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Abstract
We study the complexity of approximate counting Constraint Satisfaction Problems (#CSPs)
in a bounded degree setting. Specifically, given a Boolean constraint language Γ and a degree
bound ∆, we study the complexity of #CSP∆(Γ), which is the problem of counting satisfying
assignments to CSP instances with constraints from Γ and whose variables can appear at most ∆
times. Our main result shows that: (i) if every function in Γ is affine, then #CSP∆(Γ) is in FP for
all ∆, (ii) otherwise, if every function in Γ is in a class called IM2, then for all sufficiently large
∆, #CSP∆(Γ) is equivalent under approximation-preserving (AP) reductions to the counting
problem #BIS (the problem of counting independent sets in bipartite graphs) (iii) otherwise, for
all sufficiently large ∆, it is NP-hard to approximate the number of satisfying assignments of an
instance of #CSP∆(Γ), even within an exponential factor. Our result extends previous results,
which apply only in the so-called “conservative” case.
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1 Introduction

Constraint Satisfaction Problems (CSPs), which originated in Artificial Intelligence [18]
provide a general framework for modelling decision, counting and approximate counting
problems. The paradigm is sufficiently general that applications from diverse areas such
as database theory, scheduling and graph theory can all be captured (see, for example,
[14, 15, 17]). Moreover, all graph homomorphism decision and counting problems [12] can be
re-cast in the CSP framework and partition function problems from statistical physics [21] can
be represented as counting CSPs. Given the usefulness of CSPs, the study of the complexity
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27:2 Complexity of Bounded-Degree Boolean #CSP

of CSPs is a an extremely active area in computational complexity (for example, see [2] and
the references therein).

In this paper, we are concerned with Boolean counting CSPs. An instance I = (V, C)
of a Boolean counting CSP consists of a set V of variables and a set C of constraints. An
assignment σ : V → {0, 1} assigns a Boolean value called a “spin” to each variable. Each
constraint associates a tuple (v1, . . . , vk) of variables with a Boolean relation which constrains
the spins that can be assigned to v1, . . . , vk. The assignment σ is said to “satisfy” the
constraint if the tuple (σ(v1), . . . , σ(vk)) is in the corresponding relation. An assignment is
said to be “satisfying” if it satisfies all constraints. A Constraint Satisfaction Problem comes
with two important parameters – the constraint language Γ is the set of all relations that may
be used in constraints and the degree ∆ is the maximum number of times that any variable
v ∈ V may be used in constraints in any instance. The number of satisfying assignments is
denoted ZI . The computational problem #CSP∆(Γ) is the problem of computing ZI , given
a CSP instance I with constraints in Γ and degree at most ∆. We use #CSP(Γ) to denote
the version of the problem in which the degree of instances is unconstrained.

Although constraints are supported by Boolean relations, they can be used to code up
weighted interactions such as those that arise in statistical physics. For example, let R be the
“not-all-equal” relation of arity 3. Then consider the conjunction of R(x, a, b) and R(y, a, b).
There are two satisfying assignments with σ(x) = 0 and σ(y) = 1 since σ(a) and σ(b) must
differ. Similarly, there are two satisfying assignments with σ(x) = 1 and σ(y) = 0. On the
other hand, there are three satisfying assignments with σ(x) = σ(y) = 1 and there are three
satisfying assignments with σ(x) = σ(y) = 0. Thus, the induced interaction on the variables
x and y is the same as the interaction of the ferromagnetic Ising model (at an appropriate
temperature) – an assignment in which x and y have the same spin has weight 3, whereas an
assignment where they have different spins has weight 2.

For every ∆ ≥ 3, the work of Cai, Lu and Xia [5] completely classifies the complexity of
exactly solving #CSP∆(Γ), depending on the parameter Γ. If every relation in Γ is affine,
then #CSP∆(Γ) is solvable in polynomial time (so the problem in the complexity class FP).
Otherwise, it is #P-complete. The term “affine” will be defined in § 2. Roughly, it means
that the tuples in the relation are solutions to a linear system, so Gaussian elimination gives
an appropriate polynomial-time algorithm. The characterisation of Cai, Lu and Xia is exactly
the same classification that was obtained for the unbounded problem #CSP(Γ) by Creignou
and Hermann [6]. Thus, as far as exact counting is concerned, the degree-bound ∆ does not
affect the complexity as long as ∆ ≥ 3. As Cai, Lu and Xia point out, the dichotomy is
false for ∆ = 2, where #CSP2(Γ) is equivalent to the Holant problem Holant(Γ) – see the
references in [5] for more information about Holant problems.

Much less is known about the complexity of approximately solving #CSP∆(Γ). In fact,
even the decision problem is still open. While Schaefer [19] completely classified the complexity
of the decision problem CSP(Γ) – where the goal is to determine whether or not ZI is 0 for
an instance of #CSP(Γ) – the complexity of the corresponding decision problem CSP∆(Γ),
where the instance has degree at most ∆, is still not completely resolved. For ∆ ≥ 3, Dalmau
and Ford [7] have solved the special case where Γ includes both of the relations Rδ0 = {0}
and Rδ1 = {1}. This special case is known as the “conservative case” in the CSP literature.
For ∆ ≥ 6, Dyer et al. [9] have classified the difficulty of the approximation problem:

If every relation in Γ is affine, then #CSP∆(Γ ∪ {Rδ0 , Rδ1}) is in FP.
Otherwise, if every relation in Γ is in a class called IM2 (a class defined in § 2) then
#CSP∆(Γ ∪ {Rδ0 , Rδ1}) is equivalent under approximation-preserving (AP) reductions
to the counting problem #BIS (the problem of counting independent sets in bipartite
graphs).
Otherwise, there is no FPRAS for #CSP∆(Γ ∪ {Rδ0 , Rδ1}) unless NP = RP.
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Dyer et al. made only partial progress on the cases where ∆ ∈ {3, 4, 5}. We refer the reader
to [9, 16] for a discussion of the partial classification. However, it is worth noting here that
the complexity of #CSP∆(Γ ∪ {Rδ0 , Rδ1}) is closely related to the complexity of counting
satisfying assignments of so-called read-d Monotone CNF Formulas. Crucial progress was
made by Liu and Lu [16], who completely resolved the complexity of the latter problem.
Given the work of Liu and Lu, a complete classification of #CSP∆(Γ ∪ {Rδ0 , Rδ1}) for
∆ ∈ {3, 4, 5} may be in reach.

The restriction that Rδ0 and Rδ1 are contained in Γ is a severe one because it does not
apply to many natural applications. On the other hand, we are a long way from a precise
understanding of the complexity of #CSP∆(Γ) without this restriction because there are
specific, relevant parameters that we do not understand. For example, for a positive integer k,
let Γ be the singleton set containing only the arity-k “not-all-spin-1” relation. Then satisfying
assignments of an instance of #CSP∆(Γ) correspond to independent sets of a k-uniform
hypergraph with maximum degree ∆. It is known that there is an FPRAS for ∆ = O(2k/2)
[13] and that the problem is NP-hard to approximate for ∆ = Ω(2k/2) [1]; the implicit
constants in these bounds do not currently match and thus, for big k, there is a large range
of ∆’s where we do not yet know the complexity of approximating #CSP∆(Γ). If Γ instead
contains (only) the arity-k “at-least-one-spin-0” relation then satisfying assignments of an
instance of #CSP∆(Γ) correspond to the so-called “strong” independent sets of a k-uniform
hypergraph. Song, Yin and Zhao [20] have presented a barrier for hardness results, showing
why current technology is unsuitable for resolving the cases where ∆ ∈ {4, 5} (roughly, these
cases are in “non-uniqueness”, but this is not realisable by finite gadgets).

The purpose of the present paper is to remove the severe restriction that Rδ0 and Rδ1

are contained in Γ in the approximate counting classification of #CSP∆(Γ) from [9]. Since
pinning down precise thresholds seems a long way out of reach, we instead focus on whether
there is a “barrier” value ∆0 such that, for all ∆ ≥ ∆0, approximation is intractable. Since
we wish to get the strongest possible inapproximability results (showing the hardness of
approximating ZI even within an exponential factor), we define the following computational
problem, which has an extra parameter c > 1 that captures the desired accuracy.

Name #CSP∆,c(Γ).
Instance An n-variable instance I of a CSP with constraint language Γ and degree at most ∆.
Output A number Ẑ such that c−nZI ≤ Ẑ ≤ cnZI .

Although we have not yet defined all of the terms, we can now at least state (a weak
version of) our result.

I Theorem 1. Let Γ be a Boolean constraint language. Then,
1. If every relation in Γ is affine then #CSP(Γ) is in FP.
2. Otherwise, if every relation in Γ is in the class IM2, then there exists an integer ∆0 such

that for all ∆ ≥ ∆0, #CSP∆(Γ) is #BIS-equivalent under AP-reductions.
3. Otherwise, there exists an integer ∆0 such that for all ∆ ≥ ∆0, there exists a real

number c > 1 such that #CSP∆,c(Γ) is NP-hard.

After defining all of the terms, we will state a stronger theorem, Theorem 6, which
immediately implies Theorem 1. The stronger version applies to the #CSP problems that
we have already introduced, but it also applies to other restrictions of these problems, which
have even more applications.

We now explain the restriction. Note that in the CSP framework, as we have defined
it, the variables that are constrained by a given constraint need not be distinct. Thus, if
the arity-4 relation R is present in a constraint language Γ, then an instance of #CSP(Γ)
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27:4 Complexity of Bounded-Degree Boolean #CSP

with variables x and y may contain a constraint such as R(x, x, y, x). This ability to repeat
variables is equivalent to assuming that equality relations of all arities are present in Γ. This
feature of the CSP definition is inconvenient for two reasons: (1) It does not fit well with
some spin-system applications, and (2) In many settings, it obscures the nuanced complexity
classification that arise.

As an example of (1), recall the application where Γ is the singleton set containing only
the arity-k “not-all-spin-1” relation. As we noted earlier, satisfying assignments of a #CSP(Γ)
instance correspond to independent sets of a k-uniform hypergraph. Here, hyperedges are
size-k subsets of vertices and it does not make sense to allow repeated vertices!

The point (2) is well-known. In fact, the “equality is always present” assumption is the
main feature that separates #CSPs from the more general Holant framework [3].

In our current setting, it turns out that adding equality functions to Γ does not change
the complexity classification, but this is a result of our theorems rather than an a priori
assumption – indeed, determining which constraint languages Γ can appropriately simulate
equality functions is one of the difficulties – thus, throwing equalities in “for free” would
substantially weaken our results! Our main result, Theorem 6, which will be presented in
§ 2, applies both to the #CSPs that we have already defined, and to more refined versions,
in which constraints may not repeat variables.

We wish now to discuss an important special case in which both the #CSPs and the
refined versions have already been studied. This is the special case in which Γ consists of
a single relation which is symmetric in its arguments. A symmetric relation that is not
affine is not in IM2. Therefore, Item 2 in the statement of Theorem 1 never arises in this
special case. Our earlier paper [11] shows that, in this case (where Γ consists of a single,
symmetric, non-affine relation) there is an integer ∆0 such that for all ∆ ≥ ∆0, there exists
a real number c > 1 such that #CSP∆,c(Γ) is NP-hard.

While the work of [11] is important for this paper, note that the special case is far from
general – in particular, it is easy to induce asymmetric constraints using symmetric ones.
For example, suppose that R1 is the (symmetric) arity-2 “not-all-spin-1” constraint, R2 is
the (symmetric) arity-2 “not the same spin” constraint and R3 = {(0, 0), (0, 1), (1, 1)} is the
(asymmetric) arity-2 “Implies” constraint. Then the conjunction of R1(x, a) and R2(a, y)
induces R3(x, y).

It is interesting that Theorem 1 is exactly the same classification that was obtained for
the unbounded problem #CSP(Γ) by Dyer et al. [10]. In particular, they showed
1. If every relation in Γ is affine then #CSP(Γ) is in FP.
2. Otherwise, if every relation in Γ is in the class IM2, then #CSP(Γ) is #BIS-equivalent

under AP-reductions.
3. Otherwise, #CSP(Γ) is #SAT-equivalent under AP-reductions, where #SAT is the problem

of counting the satisfying assignments of a Boolean formula.
The inapproximability that we demonstrate in Item 3 of Theorem 1 is stronger than what
was known in the unbounded case, both (obviously) because of the degree bound, but also
because we show that it is hard to get within an exponential factor. (This strong kind of
inapproximability was also missing from the results of [9]).

2 Definitions and Statement of Main Result

Before giving formal definitions of the problems that we study, we introduce some notation.
We use boldface letters to denote Boolean vectors. A pseudo-Boolean function is a function
of the form f : {0, 1}k → R≥0 for some positive integer k, which is called the arity of f .
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I Definition 2. Given a pseudo-Boolean function f : {0, 1}k → R≥0 , we use the notation
Rf to denote the relation Rf = {x ∈ {0, 1}k | f(x) > 0}, which is the relation underlying f .

If the range of f is {0, 1} then f is said to be a Boolean function and of course in that case
Rf = {x ∈ {0, 1}k | f(x) = 1}.

In order to allow consistency with obvious generalisations, our formal definition of the
Boolean Constraint Satisfaction Problem is in terms of Boolean functions (rather than,
equivalently, using the underlying relations).

A Constraint language Γ is a set of pseudo-Boolean functions. It is a Boolean constraint
language if all of the functions in it are Boolean functions. An instance I = (V, C) of a CSP with
constraint language Γ consists of a set V of variables and a set C of constraints. Each constraint
Ci ∈ C is of the form fi(vi,1, . . . , vi,ki

) where fi is an arity-ki function in Γ and (vi,1, . . . , vi,ki
)

is a tuple of (not necessarily distinct) variables in V . The constraint Ci is said to be
“Repeat-Free” if all of the variables are distinct. Each assignment σ : V → {0, 1} of Boolean
values to the variables in V has a weight wI(σ) :=

∏
fi(vi,1,...,vi,ki

)∈C fi(σ(vi,1), . . . , σ(vi,ki
)).

The partition function maps the instance I to the quantity ZI :=
∑
σ:V→{0,1} wI(σ) =∑

σ:V→{0,1}
∏
fi(vi,1,...,vi,ki

)∈C fi(σ(vi,1), . . . , σ(vi,ki
)).

If Γ is a Boolean constraint language then it is easy to see that wI(σ) = 1 if the assignment
is satisfying and wI(σ) = 0, otherwise. Thus, ZI is the number of satisfying assignments of I.

When ZI > 0, we will use µI(·) to denote the Gibbs distribution corresponding to ZI .
This is the probability distribution on the set of assignments σ : V → {0, 1} such that
µI(σ) = wI(σ)/ZI for all σ : V → {0, 1}.

The degree dv(C) of a variable v in a constraint C is the number of times that the
variable v appears in the tuple corresponding to C and the degree dv of the variable is
dv =

∑
C∈C dv(C). Finally, the degree of the instance I is maxv∈V dv.

I Definition 3. #CSP∆(Γ) is the problem of computing ZI , given a CSP instance I with
constraints in Γ and degree at most ∆. #CSP(Γ) is the version of the problem in which the
degree of instances is unconstrained. #CSP∆,c(Γ) has an extra parameter c > 1 that captures
the desired accuracy. The problem is to compute a number Ẑ such that c−nZI ≤ Ẑ ≤ cnZI ,
where n is the number of variables in the instance I. The problems #NoRepeatCSP∆(Γ),
#NoRepeatCSP(Γ) and #NoRepeatCSP∆,c(Γ) are defined similarly, except that inputs are
restricted so that all constraints are Repeat-Free.

I Definition 4. A Boolean function f : {0, 1}k → {0, 1} is affine if there is a k × k Boolean
matrix A and a length-k Boolean vector b such that Rf is equal to the set of solutions x of
Ax = b over GF(2).

I Definition 5 (The set of functions IM2). A Boolean function f : {0, 1}k → {0, 1} is in
IM2 if f(x1, . . . , xk) is logically equivalent to a conjuction of (any number of) predicates of
the form xi, ¬xi or xi ⇒ xj .

We have now defined all of the terms in our main theorem apart from some well-known
concepts from complexity theory, which we discuss next. FP is the class of computational
problems (with numerical output) that can be solved in polynomial time. An FPRAS is a
randomised algorithm that produces approximate solutions within specified relative error
with high probability in polynomial time. For two counting problems #A and #B, we say
that #A is #B-easy if there is an approximation-preserving (AP)-reduction from #A to #B.
The formal definition of an AP-reduction can be found in [8]. It is a randomised Turing
reduction that yields close approximations to #A when provided with close approximations
to #B. The definition of AP-reduction meshes with the definition of FPRAS in the sense
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27:6 Complexity of Bounded-Degree Boolean #CSP

that the existence of an FPRAS for #B implies the existence of an FPRAS for #A. We say
that #A is #B-hard if there is an AP-reduction from #B to #A. Finally, we say that #A is
#B-equivalent if #A is both #B-easy and #B-hard.

The problem of counting satisfying assignments of a Boolean formula is denoted by #SAT.
Every counting problem in #P is AP-reducible to #SAT, so #SAT is said to be complete for
#P with respect to AP-reductions. It is known that there is no FPRAS for #SAT unless
RP = NP. The problem of counting independent sets in a bipartite graph is denoted by #BIS.
The problem #BIS appears to be of intermediate complexity: there is no known FPRAS for
#BIS (and it is generally believed that none exists) but there is no known AP-reduction from
#SAT to #BIS. Indeed, #BIS is complete with respect to AP-reductions for a complexity
class #RHΠ1.

Given all of these definitions, we now formally state the stronger version of Theorem 1
promised in the introduction. The proof can be found in full version.

I Theorem 6. Let Γ be a Boolean constraint language. Then,
1. If every function in Γ is affine then #CSP(Γ) and #NoRepeatCSP(Γ) are both in FP.
2. Otherwise, if Γ ⊆ IM2, then there exists an integer ∆0 such that for all ∆ ≥ ∆0,

#CSP∆(Γ) and #NoRepeatCSP∆(Γ) are both #BIS-equivalent under AP-reductions, and
3. Otherwise, there exists an integer ∆0 such that for all ∆ ≥ ∆0, there exists a real

number c > 1 such that #CSP∆,c(Γ) and #NoRepeatCSP∆,c(Γ) are both NP-hard.

3 Overview of the Proof of Theorem 6

In this section, we give a non-technical overview of the proof of Theorem 6. Our objective is
to illustrate the main ideas and obstacles without delving into the more detailed definitions.
A more technical overview can be found in § 5. Our focus in this section will be on the case
where Γ consists of a single Boolean function f : {0, 1}k → {0, 1}. This case is the main
ingredient in the proof of the theorem.

A typical approach for showing that a counting CSP is intractable is to use an instance of
the CSP to build a “gadget” which simulates an intractable binary 2-spin constraint. This was
the approach used in [11], which proved the intractability of #NoRepeatCSP∆({f}) for any
symmetric non-affine Boolean function f . There, an instance I of #NoRepeatCSP∆({f}) was
constructed, along with variables x and y, such that for all spins sx ∈ {0, 1} and sy ∈ {0, 1}
the marginal distribution µI(x, y) satisfies

µI(σ(x) = sx, σ(y) = sy) = g(sx, sy)/(g(0, 0) + g(0, 1) + g(1, 0) + g(1, 1)), (1)

where g is a binary function that codes up the interaction of an intractable anti-ferromagnetic
2-spin system. We will not need to give detailed definitions of 2-spin systems in this paper.
Instead, we give a sufficient condition for intractability.

I Definition 7. A binary function g : {0, 1}2 → R≥0 is said to be “hard” if all of the following
hold: g(0, 0)+g(1, 1) > 0, min{g(0, 0), g(1, 1)} <

√
g(0, 1)g(1, 0), and max{g(0, 0), g(1, 1)} ≤√

g(0, 1)g(1, 0).

It was established in [11] that the ability to “simulate” a hard function g in the sense of (1)
ensures that #NoRepeatCSP∆({f}) is NP-hard to approximate, even within an exponential
factor.

A key feature of symmetric Boolean functions f which facilitated such simulation in [11]
was the fact that the class of relevant hard functions g is well-behaved, and it turned out that
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it suffices to encode such a hard binary function with only ε-accuracy, for some sufficiently
small ε > 0, and this was enough to ensure the NP-hardness of #CSP∆,c({f}).

The main obstacle in adapting the approach of [11] to the case where f need not be
symmetric in its arguments arises when f is in IM2. It is unlikely that such a function f
can simulate a hard function g in the sense of (1) – indeed such a simulation would prove
the (very surprising) result that #BIS does not have an FPRAS (unless NP = RP). Thus,
for f ∈ IM2, we need instead to encode a binary function which will allow us to connect the
problem #NoRepeatCSP∆({f}) to #BIS.

Now consider the binary Boolean function Implies whose underlying relation RImplies =
{(0, 0), (0, 1), (1, 1)} contains all (x, y) satisfying x⇒ y. Obviously, Implies is not symmetric,
and it is not hard according to Definition 7. On bipartite instances, however, the symmetry
can be restored by interpreting differently the spins 0 and 1 on the two parts of the graph, and
this leads to a connection with #BIS. In particular, it is well-known [10] that #CSP({Implies})
is equivalent to #BIS under AP-reductions. This connection was extended to the bounded-
degree setting by [4].

Unfortunately, the symmetrisation which connects #CSP({Implies}) to #BIS is not very
robust. For example, suppose that a (non-symmetric) Boolean function f can be used to
simulate, in the sense of (1), a binary function g which is very close to Implies. In particular,
suppose that for some ε > 0 and ε1, ε2, ε3, ε4 satisfying |εi| ≤ ε for i = 1, 2, 3, 4, we have
g(0, 0) = 1+ε1, g(0, 1) = 1+ε2, g(1, 0) = ε3, and g(1, 1) = 1+ε4. Such a close approximation
is about the best that can be expected using the kind of approximate encodings that are
available. However, the complexity of asymmetric 2-spin systems is not sufficiently well
understood to exploit such a simulation. Surprisingly, for any arbitrarily small constant
ε > 0, it is not known even whether the unbounded degree version #CSP({g}) is #BIS-
hard, and certainly nothing is known in our bounded-degree setting! The trouble is that
the symmetrisation that works for Implies (i.e., when εi = 0 for i = 1, 2, 3, 4) is no longer
guaranteed to symmetrise the imperfect version with the εi’s, so the swapping of spin-0
and spin-1 values on one side of the bipartite graph leads to an asymmetric 2-spin system
on bipartite graphs and this does not fall into the scope of known results [4] concerning
bounded-degree bipartite 2-spin systems.

Our approach to handle this problem for f ∈ IM2 is to carefully ensure that there is no
accuracy error ε in encoding the function Implies. In other words, we show that, using f ∈ IM2,
we can encode Implies perfectly, a task which is surprisingly intricate in the repeat-free setting.
Our main technical theorem, Theorem 17, achieves this goal. Namely, it shows that, for every
non-affine Boolean function f , either f simulates a hard function (with arbitrarily small
accuracy-error ε, which leads to the desired intractability of #NoRepeatCSP∆({f})) or else
f “supports perfect equality” – a concept which will be defined later, but essentially means
that f can be used to perfectly simulate the binary function EQ with underlying relation
REQ = {(0, 0), (1, 1)}. Using EQ, it is possible to simulate repeated variables in constraints,
so the #BIS-hardness of #CSP∆({f}) follows from [10]. When f /∈ IM2 but f supports
perfect equality, instead of reducing to the work in [10], we work somewhat harder to make
sure that we also get the strong (exponential factor) inapproximability given in Theorem 6.

4 Pinning, equality and simulating functions

An important case in our proof is the case where Γ contains a single function f : {0, 1}k → R≥0.
In this case, we can we simplify the notation because the constraints in an instance I are in
one-to-one correspondence with k-tuples of variables (there is no need to repeat the name of
the function f in each constraint). So, for convenience, we make the following definitions.
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27:8 Complexity of Bounded-Degree Boolean #CSP

A k-tuple hypergraph H = (V,F) consists of a set V of vertices, together with a set F of
hyperarcs, where every hyperarc in F is a k-tuple of distinct vertices in V . The degree of H
is the maximum, over all vertices v ∈ V , of the number of hyperarcs that contain v. Given
a function f : {0, 1}k → R≥0, we let If (H) denote the instance of #NoRepeatCSP({f})
whose constraints correspond to the hyperarcs of H. Given an assignment σ : V → {0, 1}
we define wf ;H(σ) :=

∏
(v1,...,vk)∈F f(σ(v1), . . . , σ(vk)) and Zf ;H :=

∑
σ:V→{0,1} wf ;H(σ), so

ZIf (H) = Zf ;If (H). By analogy to the Gibbs distribution on satisfying assignments, when
Zf ;H > 0, we use µf ;H(·) to denote the probability distribution in which, for all assignments
σ : V → {0, 1}, µf ;H(σ) = wf ;H(σ)/Zf ;H .

Given a function f : {0, 1}k → R≥0 and a positive integer ∆, we define #Multi2Spin∆(f)
to be the problem of computing Zf ;H , given as input a k-tuple hypergraph H with degree at
most ∆. The name #Multi2Spin∆(f) indicates that the problem is to compute the partition
function of a 2-spin system with multi-body interactions specified by f and degree-bound ∆.
Given a real number c > 1, the problem #Multi2Spin∆,c(f) has the same input, and the goal,
when the input has n vertices, is to compute a number Ẑ such that c−nZf ;H ≤ Ẑ ≤ cnZf ;H .
Clearly, #Multi2Spin∆(f) is equivalent to #NoRepeatCSP∆({f}) and #Multi2Spin∆,c(f) is
equivalent to #NoRepeatCSP∆,c({f}).

4.1 Supporting pinning and equality
Let k be a positive integer and let H = (V,F) be a k-tuple hypergraph. Given a configuration
σ : V → {0, 1} and a subset T ⊆ V , we will use σT to denote the restriction of σ to vertices
in T . For a vertex v ∈ V , we will also use σv to denote the spin σ(v) of vertex v in σ. The
following definitions are generalisations of definitions from [11].

I Definition 8. Let f : {0, 1}k → R≥0. Suppose that ε ≥ 0 and s ∈ {0, 1}. The k-tuple
hypergraph H is an ε-realisation of pinning-to-s if there exists a vertex v of H such that
µf ;H(σv = s) ≥ 1− ε.

I Definition 9. Let f : {0, 1}k → R≥0 and s ∈ {0, 1}. We say that f supports pinning-to-s
if, for every ε > 0, there is a k-tuple hypergraph which is an ε-realisation of pinning-to-s.
We say that f supports perfect pinning-to-s if there is a k-tuple hypergraph which is a
0-realisation of pinning-to-s.

We now define what it means for a function f to support (perfect) equality (cf. § 3).

I Definition 10. Let f : {0, 1}k → R≥0 and ε ≥ 0. The k-tuple hypergraph H is an
ε-realisation of equality if there exist distinct vertices v1 and v2 of H such that, for each
s ∈ {0, 1}, µf ;H(σv1 = σv2 = s) ≥ (1− ε)/2.

I Definition 11. Let f : {0, 1}k → R≥0. The function f supports equality if, for every ε > 0,
there is a k-tuple hypergraph which is an ε-realisation of equality. The function f supports
perfect equality if there is a k-tuple hypergraph which is a 0-realisation of equality.

4.2 Realising conditional distributions induced by pinning and equality
Given a set S of vertices, we write σS = 0 to denote the event that all vertices in S are
assigned the spin 0 under the assignment σ. We similarly write σS = 1 to denote the event
that all vertices in S are assigned the spin 1 under the assignment σ. Finally, we use use σeq

S

to denote the event that all vertices in S have the same spin under σ (the spin could be 0
or 1). The following definition is a generalisation of Definition 16 of [11] except that we have
changed the notation slightly for convenience.
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I Definition 12 ([11, Definition 16]). Let f : {0, 1}k → R≥0. Let H = (V,F) be a k-tuple
hypergraph. Let V = (Vpin0, Vpin1,Veq) where Vpin0 and Vpin1 are disjoint subsets of V and Veq
is a (possibly empty) set of disjoint subsets of V \(Vpin0 ∪Vpin1). Suppose that: (i) Vpin0 = ∅ if
f does not support pinning-to-0, (ii) Vpin1 = ∅ if f does not support pinning-to-1, (iii) Veq = ∅
if f does not support equality, (iv) it holds that µf ;H(σVpin0 = 0, σVpin1 = 1,

⋂
W∈Veq

σeq
W ) > 0.

We will then say that “V is admissible for H with respect to f” and we will denote by
µ

cond(V)
f ;H the probability distribution µf ;H(· | σVpin0 = 0, σVpin1 = 1,

⋂
W∈Veq

σeq
W ).

4.3 Simulating hard functions and inapproximability results
We can now give a formal definition of “simulation”, along the lines that was informally
discussed in § 3 (Equation (1)).

I Definition 14. Let f : {0, 1}k → R≥0 and g : {0, 1}t → R≥0. The function f simulates
the function g if there is a k-tuple hypergraph H, an admissible set V for H with respect to
f , and t vertices v1, v2, . . . , vt of H such that, for all (s1, s2, . . . , st) ∈ {0, 1}t,

µ
cond(V)
f ;H (σ(v1) = s1, σ(v2) = s2, . . . , σ(vt) = st) = g(s1, s2, . . . , st)∑

(s′
1,s

′
2,...,s

′
t)∈{0,1}t

g(s′1, s′2, . . . , s′t)
.

If V = (∅, ∅, ∅), then we say that f perfectly simulates g. More generally, we say that f
simulates a set of functions G if f simulates every g ∈ G.

The connection betweeen “hard” as defined in Definition 7 and intractability is given in
the following lemma. The lemma is stated for symmetric functions in [11], but the proof also
works for asymmetric functions.

I Lemma 15 ([11, Lemma 18]). Let f : {0, 1}k → R≥0. If f simulates a hard function, then
for all sufficiently large ∆, there exists c > 1 such that #Multi2Spin∆,c(f) is NP-hard. J

5 Proof Sketch

In this section, for a Boolean function f : {0, 1}k → {0, 1}, we consider the complexity of
the problems #Multi2Spin∆(f) and #Multi2Spin∆,c(f). Classifying the complexity of these
problems is the most important step in the proof of Theorem 6. Namely, to obtain Theorem 6,
it suffices to show that for every non-affine function f , we have that:

If f is in IM2, then for all sufficiently large ∆, #Multi2Spin∆(f) is #BIS-equivalent.
If f is not in IM2, then for all sufficiently large ∆, there exists a real number c > 1 such
that #Multi2Spin∆,c(f) is NP-hard.

Our main technical theorem to prove this is the following classification of Boolean functions,
which asserts that every non-affine function either supports perfect equality or simulates a
hard function. A proof sketch is provided later.

I Theorem 17. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a Boolean function. Then at least
one of three following propositions is true:
1. f is affine;
2. f supports perfect equality;
3. f simulates a hard function.

When f simulates a hard function, using Lemma 15, we can immediately conclude that
for all sufficiently large ∆, there exists c > 1 such that #Multi2Spin∆,c(f) is NP-hard. As
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we already discussed in § 3, it is important that, in the case where f does not simulate a
hard function, Theorem 17 guarantees that f supports perfect equality (rather than simple
imperfect equality); this allows us to recover the connection to #BIS for those f ∈ IM2. In
fact, when f supports perfect equality, we can effectively carry out (a strengthening of) the
program in [10] to obtain the following classification which perfectly aligns with Theorem 6.

I Theorem 18. Let f : {0, 1}k → {0, 1} be a Boolean function that is not affine. Suppose
that f supports perfect equality.
1. If f is in IM2, then for all sufficiently large ∆, #Multi2Spin∆(f) is #BIS-equivalent.
2. If f is not in IM2, then for all sufficiently large ∆, there exists a real number c > 1 such

that #Multi2Spin∆,c(f) is NP-hard.

Theorems 17 and 18 together achieve the desired classification of #Multi2Spin∆(f) when
f ∈ IM2 as well as the strong inapproximability results when f /∈ IM2. Before presenting a
more elaborate sketch of the proof of Theorem 17, it will be instructive to give the main
ideas behind both proofs.

To prove Theorem 17, our proof departs from the previous approaches in the related
works [10] and [11]. In these works, f was used to directly encode a binary function which
was feasible because of the presence of equality in [10] and the symmetry of f in [11]. Instead,
we take a much more painstaking combinatorial approach by using induction on the arity of
the function f .

The base case of the induction (proving Theorem 17 for arity-2 functions) is fairly simple
to handle, so let us focus on the induction step. The rough idea, to put the induction
hypothesis to work, is to study whether f supports pinning-to-0 or pinning-to-1; then,
provided that at least one these pinnings is available, we need to pin appropriately some
arguments of f to obtain a function h of smaller arity. Our goal is then to ensure that h is
non-affine; then, we can invoke the induction hypothesis and obtain that h either supports
perfect equality or simulates a hard function. From there, since h was obtained by pinning
some arguments of f , we will obtain by a transitivity argument (cf. Lemma 33 in the full
version) that f either supports perfect equality or f simulates the same hard function as
h. (Note, in the case where h supports perfect equality, to conclude that f supports perfect
equality, we need to ensure that the pinnings of f used to obtain h were perfect.)

Determining which arguments of f need to be pinned is the most challenging aspect of
this scheme. Our method for reducing the number of functions under consideration is to
symmetrise f in a natural way and obtain a new function f∗ which is now symmetric (see
definitions in § 6). Then, it turns out that there are seven possibilities for the function f∗
which we need to consider in detail. That is, when the symmetrisation of f is one of these
seven functions, we have to figure out whether f supports perfect equality and, if not, work
out the combinatorial structure of f and pinpoint which arguments are suitable to be pinned.
The details of the argument can be found in the full version of this paper.

The proof of Theorem 18, where f supports perfect equality, basically follows the approach
of [10]. However, to get the stronger inapproximability results, we have to take a detour
studying self-dual functions (functions whose value does not change when we complement
their arguments). We show that if f is self-dual then it simulates a hard function (Theorem 46
of the full version). The problem with self-dual functions is that they do not support pinning-
to-0 or pinning-to-1, so we are not able to use the relevant results from [10]. After proving
Theorem 46 and demonstrating (Lemma 42) that “implementations in CSPs” work in the
repeat-free setting when f supports perfect equality, the techniques of [10] can be adapted
to get Theorem 18.
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6 A partial sketch of the proof of Theorem 17

Let f : {0, 1}k → {0, 1} be a Boolean function. For S ⊆ [k], χS denotes the characteristic
vector of S, which is the length-k Boolean vector such that, for all i ∈ [k], the i-th bit of χS is 1
iff i ∈ S. Ωf = {S ⊆ [k] | χS ∈ Rf}. The function f is said to be semi-trivial iff there is a set S
such that Ωf = {T | S ⊆ T ⊆ [k]} or Ωf = {T | T ⊆ S}. Every semi-trivial Boolean function
is affine. Let Pk denote the set of all permutations π : [k]→ [k]. Then the symmetrisation f∗
of f is the function f∗ : {0, 1}k → R≥0 defined by f∗(x1, . . . , xk) =

∏
π∈Pk

f(xπ(1), . . . , xπ(k)).
For s ∈ {0, 1}, let δs : {0, 1} → {0, 1} be the Boolean function defined by δs(s) = 1 and
δs(1⊕ s) = 0. Define fi→s to be the function obtained from f by pinning the i-th argument
of f to s, i.e. fi→s(x1, . . . , xi−1, xi+1, . . . , xk) =

∑
xi∈{0,1} f(x1, . . . , xk) · δs(xi). Similarly,

for S, T ⊆ [k], let fS→0,T→1 be the (k − |S ∪ T |)-ary function obtained from f by pinning
the arguments in S to 0 and the arguments in T to 1. So if x′ denotes the |S ∪ T |-ary vector
containing all xi with i ∈ S ∪ T and x′′ denotes the k − |S ∪ T |-ary vector containing all xi
with i ∈ [k] \S ∪T , fS→0,T→1(x′′) =

∑
x′∈{0,1}|S∪T | f(x1, . . . , xk) ·

∏
i∈S δ0(xi) ·

∏
j∈T δ1(xj).

If S = ∅ or T = ∅, we will omit S → 0 or T → 1 from the notation.

Partial Proof Sketch. We prove the theorem by induction on the arity of f . The base
case, k = 2, is covered in the full version. For the induction step, assume k ≥ 3. The
inductive hypothesis is that for all 2 ≤ k′ < k, all k′-ary functions f ′ satisfy at least one of
the three propositions in the statement of the theorem. We now prove that an arbitrary
f : {0, 1}k → {0, 1} also satisfies at least one of the propositions. The easy case is when f∗
is not affine. In this case, the work of [11] shows that f∗ either simulates a hard function (in
which case f simulates the hard function as well) or f∗ supports perfect equality (in which
case f does as well). The bulk of the proof deals with the case where f∗ is affine. It turns
out that there are seven possible symmetric affine functions f∗. To illustrate the ideas, we
consider just one of them here. So from now on (to cover this special case), suppose that, for
all x ∈ {0, 1}k, f∗(x) = 0.

We prove in the full version that either f supports perfect equality or f supports both
perfect pinning-to-0 and perfect pinning-to-1. If f supports perfect equality, then we are done,
so suppose from now on that f supports both perfect pinning-to-0 and perfect pinning-to-1.

We will show below that at least one of the following items holds. (1) f is affine (so
we are finished), (2) there exist S, T ⊆ [k] such that fS→0,T→1 is not affine, (3) f supports
perfect equality (so we are finished), or (4) f simulates a hard function (so we are finished).
In situation (2), since fS→0,T→1 is not affine, it must support perfect equality or simulate a
hard function g by the induction hypothesis. So we finish by showing (Lemma 33) that f
either supports perfect equality or simulates the same hard function g. We now discuss how
to show that at least one of the four items holds.

We prove in the full version (Lemma 39) that for all W ∈ Ωf , fW→0 is semi-trivial
(otherwise one of the items holds). Choose S ∈ Ωf such that |S| is as large as possible. Let
h = fS→0. Since h is semi-trivial (by taking W = S above), we claim that there is a T
satisfying ∅ ⊂ T ⊆ S such that Ωh = {U | T ⊆ U ⊆ S}. (To see this, note that the definition
of semi-trivial implies that there is a subset T of S such that either Ωh = {U | U ⊆ T} or
Ωh = {U | T ⊆ U ⊆ S}. The former is impossible since ∅ 6∈ Ωh since h(0) = f(0) = f∗(0) = 0.
Also, in the latter case, T is not empty because, once again, ∅ 66∈ Ωh.)

Case 1. Suppose that ∀X ∈ Ωf , T ⊆ X: Recall that T is non-empty. Also, for every
i ∈ T , {i} ∪ Ωfi→1 = Ωf so either f is affine (item (1)) or fi→1 is not affine (item (2)).

Now, if Case 1 does not hold then there is an X ∈ Ωf such that T \ X is non-empty.
Since Ωh = {U | T ⊆ U ⊆ S} we conclude that X /∈ Ωh. Since h = fS→0 we conclude that
X \ S is non-empty. Thus, the only other case to consider is as follows.
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Case 2. Suppose that there is an X ∈ Ωf such that T \ X and X \ S are both non-
empty: Let Ψ = {X ∈ Ωf | T \X 6= ∅ and X \ S 6= ∅ }, a = min{|T \ X| : X ∈ Ψ},
and b = min{|X \ S| : X ∈ Ψ and |T \X| = a}. Choose R ∈ Ψ with |T \ R| = a and
|R \ S| = b. Now before proceeding, we use the sets S, T and R to partition [k]. Specifically,
let A = {i ∈ [k] | i ∈ S, i ∈ T, i /∈ R}, B = {i ∈ [k] | i ∈ S, i ∈ T, i ∈ R}, C = {i ∈ [k] | i ∈
S, i /∈ T, i /∈ R}, D = {i ∈ [k] | i ∈ S, i /∈ T, i ∈ R}, E = {i ∈ [k] | i /∈ S, i /∈ T, i /∈ R} and
F = {i ∈ [k] | i /∈ S, i /∈ T, i ∈ R}. It is clear from the definitions that the sets A, B, C, D,
E and F are disjoint. Also, since T ⊆ S, they partition [k]. From the definitions, A = T \R
and F = R \ S so, by the choice of R, A and F are non-empty. Let g = fC∪E→0,B∪D→1.

By definition, every element of Ωg is a subset of A ∪ F . Also, for Y ⊆ A ∪ F , “Y ∈ Ωg”
means the same thing as “Y ∪ B ∪D ∈ Ωf”. We establish some facts before dividing the
analysis into sub-cases.

Fact 1: A ∈ Ωg. We have Ωh = {U | T ⊆ U ⊆ S} and T = A ∪B so A ∪B ∪D ∈ Ωh.
Since A ∪B ∪D ⊆ S, this means A ∪B ∪D ∈ Ωf . Equivalently, A ∈ Ωg.

Fact 2: F ∈ Ωg. From the definition of R, R ∈ Ωf . Also, R = B ∪ D ∪ F so
F ∪B ∪D ∈ Ωf . Equivalently, F ∈ Ωg.

Fact 3: If Y ∈ Ωg then either Y ∩ A ∈ {∅, A} or Y ∩ F = ∅ (or both). Suppose
for contradiction that ∅ ⊂ Y ∩A ⊂ A and Y ∩ F is non-empty. Note that R = B ∪D ∪ F .
Let R′ = B ∪D ∪ Y . Note that T \R = A and T \R′ = A \ Y ⊂ A so |T \R′| < |T \R|. We
will show a contradiction to the choice of R by showing that R′ ∈ Ψ. First, since Y ∈ Ωg,
R′ ∈ Ωf . Also, T \R′ = A \ Y is non-empty and R′ \ S = Y ∩ F is non-empty.

Fact 4: If Y ∈ Ωg and Y ∩ A = ∅ then Y ∈ {∅, F }. Suppose for contradiction that
∅ ⊂ Y ⊂ F . As in the proof of Fact 3, let R′ = B ∪D ∪ Y . Note that T \R = T \R′ = A.
Also, R\S = F and R′ \S = Y so |R\S| > |R′ \S|. Once again, we will show a contradiction
to the choice of R by showing that R′ ∈ Ψ. As in the proof of Fact 3, since Y ∈ Ωg, R′ ∈ Ωf .
Also, T \R′ is non-empty since T \R is. Finally, R′ \ S = Y , which is non-empty.

Fact 5: If Y ∈ Ωg and Y ∩F = ∅ then Y = A. Since Y ∈ Ωg, we have Y ∪B∪D ∈ Ωf .
But since Y ⊆ A, we have Y ∪B ∪D ⊆ S, so Y ∪B ∪D ∈ Ωh. Since Ωh = {U | T ⊆ U ⊆ S}
we have T ⊆ Y ∪B ∪D so A ⊆ Y .

Given Facts 1–5, we have only the following sub-cases.

Case 2a: Ωg = {A, F }. In this case, we will show that f supports perfect equality.
Let H0 be a k-tuple hypergraph, with a vertex u0 such that µf ;H0(σu0 = 0) = 1. Let H1
be a k-tuple hypergraph, with a vertex u1 such that µf ;H1(σu1 = 0) = 1. We have already
noted that A is non-empty. Suppose, without loss of generality, that 1 ∈ A (otherwise, we
simply re-order the arguments of [k]). Now let H ′ be the k-tuple hypergraph with vertices
v0, v1, . . . , vk and hyperarcs (v0, v2, . . . , vk) and (v1, v2, . . . , vk). Construct H from H ′ by
doing the following:

For every i ∈ C ∪ E, take a new copy of H0 and identify vertex u0 with vi.
For every i ∈ B ∪D, take a new copy of H1 and identify vertex u1 with vi.

Now since Ωg = {A,F}, µf ;H(σ(v0) = σ(v1) = 0) = µf ;H(σ(v0) = σ(v1) = 1) = 1/2. Thus,
f supports perfect equality, so item (3) holds.

Case 2b: ∃Y ∈ Ωg such that Y ∩ A = A and Y ∩ F is non-empty. We show in the
full version that ft→1 is not affine for some t ∈ A (so item (2) holds). J
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