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Abstract
We consider the following generalization of the binary search problem. A search strategy is
required to locate an unknown target node t in a given tree T . Upon querying a node v of
the tree, the strategy receives as a reply an indication of the connected component of T \ {v}
containing the target t. The cost of querying each node is given by a known non-negative weight
function, and the considered objective is to minimize the total query cost for a worst-case choice
of the target. Designing an optimal strategy for a weighted tree search instance is known to
be strongly NP-hard, in contrast to the unweighted variant of the problem which can be solved
optimally in linear time. Here, we show that weighted tree search admits a quasi-polynomial
time approximation scheme (QPTAS): for any 0 < ε < 1, there exists a (1 + ε)-approximation
strategy with a computation time of nO(logn/ε2). Thus, the problem is not APX-hard, unless
NP ⊆ DTIME(nO(logn)). By applying a generic reduction, we obtain as a corollary that the
studied problem admits a polynomial-time O(

√
logn)-approximation. This improves previous

Õ(logn)-approximation approaches, where the Õ-notation disregards O(poly log logn)-factors.
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1 Introduction

In this work we consider a generalization of the fundamental problem of searching for an
element in a sorted array. This problem can be seen, using graph-theoretic terms, as a
problem of searching for a target node in a path, where each query reveals on which ‘side’
of the queried node the target node lies. The generalization we study is two-fold: a more
general structure of a tree is considered and we assume non-uniform query times. Thus,
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84:2 Approximation Strategies for Generalized Binary Search in Weighted Trees

Table 1 Computational complexity of the search problem in different graph classes, including
our results for weighted trees. Completeness results refer to the decision version of the problem. In
the case of unweighted paths, the solution is the classical binary search algorithm.

Graph class Unweighted Weighted

Paths: exact in O(n) time exact in O(n2) time [4]

Trees: exact in O(n) time [26, 28]

strongly NP-complete [9]

(1 + ε)-approx. in nO(log n/ε) time (Thm. 3.3)

O(
√

log n)-approx. in poly-time (Thm. 3.4)

Undirected:
exact in nO(log n) time [10] PSPACE-complete [10]

O(log n)-approx. in poly-time [10] O(log n)-approx. in poly-time [10]

Directed: PSPACE-complete [10] PSPACE-complete [10]

our problem can be stated as follows. Given a node-weighted input tree T (in which the
query time of a node is provided as its weight), design a search strategy (sometimes called
a decision tree) that locates a hidden target node x by asking queries. Each query selects
a node v in T and after the time that equals the weight of the selected node, a reply is
given: the reply is either ‘yes’ which implies that v is the target node and thus the search
terminates, or it is ‘no’ in which case the search strategy receives the edge outgoing from v

that belongs to the shortest path between u and v. The goal is to design a search strategy
that locates the target node and minimizes the search time in the worst case.

The vertex search problem is more general than its ‘edge variant’ that has been more
extensively studied. In the latter problem one selects an edge e of an edge-weighted tree
T = (V,E,w) in a query and learns in which of the two components of T − e the target node
is located. Indeed, this edge variant can be reduced to our problem as follows: first assign a
‘large’ weight to each node of T (for example, one plus the sum of the weights of all edges in
the graph) and then subdivide each edge e of T giving to the new node the weight of the
original edge, w(e). It is apparent that an optimal search strategy for the new node-weighted
tree should never query the nodes with large weights, thus immediately providing a search
strategy for the edge variant of T .

We also point out that the considered problem, as well as the edge variant, being quite
fundamental, were historically introduced several times under different names: minimum
height elimination trees [27], ordered colourings [15], node and edge rankings [13], tree-depth
[25] or LIFO-search [11]. Table 1 summarizes the complexity status of the node-query model
and places our result in the general context.

1.1 State-of-the-Art
In this work we focus on the worst case search time for a given input graph and we only
remark that other optimization criteria has been also considered [3, 16, 17, 30]. For other
closely related models and corresponding results see e.g. [1, 12, 19, 21, 29].

The node-query model. An optimal search strategy can be computed in linear-time for an
unweighted tree [26, 28]. The number of queries performed in the worst case may vary from
being constant (for a star one query is enough) to being at most log2 n for any tree [26] (by
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always querying a node that halves the search space). Several following results have been
obtained in [10]. First, it turns out that log2 n queries are always sufficient for general simple
graphs and this implies a O(mlog2 nn2 logn)-time optimal algorithm for arbitrary unweighted
graphs. The algorithm which performs log2 n queries also serves as a O(logn)-approximation
algorithm, also for the weighted version of the problem. On the other hand, it is shown
in the same work that an optimal algorithm (for unweighted case) with a running time
of O(no(logn)) would be in contradiction with the Exponential-Time-Hypothesis. When
weighted graphs are considered, the problem becomes PSPACE-complete.

The edge-query model. In the case of unweighted trees, an optimal search strategy can
be computed in linear time [20, 24]. (See [7] for a correspondence between edge rankings
and the searching problem.) The computational complexity of the problem on weighted
trees attracted a lot of attention. On the negative side, it has been proved that it is strongly
NP-hard to compute an optimal search strategy [6] for bounded diameter trees, which has
been improved by showing hardness for several specific topologies: trees of diameter at most
6, trees of degree at most 3 [4] and spiders [5] (trees having at most one node of degree
greater than two). On the other hand, polynomial-time algorithms exist for weighted trees
of diameter at most 5 and weighted paths [4]. We note that for weighted paths there exists
a linear-time but approximate solution given in [16]. For approximate polynomial-time
solutions, a simple O(logn)-approximation has been given in [6] and a O(logn/ log log logn)-
approximate solution is given in [4]. Then, the best known approximation ratio has been
further improved to O(logn/ log logn) in [5].

Some bounds on the number of queries for unweighted trees have been developed. Observe
that an optimal search strategy needs to perform at least log2 n queries in the worst case.
However, there exist trees of maximum degree ∆ that require ∆ log∆+1 n queries [2]. On
the other hand, Θ(∆ logn) queries are always sufficient for each tree [2], which has been
improved to (∆ + 1) log∆ n [18], ∆ log∆ n [8] and 1 + ∆−1

log2(∆+1)−1 log2 n [10].

1.2 Organization of the Paper
The aim of Section 2 is to give the necessary notation and a formal statement of the problem
(Sections 2.1 and 2.2) and to provide two different but equivalent problem formulations that
will be more convenient for our analysis. As opposed to the classical problem formulation in
which a strategy is seen as a decision tree, Section 2.3 restates the problem in such a way
that with each vertex v of the input tree we associate a sequence of vertices that need to be
iteratively queried when v is the root of the current subtree that contains the target node.
In Section 2.4 we extend this approach by associating with each vertex a sequence of not
only vertices to be queried but also time points of the queries.

The latter problem formulation is suitable for a dynamic programming algorithm provided
in Section 3.1. In this section we introduce an auxiliary, slightly modified measure of the cost
of a search strategy. First we provide a quasi-polynomial time dynamic programming scheme
that provides an arbitrarily good approximation of the output search strategy with respect
to this modified cost (the analysis is deferred to Section 4), and then we prove that the new
measure is sufficiently close to the original one (the analysis is deferred to Section 5). These
two facts provide the quasi-polynomial time scheme for the tree search problem, achieving a
(1 + ε)-approximation with a computation time of nO(logn/ε2), for any 0 < ε < 1.

In Section 3.2 we observe how to use the above algorithm to derive a polynomial-time
O(
√

logn)-approximation algorithm for the tree search problem. This is done by a divide
and conquer approach: a sufficiently small subtree T ∗ of the input tree T is first computed

ICALP 2017



84:4 Approximation Strategies for Generalized Binary Search in Weighted Trees

so that the quasi-polynomial time algorithm runs in polynomial (in the size of T ) time for
T ∗. This decomposes the problem: having a search strategy for T ∗, the search strategies for
T − T ∗ are computed recursively.

2 Preliminaries

2.1 Notation and Query Model
We now recall the problem of searching of an unknown target node x by performing queries
on the vertices of a given node-weighted rooted tree T = (V,E,w) with weight function
w : V → R+. Each query selects one vertex v of T and after w(v) time units receives an
answer: either the query returns true, meaning that x = v, or it returns a neighbor u of
v which lies closer to the target x than v. Since we assume that the queried graph T is a
tree, such a neighbor u is unique and is equivalently described as the unique neighbor of v
belonging to the same connected component of T \ {v} as x.

All trees we consider are rooted. Given a tree T , the root is denoted by r(T ). For a node
v ∈ V , we denote by Tv the subtree of T rooted at v. For any subset V ′ ⊆ V (respectively,
E′ ⊆ E) we denote by T [V ′] (resp., T [E′]) the minimal subtree of T containing all nodes
from V ′ (resp., all edges from E′). For v ∈ V , N(v) is the set of neighbors of v in T .

For U ⊆ V and a target node x /∈ U , there exists a unique maximal subtree of T \U that
contains x; we will denote this subtree by T 〈U, x〉.

We denote |V | = n. We will assume w.l.o.g. that the maximum weight of a vertex is
normalized to 1. (This normalization is immediately obtained by a proportional scaling of all
units of cost.) We will also assume w.l.o.g. that the weight function satisfies the following star
condition: for all v ∈ V , w(v) ≤

∑
u∈N(v) w(u). Observe that if this condition is not fulfilled,

i.e., for some vertex v will have w(v) >
∑
u∈N(v) w(u), then vertex v will never be queried by

any optimal strategy in v, since a query to v can then be replaced by a sequence of queries to
all neighbors of v, obtaining not less information at strictly smaller cost. In general, given an
instance which does not satisfy the star condition, we enforce it by performing all necessary
weight replacements w(v)← min{w(v),

∑
u∈N(v) w(u)}, for v ∈ V . Replacements terminate

definitely since no vertex will be replaced more than once.
For a, ω ∈ R≥0, we denote the rounding of a down (up) to the nearest multiple of ω as

bacω = ωba/ωc and daeω = ωda/ωe, respectively.

2.2 Definition of a Search Strategy
A search strategy A for a rooted tree T = (V,E,w) is an adaptive algorithm which defines
successive queries to the tree, based on responses to previous queries, with the objective of
locating the target vertex in a finite number of steps. Note that search strategies can be
seen as decision trees in which each node represents a subset of vertices of T that contains x,
with leaves representing singletons consisting of x.

Let QA(T, x) be the time-ordering (sequence) of queries performed by strategy A on tree
T to find a target vertex x, with QA,i(T, x) denoting the i-th queried vertex in this time
ordering, 1 ≤ i ≤ |QA(T, x)|.

We denote by COSTA(T, x) =
∑|QA(T,x)|
i=1 w(QA,i(T, x)) the sum of weights of all vertices

queried by A with x being the target node, i.e., the time after which A finishes. Let
COSTA(T ) = maxx∈V COSTA(T, x) be the cost of A. We define the cost of T to be OPT(T ) =
min{COSTA(T )

∣∣ A is a search strategy for T}. We say that a search strategy is optimal for
T if its cost equals OPT(T ).
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Algorithm 2.1 Search strategy AS for a query sequence assignment S.
1: v ← r(T ) // stores current root
2: U ← ∅
3: while |T 〈U, x〉| > 1 do
4: for u ∈ S(v) do
5: if u ∈ T 〈U, x〉 then // u is the first vertex in S(v) that belongs to T 〈U, x〉
6: QueryVertex(u)
7: U ← U ∪ {u}
8: if v 6= r(T 〈U, x〉) then // query reply is ‘down’
9: v ← r(T 〈U, x〉)
10: break // for loop

As a consequence of normalization and the star condition, we have the following bound.

I Observation 2.1. For any tree T , we have 1 ≤ OPT(T ) ≤ dlog2 ne.

All omitted proofs are provided in the full version.
We also introduce the following notation. If the first |U | queried vertices by a search

strategy A are exactly the vertices in U , U = {QA,i(T, x) : 1 ≤ i ≤ |U |}, then we say that A
reaches T 〈U, x〉 through U , and w(U) is the cost of reaching T 〈U, x〉 by A. We also say that
we receive an ‘up’ reply to a query to a vertex v if the root of the tree remaining to be searched
remains unchanged by the query, i.e., r(T 〈U, x〉) = r(T 〈U ∪ {v}, x〉), and we call the reply a
‘down’ reply when the root of the remaining tree changes, i.e., r(T 〈U, x〉) 6= r(T 〈U ∪ {v}, x〉).

2.3 Query Sequences and Stable Strategies
By a slight abuse of notation, we will call a search strategy polynomial-time if it can be
implemented using a dynamic (adaptive) algorithm which computes the next queried vertex
in polynomial time.

We give most of our attention herein to search strategies in trees which admit a natural
(non-adaptive, polynomial-space) representation called a query sequence assignment. Formally,
for a rooted tree T , the query sequence assignment S is a function S : V → V ∗, which assigns
to each vertex v ∈ V an ordered sequence of vertices S(v), known as the query sequence of v.
The query sequence assignment directly induces a strategy AS , presented as Algorithm 2.1.
Intuitively, the strategy processes successive queries from the sequence S(v), where v is the
root vertex of the current search tree, v = r(T 〈U, x〉), where U is the set of queries performed
so far. This processing is performed in such a way that the strategy iteratively takes the first
vertex in S(v) that belongs to T 〈U, x〉 and queries it. As soon as the root of the search tree
changes, the procedure starts processing queries from the sequence of the new root, which
belong to the remaining search tree. The procedure terminates as soon as T 〈U, x〉 has been
reduced to a single vertex, which is necessarily the target x.

In what follows, in order to show that our approximation strategies are polynomial-
time, we will confine ourselves to presenting a polynomial-time algorithm which outputs an
appropriate sequence assignment.

A sequence assignment is called stable if the replacement of line 9 in Algorithm 2.1 by any
assignment of the form v ← v′′, where v′′ is an arbitrary vertex which is promised to lie on
the path from r(T 〈U, x〉) to the target x, always results in a strategy which performs a (not
necessarily strict) subsequence of the sequence of queries performed by the original strategy
AS . Sequence assignments computed on trees with a bottom-up approach usually have the
stability property; we provide a proof of stability for one of our main routines in Section 4.

ICALP 2017
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Without loss of generality, we will also assume that if v ∈ S(v), then v is the last element
of S(v). Indeed, when considering a subtree rooted at v, after a query to v, if v was not the
target, then the root of the considered subtree will change to one of the children of v, hence
any subsequent elements of S(v) may be removed without changing the strategy.

2.4 Strategies Based on Consistent Schedules
Intuitively, we may represent search strategies by a schedule consisting of some number of
jobs, with each job being associated to querying a node in the tree (cf. e.g. [14, 22, 23]). Each
job has a fixed processing time, which is set to the weight of a node. Formally, in this work
we will refer to the schedule Ŝ only in the very precise context of search strategies AS based
on some query sequence assignment S. The schedule assignment Ŝ is the following extension
of the sequence assignment S, which additionally encodes the starting time of any search
query job. If the query sequence S of a node v is of the form S(v) = (v1, . . . , vk), k = |S(v)|,
then the corresponding schedule for v will be given as Ŝ(v) = ((v1, t1), . . . , (vk, tk)), with
ti ∈ R≥0 denoting the starting time of the query for vi. We will call Ŝ(v) the schedule of
node v. We will call a schedule assignment Ŝ consistent with respect to search in a given
tree T if the following conditions are fulfilled:
(i) No two jobs in the schedule of a node overlap: for all v ∈ V , for two distinct jobs

(u1, t1), (u2, t2) ∈ Ŝ(v), we have |[t1, t1 + w(u1)] ∩ [t2, t2 + w(u2)]| = 0.
(ii) If v is the parent of v′ in T and (u, t) ∈ Ŝ(v′), then we either also have (u, t) ∈ Ŝ(v), or

the job (v, tv) ∈ Ŝ(v) completes before the start of job (u, t): tv + w(v) ≤ t.
It follows directly from the definition that a consistent schedule assignment (and the underlying
query sequence assignment) is uniquely determined by the collection of jobs {(v, tv) : (v, tv) ∈
Ŝ(u), u ∈ V }. Note that not every vertex has to contain a query to itself in its schedule; we
will occasionally write tv =⊥ to denote that such a job is missing.

By extension of notation for sequence assignments, we will denote a strategy following a
consistent schedule assignment Ŝ (i.e., executing the query jobs of schedule Ŝ at the prescribed
times) as AŜ . We will then have: COSTAŜ

(T ) = |Ŝ|, where |Ŝ| is the duration of schedule
assignment Ŝ, given as: |Ŝ| = maxv∈V |Ŝ(v)|, with: |Ŝ(v)| = max(u,t)∈Ŝ(v)(t+ w(u)).

We remark that there always exists an optimal search strategy which is based on a
consistent schedule. By a well-known characterization (cf. e.g. [6]), tree T satisfies OPT(T ) =
τ ∈ R if and only if there exists an assignment I : V → Iτ of intervals of time to nodes before
deadline τ , Iτ = {[a, b] : 0 ≤ a < b ≤ τ}, such that |I(v)| = w(v) and if |I(u) ∩ I(v)| > 0
for any pair of nodes u, v ∈ V , then the u − v path in T contains a separating vertex z
such that max I(z) ≤ min(I(u) ∪ I(v)). The corresponding schedule assignment of duration
τ is obtained by adding, for each node u ∈ V , the job (u,min I(u)) to the schedule of all
nodes on the path from u towards the root, until a node v such that max I(v) ≤ min I(u)
is encountered on this path. The consistency and correctness of the obtained schedule is
immediate to verify.

I Observation 2.2. For any tree T , there exists a query sequence assignment S and a
corresponding consistent schedule Ŝ on T such that |Ŝ| = OPT(T ).

3 The Results

3.1 (1 + ε)-Approximation in nO(log n/ε2) Time
We first present an approximation scheme for the weighted tree search problem with nO(logn)

running time. The main difficulty consists in obtaining a constant approximation ratio for
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the problem with this running time; we at once present this approximation scheme with
tuned parameters, so as to achieve (1 + ε)-approximation in nO(logn/ε2) time.

Our construction consists of two main building blocks. First, we design an algorithm
based on a bottom-up (dynamic programming) approach, which considers exhaustively
feasible sequence assignments and query schedules over a carefully restricted state space
of size nO(logn) for each node. The output of the algorithm provides us both with a lower
bound on OPT(T ), and with a sequence assignment-based strategy AS for solving the tree
search problem. The performance of this strategy AS is closely linked to the performance
of OPT(T ), however, there is one type of query, namely a query on a vertex of small weight
leading to a ‘down’ response, due to whose repeated occurrence the eventual cost difference
between COSTAS

(T ) and OPT(T ) may eventually become arbitrarily large. To alleviate this
difficulty, we introduce an alternative measure of cost which compensates for the appearance
of the disadvantageous type of query.

We start by introducing some additional notation. Let ω ∈ R+, be an arbitrarily
fixed value of weight and let c ∈ N. The choice of constant c ∈ N will correspond to an
approximation ratio of (1 + ε) of the designed scheme for ε = 168/c.

We say that a query to a vertex v is a light down query in some strategy if w(v) < cω

and x ∈ V (Tv), i.e., it is also a ‘down’ query, where x is the target vertex.
For any strategy A, we denote by COST(ω,c)

A (T, x) its modified cost of finding target x,
defined as follows. Let dx be the number of light down queries when searching for x: dx =∣∣∣{i : w(QA,i(T, x)) < cω and x ∈ V (TQA,i(T,x))}

∣∣∣ . Then, the modified cost COST(ω,c)
A (T, x) is:

COST(ω,c)
A (T, x) = COSTA(T, x)− (2c+ 1)ωdx. (1)

and by a natural extension of notation: COST(ω,c)
A (T ) = maxx∈V COST(ω,c)

A (T, x).
The technical result which we will obtain in Section 4 may now be stated as follows.

I Proposition 3.1. For any c ∈ N, L ∈ N, there exists an algorithm running in time (cn)O(L),
which for any tree T constructs a stable sequence assignment S and computes a value of ω
such that ω ≤ 1

LCOST(ω,c)
AS

(T ) and: COST(ω,c)
AS

(T ) ≤
(
1 + 12

c

)
OPT(T ).

In order to convert the obtained strategy AS with a small value of COST(ω,c) into a strategy
with small COST, we describe in Section 5 an appropriate strategy conversion mechanism.
The approach we adopt is applicable to any strategy based on a stable sequence assignment
and consists in concatenating, for each vertex v ∈ V , a prefix to the query sequence S(v)
in the form of a separately computed sequence R(v), which does not depend on S(v). The
considered query sequences are thus of the form R(v) ◦S(v), where the symbol “◦” represents
sequence concatenation. Intuitively, the sequences R, taken over the whole tree, reflect the
structure of a specific solution to the unweighted tree search problem on a contraction of tree
T , in which each edge connecting a node to a child with weight at least cω is contracted. We
recall that the optimal number of queries to reach a target in an unweighted tree is O(logn),
and the goal of this conversion is to reduce the number of light down queries in the combined
strategy to at most O(logn).

I Proposition 3.2. For any fixed ω > 0 there exists a polynomial-time algorithm which for a
tree T computes a sequence assignment R : V → V ∗, such that, for any strategy AS based on
a stable sequence assignment S, the sequence assignment S+, given by S+(v) = R(v) ◦ S(v)
for each v ∈ V , has the following property:

COSTAS+ (T ) ≤ COST(ω,c)
AS

(T ) + 4(2c+ 1)ω log2 n.

ICALP 2017
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The proof of Proposition 3.2 is provided in Section 5.
We are now ready to put together the two bounds. Combining the claims of Proposition 3.1

for L = dc2 log2 ne (with ω ≤ 1
LCOST(ω,c)

AS
(T ) ≤

COST(ω,c)
AS

(T )
c2 log2 n

) and Proposition 3.2, we obtain:

COSTAS+ (T ) ≤ COST(ω,c)
AS

(T ) + 4(2c+ 1)ω log2 n ≤ COST(ω,c)
AS

(T ) + 12cω log2 n ≤

≤ COST(ω,c)
AS

(T ) + 12c log2 n
COST(ω,c)

AS
(T )

c2 log2 n
≤
(

1 + 12
c

)
COST(ω,c)

AS
(T ) ≤

≤
(

1 + 12
c

)2
OPT(T ) ≤

(
1 + 168

c

)
OPT(T ).

After putting ε = 168
c and noting that in stating our result we can safely assume

c = O(poly(n)) (beyond this, the tree search problem can be trivially solved optimally in
O(nn) time using exhaustive search), we obtain the main theorem of the section.

I Theorem 3.3. There exists an algorithm running in nO( log n

ε2 ) time, providing a (1 + ε)-
approximation solution to the weighted tree search problem for any 0 < ε < 1.

3.2 Extension: A Poly-Time O(
√

log n)-Approximation Algorithm
We now present the second main result of this work. By recursively applying the previously
designed QPTAS (Theorem 3.3) with ε = 1, we obtain a polynomial-time O(

√
logn)-

approximation algorithm for finding search strategy for an arbitrary weighted tree. We start
by informally sketching the algorithm – we follow here the general outline of the idea from [5].
The algorithm is recursive and starts by finding a minimal subtree T ∗ of an input tree whose
removal disconnects T into subtrees, each of size bounded by n/2

√
logn. The tree T ∗ will be

processed by our QPTAS algorithm described in Section 3.1. This results either in locating
the target node, if it belongs to T ∗, or identifying the component of T − T ∗ containing the
target, in which case the search continues recursively in the component. Subtrees considered
at each level of recursion are disjoint, thus factors of approximation add up over recursion
levels. However, for the final algorithm to have polynomial running time, the tree T ∗ needs
to be of size 2O(

√
logn). This is obtained by contracting paths in T ∗ (each vertex of the path

has at most two neighbors in T ∗) into single nodes having appropriately chosen weights.
Since T ∗ has 2O(

√
logn) leaves, this narrows down the size of T ∗ to the required level and we

argue that an optimal search strategy for the ‘contracted’ T ∗ provides a search strategy for
the original T ∗ that is within a constant factor from the cost of T ∗.

A formal exposition and analysis of the obtained algorithm is provided in the full version.

I Theorem 3.4. There is a O(
√

logn)-approximation polynomial time algorithm for the
weighted tree search problem.

4 Quasi-Polynomial Computation of Strategies with Small COST(ω,c)

4.1 Preprocessing: Time Alignment in Schedules
We adopt here a method similar but arguably more refined than rounding techniques in
scheduling problems of combinatorial optimization, showing that we could discretize the
starting and finishing time of jobs, as well as weights of vertices, in a way to restrict the size
of state space for each node to nO(logn), without introducing much error.
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Fix c ∈ N and ω = a
cn for some a ∈ N. (In subsequent considerations, we will have

c = Θ(1/ε), a = O( n
logn ) and ω = Ω(ε/ logn).) Given a tree T = (V,E,w), let T ′ = (V,E,w′)

be a tree with the same topology as T but with weights rounded up as follows:

w′(v) =
{
dw(v)eω, if w(v) > cω,

dw(v)e 1
cn
, otherwise.

(2)

We will informally refer to vertices with w(v) > cω (equivalently w′(v) > cω) as heavy
vertices and vertices with w(v) ≤ cω (equivalently w′(v) ≤ cω) as light vertices. (Note that
w(v) ≤ cω if and only if w′(v) ≤ cω.)

When designing schedules, we consider time divided into boxes of duration ω, with the
i-th box equal to [iω, (i+ 1)ω]. Each box is divided into a identical slots of length 1

cn .
In the tree T ′, the duration of a query to a heavy vertex is an integer number of boxes,

and the duration of a query to a light vertex is an integer number of slots. We next show
that, without affecting significantly the approximation ratio of the strategy, we can align
each query to a heavy vertex in the schedule so that it occupies an interval of full adjacent
boxes, and each query to a light vertex in the schedule so that it occupies an interval of full
adjacent slots (possibly contained in more than one box).

We start by showing the relationship between the costs of optimal solutions for trees T
and T ′.

I Lemma 4.1. OPT(T ) ≤ OPT(T ′) ≤ (1 + 2
c )OPT(T ).

I Lemma 4.2. There exists a consistent schedule assignment Ŝ for tree T ′ such that
COSTAŜ

(T ′) ≤ (1 + 3
c )OPT(T ′) and for all v ∈ V we have that

if w′(v) > cω, (v is heavy), then the starting time t of any job (v, t) in the schedule Ŝ(u)
of any u ∈ V is an integer multiple of ω (aligned to a box),
if w′(v) ≤ cω, (v is light), then the starting time t of any query (v, t) in the schedule Ŝ(u)
of any u ∈ V is an integer multiple of 1

cn (aligned to a slot).

A schedule on tree T ′ satisfying the conditions of Lemma 4.2, and the resulting search
strategy, are called aligned. Subsequently, we will design an aligned strategy on tree T ′, and
compare the quality of the obtained solution to the best aligned strategy for T ′.

The intuition between the separate treatment of heavy vertices (aligned to boxes) and light
vertices (aligned to slots) in aligned schedules is the following. Whereas the time ordering of
boxes is essential in the design of the correct strategy, in our dynamic programming approach
we will not be concerned about the order of slots within a single box (i.e., the order of queries
to light vertices placed in a single box). This allows us to reduce the state space of a node.
Whereas the ordering of slots in the box will eventually have to be repaired to provide a
correct strategy, this will not affect the quality of the overall solution too much (except for
the issue of light down queries pointed out earlier, which are handled separately in Section 5).

4.2 Dynamic Programming Routine for Fixed Box Size
Let the values of parameter c and box size ω be fixed as before. Additionally, let L ∈ N be a
parameter representing the time limit for the duration of the considered vertex schedules
when measured in boxes, i.e., the longest schedule considered by the procedure will be of
length Lω (we will eventually choose an appropriate value of L = O(logn) as required when
showing Theorem 3.3).

In order to lower-bound the duration of the consistent aligned schedule assignment with
minimum cost, we perform an exhaustive bottom-up evaluation of aligned schedules which

ICALP 2017



84:10 Approximation Strategies for Generalized Binary Search in Weighted Trees

satisfy constraints on the occupancy of slots. However, instead of considering individual
slots of a schedule which may be empty or full, for reasons of efficiency we consider the load
sv[p] of each box, 0 ≤ p < L, in the same schedule, defined informally as the proportion of
the duration of the occupied slots within the box to the duration ω of the box. In the full
version, we formally show the following claim.

I Lemma 4.3. Assume that the data structure (sv, tv)v∈V corresponds to a consistent
schedule. Let v ∈ V be an arbitrarily chosen node with set of children {v1, . . . , vl}. Then the
set of queried nodes forms an edge cover of the tree:

If tv =⊥, then tvj
6=⊥, for all 1 ≤ j ≤ l. (3)

Moreover, let completion time tvend of the query to v given as:

tvend =
{
tv + w′(v), if tv 6=⊥,
+∞, if tv =⊥.

Let ap be the contribution to the load of the p-th time box of the query job for vertex v, i.e.

ap =
{

1
ω |[tv, t

v
end] ∩ [pω, (p+ 1)ω]| if tv 6=⊥,

0 if tv =⊥.

Then, for any box [pω, (p+ 1)ω], 0 ≤ p < L, we have the following bounds on the amount of
load which can be packed into the box:

sv[p] = ap +
l∑

j=1
svj

[p] ∈ [0, 1], when tvend ≥ (p+ 1)ω,

sv[p] ≥ ap, when pω < tvend < (p+ 1)ω,
sv[p] = 0, when tvend ≤ pω.


(4)

Moreover, for any box [pω, (p+ 1)ω], 0 ≤ p < L, we have that the total load of a query to v
and queries propagated from any of the subtrees cannot exceed 1:

For all 1 ≤ j ≤ l, the following bound holds: svj [p] + ap ≤ 1. (5)

We now show that the shortest schedule assignments satisfying the set of constraints (3),
(4), and (5) can be found in nO(logn) time. This is achieved by using the procedure
BuildStrategy, presented in Algorithm 4.1, which returns for a node v a non-empty
set of schedules Ŝ[v], such that each sv ∈ Ŝ[v] can be extended into the sought assignment of
schedules in its subtree, (su, tu)u∈V (Tv). In the statement of Algorithm 4.1, we recall that,
given a tree T = (V,E,w), tree T ′ = (V,E,w′) is the tree with weights rounded up to the
nearest multiple of the length of a slot (see Equation (2)).

The subsequent steps taken in procedure BuildStrategy can be informally sketched as
follows. The input tree T ′ is processed in a bottom-up manner and hence, for an input vertex
v, the recursive calls for its children v1, . . . , vl are first made, providing schedule assignments
for the children (see lines 3–4). Then, the rest of the pseudocode is responsible for using
these schedule assignments to obtain all valid schedule assignments for v. Lines 10–14 merge
the schedules of the children in such a way that a set Ŝ∗i , i ∈ {1, . . . , l}, contains all schedule
assignments computed on the basis of the schedules for the children v1, . . . , vi. Thus, the set
Ŝ∗l is the final product of this part of the procedure and is used in the remaining part. Note
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Algorithm 4.1 Dynamic programming routine BuildStrategy for a tree T ′. L, c ∈ N are
global parameters. Subroutines MergeSchedules and InsertVertex are provided in the
full version.
1: procedure BuildStrategy(vertex v, box size ω ∈ R)
2: l← number of children of v in T ′ // Denote by v1, . . . , vl the children of v.
3: for i = 1..l do
4: Ŝ[vi]← BuildStrategy(vi, ω);
5: s← 0L

6: s.max_child_load← 0L

7: s.must_contain_v ← false

8: Ŝ0 ← {s} // Ŝ0 contains the schedule with no queries.
9: // Inductively, Ŝ∗i is based on merging schedules at v1, . . . , vi.
10: for i = 1..l do
11: Ŝ∗i ← ∅
12: for each schedule s ∈ Ŝ∗i−1 do
13: for each schedule sadd ∈ Ŝ[vi] do
14: Ŝ∗i ← Ŝ∗i ∪ MergeSchedules(s, sadd, ω);
15: Ŝ[v]← ∅
16: for each s ∈ Ŝ∗l do
17: if w′(v) > cω then // v is heavy
18: for p = 0..L−1 do //attempt to insert (into s) query to v starting from time-box p

19: Ŝ[v]← Ŝ[v]∪ InsertVertex(s, v, ω, p · ω)
20: else //v is light
21: for real t = 0..L · ω step 1

cn
do

22: //attempt to insert (into s) query to v at a slot from time t

23: Ŝ[v]← Ŝ[v]∪ InsertVertex(s, v, ω, t)
24: if s.must_contain_v = false then
25: Ŝ[v]← Ŝ[v]∪ InsertVertex(s, v, ω,⊥)
26: return Ŝ[v]

that a schedule assignment in Ŝ∗l may not be valid since a query to v is not accommodated
in it – the rest of the pseudocode is responsible for taking each schedule s ∈ Ŝ∗l and inserting
a query to v into s. More precisely, the subroutine InsertVertex is used to place the
query to v at all possible time points (depending whether v is heavy or light). We note
that the subroutine MergeSchedules, for each schedule s it produces, sets a Boolean ‘flag’
s.must_contain_v that whenever equals false, indicates that querying v is not necessary
in s to obtain a valid schedule for v (this happens if s queries all children of v). A detailed
analysis of procedure BuildStrategy can be found in the full version.

I Lemma 4.4. For fixed constants L, c ∈ N, calling procedure BuildStrategy(r(T ), ω),
where r(T ) is the root of the tree, determines if there exists a tuple (sv, tv)v∈V which satisfies
constraints (3), (4), and (5), or returns an empty set otherwise.

It follows directly from Lemma 4.4 that, for any value ω∗, tree T may only admit an
aligned schedule assignment of duration at most ω∗L if a call to procedure BuildStrategy
(r(T ), ω∗) returns a non-empty set. Taking into account Lemmas 4.1 and 4.2, we directly
obtain the following lower bound on the length of the shortest aligned schedule in tree T ′.

I Lemma 4.5. If BuildStrategy(r(T ), ω∗) = ∅, then:

ω∗L <

(
1 + 3

c

)
OPT(T ′) ≤

(
1 + 3

c

)(
1 + 2

c

)
OPT(T ) ≤

(
1 + 11

c

)
OPT(T ).
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I Lemma 4.6. The running time of procedure BuildStrategy(r(T ), ω) is at most O((cn)γL),
for some absolute constant γ = O(1), for any ω ≤ n.

To complete the proof of Proposition 3.1, we can now provide a strategy which achieves a
small value of COST(ω,c). This relies on procedure BuildStrategy(r(T ), ω) as an essential
subroutine, first determining the minimum value of ω = i

cn , i ∈ N, for which BuildStrategy
produces a schedule. Details of the approach are provided in the full version.

5 Reducing the Number of Down-Queries

We start with defining a function ` : V → {1, . . . , dlog2 ne} which in the following will be
called a labeling of T and the value `(v) is called the label of v. We say that a subset of
nodes H ⊆ V is an extended heavy part in T if H = {v} ∪H ′, where all nodes in H ′ are
heavy, no node in H ′ has a heavy neighbor in T that does not belong to H ′ and v is the
parent of some node in H ′. Let H1, . . . ,Hl be all extended heavy parts in T . Obtain a tree
TC = (VC , EC) by contracting, in T , the subgraph Hi into a node denoted by hi for each
i ∈ {1, . . . , l}. In the tree TC , we want to find its labeling `′ : VC → {1, . . . , dlog2 |VC |e} that
satisfies the following condition: for each two nodes u and v in VC with `′(u) = `′(v), the
path between u and v has a node z satisfying `′(z) < `′(u). One can obtain such a labeling
by a following procedure that takes a subtree T ′C of TC and an integer i as an input. Find a
central node v in T ′C , set `′(v) = i and call the procedure for each subtree T ′′C of T ′C − v with
input T ′′C and i+ 1. The procedure is initially called for input T and i = 1. We also remark
that, alternatively, such a labeling can be obtained via vertex rankings [13, 28].

Once the labeling `′ of TC is constructed, we extend it to a labeling ` of T in such a way
that for each node v of T we set `(v) = `′(v) if v /∈ H1 ∪ · · · ∪Hl and `(v) = `′(hi) if v ∈ Hi,
i ∈ {1, . . . , l}.

Having the labeling ` of T , we are ready to define a query sequence R(v) for each node
v ∈ V . R(v) contains all nodes u from Tv such that `(u) < `(v) and each internal node z of
the path connecting v and u in T satisfies `(z) > `(u). Additionally, the nodes in R(v) are
ordered by increasing values of their labels.

By x we refer to the target node in T . Fix S to be a stable sequence assignment in the
remaining part of this section and by R we refer to the sequence assignment constructed
above. Then, we fix S+ to be S+(v) = R(v) ◦S(v) for each v ∈ V . A query made by AS+ to
a node that belongs to R(v) for some v ∈ V is called an R-query; otherwise it is an S-query.
In the full version we show that, in AS+ , the total number of R-queries does not exceed
2 log2 n. Moreover, since S is stable, for each target node x, the S-queries performed by AS+

are a subsequence of the queries performed by AS . Therefore, the potentially additional
queries made by AS+ with respect to AS are R-queries. We then formally show that each
R-query is made on a light node and that any R-query increases the value of COST(ω,c) of
AS+ with respect to the value of COST(ω,c) of AS by at most (2c + 1)ω. Hence we have:
COST(ω,c)

AS+
(T ) ≤ COST(ω,c)

AS
(T ) + 2(2c+ 1)ω log2 n.

Moreover, we show in the full version that the total number of queries in strategy AS+

to light nodes receiving ‘down’ replies can be likewise bounded by 2 log2 n. Since each such
query introduces a rounding difference of at most (2c+ 1)ω when comparing cost functions
COST and COST(ω,c), we thus obtain: COSTAS+ (T ) ≤ COST(ω,c)

AS+
(T ) + 2(2c+ 1)ω log2 n.

Combining the above observations gives the claim of the Proposition.
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