
The Infinite Server Problem∗†

Christian Coester1, Elias Koutsoupias2, and Philip Lazos3

1 Department of Computer Science, University of Oxford, Oxford, UK
christian.coester@cs.ox.ac.uk

2 Department of Computer Science, University of Oxford, Oxford, UK
elias.koutsoupias@cs.ox.ac.uk

3 Department of Computer Science, University of Oxford, Oxford, UK
filippos.lazos@cs.ox.ac.uk

Abstract
We study a variant of the k-server problem, the infinite server problem, in which infinitely many
servers reside initially at a particular point of the metric space and serve a sequence of requests.
In the framework of competitive analysis, we show a surprisingly tight connection between this
problem and the (h, k)-server problem, in which an online algorithm with k servers competes
against an offline algorithm with h servers. Specifically, we show that the infinite server problem
has bounded competitive ratio if and only if the (h, k)-server problem has bounded competitive
ratio for some k = O(h). We give a lower bound of 3.146 for the competitive ratio of the infinite
server problem, which implies the same lower bound for the (h, k)-server problem even when
k/h → ∞ and holds also for the line metric; the previous known bounds were 2.4 for general
metric spaces and 2 for the line. For weighted trees and layered graphs we obtain upper bounds,
although they depend on the depth. Of particular interest is the infinite server problem on the
line, which we show to be equivalent to the seemingly easier case in which all requests are in
a fixed bounded interval away from the original position of the servers. This is a special case
of a more general reduction from arbitrary metric spaces to bounded subspaces. Unfortunately,
classical approaches (double coverage and generalizations, work function algorithm, balancing
algorithms) fail even for this special case.

1998 ACM Subject Classification F.1.2 Modes of Computation (Online Computation)

Keywords and phrases Online Algorithms, k-Server, Resource Augmentation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.14

1 Introduction

The k-server problem is a fundamental well-studied online problem [19, 16]. In this problem
k servers serve a sequence of requests. The servers reside at k points of a metric space M
and requests are simply points of M . Serving a request entails moving one of the servers to
the request. The objective is to minimize the total distance traveled by the servers. The
most interesting variant of the problem is its online version, in which the requests appear
one-by-one and the online algorithm must decide how to serve a request without knowing the
future requests. It is known that the deterministic k-server problem has competitive ratio
between k and 2k − 1 for every metric space with at least k + 1 distinct points [19, 17].

In this paper, we study the infinite server problem, the variant of the k-server problem in
which there are infinitely many servers, all of them initially residing at a given point, the

∗ Full version available at https://arxiv.org/abs/1702.08474.
† Supported by the ERC Advanced Grant 321171 (ALGAME) and by EPSRC.

EA
T

C
S

© Christian Coester, Elias Koutsoupias, and Philip Lazos;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.14
https://arxiv.org/abs/1702.08474
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


14:2 The Infinite Server Problem

source1. At first glance it may appear that the lower bound of k for the k-server problem
would imply an unbounded competitive ratio for the infinite server problem. But consider,
for example, the version of the k-server problem on uniform metric spaces (i. e. the distance
between any two points is 1), and observe that the infinite server problem has competitive
ratio 1 for this case.

The infinite server problem is closely related to the (h, k)-server problem, the resource
augmentation version of the k-server problem in which the online algorithm has k servers
and competes against an offline algorithm for h ≤ k servers. This model is also known as
weak adversaries [2, 15]. One major open problem in competitive analysis is whether the
(h, k)-server problem has bounded competitive ratio when k � h. Here we show a, perhaps
surprising, tight connection between the infinite server problem and the (h, k)-server problem,
which also allows us to improve lower bounds for the latter.

The infinite server problem is also a considerable generalization of the ski-rental problem,
since the ski-rental problem is essentially a special case of the infinite server problem when
the metric space is an isosceles triangle.

Besides its theoretical appeal, our three main reasons for investigating the infinite server
problem are the following. First, the competitive ratio of the k-server problem goes to infinity
as k →∞, but for k =∞ it goes back to a small constant at least on some metric spaces.
This suggests that the high competitive ratio of the k-server problem is somewhat artificial.
Second, the problem allows to model applications where the number of servers is so high that
it is not a limitation in practice, or where more servers can be bought. A price for buying
new servers can be modeled easily by appropriate placement of the source in the metric space.
Third, the relationship between the infinite server problem and the (h, k)-server problem
allows for new ways to tackle the latter.

1.1 Previous Work
The k-server problem was first formulated by Manasse et al. [19], to generalize a variety of
online settings whose stepwise cost had a ‘metric’-like structure. They built on previous work
by Sleator and Tarjan [20], the genesis of competitive analysis, on the paging problem. This
problem can be easily recast as a k-server instance for the uniform metric and was already
known to be k-competitive.

Manasse et al. [19] also showed that the competitive ratio of the k-server problem is at
least k on any metric space with more than k points. They then proposed the renowned
k-server conjecture, stating that this bound is tight. This has been shown to be true for k = 2
[19] and for several special metric spaces [6, 7, 18, 19, 20]. A stream of refinements [12, 3] led
to better competitive ratios for general metric spaces until [17] showed that a competitive
ratio of 2k − 1 can be achieved on any metric space. Chasing the competitive ratio for the
deterministic (and randomized) k-server problem has been pivotal for the development of
competitive analysis. For a more in depth view on the history of the k-server problem and
further related work, we refer to [16].

In the weak adversaries setting, significantly less is known. For the (h, k)-server problem,
the exact competitive ratio is k

k−h+1 on uniform metrics (equivalent to paging) [20] and
weighted stars (equivalent to weighted paging) [21]. Bansal et al. [1] showed recently for
weighted trees that the competitive ratio as k/h→∞ is bounded by a constant depending on
the depth of the tree. On general metrics, the (h, k)-server problem is still poorly understood.

1 We first learned about this problem from Kamal Jain [14].



C. Coester, E. Koutsoupias, and P. Lazos 14:3

No algorithm is known for general metrics that performs better than disabling the k − h
extra servers and using h servers only. In fact, for the line it was shown [2, 1] that the Double
Coverage Algorithm and the Work Function Algorithm – despite achieving the optimal
competitive ratio of h if k = h [6, 4] – perform strictly worse in the resource augmentation
setting than disabling the k − h extra servers and applying the same algorithm to h servers
only. For the case that h is not fixed, the Work Function Algorithm was shown to be
2h-competitive simultaneously against any number h ≤ k of offline servers [15].

In terms of lower bounds, it is known that unlike for (weighted) paging, the competitive
ratio does not converge to 1 on general metrics even as k/h→∞. Prior to this work, the
best known lower bounds were 2 on the line, due to Bar-Noy and Schieber (see [5, p. 175]),
and 2.4 for general metrics as shown recently by Bansal et al. [1].

The closest publication to this work is by Csirik et al. [10], which studies a problem that
is essentially the special case of the infinite server problem on the uniform metric space
augmented by a far away source. It is cast as a paging problem where new cache slots can
be bought at a fixed price per unit and gives matching upper and lower bounds of ≈ 3.146
on the competitive ratio.

1.2 Our Results

Our main result is an equivalence theorem between the infinite server problem and the
(h, k)-server problem, presented in Section 2. It states that the infinite server problem is
competitive on every metric space if and only if the (h, k)-server problem is O(1)-competitive
on every metric space as k/h → ∞. We show further that it is not even necessary to let
k/h tend to infinity because in the positive case, there must also exist some k = O(h). The
theorem holds also if “every metric space” is replaced by “the real line”.

In Section 3 we present upper and lower bounds on the competitive ratio of the infinite
server problem on a variety of metric spaces. Extending the work in [10], we present a tight
lower bound for non-discrete spaces, which is then turned into a 3.146 lower bound for the
(h, k) setting. To our knowledge, this is the largest bound on the weak adversaries setting
for any metric space, as k/h → ∞. We show how recent work by Bansal et al. [1] can be
adapted to give an upper bound on the competitive ratio of the infinite server problem on
bounded-depth weighted trees. We also consider layered graph metrics, which are equivalent
(up to a factor of 2) to general graph metrics. We have not settled the case for their
competitive ratio, but we present a natural algorithm with tight analysis and pose challenges
for further research. The main open problem is whether there exists a metric space on which
the infinite server problem is not competitive.

In Section 4 we show how a variety of known algorithms such as the work function and
balancing algorithms fail for the infinite server problem, even on the real line. We focus in
particular on a class of speed-adjusted variants of the well-known double coverage algorithm.

Finally, we present a useful reduction from arbitrary metric spaces to bounded subspaces
in Section 5. In particular, the infinite server problem on the line is competitive if and only
if it is competitive for the special case where requests are restricted to some bounded interval
further away from the source.

1.3 Preliminaries

Let M = (M,d) be a metric space and let s be a point of M . In the infinite server problem
on (M, s), an unbounded number of servers starts at point s and serves a finite sequence

ICALP 2017



14:4 The Infinite Server Problem

σ = (σ0 = s, σ1, σ2, . . . , σm) of requests σi ∈M . Serving a request entails moving one of the
servers to it. The goal is to minimize the total distance traveled by the servers.

We drop s in the notation if the location of the source is not relevant or understood.
We refer to the action of moving a server from the source to another point as spawning.
Throughout this work we use the letter d for the metric associated with the metric space.

In the online setting, the requests are revealed one by one and need to be served
immediately without knowledge of future requests. All algorithms considered in this paper
are deterministic. An algorithm is called lazy if it moves only one server to serve a request
at an unoccupied point and moves no server if the requested point is already covered. An
algorithm is called local [9] if it moves a server from a to b only if there is no server at some
other point c on a shortest path from a to b, i. e. with d(a, b) = d(a, c) + d(c, b). It is easy to
see that any algorithm can be turned into a lazy and local algorithm without increasing its
cost (i. e. the total distance traveled by all servers).

For an algorithm ALG, we denote by ALG(σ) its cost on the request sequence σ. Similarly,
we write OPT(σ) for the optimal (offline) cost.

An online algorithm ALG is ρ-competitive for ρ ≥ 1 if ALG(σ) ≤ ρOPT(σ) + c for all σ,
where c is a constant independent of σ. The competitive ratio of an algorithm is the infimum
of all such ρ. We say that an algorithm is competitive if it is ρ-competitive for some ρ. We also
call an online problem itself (ρ-)competitive if it admits such an algorithm. If the additive
term c in the definition is 0, then the algorithm is also called strictly ρ-competitive [11].

The (h, k)-server problem on M is defined like the infinite server problem except that
the number of servers is k for the online algorithm and h for the optimal (offline) algorithm
against whom it is compared in the definition of competitiveness. For this problem, the
servers are not required to start at the same point, although a different initial configuration
would only affect the additive term c. The problem is interesting only when k ≥ h. The case
h = k is the standard k-server problem and the case k ≥ h is known as the weak adversaries
model. One major open problem is to determine the competitive ratio of the (h, k)-server
problem as k tends to infinity.

We will sometimes write OPTh and OPT∞ for the optimal offline algorithm, where the
index specifies the number of servers available.

The following two propositions will be useful later in the paper.

I Proposition 1. If for every metric space there exists a competitive algorithm for the infinite
server problem, then there exists a universal competitive ratio ρ such that the infinite server
problem is strictly ρ-competitive on every metric space.

Proof. We first show the existence of ρ such that the infinite server problem is ρ-competitive
(strictly or not) on every metric space. Suppose such ρ does not exist, then for every n ∈ N
we can find a metric space Mn containing some point sn such that the infinite server problem
on (Mn, sn) is not n-competitive. Consider the metric space obtained by taking the disjoint
union of all spaces Mn and gluing all the points sn together. The infinite server problem
would not be competitive on this metric space, in contradiction to the assumption.

Analogously we can also find a universal constant c that works for all metric spaces as
additive constant in the definition of ρ-competitiveness. A scaling argument shows that also
c = 0 works. J

With a very similar argument we get:

I Proposition 2. Let k = k(h) be a function of h. Suppose that for every metric space M
and for all h there exists an O(1)-competitive algorithm for the (h, k)-server problem on M .
Then there exists a universal competitive ratio ρ such that the (h, k)-server problem is strictly
ρ-competitive on every metric space if all servers start at the same point.



C. Coester, E. Koutsoupias, and P. Lazos 14:5

2 Equivalence of Infinite Servers and Weak Adversaries

The main result of this section is the following tight connection between the infinite server
problem and the weak adversaries model.

I Theorem 3. The following are equivalent:
1. The infinite server problem is competitive.
2. The (h, k)-server problem is O(1)-competitive as k/h→∞.
3. For each h there exists k = O(h) so that the (h, k)-server problem is O(1)-competitive.
The three statements above are also equivalent if we fix the metric space to be the real line.

The implication “3 =⇒ 2” is trivial. The proof of the equivalence theorem consists in its
core of two reductions. Theorem 4 contains the easier of the two reductions, which is from
the infinite server problem to the k-server problem against weak adversaries (“2 =⇒ 1”). By
Propositions 1 and 2, it suffices to consider only strictly competitive algorithms. Theorem 5
proves essentially the inverse for general metric spaces, and Theorem 8 specializes it to the
line (“1 =⇒ 3”).

As a corollary of the theorem we get the non-trivial implication “2 =⇒ 3”, a potentially
useful statement towards resolving the major open problem about weak adversaries: “Is
Statement 2 true?” This highlights the importance of the infinite server problem.

I Theorem 4. Fix a metric space M and consider algorithms with all servers starting at
some s ∈M . If for every h there exists k = k(h) such that the (h, k)-server problem on M
is strictly ρ-competitive, for some constant ρ, then there exists a strictly ρ-competitive online
strategy for the infinite server problem on M .

Proof. Let ALGk(h) denote an online algorithm with k(h) servers that is strictly ρ-competitive
against an optimal algorithm OPTh for h servers, i. e.

ALGk(h)(σ) ≤ ρOPTh(σ) (1)

for every request sequence σ. Without loss of generality, algorithm ALGk(h) is lazy.
For every request sequence σ, consider the equivalence relation ≡σ on natural numbers in

which h ≡σ h′ if and only if ALGk(h)(σ) and ALGk(h′)(σ) serve σ in exactly the same way
(i. e. , make exactly the same moves). To every σ, we associate an equivalence class H(σ) of
≡σ that satisfies

H(σ) is infinite,
H(σr) ⊆ H(σ), for every request r.

This is done inductively in the length of σ (in a manner reminiscent of König’s lemma)
as follows: For the base case when σ is the empty request sequence, H(σ) = N. For the
induction step, suppose that we have defined H(σ). Consider the equivalence classes of ≡σr,
a refinement of the equivalence classes of ≡σ. Since there are only finitely many possible
ways to serve r, they partition H(σ) into finitely many parts. At least one of these parts
is infinite and we select it to be H(σr); if there is more than one such sets, we select one
arbitrarily, say the lexicographically first.

Given such a mapping H, we define the online algorithm ALG∞ which serves every σ in
the same way as all the online algorithms ALGk(h) for h ∈ H(σ). The second property of H
guarantees that ALG∞ is a well-defined online algorithm.

By construction, ALG∞(σ) = ALGk(h)(σ) for every h ∈ H(σ). To finish the proof,
observe that since H(σ) is infinite, it contains some h greater than the length of σ, and for
such an h we have OPT∞(σ) = OPTh(σ). Substituting these to (1), we see that ALG∞ is
strictly ρ-competitive. J

ICALP 2017



14:6 The Infinite Server Problem

We now show the reduction from the k-server problem against weak adversaries to the
infinite server problem on general metric spaces.

I Theorem 5. If the infinite server problem on general metric spaces is strictly ρ̃-competitive,
then there exists a constant ρ such that the (h, k)-server problem is ρ-competitive, for k = O(h).
In particular, for every ε > 0, we can take ρ = (3 + ε)ρ̃ and any k ≥ (1 + 1/ε)ρ̃h.

Proof. Fix some metric spaceM and a point s ∈M . We will describe a strictly ρ-competitive
algorithm for the (h, k)-server problem on M for the case that all servers start at s. This
implies a (not necessarily strictly) ρ-competitive algorithm for any initial configuration.

The idea is to simulate a strictly ρ̃-competitive infinite server algorithm, but whenever
it would spawn a (k + 1)-st server, we bring all servers back to the origin and restart the
algorithm. The problem is that the overhead cost for returning the servers to the origin,
may be very high. To compensate for this, we assume that every time the servers return to
the origin, they pretend to start from a different point further away from the origin. This
motivates the following notation:

I Definition 6. Given a metric M , a point s ∈ M , and a value w ≥ 0, we will use the
notation Ms⊕w to denote the metric derived from M when we increase the distance of s from
every other point by w; we will also denote the relocated point by s⊕ w.

Let ALG∞ denote a strictly ρ̃-competitive online algorithm for the infinite server problem.
We now define an online algorithm ALGk for k servers (all starting at s). We will make use
of the notation A(σ; s) to denote the cost of algorithm A to serve the request sequence σ
when all servers start at s.

I Definition 7 (ALGk derived from ALG∞). Algorithm ALGk runs in phases with the initial
phase being the 0th phase. At the beginning of every phase, all servers of ALGk are at s. In
every phase i, the algorithm simulates the infinite server algorithm ALG∞, whose servers
start at s ⊕ wi for some wi ≥ 0. The parameters wi are determined online, and initially
w0 = 0. Whenever ALG∞ spawns a server from s ⊕ wi, algorithm ALGk spawns a server
from s.

The phase ends just before ALG∞ spawns its (k + 1)-st server or when the request
sequence ends. In the former case, all servers of ALGk return to s to start the (i + 1)-st
phase. To determine the starting point of the simulated algorithm of the next phase, we set

wi+1 = ε
OPTh(σi; s)

h
, (2)

where σi is the sequence of requests during phase i.

Let n be the number of phases. The cost of ALGk for the requests in phase i < n is
ALG∞(σi; s⊕ wi)− kwi; the last term is subtracted because the k servers do not have to
actually travel the distance between s⊕ wi and s. However for the last phase no such term
can be subtracted since we do not know how many servers are spawned during the phase,
and we can only bound the cost from above by ALG∞(σn; s⊕ wn). The cost of returning
the servers to s at the end of a phase can at most double the cost during the phase.

From this, we see that the total cost of ALGk in phase i is

costi ≤
{

2 (ALG∞(σi; s⊕ wi)− kwi) for i < n

ALG∞(σn; s⊕ wn) for i = n .



C. Coester, E. Koutsoupias, and P. Lazos 14:7

Since ALG∞ is strictly ρ̃-competitive, we have

ALG∞(σi; s⊕ wi) ≤ ρ̃OPT∞(σi; s⊕ wi)
≤ ρ̃OPTh(σi; s⊕ wi)
≤ ρ̃ (OPTh(σi; s) + hwi)

and substituting this in the expression for the cost, we can bound the total cost by

ALGk(σ; s) =
n∑
i=0

costi ≤ 2
n−1∑
i=0

(ρ̃(OPTh(σi; s) + hwi)− kwi) + ρ̃(OPTh(σn; s) + hwn)

= 2
n−1∑
i=0

(ρ̃OPTh(σi; s)− (k − ρ̃h)wi) + ρ̃OPTh(σn; s) + ρ̃hwn .

The parameters wi and k were selected so that the summation telescopes, and we are left
with

ALGk(σ; s) ≤ 2 ρ̃OPTh(σn−1; s) + ρ̃OPTh(σn; s) + ρ̃ εOPTh(σn−1; s)
≤ (3 + ε) ρ̃OPTh(σ; s) . J

The previous reduction requires the infinite server problem to be competitive on every
metric space. The following variant only requires the infinite server problem to be competitive
on the line.

I Theorem 8. If the infinite server problem on the line is ρ-competitive, then for every
h ∈ N and ε > 0, the (h, k)-server problem on the line is (3 + ε)ρ-competitive, when
k ≥ 2d(1 + 1/ε)ρhe.

Proof. A straightforward adaptation of the proof of the previous lemma, shows the existence
of a (3 + ε)ρ-competitive algorithm for the interval [0,∞), when k ≥ 2(1 + 1/ε)ρh. By
doubling the number of online servers so that half of them are used in each half-line, we get
a (3 + ε)ρ-competitive algorithm for the entire line, when k ≥ 2d(1 + 1/ε)ρhe.

Note that the proof assumes strictly competitive algorithms. But, by a straightforward
scaling argument, if the infinite server problem on the line is ρ-competitive, then it is also
strictly ρ-competitive. This in turn implies a strictly ρ-competitive online algorithm for
M0⊕w, since this space is isometric to the subspace {−w} ∪ (0,∞) of the line. J

In the next section we look at some particular metric spaces and give upper and lower
bounds on the competitive ratio.

3 Upper and Lower Bounds

Unlike the k-server problem, which is 1-competitive if and only if the metric spaces has at
most k points and conjectured k-competitive otherwise, the situation is more diverse for the
infinite server problem. For example, on uniform metric spaces (where all distances are the
same) the problem is trivially 1-competitive even if the metric space consists of uncountably
many points. This is because an optimal strategy in this case is to spawn a server to every
requested point. More generally, this strategy achieves a finite competitive ratio on any
metric space where distances are bounded from below and above by positive constants. This
suggests that statements about the competitive ratio for the infinite server problem cannot
be as simple as the (conjectured) dichotomy for the k-server problem, which depends only on
the number of points of the metric space. In this section we derive bounds on the competitive
ratio for particular classes of metric spaces.

ICALP 2017



14:8 The Infinite Server Problem

3.1 Weighted Trees
We consider the infinite server problem on metric spaces that can be modeled by edge-
weighted trees. The points of the metric space are the nodes of the tree, and the distance
between two nodes is the sum of edge weights along their connecting path. We choose the
source of the metric space as the root of the tree, and define the depth of the tree as the
maximal number of edges from the root to a leaf. The number of nodes can be infinite
(otherwise the infinite server problem is trivially 1-competitive), but we assume the depth to
be finite.

An upper bound on the competitive ratio of such trees follows easily from an upper bound
for the (h, k)-server on such trees [1] and the equivalence theorem:

I Theorem 9. The competitive ratio of the infinite server problem on trees of depth d is at
most O(2d · d).

Proof. Bansal et al. [1, Theorem 1.3] showed that the competitive ratio of the (h, k)-server
problem on trees of depth d is at most O(2d ·d) provided that k/h is large enough. Inspection
of the proof in [1] shows that if all servers start at the root, it is in fact strictly O(2d · d)-
competitive. Thus, Theorem 4 implies the result for the infinite server problem. J

3.2 Non-Discrete Spaces and Spaces with Small Infinite Subspaces
The following theorem gives a lower bound of 3.146 on the competitive ratio of the infinite
server problem on any metric space containing an infinite subspace of a diameter that is small
compared to the subspace’s distance from the source. For example, every non-discrete metric
space has this property (unless the source is the only non-discrete point), since non-discrete
metric spaces contain infinite subspaces of arbitrarily small diameter. The theorem is a
generalization of such a lower bound established in [10] for a variant of the paging problem
where cache cells can be bought. Crucial parts of the subsequent proof are as in [10].

I Theorem 10. Let M be a metric space containing an infinite subspace M0 ⊂M of finite
diameter δ and a point s ∈ M \M0 such that the infimum ∆ of distances between s and
points in M0 is positive. Let λ > 3.146 be the largest real solution to

λ = 2 + lnλ . (3)

The competitive ratio of any deterministic online algorithm for the infinite server problem on
(M, s) is bounded from below by a value that converges to λ as ∆/δ →∞. In particular, the
competitive ratio is at least λ if M \ {s} contains a non-discrete part.

Proof. By scaling the metric, we can assume that δ = 1. Let p1, p2, p3, . . . be infinitely many
distinct points in M0.

Fix some lazy deterministic online algorithm ALG. We consider the request sequence
that always requests the point pi with i minimal such that pi is not occupied by a server
of ALG. We call a move of a server between two points in M0 local (i. e. every move that
does not spawn is local). Let fj be the cumulative cost of local moves incurred to ALG until
it spawns its jth server. Let σk be this request sequence that is stopped right after ALG
spawns its kth server, for some large k. The total online cost is

ALG(σk) ≥ k∆ + fk . (4)

Let h = dk/λe. We consider several offline algorithms that start behaving the same way,
so we think of it as one algorithm initially that is forked into several algorithms later. The



C. Coester, E. Koutsoupias, and P. Lazos 14:9

offline algorithms make use of only h servers and they begin by spawning them to the points
p1, . . . , ph. They do not need to move any servers until ALG spawns its hth server. Whenever
ALG spawns its jth server for some j ≥ h, every offline algorithm is forked to h distinct
algorithms: Each of them moves a different server to pj+1 (to prepare for the next request,
which will be at pj+1). We will keep the invariant that each offline algorithm already has a
server at the next request. To this end, whenever ALG does a local move from p to p′, every
offline algorithm that does not have a server at p moves a server from p′ to p; note that the
algorithm had a server at p′ by the invariant, and the next request will be at p.

When ALG has j spawned servers (j ≥ h), the offline algorithms are in
(
j

h−1
)
different

configurations, each of which occurs equally often among them. If ALG does a local move
from p to p′, there are

(
j−1
h−1
)
different offline configurations for which a local move is made in

the opposite direction. Thus, for each local move by ALG while having j servers in total, a
portion

(
j−1
h−1
)
/
(
j

h−1
)

= j−h+1
j of the offline algorithms move a server in the opposite direction

for the same cost.
We use the average cost of all offline algorithms we considered as an upper bound on the

optimal cost. The cost of spawning h servers is at most h(∆ + 1), and the average cost while
ALG has j spawned servers (for j = h, . . . , k − 1) is at most j−h+1

j (fj+1 − fj) + 1 (with the
“+1” coming from the move when offline algorithms fork). Hence,

OPT(σk) ≤ h(∆ + 1) + k − h+
k−1∑
j=h

j − h+ 1
j

(fj+1 − fj) ,

≤ h∆ + k + k − h
k − 1 fk −

fh
h
−

k−1∑
j=h+1

h− 1
j(j − 1)fj ,

Note that fk

k is bounded from above because otherwise ALG would not be competitive, and
it is bounded from below by 0. Thus, L = lim infk→∞ fk

k exists. In the following we use the
asymptotic notation o(1) for terms that disappear as k →∞. We can choose arbitrarily large
values of k such that fk

k = L+ o(1). Since h = dk/λe, we have fj

j ≥ L+ o(1) for all j ≥ h.
Moreover,

∑k−1
j=h+1

1
j−1 = ln(λ) + o(1). This allows us to simplify the previous bound to

OPT(σk) ≤ k

λ

(
∆ + λ+

(
λ− 1− ln(λ)

)
L+ o(1)

)
= k

λ

(
∆ + L+ λ+ o(1)

)
,

where the last step uses equation (3).
The competitive ratio is at least

ALG(σk) +O(1)
OPT(σk) ≥ k∆ + fk +O(1)

k
λ

(
∆ + L+ λ+ o(1)

)
= λ · ∆ + L

∆ + L+ λ
+ o(1) .

The fraction in the last term tends to 1 as ∆→∞. J

This bound is tight due to a matching upper bound in [10] that shows (translated to the
terminology of the infinite server problem) that a competitive ratio of λ can be achieved
on metric spaces where all pairwise distances are 1 except that the source is at some larger
distance ∆ from the other points.

The previous theorem together with the equivalence theorem also allows us to obtain a
new lower bound for the k-server problem against weak adversaries.

ICALP 2017



14:10 The Infinite Server Problem

I Corollary 11. For sufficiently large h, there is no 3.146-competitive algorithm for the
(h, k)-server problem on the line, even if k →∞.

Proof. By a scaling argument it is easy to see that if the infinite server problem on the line
is ρ-competitive, then it is also strictly ρ-competitive. Thus, the statement follows from
Theorems 4 and 10. J

This improves upon both the previous best known lower bounds of 2 for this problem on
the line [5, p. 175] and 2.4 on general metric spaces [1].

3.3 Layered Graphs
A layered graph of depth D is a graph whose (potentially infinitely many) nodes can be
arranged in layers 0, 1, . . . , D so that all edges run between adjacent layers and each node –
except for a single node in layer 0 – is connected to at least one node of the previous layer.
The induced metric space is the set of nodes with the distance being the minimal number of
edges of a connecting path. For the purposes of the infinite server problem, the single node
in layer 0 is the source. We assume D ≥ 2 to avoid trivial cases.

Note that a connected graph is layered if and only if it is bipartite. Moreover, any graph
can be embedded into a bipartite graph by adding a new node in the middle of each edge.
So essentially, layered graphs capture all graph metrics.

Let Move Only Outwards (MOO) be some lazy and local algorithm for the infinite server
problem on layered graphs that moves servers along edges only in the direction away from
the source. Not surprisingly, the competitive ratio of this simple algorithm is quite bad
and we show that it is exactly D − 1/2. Nonetheless, at least for D ≤ 3 this is actually the
optimal competitive ratio.

I Theorem 12. The competitive ratio of MOO is exactly D − 1
2 .

I Theorem 13. The competitive ratio of the infinite server problem on layered graphs of
depth D is exactly 1.5 for D = 2, exactly 2.5 for D = 3 and at least 3 for D ≥ 4.

Both theorems are proved in the full version of this paper. It remains an open problem
to close the gap between the lower bound of 3 and the upper bound of 3.5 for D = 4. More
importantly, we are interested in the question whether an algorithm better than MOO exists
for large D, achieving a competitive ratio of less than D− 1/2 on any layered graph of depth
D. Note that if no algorithm with a competitive ratio of O(1) as D →∞ exists, then the
infinite server problem on general metric spaces would not be competitive.

For large D, the lower bound of 3 is certainly not tight: Consider a layered graph where
each layer contains one node except that the bottom layer contains infinitely many nodes.
By Theorem 10 (and a matching upper bound shown in [10]), the competitive ratio on this
graph converges to λ ≈ 3.146 as D →∞.

4 Algorithms with Unbounded Competitive Ratio

We examine the performance of classical algorithms known for the k-server problem when
applied to the infinite server problem, focusing on the line as a particularly appealing metric
space. We also consider a generalization of the Double Coverage algorithm for the line with
adjusted server speeds. This idea has proved successful for the (h, k)-server problem (and
hence the infinite server problem) on weighted trees [1]. However, neither of these algorithms
is competitive for the infinite server problem on the line. Proofs of the results of this section



C. Coester, E. Koutsoupias, and P. Lazos 14:11

as well as the definitions of the algorithms of the following theorem can be found in the full
version of this paper.

I Theorem 14. The Work Function Algorithm [8, 17], Balance [19] and Balance2 [13] are
not competitive for the infinite server problem on the line.

Perhaps more surprising than for the above three algorithms is that a class of algorithms
extending the Double Coverage (DC) algorithm [6] is also not competitive for the infinite
server problem. The basic DC algorithm on the line serves each request by an adjacent server.
If the request lies between two servers, both servers move towards it at equal speed until
one of them reaches the request. A sensible extension of this algorithm seems to be to give
different speeds to servers, so that they move away from the source faster than towards it.

We consider here only the half-line [0,∞) with the source at the left border 0. Let xi be
the position of the ith server from the right. We use the notation xi both for its position and
for the server itself. As servers do not overtake each other, xi is the ith spawned server. Let
S = {si ≥ 1 | i ∈ N and i ≥ 2} for a monotonic (non-decreasing or non-increasing) sequence
of speeds si. The algorithm S-DC is defined as follows:

If there exist servers xi+1 and xi to the left and right of the request, move them towards
it with speeds si+1 and 1 respectively until one of the two reaches it.
If a request does not have a server to its right, move the rightmost server to the request.

If si = 1 for all i, this is precisely the original DC algorithm.

I Theorem 15. Algorithm S-DC is not competitive for any S.

The intuitive reason is that servers move to the right either too slowly or too fast: Imagine
repeatedly requesting the same n points in some small interval away from the source, until
S-DC covers all n points. One case is that S-DC spawns too slowly and is therefore defeated
by an adversary covering these n positions immediately with n servers. In the other case,
the adversary will also use n servers to cover the initial group of requests and then shift its
group of servers slowly towards the source, always making requests at the new positions of
these offline servers. As S-DC tries to cover the new requests, it is tricked into spawning too
many servers. Both cases lead to an unbounded competitive ratio.

5 Reduction to Bounded Spaces

In this section we show a reduction from the infinite server problem on general metric spaces
to bounded subspaces. Specifically, a metric space can be partitioned into “rings” of points
whose distance from the source is between rn and rn+1, where r > 1 is fixed and n ∈ Z.
We show that if the infinite server problem is strictly ρ-competitive on each ring, then it is
competitive on the entire metric space.

I Theorem 16. Let M be a metric space and s ∈ M and let r > 1. For n ∈ Z let
Mn = {s} ∪ {p ∈ M | d(s, p) ∈ [rn, rn+1)}. If for each n the infinite server problem on
(Mn, s) is strictly ρ-competitive, then on (M, s) it is strictly 4r−1

r−1 ρ-competitive.

Proof. Let ALGn be a ρ-competitive algorithm for the infinite server problem on (Mn, s).
For a request sequence σ, let σn be the subsequence of requests in Mn. Let ALG be the

algorithm for (M, s) that uses different servers for each of the subsequences σn and serves
them independently according to ALGn.

ICALP 2017



14:12 The Infinite Server Problem

The total online cost is ALG(σ) =
∑
nALGn(σn) ≤ ρ

∑
nOPT(σn). To finish the proof,

it suffices to show that∑
n

OPT(σn) ≤ 4r − 1
r − 1 OPT(σ) . (5)

Thus, we only need to analyze the offline cost. We do this for each offline server separately.
Fix some offline server x. Let N0 and N1 be the minimal and maximal values of n such
that x visits Mn. We can assume without loss of generality (by adding virtual points to the
metric space) that whenever x moves from Mn to Mn′ for some n < n′, it travels across
points pn+1, pn+2, . . . , pn′ with d(s, pi) = ri, and similarly for n > n′.

The movements of server x can be tracked by many servers, one server xn in every set
Mn for N0 ≤ n ≤ N1. When server x is in Mn, server xn is exactly at the same position
tracking the movement of x. When server x exits Mn at some point p at the boundary to
Mn−1 or Mn+1, server xn freezes at p. The movement cost of xn can be partitioned into the
cost of deploying xn at the first point visited in Mn, the tracking cost within Mn, and the
cost of of relocating xn whenever x re-enters Mn at a location different from the last exiting
location.

The total tracking cost of all servers xn is bounded by the distance traveled by x. The
cost of deploying all servers xn is

∑N1
n=N0

rn ≤
∑N1
n=−∞ rn = rN1+1/(r− 1), which is at most

r
r−1 times the total movement of server x, because the latter is at least rN1 .

To bound the relocating cost, say x exitsMn at p and re-enters it at p′. Then p and p′ are at
the boundary ofMn andMn+u for u ∈ {−1,+1}. Let b be the distance traveled by x inMn+u
between the times when it is entered at p and when it is next exited. If this exiting is at p′, then
the relocating cost d(p, p′) is at most b by the triangle inequality. Otherwise, x exits Mn+u at
a point p′′ at the boundary of Mn+u and Mn+2u. If u = 1, then d(p, p′) ≤ d(s, p) + d(s, p′) =
2rn+1 and b ≥ d(p, p′′) ≥ d(s, p′′) − d(s, p) = rn+2 − rn+1 = (r − 1)rn+1. If u = −1, then
d(p, p′) ≤ d(s, p) + d(s, p′) = 2rn and b ≥ d(p, p′′) ≥ d(s, p)− d(s, p′′) = rn − rn−1 = r−1

r rn.
In both cases, the relocating cost d(p, p′) is at most 2r

r−1b. Thus, the total relocating cost of
all servers xn is at most 2r

r−1 times the total distance traveled by x.
Thus, the sum of deployment, tracking and relocating cost of the servers xn is at most 4r−1

r−1
times the distance traveled by x. This shows (5), giving the statement of the theorem. J

The last theorem can also be slightly generalized to the case where instead of strict
ρ-competitiveness, an additive term proportional to rn is allowed. It is not difficult to
show the following specialization for the line, where the premise can be weakened to require
competitiveness only on a single interval:

I Corollary 17. Let 0 < a < b. The infinite server problem is competitive on the line if and
only if it is competitive on ({0} ∪ [a, b], 0).

6 Open Problems

The most obvious open problem is whether the infinite server problem is competitive on
general metric spaces. A challenging special case is to resolve the question for the real line.
Similarly, improving the MOO algorithm and settling the question for layered graphs remains
open. It would also be interesting to find a metric space with a competitive ratio greater
than 3.146 for the infinite server problem or the (h, k)-server problem when k � h. Another
possible line of research is to consider randomized algorithms.



C. Coester, E. Koutsoupias, and P. Lazos 14:13

References
1 Nikhil Bansal, Marek Eliáš, Łukasz Jeż, and Grigorios Koumoutsos. The (h, k)-server

problem on bounded depth trees. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2017, pages 1022–1037. SIAM, 2017. doi:10.1137/1.
9781611974782.65.

2 Nikhil Bansal, Marek Eliáš, Łukasz Jeż, Grigorios Koumoutsos, and Kirk Pruhs. Tight
bounds for double coverage against weak adversaries. In International Workshop on
Approximation and Online Algorithms, pages 47–58. Springer, 2015. doi:10.1007/
978-3-319-28684-6_5.

3 Yair Bartal and Eddie Grove. The harmonic k-server algorithm is competitive. J. ACM,
47(1):1–15, January 2000. doi:10.1145/331605.331606.

4 Yair Bartal and Elias Koutsoupias. On the competitive ratio of the work function algorithm
for the k-server problem. Theoretical Computer Science, 324(2):337–345, 2004. doi:10.
1016/j.tcs.2004.06.001.

5 Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, New York, NY, USA, 1998.

6 Marek Chrobak, Howard Karloff, Tom Payne, and Sundar Vishwanathan. New results
on server problems. SIAM J. Discret. Math., 4(2):172–181, March 1991. doi:10.1137/
0404017.

7 Marek Chrobak and Lawrence L. Larmore. An optimal on-line algorithm for k-servers on
trees. SIAM J. Comput., 20(1):144–148, February 1991. doi:10.1137/0220008.

8 Marek Chrobak and Lawrence L. Larmore. The server problem and on-line games. In
On-line Algorithms, volume 7 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. Citeseer, 1992.

9 Ilan Reuven Cohen, Alon Eden, Amos Fiat, and Łukasz Jeż. Pricing online decisions:
Beyond auctions. In Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA’15, pages 73–91, Philadelphia, PA, USA, 2015. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611973730.7.

10 János Csirik, Csanád Imreh, John Noga, Steven S. Seiden, and Gerhard J. Woeginger.
Buying a constant competitive ratio for paging. In Proceedings of the 9th Annual European
Symposium on Algorithms, ESA’01, pages 98–108, London, UK, 2001. Springer-Verlag. doi:
10.1007/3-540-44676-1_8.

11 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. On the additive constant
of the k-server work function algorithm. In International Workshop on Approximation and
Online Algorithms, pages 128–134. Springer, 2009. doi:10.1007/978-3-642-12450-1_12.

12 Amos Fiat, Yuval Rabani, and Yiftach Ravid. Competitive k-server algorithms. In Pro-
ceedings of the Thirty First Annual Symposium on Foundations of Computer Science, pages
454–463 vol.2, Oct 1990. doi:10.1109/FSCS.1990.89566.

13 Sandy Irani and Ronitt Rubinfeld. A competitive 2-server algorithm. Information Pro-
cessing Letters, 39(2):85–91, 1991. doi:10.1016/0020-0190(91)90160-J.

14 Kamal Jain. Personal Communication.
15 Elias Koutsoupias. Weak adversaries for the k-server problem. In Proceedings of the 40th

Annual Symposium on Foundations of Computer Science, FOCS’99, Washington, DC, USA,
1999. IEEE Computer Society. doi:10.1109/SFFCS.1999.814616.

16 Elias Koutsoupias. The k-server problem. Computer Science Review, 3(2):105–118, May
2009. doi:10.1016/j.cosrev.2009.04.002.

17 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, September 1995. doi:10.1145/210118.210128.

18 Elias Koutsoupias and Christos H. Papadimitriou. The 2-evader problem. Information
Processing Letters, 57(5):249–252, March 1996. doi:10.1016/0020-0190(96)00010-5.

ICALP 2017

http://dx.doi.org/10.1137/1.9781611974782.65
http://dx.doi.org/10.1137/1.9781611974782.65
http://dx.doi.org/10.1007/978-3-319-28684-6_5
http://dx.doi.org/10.1007/978-3-319-28684-6_5
http://dx.doi.org/10.1145/331605.331606
http://dx.doi.org/10.1016/j.tcs.2004.06.001
http://dx.doi.org/10.1016/j.tcs.2004.06.001
http://dx.doi.org/10.1137/0404017
http://dx.doi.org/10.1137/0404017
http://dx.doi.org/10.1137/0220008
http://dx.doi.org/10.1137/1.9781611973730.7
http://dx.doi.org/10.1007/3-540-44676-1_8
http://dx.doi.org/10.1007/3-540-44676-1_8
http://dx.doi.org/10.1007/978-3-642-12450-1_12
http://dx.doi.org/10.1109/FSCS.1990.89566
http://dx.doi.org/10.1016/0020-0190(91)90160-J
http://dx.doi.org/10.1109/SFFCS.1999.814616
http://dx.doi.org/10.1016/j.cosrev.2009.04.002
http://dx.doi.org/10.1145/210118.210128
http://dx.doi.org/10.1016/0020-0190(96)00010-5


14:14 The Infinite Server Problem

19 Mark Manasse, Lyle McGeoch, and Daniel Sleator. Competitive algorithms for on-line prob-
lems. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing,
STOC’88, pages 322–333, New York, NY, USA, 1988. ACM. doi:10.1145/62212.62243.

20 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, February 1985. doi:10.1145/2786.2793.

21 Neal Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11(6):525–541, 1994. doi:10.1007/BF01189992.

http://dx.doi.org/10.1145/62212.62243
http://dx.doi.org/10.1145/2786.2793
http://dx.doi.org/10.1007/BF01189992

	Introduction
	Previous Work
	Our Results
	Preliminaries

	Equivalence of Infinite Servers and Weak Adversaries
	Upper and Lower Bounds
	Weighted Trees
	Non-Discrete Spaces and Spaces with Small Infinite Subspaces
	Layered Graphs

	Algorithms with Unbounded Competitive Ratio
	Reduction to Bounded Spaces
	Open Problems

