
Streaming Communication Protocols∗†

Lucas Boczkowski1, Iordanis Kerenidis2, and Frédéric Magniez3

1 CNRS, IRIF, Univ Paris Diderot, Paris, France
lucas.boczkowski@irif.fr

2 CNRS, IRIF, Univ Paris Diderot, Paris, France
iordanis.kerenidis@irif.fr

3 CNRS, IRIF, Univ Paris Diderot, Paris, France
frederic.magniez@irif.fr

Abstract
We define the Streaming Communication model that combines the main aspects of communica-
tion complexity and streaming. Input arrives as a stream, spread between several agents across
a network. Each agent has a bounded memory, which can be updated upon receiving a new bit,
or a message from another agent. We provide tight tradeoffs between the necessary resources,
i.e. communication between agents and memory, for some of the canonical problems from commu-
nication complexity by proving a strong general lower bound technique. Second, we analyze the
Approximate Matching problem and show that the complexity of this problem (i.e. the achiev-
able approximation ratio) in the one-way variant of our model is strictly different both from the
streaming complexity and the one-way communication complexity thereof.

1998 ACM Subject Classification C.2.2 Network Protocols

Keywords and phrases Networks, Communication complexity, Streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.130

1 Introduction

In the last decade we have witnessed a big shift in the way data is produced and computation
is performed. First, we now have to deal with enormous amounts of data that we cannot
even store in memory (internet traffic, CERN experiments, space expeditions). Second,
computations do not happen in a single processor or machine, but with multi-core processors
and multiple machines in cloud architectures. All these real-world changes necessitate that
we revisit and extend our models and tools for studying the efficiency and hardness of
computational problems.

Imagine the following situation: some input is spread across a network. The agents
want to compute some function f which depends on everybody’s input.This is an archetypal
problem of Communication Complexity (CC) [29], which offers a way to estimate the number
of bits that need to be exchanged, under various settings, in order to achieve that goal. There
are many different CC models, depending whether the agents can speak directly between
them or through a referee, and whether they can use multiple rounds of communication or
just a single one. Communication complexity has found a variety of applications both in
networks and distributed computing but also in other areas of theoretical computer science,
including, circuit lower bounds, fomulae size, VLSI design, etc. All these communication

∗ Full version available at https://arxiv.org/abs/1609.07059.
† This work has been partially supported by the ERC project QCC and the French ANR Blanc project

RDAM.

EA
T

C
S

© Lucas Boczkowski, Iordanis Kerenidis, and Frédéric Magniez;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 130; pp. 130:1–130:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.130
https://arxiv.org/abs/1609.07059
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

130:2 Streaming Communication Protocols

models however have a feature in common. They assume the agents are computationally
unbounded and that the input is delivered all at once.

In a distributed context as that of sensor networks, not only are there several computing
agents, the input might not even be given all at once. The streaming model [1] has been
defined precisely to capture the fact that the input of an agent is so big it cannot be stored
or read several times. Instead it comes bit by bit. Some function of the stream needs to be
computed, but the available space is not big enough to store the entire input. The streaming
model has been extensively studied in recent years with a plethora of interesting upper and
lower bounds on the necessary memory to solve specific streaming problems [27]. More
recently, the turnstile model has received a lot of attention. In this model, streams are made
of both insertions and deletions, and the function to be computed depends on the remaining
elements (and eventually their respective frequencies). Indeed, any streaming algorithm in
this model can be turned into an algorithm based solely on the updates of linear sketches [25].

1.1 The Streaming Communication model.

We would like to combine the two above mentioned models to include both that inputs
are distributed among different agents and also are coming as streams at each agent. Each
agent is given a bounded memory to store what she sees. We refer to this extension as the
Streaming Communication (SC) model. Even though communication arguments have often
been invoked in proving lower bounds for regular streaming models, as in the seminal work of
[1, 3], this model has not been rigorously defined previously, in spite of its theoretical appeal
and relevance for actual communication networks. More formally, in the SC model consider
two agents, Alice and Bob, want to compute some function f that depends on inputs (x, y)
that are respectively distributed to each agent, x to Alice and y to Bob. Both inputs arrive
as data streams and each agent has a bounded memory of a given size S. Agents may or may
not speak every time they receive a bit. They can also update their memory based on the
previous bit they read, the previous message they received and of course the actual content
of their memory.

Additionally to the memory size S of Alice and Bob, the other relevant parameters we
consider are the number R of communication rounds and the number T of bits in the full
transcript (the concatenation of all messages). In the one-way SC model, there is only a
single message from Alice to Bob at the end of the streams. Observe that we do not bound
the size of each message, since we show that those can always be assumed to be of at most
S + 1 bits (Proposition 5).

1.2 Related models

Before we present our results in the streaming communication model, we review some related
works in the communication and streaming models. As explained previously, our goal is to
provide rigorous tradeoffs between the two resources: memory storage and communication
between the players, in a model where inputs are coming as streams.

The most relevant work is [15, 16]. There, two parties receive two streams and at the
end of the streams each party sends their workspace to a referee which uses both workspaces
to compute some function of the union of the two streams. In this model, we can also
see elements both from streaming algorithms and communication complexity, albeit of the
restricted form of simultaneous message passing. Here we provide a more general framework
for communication and we look at a much wider variety of problems and protocols.

L. Boczkowski, I. Kerenidis, and F. Magniez 130:3

One of the powerful and often used techniques in streaming algorithms is linear sketches,
which naturally provide very simple SC protocols even in the one-way setting, by just
combining the linear sketches at the end of the protocol. In fact, in the turnstile model, when
streams are made of sequences of insertions and deletions and the function to be computed
is a function of the remaining elements (and eventually their respective frequencies), any
streaming algorithm can be turned into an algorithm based solely on the updates of linear
sketches [25]. Hence, here we focus on other stream models, such as the one of insertion only,
which are more challenging in the context of SC protocols.

In the distributed streaming functional monitoring setup initially proposed by [11], k
servers receiving a stream have to allow a coordinator to continuously monitor a given
quantity (see also [10, 9, 13] for earlier works in the database community on the monitoring
topic). Several follow-up works studied this model (see e.g. [8, 26, 18, 12, 28]). These all focus
on communication and do not consider both resources, memory storage and communication
simultaneously. They can be viewed as extending [15, 16] with greater number of players.
The communication model however is still restricted to simultaneous messages to a referee.

Another line of work studies bounded-memory versions of communication [24, 5, 7].
Several models have been proposed that share the same structure. The input is given all
at once, but the players only have bounded space to store the conversation while further
restrictions can be placed on the algorithms used by the players, for example to be straight
line programs [24], or branching programs [5].

Last, [14] studies another model that deals with distributed parallel streaming platforms,
where now, the stream arrives in parallel and arbirtarily partitioned to a set of different
agents that communicate in order to solve the task.

1.3 Our results
As a first step, we restrict ourselves in this work to the 2-player case. Our first results,
detailed in Section 2.4, show connections between our new model and its two parent models,
Communication Complexity and Streaming. We show that the total transcript size T and
the product RS (number of rounds times memory size) are both lower bounded by the
communication complexity C(f) of the f we wish to compute, up to logarithmic factors
(Proposition 6). Those factors come from an inherent notion of clock in our SC model.

The comparison with streaming algorithms is more subtle. Since the i-th bit of Alice’s
input arrives at the same time as the i-th bit of Bob’s input, the correct comparison is with
a single streaming model where the stream is the one we get by interleaving Alice’s and
Bob’s stream. We denote by Sint(f) the memory required by a streaming algorithm for
computing a function f , when the two streams are interleaved in a single stream. We first
observe than interleaving streams instead of concatenating them can lead to an exponential
blow up (Theorem 8). Then we show that Sint(f) is a lower bound on twice the memory
size S of players (Proposition 9).

Then it is natural to ask if there is always a polynomial relation between, on one
hand, the parameters of a protocol in the SC model (S,R and T), and on the other hand,
the communication complexity C(f) (randomized or deterministic) of the function when
the input is all given in the beginning and the memory Sint(f) necessary in the single
stream model. We show that this is not true in general by providing an example for which
Sint(f) = C(f) = O(logn) but R · S = Ω(n), when S = Ω(logn) (Theorem 10). This
implies that the SC complexity of a function f may not be immediately derived neither by its
communication complexity nor by its streaming complexity. This is one of the main reasons
why our model is interesting and necessitates novel techniques for its study.

ICALP 2017

130:4 Streaming Communication Protocols

The first of our two main results is a general technique for proving tradeoffs between
memory and communication in our model. The smaller the memory, the more frequent
communication has to be. For instance, one expects that for functions whose communication
complexity is n, i.e. where all bits are necessary, players with a memory of size S have to
speak at least every S rounds (either deterministic or randomized), since if they remain silent
for more than S rounds, they start to lose information about their input. More precisely, any
function f that can be written as f(x, y) = G(g1(x1, y1), g2(x2, y2), . . . , gL(xL, yL)), where
G is a function satisfying some assumptions. Then, any randomized protocol computing
f must have R · S = Ω(

∑
`∈L C(g`)) (Theorem 13). We can apply our theorem to many

canonical communication functions, including IPn, DISJn or TRIBESn, and show that any
protocol satisfies R · S = Ω(n) (Theorem 14).

In Section 4, we study problems arising in the context of graph streaming. We work
in the insert only model, meaning that the graph is presented as a stream of its edges in
an arbitrary order. Indeed, as opposed to the turnstile model, where any algorithm can
be turned into a linear sketches based on [25], the situation is much more intriguing for
problems where linear sketches are not used. In particular, in the context of streaming
algorithms for graph problems, Approximate Matching has been extensively studied, and its
streaming complexity is still unknown. Given a stream of edges (in an arbitrary order) of an
n-vertex graph G and some space restriction, the goal is to output a collection of edges from
G forming a matching, as big as possible in G. The matching size estimation is a different
and somehow easier problem [21].

It is known that any streaming algorithm for Approximate Matching using Õ(n) memory
cannot achieve a ratio better than e

e−1 [20], whereas the best known algorithm is a simple
greedy algorithm which provides a 2-approximation. In the one-way CC model, without
memory constraints, it has been also showed that a 3

2 -approximation is the tight bound when
Alice’s message is restricted to Õ(n) bits [17]. Both these works use in a clever way the
so-called Ruzsa-Szemerédi graphs.

We study both the general SC model and its one-way variant. Our main bounds are
for the one-way variant, the weaker model combining the restrictions of both CC and
streaming models: we show a lower bound of e+1

e−1 ≈ 2.16 for the approximation factor unless
S = n1+Ω(1

log log n) (Corollary 17), which is strictly higher than both the single stream lower
bound of e

e−1 ≈ 1.58 with same space constraints and the one-way communication lower
bound of 1.5. We also provide a one-way SC protocol achieving an approximation ratio of
3 with the same space constraints (Theorem 16), thus leaving as an open question the
optimal approximation ratio. Moreover, we show that how often the players communicate
makes a big difference, namely we show how to implement the simple greedy algorithm when
Alice and Bob can communicate during the protocol that provides a ratio of 2, strictly better
than our lower bound for the one-way SC model.

Let us emphasize that all previous lower bounds, including the ones in the turnstile
models [2, 22], do not readily apply to the one-way SC model for the Approximate Matching
problem. However, our main lower bound in the one-way SC model uses as a black-box
the hard distributions of graph streams of [17, 20]. Therefore, further improvements in the
streaming context may lead to improvements in our model. Given a hard distribution µ of
graphs for the approximate matching for streaming algorithms, we show how to extend this
distribution to produce a hard distribution µ2 in our one-way SC model (Theorem 21).

L. Boczkowski, I. Kerenidis, and F. Magniez 130:5

2 The streaming communication model

We provide some background on communication complexity and streaming and then, we
define our model and describe some initial results.

2.1 Communication Complexity
We start by reviewing some results in the usual models of communication complexity (CC),
defined by Yao [29]. For more details about the communication complexity model, please
refer to [23]. In the communication complexity models, generically denoted by CC, players
aim at computing some function which depends on their disjoint inputs, by communicating.
Each player determines her message based on previous messages and her input. The goal is
to minimize the total length of the protocol transcript.

In the randomized case, we will allow the players to share public randomness. Allowing
for public randomness makes our lower bounds stronger, while the protocols we provide
will be deterministic. We will also consider the expected, rather than maximal, length of
transcripts and define the average randomized communication complexity of a function.

I Definition 1. For a given protocol Π, we denote by Π(x, y, r) the transcript with inputs
x, y and public randomness r. The worst case (resp. expected) communication complexity of
a function f with error ε is defined as Cε(f) = minΠ maxx,y maxr |Π(x, y, r)| and Cavgε (f) =
minΠ maxx,y Er(|Π(x, y, r)|), where the minimum is taken over protocols computing f with
error ε, and the expectation on the second line is with respect to the randomness r used in Π.

The following proposition relates the average and worst case randomized communication
complexities.

I Proposition 2 ([23]). For any ε, δ > 0, it holds that, δ · Cε+δ(f) ≤ Cavgε (f) ≤ Cε(f).

Some of the canonical functions studied in communication complexity are the equality
problem, denoted EQn where the players output 1 iff their inputs x, y ∈ {0, 1}n are equal,
the disjointness problem, denoted DISJn where the goal is to check whether the n-bit strings
interpreted as sets intersect or not, and the inner product problem IPn where the players
need to output the inner product of their inputs modulo 2.

The functions DISJn and IPn are “hard" functions for CC, in the sense that almost all
the input must be sent even when we allow for randomization, error and expected length.
The following two bounds, which we will need later, can be derived for example from [4],
where the notion of information cost is used.

I Theorem 3. Any protocol for DISJn or IPn with error 1/2 − ε has communication
complexity Ω(ε2n).

2.2 Streaming algorithms
In the streaming model, the input comes as a stream to an algorithm whose task is to
compute some function of the stream while using only a limited amount of memory and
making a single or a few passes through the input stream. See [27] for a general introduction
to the topic. If possible, the updates should also be fast. It was defined in the seminal
work of [1] where the authors provided upper and lower bounds for computing some stream
statistics. Since then, a plethora of results have appeared for computing statistics of the
stream, as well as for graph theoretic problems. For the graph problems, we will assume

ICALP 2017

130:6 Streaming Communication Protocols

that the graph is revealed to the algorithm as a stream, one edge at a time. In the more
recent turnstile model, streams are made of both insertions and deletions, and the goal is
to compute some function that depends only the remaining elements (and eventually their
respective frequencies). As we have said, any problem in the turnstile model can be solved
via linear sketches [25].

2.3 The new model of Streaming Communication protocols
We show how to extend the original model of communication complexity to account for
streaming inputs. In the Streaming Communication SC model we consider that the inputs
x, y are not given all at once to the two players Alice and Bob but rather come as a stream.
Moreover each player only has limited storage, S bits of memory. In the randomized case,
the players also have access to a shared random bit string r which may be infinite. They
may use as many coins as they like from these strings.

A protocol Π in the streaming communication model is specified by four functions
ΦA,ΦB ,ΨA,ΨB . Each time slot i is divided in two phases:
1. Each party receives a message from the other party (mB

i and mA
i resp.) and updates

their memory (that was in state σAi and σBi resp.) according to the function ΦA and ΦB
resp. This function also depends and the shared random string r, which is not restricted
in size.

2. Messages mA
i+1 and mB

i+1 are produced using the functions ΨA and ΨB resp., that depend
on the current memory states σAi+1 and σBi+1 resp., the newly read input bit, and the
randomness r. The messages might be empty and they could also be arbitrarily big in
principle, though we will see in Proposition 5 that their size can be assumed to be S + 1
without loss of generality.

σ
A/B
i+1 := ΦA/B(mB/A

i , σ
A/B
i , r) and mA/B

i+1 := ΨA/B(σA/Bi+1 , xi+1, r). Moreover, we assume
that the streams end with a special EOF symbol and that once the streams are finished, the
players only get one last round of communication, and then they have to output something.

I Definition 4 (SC protocols). An SC protocol Π uses S bits of memory, R rounds, and T
bits when
1. The memory size of each player is at most S bits;
2. The (expected) number of time slots where either mA

i 6= ∅ or mB
i 6= ∅ is at most R;

3. The (expected) size of all exchanged messages is at most T bits.
The expectation is over the randomness of the protocol and worst-case over the inputs. An
SC protocol is said to be one-way if there is a single message from Alice to Bob after the
streams have been received, and only Bob computes the function.

Note, that our model carries an implicit notion of time due to the players reading their
streams synchronously, and hence, the ability to send empty messages can be used to reduce
communication [19]. However the gain is only logarithmic in the number of available time
slots (see Section 2.4). We could have avoided such extra power, by defining a model where
agents know when they should speak or read a bit, based on the previous messages they
received and their memory content. Nevertheless, we opted for our model, as it is simpler to
state and the necessary resources do not change by more than a factor logarithmic in the
input size.

When we prove lower bounds or communication-memory tradeoffs, we do not consider
the complexity of ΦA/B . These functions could be of arbitrarily high complexity. To make
things simple, we assume they are the same functions for every round i ∈ [n], but they can

L. Boczkowski, I. Kerenidis, and F. Magniez 130:7

depend on n. This framework captures the streaming model as a special case, when the
output depends on the stream of Alice only.

2.4 Properties of the SC model
Several times in our proofs, we will consider an SC protocol and use it to solve problems in
the standard models of CC. It is convenient to have a bound on how big the messages mA/B

can be.
The length of the messages mA/B could be very big in the SC protocol, but we now show

that the SC protocol can be simulated replacing them by length S + 1 messages.

I Proposition 5. In the SC model, we may always assume that the size of the messages is
at most S + 1 bits, up to redefining the transition functions ΦA/B.

Proof. Consider a protocol Π with associated functions ΦA/B ,ΨA/B .
The players can exchange their S size memory and the last input symbol instead of the

actual messages. Hence, it is possible to redefine functions ΦA/B ,ΨA/B and directly assume
messages have length ≤ S + 1. The new equations with S + 1 bit messages would read
σ
A/B
i+1 := ΦA/B(ΨB/A(σB/Ai , yi, r), σA/Bi , r) and mA/B

i+1 := ΨA/B(σA/Bi+1 , xi+1, r). J

Any protocol in the SC model can be simulated with another protocol in the usual CC
model with a small overhead. Note that due to the implicit time in the SC model, we cannot
immediately conclude that the SC model is harder than the usual communication model.
Nevertheless, this time issue induces only an extra logarithmic factor.

I Proposition 6. We can simulate any protocol Π in the SC model with parameters S,R, T
with another protocol Π′ in the normal communication model such that its communication
cost C(Π′) is bounded as C(Π′) ≤ T (1 + 2 logn) and C(Π′) ≤ R(S + 2 logn+ 1).

We now compare the SC model to streaming algorithms, that is when there is a single
player and a single stream. There are various ways to combine streams x and y in a single
stream. Since xi is presented to Alice at the same time as yi to Bob, in a single player
model xi should be presented just before yi to the player. This explains why we consider the
interleaved streaming model.

I Definition 7. Let Sint(f) be the amount of memory required for a streaming algorithm to
compute f where the input stream is x, y interleaved, that is to say, x1, y1, x2, y2, . . . , xn, yn.

It turns out that interleaving streams instead of concatenating streams may affect the
memory requirement of the function for a standard streaming algorithm by an exponential
factor. A proof of the following result is provided in the full version of this paper.

I Theorem 8. There is a function f such that S int(f) = Ω(n), whereas there is a streaming
algorithm to compute f with memory O(logn) when streams are concatenated.

First let us observe that Sint(f) provides a lower bound in the SC model.

I Proposition 9. Let f be a function. Then, any protocol in the SC model for the function
f , where Alice and Bob use memories of size S, must have 2S ≥ Sint(f).

It is natural to ask if there is a polynomial relation bounding the parameters S,R, T of a
protocol in the SC model in terms of the streaming complexity Sint(f) and the communication
complexity C(f), at least when S = O(Sint(f)). This appears to not hold in general. The
following result is shown in the full version of the paper.

I Theorem 10. There exists a function f such that S int(f) = C(f) = O(logn) but any
protocol computing f in the SC model must have R · S = Ω(n). This holds for S = Ω(logn).

ICALP 2017

130:8 Streaming Communication Protocols

3 Communication primitives

We provide a general theorem that provides tight tradeoffs both in the deterministic and
randomized case for a variety of functions, including DISJn, IPn, TRIBESn.

3.1 A general lower bound
In this section we show a general result that gives a lower bound for a large class of functions.
We will obtain the lower bounds for the usual primitives DISJ, IP, TRIBES as a corollary.
We treat ε as a constant. The assumption we make is of a structural kind. Namely, as
explained in Definition 12 we assume the function to be computed can be written in a depth-2
fashion, as a composition of an outer function G with inner gadgets g`.

I Definition 11. We call a function G on L variables non trivial if the following holds. There
exists a word a ∈ {0, 1}L such that for all ` there exists a postfix b` ∈ {0, 1}L−`−1 such that
G(a≤`ub`) depends on the bit u. More formally G(a≤`0b`) 6= G(a≤`1b`).

This may look as a restrictive condition. In fact, most natural functions that depend on
every bit are "non trivial" in this sense. For the function

⊕
, a, b can be chosen arbitrarily.

The functions OR and AND are also non trivial. For instance for AND, a = b = 1L will do.
We borrow the next definition from [4] (extending it slightly).

I Definition 12 (Block-decomposable functions). Let I1, . . . , IL be an interval partition of
[n], which we refer to as blocks. For ` ∈ [L], let t` = |I`| be the length of I`. Given strings
x, y ∈ {0, 1}n, write x` (resp. y`) for the restriction of x (resp. y) to indices in block
I`. We say f : {0, 1}n × {0, 1}n → {0, 1} is G-decomposable with primitives (g`), where
G : {0, 1}L → {0, 1} and g` : {0, 1}t` × {0, 1}t` → {0, 1}, if for all inputs x, y we have
f(x, y) = G(g1(x1, y1), g2(x2, y2), . . . , gL(xL, yL)).

Assuming f is G-decomposable, our goal is to show lower bound the communication
needed to compute f in the SC model in terms of the communication complexity of each g`
and the available memory.

I Theorem 13. Assume the function f : {0, 1}n × {0, 1}n → {0, 1} is G-decomposable with
primitives (g`)`∈L, and that G is non-trivial. Let Cε+δ(g`) be the worst-case randomized
communication complexity of g` in the usual communication model. Then, any randomized
protocol computing f with error ε in the SC model with S bits of memory, R expected
communication rounds and T expected bits of total communication, must have

R ≥
∑
`≤L

δCε+δ(g`)− S
S + 2 log t` + 1 , T ≥

∑
`≤L

δCε+δ(g`)− S
1 + 2 log t`

.

We can get a similar bound in the deterministic case, where we use the deterministic commu-
nication complexity of the g`’s. Last, if G is

⊕
we may remove δ from the above bounds,

changing the complexities Cε+δ(g`) to Cavgε (g`).

3.2 Applications
Before proving Theorem 13, we give a few corollaries. Note that the upper bounds are
trivial. Remind the function TRIBES, which is an AND of Set Intersections is defined by
TRIBESn(x, y) := ANDi≤

√
n ◦ORj≤√n (xij

∧
yij).

L. Boczkowski, I. Kerenidis, and F. Magniez 130:9

I Theorem 14. Any randomized protocol in the SC model that computes the function
IPn, DISJn, or TRIBESn and uses S memory and R communication rounds must have
R · S = Ω(n).

Proof. We start with DISJn. We write DISJn(x, y) = AND
n/k
`=1

(
DISJ`(x`, y`)

)
, and use

the previous result with G = AND and g` = DISJk. It follows from Theorem 3 that
Rε+δ(DISJk) = Ω(k). We omit the dependency on ε and δ in the term Ω(), treating these
parameters as fixed constants. The number of rounds for any randomized protocol in the SC
model is at least

∑n
k

`=1
Ω(k)−S
S+2 log k . We get the result choosing k = Ω(S).

In the case of IPn, the function f = IPn is the composition of G =
⊕

over n
k coordinates

with g` = IP (for each ` ≤ n
k), over k coordinates. Theorem 3 gives Cavgε (g`) ≥ Ω(k).

Theorem 13 yields the bound, taking k = 10S. We omit the case of TRIBESn as it follows
from a similar argument. J

4 Approximate Matching in the Streaming Communication model

The main problem we consider is that of computing an approximate matching. The stream
corresponds to edges (in an arbitrary order) of a bipartite graph G = (P,Q,E) over vertex
set P,Q, and the algorithm has to output a collection of edges which forms a matching. All
edges in the output have to be in the original graph. In the vertex arrival setting, each vertex
from Q arrives together with all the edges it belongs to. Our goal is to understand what is
the best approximation ratio we can hope for, for a given memory (and message size).

We start by some notations. In a graph G = (P,Q,E), if U ⊆ P ∪Q and V ⊆ P ∪Q are
subsets of the vertices, we denote by E(U, V) ⊆ E the edges with endpoints in U and V . We
also denote by OPT (G) the maximum size of a matching in G.

Observe now that when communication can occur at any step, the greedy algorithm,
which is currently the best algorithm in the standard streaming model, can be implemented
easily by having Alice communicate to Bob every time she adds an edge to her matching.

I Proposition 15. The greedy algorithm, which achieves a 2-approximation, can be imple-
mented using n logn bits of communication and n rounds in the SC model.

Thus, we now focus on the one-way SC model, where the communication is restricted to
happen once the streams have been fully read. In this setting, we will get different lower and
upper bounds than in the streaming model. We start by a positive result.

I Theorem 16 (Greedy matchings). If Alice sends Bob a maximal matching of her graph,
then Bob can compute a 3-approximation. In particular a 3-approximation can be computed
in a deterministic one-way SC protocol using O(n logn) memory and message size.

Proof. Let G1, G2 be the respective graphs that Alice and Bob get, and let M1,M2 be their
respective computed maximal matchings. We show that there is a matching in M1 ∪M2 of
size at least |OPT (G)|/3.

The proof goes in two steps. Let ` be the size of V (M1 ∪M2). We prove first that there is
a matching of size ≥ `

3 in the graph M1 ∪M2, and then that the number of edges in OPT (G)
is at most `.

The first part is easy. Observe that M1 ∪M2 has maximal degree 2. Then there must be
a matching of size at least `/3 from Theorem 7 in [6].

For the second part, we construct an injection OPT (G) ↪→ V (M1 ∪ M2). Let e =
(u1, u2) ∈ OPT (G). Assume w.l.o.g. e ∈ G1. Then either u1 or u2 is matched in M1 (or
both), by maximality of M1. Map e to (one of) its matched endpoints in M1. J

ICALP 2017

130:10 Streaming Communication Protocols

P Q

sink

source

P0

Q0

W

W̄

Figure 1 The figure shows how the maxflow mincut theorem is used to argue about the size of a
matching in a bipartite graph G over vertex set P × Q drawn from a distribution µ. Only edges
from the cut are drawn. The source and sink are added for the sake of the argument, they are not
part of G.

Our lower bound is obtained using a black box reduction that we develop in the following
sections. It is a direct consequence of the combination of Theorem 21 and Theorem 19.

I Corollary 17 (A (e+ 1)/(e− 1) lower bound). Any protocol achieving a ratio of e+1
e−1 − η ≈

2.16−η, for some constant η, in the vertex arrival setting needs communication n1+Ω(1/ log logn)

where the hidden constant in the Ω(.) depends on η.

4.1 Hard distributions for streaming algorithms
Our notion of hard distribution is tailored to capture the distributions appearing in [17, 20].
They are distributions over streams of graphs, that is over graphs and edge orderings.

We will use the following definition for constructing families of hard distributions when
n→∞ and α, η are fixed. Therefore O() and o() notations have to be understood in that
context.

I Definition 18 (Hard distribution). A distribution µ over streams of bipartite graphs
G = (P,Q,E) is an (α, n,m(n), η)-hard distribution when P and Q are sets of size n and
the following holds
1. There is a cut W,W of vertices such that |W ∩Q|+ |W ∩ P | ≤ (1− α+ η)n.
2. There is a matching M of size (1− η)n in G that can be decomposed into M0 ∪M ′ such

that
(i) P0 := V (M0)∩ P and Q0 := V (M0)∩Q are of fixed size (in the support of µ) larger

than (α− η)n and smaller than αn; and
(ii) P0 ⊆W and Q0 ⊆W .

3. Every streaming algorithm Alg with o(m) bits of memory that outputs E∗ with E∗ ⊆ E
must satisfy |E∗ ∩ E((W ∩ P)× (W ∩Q))| = o(n) with probability 1− o(1).

In particular, a streaming algorithm with small memory can only maintain on hard dis-
tributions a small fraction of edges E((W ∩ P) × (W ∩ Q)) and therefore of M0. In
addition, observe that for every matching E∗ and cut (W,W) (see Figure 1) it holds that
|M | ≤ |W ∩Q|+ |W ∩ P |+ E((W ∩ P)× (W ∩Q)). Thus edges from E(W ∩ P ×W ∩Q)
are also crucial for obtaining a good matching.

The existence of hard distributions is ensured by [17, 20]. The hard distributions families
are not exactly presented as we present them here. The following Theorem follows from
results in [20] involving more parameters, for the purpose of the construction itself. We
disregard those since we use the existence of hard distribution families as a black box.

L. Boczkowski, I. Kerenidis, and F. Magniez 130:11

sink

source

τ(P0)

σ(P0)

σ(Q0)

τ(Q0)

W

W̄

P

Q

Figure 2 The construction of µ2.

I Theorem 19 ([20]). For all η > 0 and n, there is a (1/e, n,m(n), η)-hard distribution
µ over graphs of n vertices with m(n) = n1+Ω(1

log log n), where the notation Ω(.) hides a
dependency on η.

Sketch of Proof. Specifically, point (1) of our definition follows from [20, Lemma 13], point
(2) follows from [20, Claim 12], and point (3) follows from [20, Lemma 14]. J

4.2 Lifting hard distributions to streaming communication protocols
Let µ be an (α, n,m, η)-hard distribution for streaming algorithms. We will show how to
extend it to a distribution µ2 for the two party version of the approximate matching problem.
At a high level, we give the players two copies of the same graph G randomly chosen according
to µ, but embedded into two different but overlapping subsets of vertices (see Figure 2). The
non-overlapping parts correspond to edges from E(W ∩ P ×W ∩Q) (see Definition 18), and
are therefore hard to maintain, but necessary to setup a large matching.

From now on, identify P with the set [n]. Set β := 1 + α. Our labelings are defined over
vertex set P ′ ×Q′ := [βn]× [βn], and are encoded by injections from [n] to [βn] (where for
simplicity βn is understood as an integer).

Given a hard distribution µ, we define a distribution µ2 as follows.

I Definition 20 (The distribution µ2). Let µ be a hard distribution, where P and Q are
identified with [n]. Then sampling a bipartite graph over vertex set P ′ ×Q′ = [βn]× [βn]
from µ2 is defined as follows

Sample G ∼ µ. Let (W,W) and P0, Q0 be the corresponding cut and sets from Defini-
tion 18.
Sample σ, τ uniformly at random such that σ(P0) ∪ τ(P0) = ∅ = σ(Q0) ∪ τ(Q0) are
disjoint, and σ, τ are equal on P \ P0. Such injections σ, τ are called G-compatible.

In addition, define Gσ := (σ(P), σ(Q), Eσ), where Eσ = {(σ(u), σ(v)) | (u, v) ∈ E}, and Gτ
similarly. Alice is given Gσ and Bob is given Gτ with the same order as under µ.

In this construction, observe that edges sent to Alice and Bob may overlap. In fact the
distribution can be tweaked to make edges disjoint using a simple gadget, while preserving
the same lower bound (see the full version of this paper). We can now state our main result
for the reduction.

I Theorem 21 (Generic reduction). If there exists an (α, n,m, η)-hard distribution for ap-
proximate matching, then any protocol in the one-way SC model whose approximation ratio
is 1−α

1+α −O(η) has to use Ω(m) memory.

ICALP 2017

130:12 Streaming Communication Protocols

Proof. Define a cut for the two player instance as W ′ := σ(W)∪ τ(P0), W ′ := σ(W)∪ τ(Q0).
It follows from the max-flow min-cut argument that any matching E∗ has size at most
|E∗| ≤ |W ′ ∩Q′|+ |W ′ ∩ P ′|+ |E∗ ∩ E(W ′ ∩ P ′ ×W ′ ∩Q′)|.

Moreover note that by construction |W ′ ∩ Q′| = |σ(W) ∩ Q′|. Indeed τ(P0) ∩ Q′ = ∅.
Then we can write |σ(W) ∩Q′| = |W ∩Q| and similarly for |W ′ ∩ P ′| (see also Figure 2). It
follows that

|W ′ ∩Q′|+ |W ′ ∩ P ′| = |W ∩Q|+ |W ∩ P | ≤ (1− α+ η)n.

The set of edges the protocol outputs is included in E∗A ∪E∗B by definition. Under the
high probability event that these sets only have an overlap of o(n) with the “important edges”
E(W ′ ∩P ×W ′ ∩Q) (see Lemma 22 below) then, if E∗ is the output matching by a protocol
using o(m) memory, then using Lemma 22 the matching E∗ ⊆ E∗A ∪ E∗B is of size at most
(1− α+ η)n+ o(n) ≤ (1− α+ 2η)n (for large enough n).

On the other hand, there is a matching between σ(P) and σ(Q) of size (1 − η)n and
a matching of size (α− η)n between τ(P0) and τ(Q0) (using Point (2) in the definition of
a hard distribution for approximate matching, Definition 18). We identified σ(P) t τ(P0)
with [βn] and hence under µ2 there is a matching of size (α− η)n+ (1− η)n = βn− 2ηn.
This shows that the approximation ratio of a protocol using o(m) memory is smaller than
βn−2ηn

(1−α+2η) = 1+α
1−α −O(η). J

I Lemma 22. Let Alg be a protocol for the two party case, i.e. a pair of algorithms for
Alice and Bob Alg = (AlgA,AlgB). Let E∗A (resp. E∗B) denote the edges AlgA (resp. AlgB)
outputs, assuming only o(m) memory is used. With probability 1− o(1) over the choice of
σ, τ,G, or alternatively with probability 1− o(1) under µ2, it holds that

|E∗A∩E(W ′∩P ′×W ′∩Q′)| = o(n), and similarly |E∗B∩E(W ′∩P ′×W ′∩Q′)| = o(n).

Proof. The proof consists in building from AlgA, and similarly AlgB , a streaming algorithm
for µ. Indeed, for inputs over vertices [n] distributed according to µ, simply pick a random σ

apply it to the input, and run AlgA on the graph Gσ. Then output E∗0 := σ−1(E∗A).
First observe that the distribution of σ and the distribution of G are independent.

Therefore, conditioned on G, the injection σ is uniform. It follows that µ2’s first marginal is
also the distribution of Gσ, where G ∼ µ and σ is uniform and independent.

Then, using Definition 18, with probability 1 − o(1) over the choice of σ and G ∼ µ,
we obtain that |E∗A ∩ E(W ′ ∩ P ′ ×W ′ ∩ Q′)| = |E∗0 ∩ E(W ∩ P ×W ∩ Q)| = o(n), which
concludes the proof. J

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
2 Sepehr Assadi, Sanjeev Khanna, Yang Li, and Grigory Yaroslavtsev. Maximum matchings

in dynamic graph streams and the simultaneous communication model. In Proceedings of
the 27th ACM-SIAM Symposium on Discrete Algorithms, pages 1345–1364, 2016.

3 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication com-
plexity theory. In Proceedings of the 27th IEEE Foundations of Computer Science, pages
337–347, 1986.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. Journal of Computer and System
Sciences, 68(4):702–732, 2004.

L. Boczkowski, I. Kerenidis, and F. Magniez 130:13

5 Paul Beame, Martin Tompa, and Peiyuan Yan. Communication-space tradeoffs for unres-
tricted protocols. In Proceedings of 31st Foundations of Computer Science, pages 420–428,
1990.

6 Therese C. Biedl, Erik D. Demaine, Christian A. Duncan, Rudolf Fleischer, and Stephen G.
Kobourov. Tight bounds on maximal and maximum matchings. Discrete Mathematics,
285(1-3):7–15, 2004.

7 Joshua E. Brody, Shiteng Chen, Periklis A. Papakonstantinou, Hao Song, and Xiaoming
Sun. Space-bounded communication complexity. In Proceedings of the 4th Innovations in
Theoretical Computer Science, pages 159–172, 2013.

8 Ho-Leung Chan, Tak-Wah Lam, Lap-Kei Lee, and Hing-Fung Ting. Continuous monitoring
of distributed data streams over a time-based sliding window. Algorithmica, 62(3):1088–
1111, 2011.

9 Graham Cormode and Minos N. Garofalakis. Sketching streams through the net: Distrib-
uted approximate query tracking. In International Conference on Very Large Data Bases,
pages 13–24, 2005.

10 Graham Cormode, Minos N. Garofalakis, S. Muthukrishnan, and Rajeev Rastogi. Holistic
aggregates in a networked world: Distributed tracking of approximate quantiles. In Special
Interest Group on Management of Data, pages 25–36, 2005.

11 Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. In Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms,
pages 1076–1085, 2008.

12 Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Continuous sampling from
distributed streams. J. ACM, 59(2):10:1–10:25, 2012.

13 Graham Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed,
continuous monitoring of duplicate-resilient aggregates on data streams. In Proceedings of
the 22nd International Conference on Data Engineering, page 57, 2006.

14 Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Clifford Stein, and Zoya Svitk-
ina. On the complexity of processing massive, unordered, distributed data. CoRR, ab-
s/cs/0611108, 2006.

15 Phillip B. Gibbons and Srikanta Tirthapura. Estimating simple functions on the union
of data streams. In Proceedings of the 13th ACM Symposium on Parallel Algorithms and
Architectures, pages 281–291, 2001.

16 Phillip B. Gibbons and Srikanta Tirthapura. Distributed streams algorithms for sliding
windows. In Proceedings of the 14th ACM Symposium on Parallel Algorithms and Archi-
tectures, pages 63–72, 2002.

17 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and stream-
ing complexity of maximum bipartite matching. In Proceedings of the 23d ACM-SIAM
Symposium on Discrete Algorithms, pages 468–485, 2012.

18 Zengfeng Huang, Ke Yi, and Qin Zhang. Randomized algorithms for tracking distributed
count, frequencies, and ranks. In Proceedings of the 31st Symposium on Principles of
Database Systems, pages 295–306, 2012.

19 Russell Impagliazzo and Ryan Williams. Communication complexity with synchronized
clocks. In Proceedings of the 25th IEEE Conference on Computational Complexity, pages
259–269, 2010.

20 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the 24th ACM-SIAM Symposium on Discrete Algorithms, pages 1679–1697, 2013.

21 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 734–751, 2014. doi:10.1137/1.9781611973402.55.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611973402.55

130:14 Streaming Communication Protocols

22 Christian Konrad. Maximum matching in turnstile streams. In Proceedings of 23rd
European Symposium on Algorithms, pages 840–852, 2015.

23 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University
Press, New York, NY, USA, 1997.

24 Tak Wah Lam, Prasoon Tiwari, and Martin Tompa. Trade-offs between communication
and space. Journal of Computer and System Sciences, 45(3):296–315, 1992.

25 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as well
be linear sketches. In Proceedings of the 46th ACM Symposium on Theory of Computing,
pages 174–183, 2014.

26 Zhenming Liu, Bozidar Radunovic, and Milan Vojnovic. Continuous distributed counting
for non-monotonic streams. In Proceedings of the 31st ACM Symposium on Principles of
Database Systems, pages 307–318, 2012.

27 S. Muthukrishnan. Data streams: Algorithms and applications. Foundations and Trends
in Theoretical Computer Science, 2(1):117–236, 2005.

28 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
Proceedings of the 44th ACM Symposium on Theory of Computing, pages 941–960, 2012.

29 Andrew Chi-Chih Yao. Some complexity questions related to distributive computing. In
Proceedings of the 11th ACM Symposium on Theory of Computing, pages 209–213, 1979.

	Introduction
	The Streaming Communication model.
	Related models
	Our results

	The streaming communication model
	Communication Complexity
	Streaming algorithms
	The new model of Streaming Communication protocols
	Properties of the SC model

	Communication primitives
	A general lower bound
	Applications

	Approximate Matching in the Streaming Communication model
	Hard distributions for streaming algorithms
	Lifting hard distributions to streaming communication protocols

