) for some messages m1, . . . ,mk, where synch(τ) denotes the unique
synchronous M -trace such that send(synch(τ)) = send(τ).

ICALP 2017

122:12 Synchronizability of Communicating Finite State Machines is not Decidable

I Theorem 19. Let M be a message set such that GM is an oriented ring. The problem of
deciding whether a given M -system is synchronizable is decidable.

5 Extensions

We considered the notions of synchronizability and language synchronizability introduced
by Basu and Bultan [2] and we showed that both are not decidable for systems with peer-
to-peer FIFO communications, called (1-1) type systems in [2]. In the same work, Basu
and Bultan considered the question of the decidability of language synchronizability for
other communication models. All the results we presented so far do not have any immediate
consequences on their claims for these communication models. Therefore, we briefly discuss
now what we can say about the decidability of language synchronizability for the other
communication models that have been considered.

Non FIFO communications. In [2], language synchronizability is studied for systems where
peers communicate through bags instead of queues, thus allowing to reorder messages.
Language synchronizability is decidable for bag communications: Tracesbagω (S) is the trace
language of a Petri net, T0(S) = {τ ∈ Act∗M | send(τ) ∈ J bag0 (S)} is an effective regular
language, S is language synchronizable iff Tracesbagω (S) ⊆ T0(S), and whether the trace
language of a Petri is included in a given regular language reduces to the coverability problem.
Lossy communications where not considered in [2], but the same kind of argument would also
hold for lossy communications. However, our Example 1 is a counter-example for Lemma 3
in [2], i.e. the notion of language 1-synchronizability for bag communications defined in [2]
does not imply language synchronizability. The question whether (language) synchronizability
can be decided more efficiently than by reduction to the coverability problem for Petri nets
is open.

Non peer-to-peer communications. The other communication models considered in [2]
keep the FIFO queue model, but differ in the way queues are distributed among peers. The
∗-1 (mailbox) model assumes a queue per receiver. This model is the first model that was
considered for (language) synchronizability [1, 4]. Our Example 1 is not easy to adapt for
this communication model. We therefore design a completely different counter-example.

I Example 20. Consider the system of communicating machines depicted in Fig. 3. Assume
that the machines communicate via mailboxes, like in [1, 4], i.e. all messages that are sent to
peer i wait in a same FIFO queue Qi, and let J ∗−1

k (S) denote the k-bounded send traces of S
within this model of communications. Then J ∗−1

0 (S) = J ∗−1
1 (S) 6= J ∗−1

2 (S), as depicted in
Figure 3. Therefore S is language 1-synchronizable but not language synchronizable, which
contradicts Theorem 1 in [1], Theorem 2 in [3], and Theorem 2 in [2]. It can be noticed that
it does not contradict Theorem 1 in [4], but it contradicts the Lemma 1 of the same paper,
which is used to prove Theorem 1.

Many problems are therefore left for future work: the (un)decidability of synchroniz-
ability for the mailbox semantics, the largest class of communication topologies for which
1-synchronizability implies synchronizability (either for the peer-to-peer semantics or for the
mailbox one), the study of language synchronizability, etc. Our intention in this work was
limited to the identification of some of these problems, and maybe to explain why the errors
in [1, 4, 2] were missed by so many reviewers.

A. Finkel and E. Lozes 122:13

P1
!a1→2 !a1→2 !b1→3

P2
?a1→2

?a1→2

!c2→3

!c2→3

?a1→2

?d3→2
!c2→3

?a1→2 ?a1→2 ?d3→2 !e2→1

P3

?c2→3

?b1→3

?b1→3

?c2→3

!d3→2

J ∗−1
0 (S) = ↓ { aabcd,

aacb,

acab,

caab}
= J ∗−1

1 (S)

J ∗−1
2 (S) = J ∗−1

0 (S) ∪ {aabcde}

Figure 3 Language 1-synchronizability does not imply language synchronizability for 1-∗ (mailbox)
communications à la [1, 4].

Acknowledgement. We would like to thank the anonymous reviewers of our paper for
relevant suggestions of improvements, and for an accurate reading of our proofs.

References
1 Samik Basu and Tevfik Bultan. Choreography conformance via synchronizability. In Procs.

of WWW 2011, pages 795–804, 2011. doi:10.1145/1963405.1963516.
2 Samik Basu and Tevfik Bultan. On deciding synchronizability for asynchronously commu-

nicating systems. Theor. Comput. Sci., 656:60–75, 2016. doi:10.1016/j.tcs.2016.09.
023.

3 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Deciding choreography realizability. In
Procs. of POPL’12, pages 191–202, 2012. doi:10.1145/2103656.2103680.

4 Samik Basu, Tevfik Bultan, and Meriem Ouederni. Synchronizability for verification of
asynchronously communicating systems. In Procs. of VMCAI 2012, 2012. doi:10.1007/
978-3-642-27940-9_5.

5 Bernard Boigelot and Patrice Godefroid. Symbolic verification of communication protocols
with infinite state spaces using qdds. Formal Methods in System Design, 14(3):237–255,
1999. doi:10.1023/A:1008719024240.

6 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, April 1983. doi:10.1145/322374.322380.

7 Gerald Cécé and Alain Finkel. Verification of programs with half-duplex communication.
Inf. Comput., 202(2):166–190, 2005. doi:10.1016/j.ic.2005.05.006.

8 Pierre Chambart and Philippe Schnoebelen. Mixing lossy and perfect fifo channels. In
Procs. of CONCUR 2008, pages 340–355, 2008. doi:10.1007/978-3-540-85361-9_28.

9 Lorenzo Clemente, Frédéric Herbreteau, and Grégoire Sutre. Decidable topologies for com-
municating automata with FIFO and bag channels. In Procs. of CONCUR 2014, pages
281–296, 2014. doi:10.1007/978-3-662-44584-6_20.

10 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet commu-
nicating automata. In Procs. of ESOP 2012, pages 194–213, 2012. doi:10.1007/
978-3-642-28869-2_10.

11 Alain Finkel and Etienne Lozes. Synchronizability of communicating finite state machines is
not decidable. Technical report, arXiv, 2017. URL: https://arxiv.org/abs/1702.07213.

12 Blaise Genest, Dietrich Kuske, and Anca Muscholl. A kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf. Comput., 204(6):920–
956, 2006. doi:10.1016/j.ic.2006.01.005.

13 Alexander Heußner, Tristan Le Gall, and Grégoire Sutre. Mcscm: A general framework
for the verification of communicating machines. In Procs. of TACAS 2012, pages 478–484,
2012. doi:10.1007/978-3-642-28756-5_34.

ICALP 2017

http://dx.doi.org/10.1145/1963405.1963516
http://dx.doi.org/10.1016/j.tcs.2016.09.023
http://dx.doi.org/10.1016/j.tcs.2016.09.023
http://dx.doi.org/10.1145/2103656.2103680
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1007/978-3-642-27940-9_5
http://dx.doi.org/10.1023/A:1008719024240
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1016/j.ic.2005.05.006
http://dx.doi.org/10.1007/978-3-540-85361-9_28
http://dx.doi.org/10.1007/978-3-662-44584-6_20
http://dx.doi.org/10.1007/978-3-642-28869-2_10
http://dx.doi.org/10.1007/978-3-642-28869-2_10
https://arxiv.org/abs/1702.07213
http://dx.doi.org/10.1016/j.ic.2006.01.005
http://dx.doi.org/10.1007/978-3-642-28756-5_34

122:14 Synchronizability of Communicating Finite State Machines is not Decidable

14 Alexander Heußner, Jérôme Leroux, Anca Muscholl, and Grégoire Sutre. Reachability
analysis of communicating pushdown systems. Logical Methods in Computer Science, 8(3),
2012. doi:10.2168/LMCS-8(3:23)2012.

15 Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. Context-bounded
analysis of concurrent queue systems. In Procs. of TACAS 2008, pages 299–314, 2008.
doi:10.1007/978-3-540-78800-3_21.

16 Rajit Manohar and Alain J. Martin. Slack elasticity in concurrent computing. In Procs. of
Math. of Prog. Construction (MPC’98), pages 272–285, 1998. doi:10.1007/BFb0054295.

17 Jan Pachl. Protocol description and analysis based on a state transition model with channel
expressions. In Proc. of Protocol Specification, Testing, and Verification, VII, 1987.

18 Stephen F. Siegel. Efficient verification of halting properties for MPI programs with
wildcard receives. In Procs. of VMCAI 2005, pages 413–429, 2005. doi:10.1007/
978-3-540-30579-8_27.

19 Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby. Precise
dynamic analysis for slack elasticity: Adding buffering without adding bugs. In Procs. of
EuroMPI 2010, pages 152–159, 2010. doi:10.1007/978-3-642-15646-5_16.

http://dx.doi.org/10.2168/LMCS-8(3:23)2012
http://dx.doi.org/10.1007/978-3-540-78800-3_21
http://dx.doi.org/10.1007/BFb0054295
http://dx.doi.org/10.1007/978-3-540-30579-8_27
http://dx.doi.org/10.1007/978-3-540-30579-8_27
http://dx.doi.org/10.1007/978-3-642-15646-5_16

	Introduction
	Preliminaries
	Undecidability of Synchronizability
	The case of oriented rings
	Extensions

